149 lines
5.4 KiB
C++
149 lines
5.4 KiB
C++
/** @file Implementation of the helper class to quickly find vertices close to a given position */
|
|
#include <algorithm>
|
|
#include "3DSSpatialSort.h"
|
|
|
|
using namespace Assimp;
|
|
using namespace Assimp::Dot3DS;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructs a spatially sorted representation from the given position array.
|
|
D3DSSpatialSorter::D3DSSpatialSorter( const aiVector3D* pPositions,
|
|
unsigned int pNumPositions, unsigned int pElementOffset)
|
|
{
|
|
// define the reference plane. We choose some arbitrary vector away from all basic axises
|
|
// in the hope that no model spreads all its vertices along this plane.
|
|
mPlaneNormal.Set( 0.8523f, 0.34321f, 0.5736f);
|
|
mPlaneNormal.Normalize();
|
|
|
|
// store references to all given positions along with their distance to the reference plane
|
|
mPositions.reserve( pNumPositions);
|
|
for( unsigned int a = 0; a < pNumPositions; a++)
|
|
{
|
|
const char* tempPointer = reinterpret_cast<const char*> (pPositions);
|
|
const aiVector3D* vec = reinterpret_cast<const aiVector3D*> (tempPointer + a * pElementOffset);
|
|
|
|
// store position by index and distance
|
|
float distance = *vec * mPlaneNormal;
|
|
mPositions.push_back( Entry( a, *vec, distance,0));
|
|
}
|
|
|
|
// now sort the array ascending by distance.
|
|
std::sort( mPositions.begin(), mPositions.end());
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
D3DSSpatialSorter::D3DSSpatialSorter( const Dot3DS::Mesh* p_pcMesh)
|
|
{
|
|
// define the reference plane. We choose some arbitrary vector away from all basic axises
|
|
// in the hope that no model spreads all its vertices along this plane.
|
|
mPlaneNormal.Set( 0.8523f, 0.34321f, 0.5736f);
|
|
mPlaneNormal.Normalize();
|
|
|
|
// store references to all given positions along with their distance to the reference plane
|
|
mPositions.reserve( p_pcMesh->mPositions.size());
|
|
for( std::vector<Dot3DS::Face>::const_iterator
|
|
i = p_pcMesh->mFaces.begin();
|
|
i != p_pcMesh->mFaces.end();++i)
|
|
{
|
|
// store position by index and distance
|
|
float distance = p_pcMesh->mPositions[(*i).i1] * mPlaneNormal;
|
|
mPositions.push_back( Entry( (*i).i1, p_pcMesh->mPositions[(*i).i1],
|
|
distance, (*i).iSmoothGroup));
|
|
|
|
// triangle vertex 2
|
|
distance = p_pcMesh->mPositions[(*i).i2] * mPlaneNormal;
|
|
mPositions.push_back( Entry( (*i).i2, p_pcMesh->mPositions[(*i).i2],
|
|
distance, (*i).iSmoothGroup));
|
|
|
|
// triangle vertex 3
|
|
distance = p_pcMesh->mPositions[(*i).i3] * mPlaneNormal;
|
|
mPositions.push_back( Entry( (*i).i3, p_pcMesh->mPositions[(*i).i3],
|
|
distance, (*i).iSmoothGroup));
|
|
}
|
|
|
|
// now sort the array ascending by distance.
|
|
std::sort( this->mPositions.begin(), this->mPositions.end());
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor
|
|
D3DSSpatialSorter::~D3DSSpatialSorter()
|
|
{
|
|
// nothing to do here, everything destructs automatically
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns an iterator for all positions close to the given position.
|
|
void D3DSSpatialSorter::FindPositions( const aiVector3D& pPosition,
|
|
uint32_t pSG,float pRadius, std::vector<unsigned int>& poResults) const
|
|
{
|
|
float dist = pPosition * mPlaneNormal;
|
|
float minDist = dist - pRadius, maxDist = dist + pRadius;
|
|
|
|
// clear the array in this strange fashion because a simple clear() would also deallocate
|
|
// the array which we want to avoid
|
|
poResults.erase( poResults.begin(), poResults.end());
|
|
|
|
// quick check for positions outside the range
|
|
if( mPositions.size() == 0)
|
|
return;
|
|
if( maxDist < mPositions.front().mDistance)
|
|
return;
|
|
if( minDist > mPositions.back().mDistance)
|
|
return;
|
|
|
|
// do a binary search for the minimal distance to start the iteration there
|
|
unsigned int index = mPositions.size() / 2;
|
|
unsigned int binaryStepSize = mPositions.size() / 4;
|
|
while( binaryStepSize > 1)
|
|
{
|
|
if( mPositions[index].mDistance < minDist)
|
|
index += binaryStepSize;
|
|
else
|
|
index -= binaryStepSize;
|
|
|
|
binaryStepSize /= 2;
|
|
}
|
|
|
|
// depending on the direction of the last step we need to single step a bit back or forth
|
|
// to find the actual beginning element of the range
|
|
while( index > 0 && mPositions[index].mDistance > minDist)
|
|
index--;
|
|
while( index < (mPositions.size() - 1) && mPositions[index].mDistance < minDist)
|
|
index++;
|
|
|
|
// Mow start iterating from there until the first position lays outside of the distance range.
|
|
// Add all positions inside the distance range within the given radius to the result aray
|
|
|
|
if (0 == pSG)
|
|
{
|
|
std::vector<Entry>::const_iterator it = mPositions.begin() + index;
|
|
float squareEpsilon = pRadius * pRadius;
|
|
while( it->mDistance < maxDist)
|
|
{
|
|
if((it->mPosition - pPosition).SquareLength() < squareEpsilon)
|
|
{
|
|
poResults.push_back( it->mIndex);
|
|
}
|
|
++it;
|
|
if( it == mPositions.end())
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
std::vector<Entry>::const_iterator it = mPositions.begin() + index;
|
|
float squareEpsilon = pRadius * pRadius;
|
|
while( it->mDistance < maxDist)
|
|
{
|
|
if((it->mPosition - pPosition).SquareLength() < squareEpsilon &&
|
|
(it->mSmoothGroups & pSG || 0 == it->mSmoothGroups))
|
|
{
|
|
poResults.push_back( it->mIndex);
|
|
}
|
|
++it;
|
|
if( it == mPositions.end())
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|