assimp/code/ASELoader.cpp

721 lines
24 KiB
C++
Raw Normal View History

/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file Implementation of the ASE importer class */
#include "ASELoader.h"
#include "3DSSpatialSort.h"
#include "MaterialSystem.h"
#include "../include/IOStream.h"
#include "../include/IOSystem.h"
#include "../include/aiMesh.h"
#include "../include/aiScene.h"
#include "../include/aiAssert.h"
#include <boost/scoped_ptr.hpp>
using namespace Assimp;
using namespace Assimp::ASE;
#define LOGOUT_WARN(x)
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
ASEImporter::ASEImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
ASEImporter::~ASEImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool ASEImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
{
// simple check of file extension is enough for the moment
std::string::size_type pos = pFile.find_last_of('.');
// no file extension - can't read
if( pos == std::string::npos)
return false;
std::string extension = pFile.substr( pos);
if (extension.length() < 4)return false;
if (extension[0] != '.')return false;
if (extension[1] != 'a' && extension[1] != 'A')return false;
if (extension[2] != 's' && extension[2] != 'S')return false;
// NOTE: Sometimes the extension .ASK is also used
if (extension[3] != 'e' && extension[3] != 'E' &&
extension[3] != 'k' && extension[3] != 'K')return false;
return true;
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void ASEImporter::InternReadFile(
const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler)
{
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile));
// Check whether we can read from the file
if( file.get() == NULL)
{
throw new ImportErrorException( "Failed to open ASE file " + pFile + ".");
}
size_t fileSize = file->FileSize();
// allocate storage and copy the contents of the file to a memory buffer
// (terminate it with zero)
this->mBuffer = new unsigned char[fileSize+1];
file->Read( (void*)mBuffer, 1, fileSize);
this->mBuffer[fileSize] = '\0';
// construct an ASE parser and parse the file
this->mParser = new ASE::Parser((const char*)this->mBuffer);
this->mParser->Parse();
// process all meshes
for (std::vector<ASE::Mesh>::iterator
i = this->mParser->m_vMeshes.begin();
i != this->mParser->m_vMeshes.end();++i)
{
// need to generate proper vertex normals if necessary
this->GenerateNormals(*i);
// now we need to create proper meshes from the import
// we need to split them by materials, build valid vertex/face lists ...
this->BuildUniqueRepresentation(*i);
this->ConvertMeshes(*i,pScene);
}
// buil final material indices (remove submaterials and make the final list)
this->BuildMaterialIndices(pScene);
// build the final node graph
this->BuildNodes(pScene);
// delete the ASE parser
delete this->mParser;
this->mParser = NULL;
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::BuildNodes(aiScene* pcScene)
{
ai_assert(NULL != pcScene);
pcScene->mRootNode = new aiNode();
pcScene->mRootNode->mNumMeshes = pcScene->mNumMeshes;
pcScene->mRootNode->mMeshes = new unsigned int[pcScene->mRootNode->mNumMeshes];
for (unsigned int i = 0; i < pcScene->mRootNode->mNumMeshes;++i)
pcScene->mRootNode->mMeshes[i] = i;
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::BuildUniqueRepresentation(ASE::Mesh& mesh)
{
// allocate output storage
std::vector<aiVector3D> mPositions;
std::vector<aiVector3D> amTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS];
std::vector<aiColor4D> mVertexColors;
std::vector<aiVector3D> mNormals;
unsigned int iSize = mesh.mFaces.size() * 3;
mPositions.resize(iSize);
// optional texture coordinates
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS;++i)
{
if (!mesh.amTexCoords[i].empty())
{
amTexCoords[i].resize(iSize);
}
}
// optional vertex colors
if (!mesh.mVertexColors.empty())
{
mVertexColors.resize(iSize);
}
// optional vertex normals (vertex normals can simply be copied)
if (!mesh.mNormals.empty())
{
mNormals.resize(iSize);
}
// iterate through all faces in the mesh
unsigned int iCurrent = 0;
for (std::vector<ASE::Face>::iterator
i = mesh.mFaces.begin();
i != mesh.mFaces.end();++i)
{
for (unsigned int n = 0; n < 3;++n,++iCurrent)
{
mPositions[iCurrent] = mesh.mPositions[(*i).mIndices[n]];
// add texture coordinates
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
{
if (!mesh.amTexCoords[c].empty())
{
amTexCoords[c][iCurrent] = mesh.amTexCoords[c][(*i).amUVIndices[c][n]];
}
}
// add vertex colors
if (!mesh.mVertexColors.empty())
{
mVertexColors[iCurrent] = mesh.mVertexColors[(*i).mColorIndices[n]];
}
// add normal vectors
if (!mesh.mNormals.empty())
{
mNormals[iCurrent] = mesh.mNormals[(*i).mIndices[n]];
}
// assign a new valid index to the face
(*i).mIndices[n] = iCurrent;
}
}
// replace the old arrays
mesh.mNormals = mNormals;
mesh.mPositions = mPositions;
mesh.mVertexColors = mVertexColors;
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
mesh.amTexCoords[c] = amTexCoords[c];
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::ConvertMaterial(ASE::Material& mat)
{
// allocate the output material
mat.pcInstance = new MaterialHelper();
// At first add the base ambient color of the
// scene to the material
mat.mAmbient.r += this->mParser->m_clrAmbient.r;
mat.mAmbient.g += this->mParser->m_clrAmbient.g;
mat.mAmbient.b += this->mParser->m_clrAmbient.b;
aiString name;
name.Set( mat.mName);
mat.pcInstance->AddProperty( &name, AI_MATKEY_NAME);
// material colors
mat.pcInstance->AddProperty( &mat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT);
mat.pcInstance->AddProperty( &mat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
mat.pcInstance->AddProperty( &mat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
mat.pcInstance->AddProperty( &mat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
mat.pcInstance->AddProperty( &mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
// opacity
mat.pcInstance->AddProperty<float>( &mat.mTransparency,1,AI_MATKEY_OPACITY);
// shading mode
aiShadingMode eShading = aiShadingMode_NoShading;
switch (mat.mShading)
{
case Dot3DS::Dot3DSFile::Flat:
eShading = aiShadingMode_Flat; break;
case Dot3DS::Dot3DSFile::Phong :
eShading = aiShadingMode_Phong; break;
// I don't know what "Wire" shading should be,
// assume it is simple lambertian diffuse (L dot N) shading
case Dot3DS::Dot3DSFile::Wire:
case Dot3DS::Dot3DSFile::Gouraud:
eShading = aiShadingMode_Gouraud; break;
case Dot3DS::Dot3DSFile::Metal :
eShading = aiShadingMode_CookTorrance; break;
}
mat.pcInstance->AddProperty<int>( (int*)&eShading,1,AI_MATKEY_SHADING_MODEL);
if (Dot3DS::Dot3DSFile::Wire == mat.mShading)
{
// set the wireframe flag
unsigned int iWire = 1;
mat.pcInstance->AddProperty<int>( (int*)&iWire,1,AI_MATKEY_ENABLE_WIREFRAME);
}
// texture, if there is one
if( mat.sTexDiffuse.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexDiffuse.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0));
if (is_not_qnan(mat.sTexDiffuse.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexDiffuse.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_DIFFUSE(0));
}
if( mat.sTexSpecular.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexSpecular.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(0));
if (is_not_qnan(mat.sTexSpecular.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexSpecular.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_SPECULAR(0));
}
if( mat.sTexOpacity.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexOpacity.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_OPACITY(0));
if (is_not_qnan(mat.sTexOpacity.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexOpacity.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_OPACITY(0));
}
if( mat.sTexEmissive.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexEmissive.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(0));
if (is_not_qnan(mat.sTexEmissive.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexEmissive.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_EMISSIVE(0));
}
if( mat.sTexAmbient.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexAmbient.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_AMBIENT(0));
if (is_not_qnan(mat.sTexAmbient.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexAmbient.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_AMBIENT(0));
}
if( mat.sTexBump.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexBump.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(0));
if (is_not_qnan(mat.sTexBump.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexBump.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_HEIGHT(0));
}
if( mat.sTexShininess.mMapName.length() > 0)
{
aiString tex;
tex.Set( mat.sTexShininess.mMapName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SHININESS(0));
if (is_not_qnan(mat.sTexShininess.mTextureBlend))
mat.pcInstance->AddProperty<float>( &mat.sTexBump.mTextureBlend, 1,
AI_MATKEY_TEXBLEND_SHININESS(0));
}
// store the name of the material itself, too
if( mat.mName.length() > 0)
{
aiString tex;
tex.Set( mat.mName);
mat.pcInstance->AddProperty( &tex, AI_MATKEY_NAME);
}
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, aiScene* pcScene)
{
ai_assert(NULL != pcScene);
// validate the material index of the mesh
if (mesh.iMaterialIndex >= this->mParser->m_vMaterials.size())
{
mesh.iMaterialIndex = this->mParser->m_vMaterials.size()-1;
LOGOUT_WARN("Material index is out of range");
}
// List of all output meshes
std::vector<aiMesh*> avOutMeshes;
// if the material the mesh is assigned to is consisting of submeshes
// we'll need to split it ... Quak.
if (!this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty())
{
std::vector<ASE::Material> vSubMaterials = this->mParser->
m_vMaterials[mesh.iMaterialIndex].avSubMaterials;
std::vector<unsigned int>* aiSplit = new std::vector<unsigned int>[
vSubMaterials.size()];
// build a list of all faces per submaterial
unsigned int iNum = 0;
for (unsigned int i = 0; i < mesh.mFaces.size();++i)
{
// check range
if (mesh.mFaces[i].iMaterial >= vSubMaterials.size())
{
LOGOUT_WARN("Submaterial index is out of range");
// use the last material instead
aiSplit[vSubMaterials.size()-1].push_back(i);
}
else aiSplit[mesh.mFaces[i].iMaterial].push_back(i);
}
// now generate submeshes
for (unsigned int p = 0; p < vSubMaterials.size();++p)
{
if (aiSplit[p].size() != 0)
{
aiMesh* p_pcOut = new aiMesh();
// let the sub material index
p_pcOut->mMaterialIndex = p;
// we will need this material
this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials[p].bNeed = true;
// store the real index here ...
p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex;
avOutMeshes.push_back(p_pcOut);
// convert vertices
p_pcOut->mNumVertices = aiSplit[p].size()*3;
p_pcOut->mNumFaces = aiSplit[p].size();
// allocate enough storage for faces
p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
if (p_pcOut->mNumVertices != 0)
{
p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices];
p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices];
unsigned int iBase = 0;
for (unsigned int q = 0; q < aiSplit[p].size();++q)
{
unsigned int iIndex = aiSplit[p][q];
p_pcOut->mFaces[q].mIndices = new unsigned int[3];
p_pcOut->mFaces[q].mNumIndices = 3;
for (unsigned int t = 0; t < 3;++t)
{
p_pcOut->mFaces[q].mIndices[t] = iBase;
p_pcOut->mVertices[iBase] = mesh.mPositions[mesh.mFaces[iIndex].mIndices[t]];
p_pcOut->mNormals[iBase++] = mesh.mNormals[mesh.mFaces[iIndex].mIndices[t]];
}
}
}
// convert texture coordinates
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
{
if (!mesh.amTexCoords[c].empty())
{
p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices];
unsigned int iBase = 0;
for (unsigned int q = 0; q < aiSplit[p].size();++q)
{
unsigned int iIndex = aiSplit[p][q];
for (unsigned int t = 0; t < 3;++t)
{
p_pcOut->mTextureCoords[c][iBase++] = mesh.amTexCoords[c][mesh.mFaces[iIndex].mIndices[t]];
}
}
// setup the number of valid vertex components
p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
}
}
// convert vertex colors (only one set supported)
if (!mesh.mVertexColors.empty())
{
p_pcOut->mColors[0] = new aiColor4D[p_pcOut->mNumVertices];
unsigned int iBase = 0;
for (unsigned int q = 0; q < aiSplit[p].size();++q)
{
unsigned int iIndex = aiSplit[p][q];
for (unsigned int t = 0; t < 3;++t)
{
p_pcOut->mColors[0][iBase++] = mesh.mVertexColors[mesh.mFaces[iIndex].mIndices[t]];
}
}
}
}
}
// delete storage
delete[] aiSplit;
}
else
{
// otherwise we can simply copy the data to one output mesh
aiMesh* p_pcOut = new aiMesh();
// set an empty sub material index
p_pcOut->mMaterialIndex = ASE::Face::DEFAULT_MATINDEX;
this->mParser->m_vMaterials[mesh.iMaterialIndex].bNeed = true;
// store the real index here ...
p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex;
avOutMeshes.push_back(p_pcOut);
// convert vertices
p_pcOut->mNumVertices = mesh.mPositions.size();
p_pcOut->mNumFaces = mesh.mFaces.size();
// allocate enough storage for faces
p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
// copy vertices
p_pcOut->mVertices = new aiVector3D[mesh.mPositions.size()];
memcpy(p_pcOut->mVertices,&mesh.mPositions[0],
mesh.mPositions.size() * sizeof(aiVector3D));
// copy normals
p_pcOut->mNormals = new aiVector3D[mesh.mNormals.size()];
memcpy(p_pcOut->mNormals,&mesh.mNormals[0],
mesh.mNormals.size() * sizeof(aiVector3D));
// copy texture coordinates
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
{
if (!mesh.amTexCoords[c].empty())
{
p_pcOut->mTextureCoords[c] = new aiVector3D[mesh.amTexCoords[c].size()];
memcpy(p_pcOut->mTextureCoords[c],&mesh.amTexCoords[c][0],
mesh.amTexCoords[c].size() * sizeof(aiVector3D));
// setup the number of valid vertex components
p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
}
}
// copy vertex colors
if (!mesh.mVertexColors.empty())
{
p_pcOut->mColors[0] = new aiColor4D[mesh.mVertexColors.size()];
memcpy(p_pcOut->mColors[0],&mesh.mVertexColors[0],
mesh.mVertexColors.size() * sizeof(aiColor4D));
}
// copy faces
for (unsigned int iFace = 0; iFace < p_pcOut->mNumFaces;++iFace)
{
p_pcOut->mFaces[iFace].mNumIndices = 3;
p_pcOut->mFaces[iFace].mIndices = new unsigned int[3];
// copy indices
p_pcOut->mFaces[iFace].mIndices[0] = mesh.mFaces[iFace].mIndices[0];
p_pcOut->mFaces[iFace].mIndices[1] = mesh.mFaces[iFace].mIndices[1];
p_pcOut->mFaces[iFace].mIndices[2] = mesh.mFaces[iFace].mIndices[2];
}
}
// now build the output mesh list
pcScene->mNumMeshes = avOutMeshes.size();
pcScene->mMeshes = new aiMesh*[pcScene->mNumMeshes];
for (unsigned int i = 0; i < pcScene->mNumMeshes;++i)
pcScene->mMeshes[i] = avOutMeshes[i];
return;
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::BuildMaterialIndices(aiScene* pcScene)
{
ai_assert(NULL != pcScene);
// iterate through all materials and check whether we need them
unsigned int iNum = 0;
for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat)
{
if (this->mParser->m_vMaterials[iMat].bNeed)
{
// convert it to the aiMaterial layout
this->ConvertMaterial(this->mParser->m_vMaterials[iMat]);
iNum++;
}
for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[
iMat].avSubMaterials.size();++iSubMat)
{
if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed)
{
// convert it to the aiMaterial layout
this->ConvertMaterial(this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat]);
iNum++;
}
}
}
// allocate the output material array
pcScene->mNumMaterials = iNum;
pcScene->mMaterials = new aiMaterial*[pcScene->mNumMaterials];
iNum = 0;
for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat)
{
if (this->mParser->m_vMaterials[iMat].bNeed)
{
ai_assert(NULL != this->mParser->m_vMaterials[iMat].pcInstance);
pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat].pcInstance;
// iterate through all meshes and search for one which is using
// this top-level material index
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh)
{
if (ASE::Face::DEFAULT_MATINDEX == pcScene->mMeshes[iMesh]->mMaterialIndex &&
iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3])
{
pcScene->mMeshes[iMesh]->mMaterialIndex = iNum;
pcScene->mMeshes[iMesh]->mColors[3] = NULL;
}
}
iNum++;
}
for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[iMat].avSubMaterials.size();++iSubMat)
{
if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed)
{
ai_assert(NULL != this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].pcInstance);
pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat].
avSubMaterials[iSubMat].pcInstance;
// iterate through all meshes and search for one which is using
// this sub-level material index
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh)
{
if (iSubMat == pcScene->mMeshes[iMesh]->mMaterialIndex &&
iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3])
{
pcScene->mMeshes[iMesh]->mMaterialIndex = iNum;
pcScene->mMeshes[iMesh]->mColors[3] = NULL;
}
}
iNum++;
}
}
}
// finished!
return;
}
// ------------------------------------------------------------------------------------------------
// Generate normal vectors basing on smoothing groups
void ASEImporter::GenerateNormals(ASE::Mesh& mesh)
{
if (mesh.mNormals.empty())
{
// need to calculate normals ...
// TODO: Find a way to merge this with the code in 3DSGenNormals.cpp
mesh.mNormals.resize(mesh.mPositions.size(),aiVector3D());
for( unsigned int a = 0; a < mesh.mFaces.size(); a++)
{
const ASE::Face& face = mesh.mFaces[a];
// assume it is a triangle
aiVector3D* pV1 = &mesh.mPositions[face.i1];
aiVector3D* pV2 = &mesh.mPositions[face.i2];
aiVector3D* pV3 = &mesh.mPositions[face.i3];
aiVector3D pDelta1 = *pV2 - *pV1;
aiVector3D pDelta2 = *pV3 - *pV1;
aiVector3D vNor = pDelta1 ^ pDelta2;
mesh.mNormals[face.i1] = vNor;
mesh.mNormals[face.i2] = vNor;
mesh.mNormals[face.i3] = vNor;
}
// calculate the position bounds so we have a reliable epsilon to
// check position differences against
// @Schrompf: This is the 7th time this snippet is repeated!
aiVector3D minVec( 1e10f, 1e10f, 1e10f), maxVec( -1e10f, -1e10f, -1e10f);
for( unsigned int a = 0; a < mesh.mPositions.size(); a++)
{
minVec.x = std::min( minVec.x, mesh.mPositions[a].x);
minVec.y = std::min( minVec.y, mesh.mPositions[a].y);
minVec.z = std::min( minVec.z, mesh.mPositions[a].z);
maxVec.x = std::max( maxVec.x, mesh.mPositions[a].x);
maxVec.y = std::max( maxVec.y, mesh.mPositions[a].y);
maxVec.z = std::max( maxVec.z, mesh.mPositions[a].z);
}
const float posEpsilon = (maxVec - minVec).Length() * 1e-5f;
std::vector<aiVector3D> avNormals;
avNormals.resize(mesh.mNormals.size());
// now generate the spatial sort tree
D3DSSpatialSorter sSort;
for( std::vector<ASE::Face>::iterator
i = mesh.mFaces.begin();
i != mesh.mFaces.end();++i){sSort.AddFace(&(*i),mesh.mPositions);}
sSort.Prepare();
for( std::vector<ASE::Face>::iterator
i = mesh.mFaces.begin();
i != mesh.mFaces.end();++i)
{
std::vector<unsigned int> poResult;
for (unsigned int c = 0; c < 3;++c)
{
sSort.FindPositions(mesh.mPositions[(*i).mIndices[c]],(*i).iSmoothGroup,
posEpsilon,poResult);
aiVector3D vNormals;
float fDiv = 0.0f;
for (std::vector<unsigned int>::const_iterator
a = poResult.begin();
a != poResult.end();++a)
{
vNormals += mesh.mNormals[(*a)];
fDiv += 1.0f;
}
vNormals.x /= fDiv;vNormals.y /= fDiv;vNormals.z /= fDiv;
vNormals.Normalize();
avNormals[(*i).mIndices[c]] = vNormals;
poResult.clear();
}
}
mesh.mNormals = avNormals;
}
return;
}