assimp/code/MDRLoader.cpp

372 lines
13 KiB
C++

/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file Implementation of the MDR importer class */
#include "AssimpPCH.h"
#include "MDRLoader.h"
using namespace Assimp;
using namespace Assimp::MDR;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
MDRImporter::MDRImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
MDRImporter::~MDRImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool MDRImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
{
// simple check of file extension is enough for the moment
std::string::size_type pos = pFile.find_last_of('.');
// no file extension - can't read
if( pos == std::string::npos)
return false;
std::string extension = pFile.substr( pos);
return !(extension.length() != 4 || extension[0] != '.' ||
extension[1] != 'm' && extension[1] != 'M' ||
extension[2] != 'd' && extension[2] != 'D' ||
extension[3] != 'r' && extension[3] != 'R');
}
// ------------------------------------------------------------------------------------------------
// Uncompress a matrix
void MDRImporter::MatrixUncompress(aiMatrix4x4& mat,const uint8_t * compressed)
{
int value;
// First decompress the translation part
for (unsigned int n = 0; n < 3;++n)
{
value = (int)((uint16_t *)(compressed))[n];
mat[0][n] = ((float)(value-(1<<15)))/64.f;
}
// Then decompress the rotation matrix
for (unsigned int n = 0, p = 3; n < 3;++n)
{
for (unsigned int m = 0; m < 3;++m,++p)
{
value = (int)((uint16_t *)(compressed))[p];
mat[n][m]=((float)(value-(1<<15)))*(1.0f/(float)((1<<(15))-2));
}
}
// now zero the final row of the matrix
mat[3][0] = mat[3][1] = mat[3][2] = 0.f;
mat[3][3] = 1.f;
}
// ------------------------------------------------------------------------------------------------
// Validate the header of the given MDR file
void MDRImporter::ValidateHeader()
{
// Check the magic word - '5MDR'
if (pcHeader->ident != AI_MDR_MAGIC_NUMBER_BE &&
pcHeader->ident != AI_MDR_MAGIC_NUMBER_LE)
{
char szBuffer[5];
szBuffer[0] = ((char*)&pcHeader->ident)[0];
szBuffer[1] = ((char*)&pcHeader->ident)[1];
szBuffer[2] = ((char*)&pcHeader->ident)[2];
szBuffer[3] = ((char*)&pcHeader->ident)[3];
szBuffer[4] = '\0';
throw new ImportErrorException("Invalid MDR magic word: should be 5MDR, the "
"magic word found is " + std::string( szBuffer ));
}
// Big endian - swap the fields in the header
AI_SWAP4(pcHeader->numBones);
AI_SWAP4(pcHeader->numFrames);
AI_SWAP4(pcHeader->ofsFrames);
AI_SWAP4(pcHeader->ofsLODs);
AI_SWAP4(pcHeader->ofsTags);
AI_SWAP4(pcHeader->version);
AI_SWAP4(pcHeader->numTags);
AI_SWAP4(pcHeader->numLODs);
// MDR file version should always be 2
if (pcHeader->version != AI_MDR_VERSION)
DefaultLogger::get()->warn("Unsupported MDR file version (2 was expected)");
// We compute the vertex positions from the bones,
// so we need at least one bone.
if (!pcHeader->numBones)
DefaultLogger::get()->warn("MDR: At least one bone must be there");
// We should have at least the first LOD in the valid range
if (pcHeader->ofsLODs > (int)fileSize)
throw new ImportErrorException("MDR: header is invalid - LOD out of range");
// header::ofsFrames is negative if the frames are compressed
if (pcHeader->ofsFrames < 0)
{
// Ugly, but it will be our only change to make further
// reading easier
int32_t* p = const_cast<int32_t*>(&pcHeader->ofsFrames);
*p = -pcHeader->ofsFrames;
compressed = true;
DefaultLogger::get()->info("MDR: Compressed frames");
}
else compressed = false;
// validate all frames
if ( pcHeader->ofsFrames + sizeof(MDR::Frame) *
(pcHeader->numBones -1) * sizeof(MDR::Bone) *
pcHeader->numFrames > fileSize)
{
throw new ImportErrorException("MDR: header is invalid - frame out of range");
}
// Check whether the requested frame is existing
if (configFrameID >= (unsigned int) pcHeader->numFrames)
throw new ImportErrorException("The requested frame is not available");
}
// ------------------------------------------------------------------------------------------------
// Validate the surface header of a given MDR file LOD
void MDRImporter::ValidateLODHeader(BE_NCONST MDR::LOD* pcLOD)
{
AI_SWAP4(pcLOD->ofsSurfaces);
AI_SWAP4(pcLOD->numSurfaces);
AI_SWAP4(pcLOD->ofsEnd);
const unsigned int iMax = fileSize - (unsigned int)((int8_t*)pcLOD-(int8_t*)pcHeader);
// We should have at least one surface here
if (!pcLOD->numSurfaces)
throw new ImportErrorException("MDR: LOD has zero surfaces assigned");
if (pcLOD->ofsSurfaces > iMax)
throw new ImportErrorException("MDR: LOD header is invalid - surface out of range");
}
// ------------------------------------------------------------------------------------------------
// Validate the header of a given MDR file surface
void MDRImporter::ValidateSurfaceHeader(BE_NCONST MDR::Surface* pcSurf)
{
AI_SWAP4(pcSurf->ident);
AI_SWAP4(pcSurf->numBoneReferences);
AI_SWAP4(pcSurf->numTriangles);
AI_SWAP4(pcSurf->numVerts);
AI_SWAP4(pcSurf->ofsBoneReferences);
AI_SWAP4(pcSurf->ofsEnd);
AI_SWAP4(pcSurf->ofsTriangles);
AI_SWAP4(pcSurf->ofsVerts);
AI_SWAP4(pcSurf->shaderIndex);
// Find out how many bytes
const unsigned int iMax = fileSize - (unsigned int)((int8_t*)pcSurf-(int8_t*)pcHeader);
// Not exact - there could be extra data in the vertices.
if (pcSurf->ofsTriangles + pcSurf->numTriangles*sizeof(MDR::Triangle) > iMax ||
pcSurf->ofsVerts + pcSurf->numVerts*sizeof(MDR::Vertex) > iMax)
{
throw new ImportErrorException("MDR: Surface header is invalid");
}
}
// ------------------------------------------------------------------------------------------------
// Setup configuration properties
void MDRImporter::SetupProperties(const Importer* pImp)
{
// **************************************************************
// The AI_CONFIG_IMPORT_MDR_KEYFRAME option overrides the
// AI_CONFIG_IMPORT_GLOBAL_KEYFRAME option.
// **************************************************************
configFrameID = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_MDR_KEYFRAME,0xffffffff);
if(0xffffffff == configFrameID)
configFrameID = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_GLOBAL_KEYFRAME,0);
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void MDRImporter::InternReadFile( const std::string& pFile,
aiScene* pScene, IOSystem* pIOHandler)
{
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile, "rb"));
// Check whether we can read from the file
if( file.get() == NULL)
throw new ImportErrorException( "Failed to open MDR file " + pFile + ".");
// Check whether the mdr file is large enough to contain the file header
fileSize = (unsigned int)file->FileSize();
if( fileSize < sizeof(MDR::Header))
throw new ImportErrorException( "MDR File is too small.");
// Copy the contents of the file to a buffer
std::vector<unsigned char> mBuffer2(fileSize);
file->Read( &mBuffer2[0], 1, fileSize);
mBuffer = &mBuffer2[0];
// Validate the file header and do BigEndian byte swapping for all sub headers
pcHeader = (BE_NCONST MDR::Header*)mBuffer;
ValidateHeader();
// Go to the first LOD
LE_NCONST MDR::LOD* lod = (LE_NCONST MDR::LOD*)((uint8_t*)pcHeader+pcHeader->ofsLODs);
std::vector<aiMesh*> outMeshes;
outMeshes.reserve(lod->numSurfaces);
// Get a pointer to the first surface and continue processing them all
LE_NCONST MDR::Surface* surf = (LE_NCONST MDR::Surface*)((uint8_t*)lod+lod->ofsSurfaces);
for (uint32_t i = 0; i < lod->numSurfaces; ++i)
{
// The surface must have a) faces b) vertices and c) bone references
if (surf->numTriangles && surf->numVerts && surf->numBoneReferences)
{
outMeshes.push_back(new aiMesh());
aiMesh* mesh = outMeshes.back();
mesh->mNumFaces = surf->numTriangles;
mesh->mNumVertices = mesh->mNumFaces*3;
mesh->mNumBones = surf->numBoneReferences;
mesh->mFaces = new aiFace[mesh->mNumFaces];
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices];
mesh->mBones = new aiBone*[mesh->mNumBones];
// Allocate output bones and generate proper names for them
for (unsigned int p = 0; p < mesh->mNumBones;++p)
{
aiBone* bone = mesh->mBones[p] = new aiBone();
bone->mName.length = ::sprintf( bone->mName.data, "B_%i",p);
}
std::vector<BoneWeightInfo> mWeights;
mWeights.reserve(surf->numVerts << 1);
std::vector<VertexInfo> mVertices(surf->numVerts);
// get a pointer to the first vertex
LE_NCONST MDR::Vertex* v = (LE_NCONST MDR::Vertex*)((uint8_t*)surf+surf->ofsVerts);
for (unsigned int m = 0; m < surf->numVerts; ++m)
{
// get a pointer to the next vertex
v = (LE_NCONST MDR::Vertex*)((uint8_t*)(v+1) + v->numWeights*sizeof(MDR::Weight));
// Big Endian - swap the vertex data structure
#ifndef AI_BUILD_BIG_ENDIAN
AI_SWAP4(v->numWeights);
AI_SWAP4(v->normal.x);
AI_SWAP4(v->normal.y);
AI_SWAP4(v->normal.z);
AI_SWAP4(v->texCoords.x);
AI_SWAP4(v->texCoords.y);
#endif
// Fill out output structure
VertexInfo& vert = mVertices[m];
vert.uv.x = v->texCoords.x; vert.uv.y = v->texCoords.y;
vert.normal = v->normal;
vert.start = (unsigned int)mWeights.size();
vert.num = v->numWeights;
// Now compute the final vertex position by averaging
// the positions affecting this vertex, weighting by
// the given vertex weights.
for (unsigned int l = 0; l < vert.num; ++l)
{
}
}
// Find out how large the output weight buffers must be
LE_NCONST MDR::Triangle* tri = (LE_NCONST MDR::Triangle*)((uint8_t*)surf+surf->ofsTriangles);
LE_NCONST MDR::Triangle* const triEnd = tri + surf->numTriangles;
for (; tri != triEnd; ++tri)
{
for (unsigned int o = 0; o < 3;++o)
{
// Big endian: swap the 32 Bit index
#ifndef AI_BUILD_BIG_ENDIAN
AI_SWAP4(tri->indexes[o]);
#endif
register unsigned int temp = tri->indexes[o];
if (temp >= surf->numVerts)
throw new ImportErrorException("MDR: Vertex index is out of range");
VertexInfo& vert = mVertices[temp];
for (unsigned int l = vert.start; l < vert.start + vert.num; ++l)
{
if (mWeights[l].first >= surf->numBoneReferences)
throw new ImportErrorException("MDR: Bone index is out of range");
++mesh->mBones[mWeights[l].first]->mNumWeights;
}
}
}
// Allocate storage for output bone weights
for (unsigned int p = 0; p < mesh->mNumBones;++p)
{
aiBone* bone = mesh->mBones[p];
ai_assert(0 != bone->mNumWeights);
bone->mWeights = new aiVertexWeight[bone->mNumWeights];
}
// and build the final output buffers
}
// Get a pointer to the next surface and continue
surf = (LE_NCONST MDR::Surface*)((uint8_t*)surf + surf->ofsEnd);
}
// Copy the vector to the C-style output array
pScene->mNumMeshes = (unsigned int) outMeshes.size();
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
::memcpy(pScene->mMeshes,&outMeshes[0],sizeof(void*)*pScene->mNumMeshes);
}