assimp/code/ASELoader.cpp

1172 lines
39 KiB
C++
Raw Normal View History

/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file Implementation of the ASE importer class */
// internal headers
#include "ASELoader.h"
#include "MaterialSystem.h"
#include "StringComparison.h"
#include "TextureTransform.h"
// utilities
#include "fast_atof.h"
#include "qnan.h"
// ASSIMP public headers
#include "../include/IOStream.h"
#include "../include/IOSystem.h"
#include "../include/aiMesh.h"
#include "../include/aiScene.h"
#include "../include/aiAssert.h"
#include "../include/DefaultLogger.h"
#include <boost/scoped_ptr.hpp>
using namespace Assimp;
using namespace Assimp::ASE;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
ASEImporter::ASEImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
ASEImporter::~ASEImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool ASEImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
{
// simple check of file extension is enough for the moment
std::string::size_type pos = pFile.find_last_of('.');
// no file extension - can't read
if( pos == std::string::npos)
return false;
std::string extension = pFile.substr( pos);
if (extension.length() < 4)return false;
if (extension[0] != '.')return false;
if (extension[1] != 'a' && extension[1] != 'A')return false;
if (extension[2] != 's' && extension[2] != 'S')return false;
// NOTE: Sometimes the extension .ASK is also used
// however, it often contains static animation skeletons
// only (without real animations).
if (extension[3] != 'e' && extension[3] != 'E' &&
extension[3] != 'k' && extension[3] != 'K')return false;
return true;
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void ASEImporter::InternReadFile(
const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler)
{
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile, "rb"));
// Check whether we can read from the file
if( file.get() == NULL)
throw new ImportErrorException( "Failed to open ASE file " + pFile + ".");
size_t fileSize = file->FileSize();
// allocate storage and copy the contents of the file to a memory buffer
// (terminate it with zero)
std::vector<char> mBuffer2(fileSize+1);
file->Read( &mBuffer2[0], 1, fileSize);
mBuffer2[fileSize] = '\0';
this->mBuffer = &mBuffer2[0];
this->pcScene = pScene;
// construct an ASE parser and parse the file
// TODO: clean this up, mParser should be a reference, not a pointer ...
ASE::Parser parser(this->mBuffer);
this->mParser = &parser;
this->mParser->Parse();
// if absolutely no material has been loaded from the file
// we need to generate a default material
this->GenerateDefaultMaterial();
// process all meshes
std::vector<aiMesh*> avOutMeshes;
avOutMeshes.reserve(this->mParser->m_vMeshes.size()*2);
for (std::vector<ASE::Mesh>::iterator
i = this->mParser->m_vMeshes.begin();
i != this->mParser->m_vMeshes.end();++i)
{
if ((*i).bSkip)continue;
this->TransformVertices(*i);
// now we need to create proper meshes from the import we need to
// split them by materials, build valid vertex/face lists ...
this->BuildUniqueRepresentation(*i);
// need to generate proper vertex normals if necessary
this->GenerateNormals(*i);
// convert all meshes to aiMesh objects
this->ConvertMeshes(*i,avOutMeshes);
}
// now build the output mesh list. remove dummies
pScene->mNumMeshes = (unsigned int)avOutMeshes.size();
aiMesh** pp = pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
for (std::vector<aiMesh*>::const_iterator
i = avOutMeshes.begin();
i != avOutMeshes.end();++i)
{
if (!(*i)->mNumFaces)continue;
*pp++ = *i;
}
pScene->mNumMeshes = (unsigned int)(pp - pScene->mMeshes);
// buil final material indices (remove submaterials and make the final list)
this->BuildMaterialIndices();
// build the final node graph
this->BuildNodes();
// build output animations
this->BuildAnimations();
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::GenerateDefaultMaterial()
{
ai_assert(NULL != this->mParser);
bool bHas = false;
for (std::vector<ASE::Mesh>::iterator
i = this->mParser->m_vMeshes.begin();
i != this->mParser->m_vMeshes.end();++i)
{
if ((*i).bSkip)continue;
if (ASE::Face::DEFAULT_MATINDEX == (*i).iMaterialIndex)
{
(*i).iMaterialIndex = (unsigned int)this->mParser->m_vMaterials.size();
bHas = true;
}
}
if (bHas || this->mParser->m_vMaterials.empty())
{
// add a simple material without sub materials to the parser's list
this->mParser->m_vMaterials.push_back ( ASE::Material() );
ASE::Material& mat = this->mParser->m_vMaterials.back();
mat.mDiffuse = aiColor3D(0.6f,0.6f,0.6f);
mat.mSpecular = aiColor3D(1.0f,1.0f,1.0f);
mat.mAmbient = aiColor3D(0.05f,0.05f,0.05f);
mat.mShading = Dot3DSFile::Gouraud;
mat.mName = AI_DEFAULT_MATERIAL_NAME;
}
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::BuildAnimations()
{
// check whether we have at least one mesh which has animations
std::vector<ASE::Mesh>::iterator i = this->mParser->m_vMeshes.begin();
unsigned int iNum = 0;
for (;i != this->mParser->m_vMeshes.end();++i)
{
if ((*i).bSkip)continue;
if ((*i).mAnim.akeyPositions.size() > 1 || (*i).mAnim.akeyRotations.size() > 1)
++iNum;
}
if (iNum)
{
this->pcScene->mNumAnimations = 1;
this->pcScene->mAnimations = new aiAnimation*[1];
aiAnimation* pcAnim = this->pcScene->mAnimations[0] = new aiAnimation();
pcAnim->mNumBones = iNum;
pcAnim->mBones = new aiBoneAnim*[iNum];
pcAnim->mTicksPerSecond = this->mParser->iFrameSpeed * this->mParser->iTicksPerFrame;
iNum = 0;
i = this->mParser->m_vMeshes.begin();
for (;i != this->mParser->m_vMeshes.end();++i)
{
if ((*i).bSkip)continue;
if ((*i).mAnim.akeyPositions.size() > 1 || (*i).mAnim.akeyRotations.size() > 1)
{
aiBoneAnim* pcBoneAnim = pcAnim->mBones[iNum++] = new aiBoneAnim();
pcBoneAnim->mBoneName.Set((*i).mName);
// copy position keys
if ((*i).mAnim.akeyPositions.size() > 1 )
{
pcBoneAnim->mNumPositionKeys = (unsigned int) (*i).mAnim.akeyPositions.size();
pcBoneAnim->mPositionKeys = new aiVectorKey[pcBoneAnim->mNumPositionKeys];
::memcpy(pcBoneAnim->mPositionKeys,&(*i).mAnim.akeyPositions[0],
pcBoneAnim->mNumPositionKeys * sizeof(aiVectorKey));
for (unsigned int qq = 0; qq < pcBoneAnim->mNumPositionKeys;++qq)
{
double dTime = pcBoneAnim->mPositionKeys[qq].mTime;
pcAnim->mDuration = std::max(pcAnim->mDuration,dTime);
}
}
// copy rotation keys
if ((*i).mAnim.akeyRotations.size() > 1 )
{
pcBoneAnim->mNumRotationKeys = (unsigned int) (*i).mAnim.akeyPositions.size();
pcBoneAnim->mRotationKeys = new aiQuatKey[pcBoneAnim->mNumPositionKeys];
::memcpy(pcBoneAnim->mRotationKeys,&(*i).mAnim.akeyRotations[0],
pcBoneAnim->mNumRotationKeys * sizeof(aiQuatKey));
for (unsigned int qq = 0; qq < pcBoneAnim->mNumRotationKeys;++qq)
{
double dTime = pcBoneAnim->mRotationKeys[qq].mTime;
pcAnim->mDuration = std::max(pcAnim->mDuration,dTime);
}
}
}
}
}
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::AddNodes(aiNode* pcParent,const char* szName)
{
aiMatrix4x4 m;
ASE::DecompTransform dec(m);
this->AddNodes(pcParent,szName,dec);
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::AddNodes(aiNode* pcParent,const char* szName,
const ASE::DecompTransform& decompTrafo)
{
const size_t len = szName ? strlen(szName) : 0;
ai_assert(4 <= AI_MAX_NUMBER_OF_COLOR_SETS);
std::vector<aiNode*> apcNodes;
aiMesh** pcMeshes = pcScene->mMeshes;
for (unsigned int i = 0; i < pcScene->mNumMeshes;++i)
{
// get the name of the mesh
aiMesh* pcMesh = *pcMeshes++;
const ASE::Mesh& mesh = *((const ASE::Mesh*)pcMesh->mColors[2]);
// TODO: experimental quick'n'dirty, clean this up ...
std::string szMyName[2] = {mesh.mName,mesh.mParent} ;
if (szName)
{
if( len != szMyName[1].length() ||
0 != ASSIMP_stricmp ( szName, szMyName[1].c_str() ))
{
continue;
}
}
else if ('\0' != szMyName[1].c_str()[0])continue;
apcNodes.push_back(new aiNode());
aiNode* node = apcNodes.back();
node->mName.Set(szMyName[0]);
node->mNumMeshes = 1;
node->mMeshes = new unsigned int[1];
node->mMeshes[0] = i;
node->mParent = pcParent;
aiMatrix4x4 mParentAdjust = decompTrafo.mMatrix;
mParentAdjust.Inverse();
node->mTransformation = mParentAdjust*mesh.mTransform;
// Transform all vertices of the mesh back into their local space ->
// at the moment they are pretransformed
aiMatrix4x4 mInverse = mesh.mTransform;
mInverse.Inverse();
aiVector3D* pvCurPtr = pcMesh->mVertices;
const aiVector3D* const pvEndPtr = pcMesh->mVertices + pcMesh->mNumVertices;
while (pvCurPtr != pvEndPtr)
{
*pvCurPtr = mInverse * (*pvCurPtr);
pvCurPtr++;
}
// add sub nodes
aiMatrix4x4 mNewAbs = decompTrafo.mMatrix * node->mTransformation;
ASE::DecompTransform dec( mNewAbs);
this->AddNodes(node,node->mName.data,dec);
}
// allocate enough space for the child nodes
pcParent->mNumChildren = (unsigned int)apcNodes.size();
pcParent->mChildren = new aiNode*[apcNodes.size()];
// now build all nodes
for (unsigned int p = 0; p < apcNodes.size();++p)
{
pcParent->mChildren[p] = apcNodes[p];
}
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::BuildNodes()
{
ai_assert(NULL != pcScene);
// allocate the root node
pcScene->mRootNode = new aiNode();
pcScene->mRootNode->mNumMeshes = 0;
pcScene->mRootNode->mMeshes = 0;
pcScene->mRootNode->mName.Set("<root>");
// add all nodes
this->AddNodes(pcScene->mRootNode,NULL);
// now iterate through al meshes and find those that have not yet
// been added to the nodegraph (= their parent could not be recognized)
std::vector<unsigned int> aiList;
for (unsigned int i = 0; i < pcScene->mNumMeshes;++i)
{
// get the name of the mesh
const ASE::Mesh& mesh = *((const ASE::Mesh*)pcScene->mMeshes[i]->mColors[2]);
// TODO: experimental quick'n'dirty, clean this up ...
std::string szMyName[2] = {mesh.mName,mesh.mParent} ;
// check whether our parent is known
bool bKnowParent = false;
for (unsigned int i2 = 0; i2 < pcScene->mNumMeshes;++i2)
{
if (i2 == i)continue;
const ASE::Mesh& mesh2 = *((const ASE::Mesh*)pcScene->mMeshes[i2]->mColors[2]);
// TODO: experimental quick'n'dirty, clean this up ...
std::string szMyName2[2] = {mesh2.mName,mesh2.mParent} ;
if (!ASSIMP_stricmp ( szMyName[1], szMyName2[0]))
{
bKnowParent = true;
break;
}
// check if there is another mesh with the same unknown parent
// that has already been handled and added to the list
if (i2 < i)
{
if (ASSIMP_stricmp ( szMyName[1], szMyName2[1]))
{
bKnowParent = true;
break;
}
}
}
if (!bKnowParent)
{
aiList.push_back(i);
}
}
if (!aiList.empty())
{
std::vector<aiNode*> apcNodes;
apcNodes.reserve(aiList.size() + pcScene->mRootNode->mNumChildren);
for (unsigned int i = 0; i < pcScene->mRootNode->mNumChildren;++i)
apcNodes.push_back(pcScene->mRootNode->mChildren[i]);
delete[] pcScene->mRootNode->mChildren;
for (std::vector<unsigned int>::/*const_*/iterator
i = aiList.begin();
i != aiList.end();++i)
{
std::string* szMyName = (std::string*)pcScene->mMeshes[*i]->mColors[1];
if (!szMyName)continue;
DefaultLogger::get()->info("Generating dummy node: " + szMyName[1] + ". "
"This node is not defined in the ASE file, but referenced as "
"parent node.");
// the parent is not known, so we can assume that we must add
// this node to the root node of the whole scene
aiNode* pcNode = new aiNode();
pcNode->mParent = pcScene->mRootNode;
pcNode->mName.Set(szMyName[1]);
this->AddNodes(pcNode,pcNode->mName.data);
apcNodes.push_back(pcNode);
}
pcScene->mRootNode->mChildren = new aiNode*[apcNodes.size()];
for (unsigned int i = 0; i < apcNodes.size();++i)
pcScene->mRootNode->mChildren[i] = apcNodes[i];
pcScene->mRootNode->mNumChildren = (unsigned int)apcNodes.size();
}
for (unsigned int i = 0; i < pcScene->mNumMeshes;++i)
pcScene->mMeshes[i]->mColors[2] = NULL;
// if there is only one subnode, set it as root node
if (1 == pcScene->mRootNode->mNumChildren)
{
aiNode* pc = pcScene->mRootNode;
pcScene->mRootNode = pcScene->mRootNode->mChildren[0];
pcScene->mRootNode->mParent = NULL;
// make sure the destructor won't delete us ...
delete[] pc->mChildren;
pc->mChildren = NULL;
pc->mNumChildren = 0;
delete pc;
}
else if (!pcScene->mRootNode->mNumChildren)
{
throw new ImportErrorException("No nodes loaded. The ASE/ASK file is either empty or corrupt");
}
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::TransformVertices(ASE::Mesh& mesh)
{
// the matrix data is stored in column-major format,
// but we need row major
mesh.mTransform.Transpose();
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::BuildUniqueRepresentation(ASE::Mesh& mesh)
{
// allocate output storage
std::vector<aiVector3D> mPositions;
std::vector<aiVector3D> amTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS];
std::vector<aiColor4D> mVertexColors;
std::vector<aiVector3D> mNormals;
std::vector<BoneVertex> mBoneVertices;
unsigned int iSize = (unsigned int)mesh.mFaces.size() * 3;
mPositions.resize(iSize);
// optional texture coordinates
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS;++i)
{
if (!mesh.amTexCoords[i].empty())
{
amTexCoords[i].resize(iSize);
}
}
// optional vertex colors
if (!mesh.mVertexColors.empty())
{
mVertexColors.resize(iSize);
}
// optional vertex normals (vertex normals can simply be copied)
if (!mesh.mNormals.empty())
{
mNormals.resize(iSize);
}
// bone vertices. There is no need to change the bone list
if (!mesh.mBoneVertices.empty())
{
mBoneVertices.resize(iSize);
}
// iterate through all faces in the mesh
unsigned int iCurrent = 0;
for (std::vector<ASE::Face>::iterator
i = mesh.mFaces.begin();
i != mesh.mFaces.end();++i)
{
for (unsigned int n = 0; n < 3;++n,++iCurrent)
{
mPositions[iCurrent] = mesh.mPositions[(*i).mIndices[n]];
std::swap((float&)mPositions[iCurrent].z,(float&)mPositions[iCurrent].y); // DX-to-OGL
// add texture coordinates
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
{
if (!mesh.amTexCoords[c].empty())
{
amTexCoords[c][iCurrent] = mesh.amTexCoords[c][(*i).amUVIndices[c][n]];
amTexCoords[c][iCurrent].y = 1.0f - amTexCoords[c][iCurrent].y; // DX-to-OGL
}
}
// add vertex colors
if (!mesh.mVertexColors.empty())
{
mVertexColors[iCurrent] = mesh.mVertexColors[(*i).mColorIndices[n]];
}
// add normal vectors
if (!mesh.mNormals.empty())
{
mNormals[iCurrent] = mesh.mNormals[(*i).mIndices[n]];
std::swap((float&)mNormals[iCurrent].z,(float&)mNormals[iCurrent].y); // DX-to-OGL
}
// handle bone vertices
if ((*i).mIndices[n] < mesh.mBoneVertices.size())
{
// (sometimes this will cause bone verts to be duplicated
// however, I' quite sure Schrompf' JoinVerticesStep
// will fix that again ...)
mBoneVertices[iCurrent] = mesh.mBoneVertices[(*i).mIndices[n]];
}
}
// we need to flip the order of the indices
(*i).mIndices[0] = iCurrent-1;
(*i).mIndices[1] = iCurrent-2;
(*i).mIndices[2] = iCurrent-3;
}
// replace the old arrays
mesh.mNormals = mNormals;
mesh.mPositions = mPositions;
mesh.mVertexColors = mVertexColors;
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
mesh.amTexCoords[c] = amTexCoords[c];
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::ConvertMaterial(ASE::Material& mat)
{
// allocate the output material
mat.pcInstance = new MaterialHelper();
// At first add the base ambient color of the
// scene to the material
mat.mAmbient.r += this->mParser->m_clrAmbient.r;
mat.mAmbient.g += this->mParser->m_clrAmbient.g;
mat.mAmbient.b += this->mParser->m_clrAmbient.b;
aiString name;
name.Set( mat.mName);
mat.pcInstance->AddProperty( &name, AI_MATKEY_NAME);
// material colors
mat.pcInstance->AddProperty( &mat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT);
mat.pcInstance->AddProperty( &mat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
mat.pcInstance->AddProperty( &mat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
mat.pcInstance->AddProperty( &mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
// shininess
if (0.0f != mat.mSpecularExponent && 0.0f != mat.mShininessStrength)
{
mat.pcInstance->AddProperty( &mat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
mat.pcInstance->AddProperty( &mat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH);
}
// if there is no shininess, we can disable phong lighting
else if (Dot3DS::Dot3DSFile::Metal == mat.mShading ||
Dot3DS::Dot3DSFile::Phong == mat.mShading ||
Dot3DS::Dot3DSFile::Blinn == mat.mShading)
{
mat.mShading = Dot3DS::Dot3DSFile::Gouraud;
}
// opacity
mat.pcInstance->AddProperty<float>( &mat.mTransparency,1,AI_MATKEY_OPACITY);
// shading mode
aiShadingMode eShading = aiShadingMode_NoShading;
switch (mat.mShading)
{
case Dot3DS::Dot3DSFile::Flat:
eShading = aiShadingMode_Flat; break;
case Dot3DS::Dot3DSFile::Phong :
eShading = aiShadingMode_Phong; break;
case Dot3DS::Dot3DSFile::Blinn :
eShading = aiShadingMode_Blinn; break;
// I don't know what "Wire" shading should be,
// assume it is simple lambertian diffuse (L dot N) shading
case Dot3DS::Dot3DSFile::Wire:
case Dot3DS::Dot3DSFile::Gouraud:
eShading = aiShadingMode_Gouraud; break;
case Dot3DS::Dot3DSFile::Metal :
eShading = aiShadingMode_CookTorrance; break;
}
mat.pcInstance->AddProperty<int>( (int*)&eShading,1,AI_MATKEY_SHADING_MODEL);
if (Dot3DS::Dot3DSFile::Wire == mat.mShading)
{
// set the wireframe flag
unsigned int iWire = 1;
mat.pcInstance->AddProperty<int>( (int*)&iWire,1,AI_MATKEY_ENABLE_WIREFRAME);
}
// texture, if there is one
if( mat.sTexDiffuse.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexDiffuse.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0));
if (is_not_qnan(mat.sTexDiffuse.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexDiffuse.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_DIFFUSE(0));
}
if( mat.sTexSpecular.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexSpecular.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(0));
if (is_not_qnan(mat.sTexSpecular.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexSpecular.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_SPECULAR(0));
}
if( mat.sTexOpacity.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexOpacity.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_OPACITY(0));
if (is_not_qnan(mat.sTexOpacity.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexOpacity.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_OPACITY(0));
}
if( mat.sTexEmissive.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexEmissive.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(0));
if (is_not_qnan(mat.sTexEmissive.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexEmissive.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_EMISSIVE(0));
}
if( mat.sTexAmbient.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexAmbient.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_AMBIENT(0));
if (is_not_qnan(mat.sTexAmbient.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexAmbient.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_AMBIENT(0));
}
if( mat.sTexBump.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexBump.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(0));
if (is_not_qnan(mat.sTexBump.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexBump.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_HEIGHT(0));
}
if( mat.sTexShininess.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexShininess.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SHININESS(0));
if (is_not_qnan(mat.sTexShininess.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexBump.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_SHININESS(0));
}
// store the name of the material itself, too
if( mat.mName.length() > 0)
{
aiString tex;
tex.Set( mat.mName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_NAME);
}
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMeshes)
{
// validate the material index of the mesh
if (mesh.iMaterialIndex >= this->mParser->m_vMaterials.size())
{
mesh.iMaterialIndex = (unsigned int)this->mParser->m_vMaterials.size()-1;
DefaultLogger::get()->warn("Material index is out of range");
}
// if the material the mesh is assigned to is consisting of submeshes
// we'll need to split it ... Quak.
if (!this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty())
{
std::vector<ASE::Material> vSubMaterials = this->mParser->
m_vMaterials[mesh.iMaterialIndex].avSubMaterials;
std::vector<unsigned int>* aiSplit = new std::vector<unsigned int>[
vSubMaterials.size()];
// build a list of all faces per submaterial
for (unsigned int i = 0; i < mesh.mFaces.size();++i)
{
// check range
if (mesh.mFaces[i].iMaterial >= vSubMaterials.size())
{
DefaultLogger::get()->warn("Submaterial index is out of range");
// use the last material instead
aiSplit[vSubMaterials.size()-1].push_back(i);
}
else aiSplit[mesh.mFaces[i].iMaterial].push_back(i);
}
// now generate submeshes
for (unsigned int p = 0; p < vSubMaterials.size();++p)
{
if (aiSplit[p].size() != 0)
{
aiMesh* p_pcOut = new aiMesh();
// let the sub material index
p_pcOut->mMaterialIndex = p;
// we will need this material
this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials[p].bNeed = true;
// store the real index here ... color channel 3
p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex;
// store a pointer to the mesh in color channel 2
p_pcOut->mColors[2] = (aiColor4D*) &mesh;
avOutMeshes.push_back(p_pcOut);
// convert vertices
p_pcOut->mNumVertices = (unsigned int)aiSplit[p].size()*3;
p_pcOut->mNumFaces = (unsigned int)aiSplit[p].size();
// receive output vertex weights
std::vector<std::pair<unsigned int, float> >* avOutputBones;
if (!mesh.mBones.empty())
{
avOutputBones = new std::vector<std::pair<unsigned int, float> >[mesh.mBones.size()];
}
// allocate enough storage for faces
p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
if (p_pcOut->mNumVertices != 0)
{
p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices];
p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices];
unsigned int iBase = 0;
for (unsigned int q = 0; q < aiSplit[p].size();++q)
{
unsigned int iIndex = aiSplit[p][q];
p_pcOut->mFaces[q].mIndices = new unsigned int[3];
p_pcOut->mFaces[q].mNumIndices = 3;
for (unsigned int t = 0; t < 3;++t)
{
const uint32_t iIndex2 = mesh.mFaces[iIndex].mIndices[t];
p_pcOut->mVertices[iBase] = mesh.mPositions[iIndex2];
p_pcOut->mNormals[iBase] = mesh.mNormals[iIndex2];
// convert bones, if existing
if (!mesh.mBones.empty())
{
// check whether there is a vertex weight that is using
// this vertex index ...
if (iIndex2 < mesh.mBoneVertices.size())
{
for (std::vector<std::pair<int,float> >::const_iterator
blubb = mesh.mBoneVertices[iIndex2].mBoneWeights.begin();
blubb != mesh.mBoneVertices[iIndex2].mBoneWeights.end();++blubb)
{
// NOTE: illegal cases have already been filtered out
avOutputBones[(*blubb).first].push_back(std::pair<unsigned int, float>(
iBase,(*blubb).second));
}
}
}
++iBase;
}
p_pcOut->mFaces[q].mIndices[0] = iBase-3;
p_pcOut->mFaces[q].mIndices[1] = iBase-2;
p_pcOut->mFaces[q].mIndices[2] = iBase-1;
}
}
// convert texture coordinates
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
{
if (!mesh.amTexCoords[c].empty())
{
p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices];
unsigned int iBase = 0;
for (unsigned int q = 0; q < aiSplit[p].size();++q)
{
unsigned int iIndex = aiSplit[p][q];
for (unsigned int t = 0; t < 3;++t)
{
p_pcOut->mTextureCoords[c][iBase++] = mesh.amTexCoords[c][mesh.mFaces[iIndex].mIndices[t]];
}
}
// setup the number of valid vertex components
p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
}
}
// convert vertex colors (only one set supported)
if (!mesh.mVertexColors.empty())
{
p_pcOut->mColors[0] = new aiColor4D[p_pcOut->mNumVertices];
unsigned int iBase = 0;
for (unsigned int q = 0; q < aiSplit[p].size();++q)
{
unsigned int iIndex = aiSplit[p][q];
for (unsigned int t = 0; t < 3;++t)
{
p_pcOut->mColors[0][iBase++] = mesh.mVertexColors[mesh.mFaces[iIndex].mIndices[t]];
}
}
}
if (!mesh.mBones.empty())
{
p_pcOut->mNumBones = 0;
for (unsigned int mrspock = 0; mrspock < mesh.mBones.size();++mrspock)
if (!avOutputBones[mrspock].empty())p_pcOut->mNumBones++;
p_pcOut->mBones = new aiBone* [ p_pcOut->mNumBones ];
aiBone** pcBone = p_pcOut->mBones;
for (unsigned int mrspock = 0; mrspock < mesh.mBones.size();++mrspock)
{
if (!avOutputBones[mrspock].empty())
{
// we will need this bone. add it to the output mesh and
// add all per-vertex weights
aiBone* pc = *pcBone = new aiBone();
pc->mName.Set(mesh.mBones[mrspock].mName);
pc->mNumWeights = (unsigned int)avOutputBones[mrspock].size();
pc->mWeights = new aiVertexWeight[pc->mNumWeights];
for (unsigned int captainkirk = 0; captainkirk < pc->mNumWeights;++captainkirk)
{
const std::pair<unsigned int,float>& ref = avOutputBones[mrspock][captainkirk];
pc->mWeights[captainkirk].mVertexId = ref.first;
pc->mWeights[captainkirk].mWeight = ref.second;
}
++pcBone;
}
}
// delete allocated storage
delete[] avOutputBones;
}
}
}
// delete storage
delete[] aiSplit;
}
else
{
// otherwise we can simply copy the data to one output mesh
aiMesh* p_pcOut = new aiMesh();
// set an empty sub material index
p_pcOut->mMaterialIndex = ASE::Face::DEFAULT_MATINDEX;
this->mParser->m_vMaterials[mesh.iMaterialIndex].bNeed = true;
// store the real index here ... in color channel 3
p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex;
// store a pointer to the mesh in color channel 2
p_pcOut->mColors[2] = (aiColor4D*) &mesh;
avOutMeshes.push_back(p_pcOut);
// if the mesh hasn't faces or vertices, there are two cases
// possible: 1. the model is invalid. 2. This is a dummy
// helper object which we are going to remove later ...
if (mesh.mFaces.empty() || mesh.mPositions.empty())
{
return;
}
// convert vertices
p_pcOut->mNumVertices = (unsigned int)mesh.mPositions.size();
p_pcOut->mNumFaces = (unsigned int)mesh.mFaces.size();
// allocate enough storage for faces
p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
// copy vertices
p_pcOut->mVertices = new aiVector3D[mesh.mPositions.size()];
memcpy(p_pcOut->mVertices,&mesh.mPositions[0],
mesh.mPositions.size() * sizeof(aiVector3D));
// copy normals
p_pcOut->mNormals = new aiVector3D[mesh.mNormals.size()];
memcpy(p_pcOut->mNormals,&mesh.mNormals[0],
mesh.mNormals.size() * sizeof(aiVector3D));
// copy texture coordinates
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
{
if (!mesh.amTexCoords[c].empty())
{
p_pcOut->mTextureCoords[c] = new aiVector3D[mesh.amTexCoords[c].size()];
memcpy(p_pcOut->mTextureCoords[c],&mesh.amTexCoords[c][0],
mesh.amTexCoords[c].size() * sizeof(aiVector3D));
// setup the number of valid vertex components
p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
}
}
// copy vertex colors
if (!mesh.mVertexColors.empty())
{
p_pcOut->mColors[0] = new aiColor4D[mesh.mVertexColors.size()];
memcpy(p_pcOut->mColors[0],&mesh.mVertexColors[0],
mesh.mVertexColors.size() * sizeof(aiColor4D));
}
// copy faces
for (unsigned int iFace = 0; iFace < p_pcOut->mNumFaces;++iFace)
{
p_pcOut->mFaces[iFace].mNumIndices = 3;
p_pcOut->mFaces[iFace].mIndices = new unsigned int[3];
// copy indices
p_pcOut->mFaces[iFace].mIndices[0] = mesh.mFaces[iFace].mIndices[0];
p_pcOut->mFaces[iFace].mIndices[1] = mesh.mFaces[iFace].mIndices[1];
p_pcOut->mFaces[iFace].mIndices[2] = mesh.mFaces[iFace].mIndices[2];
}
// copy vertex bones
if (!mesh.mBones.empty() && !mesh.mBoneVertices.empty())
{
std::vector<aiVertexWeight>* avBonesOut = new
std::vector<aiVertexWeight>[mesh.mBones.size()];
// find all vertex weights for this bone
unsigned int quak = 0;
for (std::vector<BoneVertex>::const_iterator
harrypotter = mesh.mBoneVertices.begin();
harrypotter != mesh.mBoneVertices.end();++harrypotter,++quak)
{
for (std::vector<std::pair<int,float> >::const_iterator
ronaldweasley = (*harrypotter).mBoneWeights.begin();
ronaldweasley != (*harrypotter).mBoneWeights.end();++ronaldweasley)
{
aiVertexWeight weight;
weight.mVertexId = quak;
weight.mWeight = (*ronaldweasley).second;
avBonesOut[(*ronaldweasley).first].push_back(weight);
}
}
// now build a final bone list
p_pcOut->mNumBones = 0;
for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size();++jfkennedy)
if (!avBonesOut[jfkennedy].empty())p_pcOut->mNumBones++;
p_pcOut->mBones = new aiBone*[p_pcOut->mNumBones];
aiBone** pcBone = p_pcOut->mBones;
for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size();++jfkennedy)
{
if (!avBonesOut[jfkennedy].empty())
{
aiBone* pc = *pcBone = new aiBone();
pc->mName.Set(mesh.mBones[jfkennedy].mName);
pc->mNumWeights = (unsigned int)avBonesOut[jfkennedy].size();
pc->mWeights = new aiVertexWeight[pc->mNumWeights];
::memcpy(pc->mWeights,&avBonesOut[jfkennedy][0],
sizeof(aiVertexWeight) * pc->mNumWeights);
++pcBone;
}
}
}
}
return;
}
// ------------------------------------------------------------------------------------------------
void ComputeBounds(ASE::Mesh& mesh,aiVector3D& minVec, aiVector3D& maxVec,
aiMatrix4x4& matrix)
{
minVec = aiVector3D( 1e10f, 1e10f, 1e10f);
maxVec = aiVector3D( -1e10f, -1e10f, -1e10f);
for( std::vector<aiVector3D>::const_iterator
i = mesh.mPositions.begin();
i != mesh.mPositions.end();++i)
{
aiVector3D v = matrix*(*i);
minVec.x = std::min( minVec.x, v.x);
minVec.y = std::min( minVec.y, v.y);
minVec.z = std::min( minVec.z, v.z);
maxVec.x = std::max( maxVec.x, v.x);
maxVec.y = std::max( maxVec.y, v.y);
maxVec.z = std::max( maxVec.z, v.z);
}
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::BuildMaterialIndices()
{
ai_assert(NULL != pcScene);
// iterate through all materials and check whether we need them
for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat)
{
if (this->mParser->m_vMaterials[iMat].bNeed)
{
// convert it to the aiMaterial layout
ASE::Material& mat = this->mParser->m_vMaterials[iMat];
this->ConvertMaterial(mat);
TextureTransform::ApplyScaleNOffset(mat);
++pcScene->mNumMaterials;
}
for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[
iMat].avSubMaterials.size();++iSubMat)
{
if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed)
{
// convert it to the aiMaterial layout
ASE::Material& mat = this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat];
this->ConvertMaterial(mat);
TextureTransform::ApplyScaleNOffset(mat);
++pcScene->mNumMaterials;
}
}
}
// allocate the output material array
pcScene->mMaterials = new aiMaterial*[pcScene->mNumMaterials];
Dot3DS::Material** pcIntMaterials = new Dot3DS::Material*[pcScene->mNumMaterials];
unsigned int iNum = 0;
for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat)
{
if (this->mParser->m_vMaterials[iMat].bNeed)
{
ai_assert(NULL != this->mParser->m_vMaterials[iMat].pcInstance);
pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat].pcInstance;
// store the internal material, too
pcIntMaterials[iNum] = &this->mParser->m_vMaterials[iMat];
// iterate through all meshes and search for one which is using
// this top-level material index
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh)
{
if (ASE::Face::DEFAULT_MATINDEX == pcScene->mMeshes[iMesh]->mMaterialIndex &&
iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3])
{
pcScene->mMeshes[iMesh]->mMaterialIndex = iNum;
pcScene->mMeshes[iMesh]->mColors[3] = NULL;
}
}
iNum++;
}
for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[iMat].avSubMaterials.size();++iSubMat)
{
if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed)
{
ai_assert(NULL != this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].pcInstance);
pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat].
avSubMaterials[iSubMat].pcInstance;
// store the internal material, too
pcIntMaterials[iNum] = &this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat];
// iterate through all meshes and search for one which is using
// this sub-level material index
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh)
{
if (iSubMat == pcScene->mMeshes[iMesh]->mMaterialIndex &&
iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3])
{
pcScene->mMeshes[iMesh]->mMaterialIndex = iNum;
pcScene->mMeshes[iMesh]->mColors[3] = NULL;
}
}
iNum++;
}
}
}
// prepare for the next step
for (unsigned int hans = 0; hans < this->mParser->m_vMaterials.size();++hans)
TextureTransform::ApplyScaleNOffset(this->mParser->m_vMaterials[hans]);
// now we need to iterate through all meshes,
// generating correct texture coordinates and material uv indices
for (unsigned int curie = 0; curie < pcScene->mNumMeshes;++curie)
{
aiMesh* pcMesh = pcScene->mMeshes[curie];
// apply texture coordinate transformations
TextureTransform::BakeScaleNOffset(pcMesh,pcIntMaterials[pcMesh->mMaterialIndex]);
}
for (unsigned int hans = 0; hans < pcScene->mNumMaterials;++hans)
{
// setup the correct UV indices for each material
TextureTransform::SetupMatUVSrc(pcScene->mMaterials[hans],
pcIntMaterials[hans]);
}
delete[] pcIntMaterials;
// finished!
return;
}
// ------------------------------------------------------------------------------------------------
// Generate normal vectors basing on smoothing groups
void ASEImporter::GenerateNormals(ASE::Mesh& mesh)
{
if (!mesh.mNormals.empty())
{
// check whether there are uninitialized normals. If there are
// some, skip all normals from the file and compute them on our own
for (std::vector<aiVector3D>::const_iterator
qq = mesh.mNormals.begin();
qq != mesh.mNormals.end();++qq)
{
if (is_qnan((*qq).x))
{
DefaultLogger::get()->warn("Normals were specified in the file, "
"but not all vertices seem to have normals assigned. The "
"whole normal set will be recomputed.");
mesh.mNormals.clear();
break;
}
}
}
if (mesh.mNormals.empty())
ComputeNormalsWithSmoothingsGroups<ASE::Face>(mesh);
return;
}