assimp/code/PlyLoader.cpp

1092 lines
32 KiB
C++

/*
---------------------------------------------------------------------------
Free Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file Implementation of the PLY importer class */
#include "PLYLoader.h"
#include "MaterialSystem.h"
#include "../include/IOStream.h"
#include "../include/IOSystem.h"
#include "../include/aiMesh.h"
#include "../include/aiScene.h"
#include "../include/aiAssert.h"
#include <boost/scoped_ptr.hpp>
using namespace Assimp;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
PLYImporter::PLYImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
PLYImporter::~PLYImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool PLYImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
{
// simple check of file extension is enough for the moment
std::string::size_type pos = pFile.find_last_of('.');
// no file extension - can't read
if( pos == std::string::npos)
return false;
std::string extension = pFile.substr( pos);
if (extension.length() < 4)return false;
if (extension[0] != '.')return false;
if (extension[1] != 'p' && extension[1] != 'P')return false;
if (extension[2] != 'l' && extension[2] != 'L')return false;
if (extension[3] != 'y' && extension[3] != 'Y')return false;
return true;
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void PLYImporter::InternReadFile(
const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler)
{
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile));
// Check whether we can read from the file
if( file.get() == NULL)
{
throw new ImportErrorException( "Failed to open PLY file " + pFile + ".");
}
// check whether the ply file is large enough to contain
// at least the file header
size_t fileSize = file->FileSize();
if( fileSize < 10)
{
throw new ImportErrorException( ".ply File is too small.");
}
// allocate storage and copy the contents of the file to a memory buffer
// (terminate it with zero)
this->mBuffer = new unsigned char[fileSize+1];
file->Read( (void*)mBuffer, 1, fileSize);
this->mBuffer[fileSize] = '\0';
// the beginning of the file must be PLY
if (this->mBuffer[0] != 'P' && this->mBuffer[0] != 'p' ||
this->mBuffer[1] != 'L' && this->mBuffer[1] != 'l' ||
this->mBuffer[2] != 'Y' && this->mBuffer[2] != 'y')
{
throw new ImportErrorException( "Invalid .ply file: Magic number \'ply\' is no there");
}
char* szMe = (char*)&this->mBuffer[3];
SkipSpacesAndLineEnd(szMe,(const char**)&szMe);
// determine the format of the file data
PLY::DOM sPlyDom;
if (0 == ASSIMP_strincmp(szMe,"format",6) && IsSpace(*(szMe+6)))
{
szMe += 7;
if (0 == ASSIMP_strincmp(szMe,"ascii",5) && IsSpace(*(szMe+5)))
{
szMe += 6;
SkipLine(szMe,(const char**)&szMe);
if(!PLY::DOM::ParseInstance(szMe,&sPlyDom))
{
throw new ImportErrorException( "Invalid .ply file: Unable to build DOM (#1)");
}
}
else if (0 == ASSIMP_strincmp(szMe,"binary_",7))
{
bool bIsBE = false;
// binary_little_endian
// binary_big_endian
szMe += 7;
#if (defined AI_BUILD_BIG_ENDIAN)
if ('l' == *szMe || 'L' == *szMe)bIsBE = true;
#else
if ('b' == *szMe || 'B' == *szMe)bIsBE = true;
#endif // ! AI_BUILD_BIG_ENDIAN
// skip the line, parse the rest of the header and build the DOM
SkipLine(szMe,(const char**)&szMe);
if(!PLY::DOM::ParseInstanceBinary(szMe,&sPlyDom,bIsBE))
{
throw new ImportErrorException( "Invalid .ply file: Unable to build DOM (#2)");
}
}
else
{
throw new ImportErrorException( "Invalid .ply file: Unknown file format");
}
}
else
{
throw new ImportErrorException( "Invalid .ply file: Missing format specification");
}
this->pcDOM = &sPlyDom;
// now load a list of vertices. This must be sucessfull in order to procede
std::vector<aiVector3D> avPositions;
this->LoadVertices(&avPositions,false);
if (avPositions.empty())
{
throw new ImportErrorException( "Invalid .ply file: No vertices found");
}
// now load a list of normals.
std::vector<aiVector3D> avNormals;
this->LoadVertices(&avNormals,true);
// load the face list
std::vector<PLY::Face> avFaces;
this->LoadFaces(&avFaces);
// if no face list is existing we assume that the vertex
// list is containing a list of triangles
if (avFaces.empty())
{
if (avPositions.size() < 3)
{
throw new ImportErrorException( "Invalid .ply file: Not enough vertices to build "
"a face list. ");
}
unsigned int iNum = avPositions.size() / 3;
for (unsigned int i = 0; i< iNum;++i)
{
PLY::Face sFace;
sFace.mIndices.push_back((iNum*3));
sFace.mIndices.push_back((iNum*3)+1);
sFace.mIndices.push_back((iNum*3)+2);
avFaces.push_back(sFace);
}
}
// now load a list of all materials
std::vector<MaterialHelper*> avMaterials;
this->LoadMaterial(&avMaterials);
// now load a list of all vertex color channels
std::vector<aiColor4D> avColors;
this->LoadVertexColor(&avColors);
// now try to load texture coordinates
std::vector<aiVector2D> avTexCoords;
this->LoadTextureCoordinates(&avTexCoords);
// now replace the default material in all faces and validate all material indices
this->ReplaceDefaultMaterial(&avFaces,&avMaterials);
// now convert this to a list of aiMesh instances
std::vector<aiMesh*> avMeshes;
this->ConvertMeshes(&avFaces,&avPositions,&avNormals,
&avColors,&avTexCoords,&avMaterials,&avMeshes);
if (avMeshes.empty())
{
throw new ImportErrorException( "Invalid .ply file: Unable to extract mesh data ");
}
// now generate the output scene object. Fill the material list
pScene->mNumMaterials = avMaterials.size();
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials];
for (unsigned int i = 0; i < pScene->mNumMaterials;++i)
pScene->mMaterials[i] = avMaterials[i];
// fill the mesh list
pScene->mNumMeshes = avMeshes.size();
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
for (unsigned int i = 0; i < pScene->mNumMeshes;++i)
pScene->mMeshes[i] = avMeshes[i];
// generate a simple node structure
pScene->mRootNode = new aiNode();
pScene->mRootNode->mNumMeshes = pScene->mNumMeshes;
pScene->mRootNode->mMeshes = new unsigned int[pScene->mNumMeshes];
for (unsigned int i = 0; i < pScene->mRootNode->mNumMeshes;++i)
pScene->mRootNode->mMeshes[i] = i;
// delete the file buffer
delete[] this->mBuffer;
// DOM is lying on the stack, will be deconstructed automatically
return;
}
// ------------------------------------------------------------------------------------------------
void PLYImporter::ConvertMeshes(std::vector<PLY::Face>* avFaces,
const std::vector<aiVector3D>* avPositions,
const std::vector<aiVector3D>* avNormals,
const std::vector<aiColor4D>* avColors,
const std::vector<aiVector2D>* avTexCoords,
const std::vector<MaterialHelper*>* avMaterials,
std::vector<aiMesh*>* avOut)
{
ai_assert(NULL != avFaces);
ai_assert(NULL != avPositions);
ai_assert(NULL != avMaterials);
// split by materials
std::vector<unsigned int>* aiSplit = new std::vector<unsigned int>[
avMaterials->size()];
unsigned int iNum = 0;
for (std::vector<PLY::Face>::const_iterator
i = avFaces->begin();
i != avFaces->end();++i,++iNum)
{
// index has already been checked
aiSplit[(*i).iMaterialIndex].push_back(iNum);
}
// now generate submeshes
for (unsigned int p = 0; p < avMaterials->size();++p)
{
if (aiSplit[p].size() != 0)
{
// allocate the mesh object
aiMesh* p_pcOut = new aiMesh();
p_pcOut->mMaterialIndex = p;
p_pcOut->mNumFaces = aiSplit[p].size();
p_pcOut->mFaces = new aiFace[aiSplit[p].size()];
// at first we need to determine the size of the output vector array
unsigned int iNum = 0;
for (unsigned int i = 0; i < aiSplit[p].size();++i)
{
iNum += (*avFaces)[aiSplit[p][i]].mIndices.size();
}
p_pcOut->mNumVertices = iNum;
p_pcOut->mVertices = new aiVector3D[iNum];
if (!avColors->empty())
p_pcOut->mColors[0] = new aiColor4D[iNum];
if (!avTexCoords->empty())
{
p_pcOut->mNumUVComponents[0] = 2;
p_pcOut->mTextureCoords[0] = new aiVector3D[iNum];
}
if (!avNormals->empty())
p_pcOut->mNormals = new aiVector3D[iNum];
// add all faces
iNum = 0;
unsigned int iVertex = 0;
for (std::vector<unsigned int>::const_iterator
i = aiSplit[p].begin();
i != aiSplit[p].end();++i,++iNum)
{
p_pcOut->mFaces[iNum].mNumIndices = (*avFaces)[*i].mIndices.size();
p_pcOut->mFaces[iNum].mIndices = new unsigned int[p_pcOut->mFaces[iNum].mNumIndices];
// build an unique set of vertices/colors for this face
for (unsigned int q = 0; q < p_pcOut->mFaces[iNum].mNumIndices;++q)
{
p_pcOut->mFaces[iNum].mIndices[q] = iVertex;
p_pcOut->mVertices[iVertex] = (*avPositions)[(*avFaces)[*i].mIndices[q]];
if (!avColors->empty())
p_pcOut->mColors[0][iVertex] = (*avColors)[(*avFaces)[*i].mIndices[q]];
if (!avTexCoords->empty())
{
const aiVector2D& vec = (*avTexCoords)[(*avFaces)[*i].mIndices[q]];
p_pcOut->mTextureCoords[0][iVertex].x = vec.x;
p_pcOut->mTextureCoords[0][iVertex].y = vec.y;
}
if (!avNormals->empty())
p_pcOut->mNormals[iVertex] = (*avNormals)[(*avFaces)[*i].mIndices[q]];
iVertex++;
}
}
// add the mesh to the output list
avOut->push_back(p_pcOut);
}
}
delete[] aiSplit;
return;
}
// ------------------------------------------------------------------------------------------------
void PLYImporter::ReplaceDefaultMaterial(std::vector<PLY::Face>* avFaces,
std::vector<MaterialHelper*>* avMaterials)
{
bool bNeedDefaultMat = false;
for (std::vector<PLY::Face>::iterator
i = avFaces->begin();i != avFaces->end();++i)
{
if (0xFFFFFFFF == (*i).iMaterialIndex)
{
bNeedDefaultMat = true;
(*i).iMaterialIndex = avMaterials->size();
}
else if ((*i).iMaterialIndex >= avMaterials->size() )
{
// clamp the index
(*i).iMaterialIndex = avMaterials->size()-1;
}
}
if (bNeedDefaultMat)
{
// generate a default material
MaterialHelper* pcHelper = new MaterialHelper();
// fill in a default material
int iMode = (int)aiShadingMode_Gouraud;
pcHelper->AddProperty<int>(&iMode, 1, AI_MATKEY_SHADING_MODEL);
aiColor3D clr;
clr.b = clr.g = clr.r = 0.6f;
pcHelper->AddProperty<aiColor3D>(&clr, 1,AI_MATKEY_COLOR_DIFFUSE);
pcHelper->AddProperty<aiColor3D>(&clr, 1,AI_MATKEY_COLOR_SPECULAR);
clr.b = clr.g = clr.r = 0.05f;
pcHelper->AddProperty<aiColor3D>(&clr, 1,AI_MATKEY_COLOR_AMBIENT);
avMaterials->push_back(pcHelper);
}
return;
}
// ------------------------------------------------------------------------------------------------
void PLYImporter::LoadTextureCoordinates(std::vector<aiVector2D>* pvOut)
{
ai_assert(NULL != pvOut);
unsigned int aiPositions[2] = {0xFFFFFFFF,0xFFFFFFFF};
PLY::EDataType aiTypes[2];
PLY::ElementInstanceList* pcList = NULL;
unsigned int cnt = 0;
// serach in the DOM for a vertex entry
unsigned int _i = 0;
for (std::vector<PLY::Element*>::const_iterator
i = this->pcDOM->alElements.begin();
i != this->pcDOM->alElements.end();++i,++_i)
{
if (PLY::EEST_Vertex == (*i)->eSemantic)
{
pcList = this->pcDOM->alElementData[_i];
// now check whether which normal components are available
unsigned int _a = 0;
for (std::vector<PLY::Property*>::const_iterator
a = (*i)->alProperties.begin();
a != (*i)->alProperties.end();++a,++_a)
{
if ((*a)->bIsList)continue;
if (PLY::EST_UTextureCoord == (*a)->Semantic)
{
cnt++;
aiPositions[0] = _a;
aiTypes[0] = (*a)->eType;
}
else if (PLY::EST_VTextureCoord == (*a)->Semantic)
{
cnt++;
aiPositions[1] = _a;
aiTypes[1] = (*a)->eType;
}
}
}
}
// check whether we have a valid source for the texture coordinates data
if (NULL != pcList && 0 != cnt)
{
pvOut->reserve(pcList->alInstances.size());
for (std::vector<ElementInstance*>::const_iterator
i = pcList->alInstances.begin();
i != pcList->alInstances.end();++i)
{
// convert the vertices to sp floats
aiVector2D vOut;
if (0xFFFFFFFF != aiPositions[0])
{
vOut.x = PLY::PropertyInstance::ConvertTo<float>(
(*i)->alProperties[aiPositions[0]].avList.front(),aiTypes[0]);
}
if (0xFFFFFFFF != aiPositions[1])
{
vOut.y = PLY::PropertyInstance::ConvertTo<float>(
(*i)->alProperties[aiPositions[1]].avList.front(),aiTypes[1]);
}
// and add them to our nice list
pvOut->push_back(vOut);
}
}
}
// ------------------------------------------------------------------------------------------------
void PLYImporter::LoadVertices(std::vector<aiVector3D>* pvOut, bool p_bNormals)
{
ai_assert(NULL != pvOut);
unsigned int aiPositions[3] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF};
PLY::EDataType aiTypes[3];
PLY::ElementInstanceList* pcList = NULL;
unsigned int cnt = 0;
// serach in the DOM for a vertex entry
unsigned int _i = 0;
for (std::vector<PLY::Element*>::const_iterator
i = this->pcDOM->alElements.begin();
i != this->pcDOM->alElements.end();++i,++_i)
{
if (PLY::EEST_Vertex == (*i)->eSemantic)
{
pcList = this->pcDOM->alElementData[_i];
// load normal vectors?
if (p_bNormals)
{
// now check whether which normal components are available
unsigned int _a = 0;
for (std::vector<PLY::Property*>::const_iterator
a = (*i)->alProperties.begin();
a != (*i)->alProperties.end();++a,++_a)
{
if ((*a)->bIsList)continue;
if (PLY::EST_XNormal == (*a)->Semantic)
{
cnt++;
aiPositions[0] = _a;
aiTypes[0] = (*a)->eType;
}
else if (PLY::EST_YNormal == (*a)->Semantic)
{
cnt++;
aiPositions[1] = _a;
aiTypes[1] = (*a)->eType;
}
else if (PLY::EST_ZNormal == (*a)->Semantic)
{
cnt++;
aiPositions[2] = _a;
aiTypes[2] = (*a)->eType;
}
}
}
// load vertex coordinates
else
{
// now check whether which coordinate sets are available
unsigned int _a = 0;
for (std::vector<PLY::Property*>::const_iterator
a = (*i)->alProperties.begin();
a != (*i)->alProperties.end();++a,++_a)
{
if ((*a)->bIsList)continue;
if (PLY::EST_XCoord == (*a)->Semantic)
{
cnt++;
aiPositions[0] = _a;
aiTypes[0] = (*a)->eType;
}
else if (PLY::EST_YCoord == (*a)->Semantic)
{
cnt++;
aiPositions[1] = _a;
aiTypes[1] = (*a)->eType;
}
else if (PLY::EST_ZCoord == (*a)->Semantic)
{
cnt++;
aiPositions[2] = _a;
aiTypes[2] = (*a)->eType;
}
if (3 == cnt)break;
}
}
break;
}
}
// check whether we have a valid source for the vertex data
if (NULL != pcList && 0 != cnt)
{
pvOut->reserve(pcList->alInstances.size());
for (std::vector<ElementInstance*>::const_iterator
i = pcList->alInstances.begin();
i != pcList->alInstances.end();++i)
{
// convert the vertices to sp floats
aiVector3D vOut;
if (0xFFFFFFFF != aiPositions[0])
{
vOut.x = PLY::PropertyInstance::ConvertTo<float>(
(*i)->alProperties[aiPositions[0]].avList.front(),aiTypes[0]);
}
if (0xFFFFFFFF != aiPositions[1])
{
vOut.y = PLY::PropertyInstance::ConvertTo<float>(
(*i)->alProperties[aiPositions[1]].avList.front(),aiTypes[1]);
}
if (0xFFFFFFFF != aiPositions[2])
{
vOut.z = PLY::PropertyInstance::ConvertTo<float>(
(*i)->alProperties[aiPositions[2]].avList.front(),aiTypes[2]);
}
// and add them to our nice list
pvOut->push_back(vOut);
}
}
return;
}
// ------------------------------------------------------------------------------------------------
float PLYImporter::NormalizeColorValue (PLY::PropertyInstance::ValueUnion val,
PLY::EDataType eType)
{
switch (eType)
{
case EDT_Float:
return val.fFloat;
case EDT_Double:
return (float)val.fDouble;
case EDT_UChar:
return (float)val.iUInt / (float)0xFF;
case EDT_Char:
return (float)(val.iInt+(0xFF/2)) / (float)0xFF;
case EDT_UShort:
return (float)val.iUInt / (float)0xFFFF;
case EDT_Short:
return (float)(val.iInt+(0xFFFF/2)) / (float)0xFFFF;
case EDT_UInt:
return (float)val.iUInt / (float)0xFFFF;
case EDT_Int:
return ((float)val.iInt / (float)0xFF) + 0.5f;
};
return 0.0f;
}
// ------------------------------------------------------------------------------------------------
void PLYImporter::LoadVertexColor(std::vector<aiColor4D>* pvOut)
{
ai_assert(NULL != pvOut);
unsigned int aiPositions[4] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF};
PLY::EDataType aiTypes[4];
unsigned int cnt = 0;
PLY::ElementInstanceList* pcList = NULL;
// serach in the DOM for a vertex entry
unsigned int _i = 0;
for (std::vector<PLY::Element*>::const_iterator
i = this->pcDOM->alElements.begin();
i != this->pcDOM->alElements.end();++i,++_i)
{
if (PLY::EEST_Vertex == (*i)->eSemantic)
{
pcList = this->pcDOM->alElementData[_i];
// now check whether which coordinate sets are available
unsigned int _a = 0;
for (std::vector<PLY::Property*>::const_iterator
a = (*i)->alProperties.begin();
a != (*i)->alProperties.end();++a,++_a)
{
if ((*a)->bIsList)continue;
if (PLY::EST_Red == (*a)->Semantic)
{
cnt++;
aiPositions[0] = _a;
aiTypes[0] = (*a)->eType;
}
else if (PLY::EST_Green == (*a)->Semantic)
{
cnt++;
aiPositions[1] = _a;
aiTypes[1] = (*a)->eType;
}
else if (PLY::EST_Blue == (*a)->Semantic)
{
cnt++;
aiPositions[2] = _a;
aiTypes[2] = (*a)->eType;
}
else if (PLY::EST_Alpha == (*a)->Semantic)
{
cnt++;
aiPositions[3] = _a;
aiTypes[3] = (*a)->eType;
}
if (4 == cnt)break;
}
break;
}
}
// check whether we have a valid source for the vertex data
if (NULL != pcList && 0 != cnt)
{
pvOut->reserve(pcList->alInstances.size());
for (std::vector<ElementInstance*>::const_iterator
i = pcList->alInstances.begin();
i != pcList->alInstances.end();++i)
{
// convert the vertices to sp floats
aiColor4D vOut;
if (0xFFFFFFFF != aiPositions[0])
{
vOut.r = NormalizeColorValue((*i)->alProperties[
aiPositions[0]].avList.front(),aiTypes[0]);
}
if (0xFFFFFFFF != aiPositions[1])
{
vOut.g = NormalizeColorValue((*i)->alProperties[
aiPositions[1]].avList.front(),aiTypes[1]);
}
if (0xFFFFFFFF != aiPositions[2])
{
vOut.b = NormalizeColorValue((*i)->alProperties[
aiPositions[2]].avList.front(),aiTypes[2]);
}
// assume 1.0 for the alpha channel ifit is not set
if (0xFFFFFFFF == aiPositions[3])vOut.a = 1.0f;
else
{
vOut.a = NormalizeColorValue((*i)->alProperties[
aiPositions[3]].avList.front(),aiTypes[3]);
}
// and add them to our nice list
pvOut->push_back(vOut);
}
}
return;
}
// ------------------------------------------------------------------------------------------------
void PLYImporter::LoadFaces(std::vector<PLY::Face>* pvOut)
{
ai_assert(NULL != pvOut);
PLY::ElementInstanceList* pcList = NULL;
bool bOne = false;
// index of the vertex index list
unsigned int iProperty = 0xFFFFFFFF;
PLY::EDataType eType;
bool bIsTristrip = false;
// index of the material index property
unsigned int iMaterialIndex = 0xFFFFFFFF;
PLY::EDataType eType2;
// serach in the DOM for a face entry
unsigned int _i = 0;
for (std::vector<PLY::Element*>::const_iterator
i = this->pcDOM->alElements.begin();
i != this->pcDOM->alElements.end();++i,++_i)
{
// face = unique number of vertex indices
if (PLY::EEST_Face == (*i)->eSemantic)
{
pcList = this->pcDOM->alElementData[_i];
unsigned int _a = 0;
for (std::vector<PLY::Property*>::const_iterator
a = (*i)->alProperties.begin();
a != (*i)->alProperties.end();++a,++_a)
{
if (PLY::EST_VertexIndex == (*a)->Semantic)
{
// must be a dynamic list!
if (!(*a)->bIsList)continue;
iProperty = _a;
bOne = true;
eType = (*a)->eType;
}
else if (PLY::EST_MaterialIndex == (*a)->Semantic)
{
if ((*a)->bIsList)continue;
iMaterialIndex = _a;
bOne = true;
eType2 = (*a)->eType;
}
}
break;
}
// triangle strip
// TODO: triangle strip and material index support???
else if (PLY::EEST_TriStrip == (*i)->eSemantic)
{
// find a list property in this ...
pcList = this->pcDOM->alElementData[_i];
unsigned int _a = 0;
for (std::vector<PLY::Property*>::const_iterator
a = (*i)->alProperties.begin();
a != (*i)->alProperties.end();++a,++_a)
{
// must be a dynamic list!
if (!(*a)->bIsList)continue;
iProperty = _a;
bOne = true;
bIsTristrip = true;
eType = (*a)->eType;
break;
}
break;
}
}
// check whether we have at least one per-face information set
if (pcList && bOne)
{
if (!bIsTristrip)
{
pvOut->reserve(pcList->alInstances.size());
for (std::vector<ElementInstance*>::const_iterator
i = pcList->alInstances.begin();
i != pcList->alInstances.end();++i)
{
PLY::Face sFace;
// parse the list of vertex indices
if (0xFFFFFFFF != iProperty)
{
const unsigned int iNum = (*i)->alProperties[iProperty].avList.size();
sFace.mIndices.resize(iNum);
if (3 > iNum)
{
// We must filter out all degenerates. Leave a message
// in the log ...
// LOG
continue;
}
std::list<PLY::PropertyInstance::ValueUnion>::const_iterator p =
(*i)->alProperties[iProperty].avList.begin();
for (unsigned int a = 0; a < iNum;++a,++p)
{
sFace.mIndices[a] = PLY::PropertyInstance::ConvertTo<unsigned int>(*p,eType);
}
}
// parse the material index
if (0xFFFFFFFF != iMaterialIndex)
{
sFace.iMaterialIndex = PLY::PropertyInstance::ConvertTo<unsigned int>(
(*i)->alProperties[iMaterialIndex].avList.front(),eType2);
}
pvOut->push_back(sFace);
}
}
else // triangle strips
{
// normally we have only one triangle strip instance where
// a value of -1 indicates a restart of the strip
for (std::vector<ElementInstance*>::const_iterator
i = pcList->alInstances.begin();
i != pcList->alInstances.end();++i)
{
int aiTable[2] = {-1,-1};
for (std::list<PLY::PropertyInstance::ValueUnion>::const_iterator
a = (*i)->alProperties[iProperty].avList.begin();
a != (*i)->alProperties[iProperty].avList.end();++a)
{
int p = PLY::PropertyInstance::ConvertTo<int>(*a,eType);
if (-1 == p)
{
// restart the strip ...
aiTable[0] = aiTable[1] = -1;
continue;
}
if (-1 == aiTable[0])
{
aiTable[0] = p;
continue;
}
if (-1 == aiTable[1])
{
aiTable[1] = p;
continue;
}
PLY::Face sFace;
sFace.mIndices.push_back((unsigned int)aiTable[0]);
sFace.mIndices.push_back((unsigned int)aiTable[1]);
sFace.mIndices.push_back((unsigned int)p);
pvOut->push_back(sFace);
aiTable[0] = aiTable[1];
aiTable[1] = p;
}
}
}
}
return;
}
// ------------------------------------------------------------------------------------------------
void PLYImporter::GetMaterialColor(const std::vector<PLY::PropertyInstance>& avList,
unsigned int aiPositions[4],
PLY::EDataType aiTypes[4],
aiColor4D* clrOut)
{
ai_assert(NULL != clrOut);
if (0xFFFFFFFF == aiPositions[0])clrOut->r = 0.0f;
else
{
clrOut->r = NormalizeColorValue(avList[
aiPositions[0]].avList.front(),aiTypes[0]);
}
if (0xFFFFFFFF == aiPositions[1])clrOut->g = 0.0f;
else
{
clrOut->g = NormalizeColorValue(avList[
aiPositions[1]].avList.front(),aiTypes[1]);
}
if (0xFFFFFFFF == aiPositions[2])clrOut->b = 0.0f;
else
{
clrOut->b = NormalizeColorValue(avList[
aiPositions[2]].avList.front(),aiTypes[2]);
}
// assume 1.0 for the alpha channel ifit is not set
if (0xFFFFFFFF == aiPositions[3])clrOut->a = 1.0f;
else
{
clrOut->a = NormalizeColorValue(avList[
aiPositions[3]].avList.front(),aiTypes[3]);
}
return;
}
// ------------------------------------------------------------------------------------------------
void PLYImporter::LoadMaterial(std::vector<MaterialHelper*>* pvOut)
{
ai_assert(NULL != pvOut);
// diffuse[4], specular[4], ambient[4]
// rgba order
unsigned int aaiPositions[3][4] = {
{0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF},
{0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF},
{0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF},
};
// dto.
PLY::EDataType aaiTypes[3][4];
PLY::ElementInstanceList* pcList = NULL;
unsigned int iPhong = 0xFFFFFFFF;
PLY::EDataType ePhong;
unsigned int iOpacity = 0xFFFFFFFF;
PLY::EDataType eOpacity;
// serach in the DOM for a vertex entry
unsigned int _i = 0;
for (std::vector<PLY::Element*>::const_iterator
i = this->pcDOM->alElements.begin();
i != this->pcDOM->alElements.end();++i,++_i)
{
if (PLY::EEST_Material == (*i)->eSemantic)
{
pcList = this->pcDOM->alElementData[_i];
// now check whether which coordinate sets are available
unsigned int _a = 0;
for (std::vector<PLY::Property*>::const_iterator
a = (*i)->alProperties.begin();
a != (*i)->alProperties.end();++a,++_a)
{
if ((*a)->bIsList)continue;
// pohng specularity -----------------------------------
if (PLY::EST_PhongPower == (*a)->Semantic)
{
iPhong = _a;
ePhong = (*a)->eType;
}
// general opacity -----------------------------------
if (PLY::EST_Opacity == (*a)->Semantic)
{
iOpacity = _a;
eOpacity = (*a)->eType;
}
// diffuse color channels -----------------------------------
if (PLY::EST_DiffuseRed == (*a)->Semantic)
{
aaiPositions[0][0] = _a;
aaiTypes[0][0] = (*a)->eType;
}
else if (PLY::EST_DiffuseGreen == (*a)->Semantic)
{
aaiPositions[0][1] = _a;
aaiTypes[0][1] = (*a)->eType;
}
else if (PLY::EST_DiffuseBlue == (*a)->Semantic)
{
aaiPositions[0][2] = _a;
aaiTypes[0][2] = (*a)->eType;
}
else if (PLY::EST_DiffuseAlpha == (*a)->Semantic)
{
aaiPositions[0][3] = _a;
aaiTypes[0][3] = (*a)->eType;
}
// specular color channels -----------------------------------
else if (PLY::EST_SpecularRed == (*a)->Semantic)
{
aaiPositions[1][0] = _a;
aaiTypes[1][0] = (*a)->eType;
}
else if (PLY::EST_SpecularGreen == (*a)->Semantic)
{
aaiPositions[1][1] = _a;
aaiTypes[1][1] = (*a)->eType;
}
else if (PLY::EST_SpecularBlue == (*a)->Semantic)
{
aaiPositions[1][2] = _a;
aaiTypes[1][2] = (*a)->eType;
}
else if (PLY::EST_SpecularAlpha == (*a)->Semantic)
{
aaiPositions[1][3] = _a;
aaiTypes[1][3] = (*a)->eType;
}
// ambient color channels -----------------------------------
else if (PLY::EST_AmbientRed == (*a)->Semantic)
{
aaiPositions[2][0] = _a;
aaiTypes[2][0] = (*a)->eType;
}
else if (PLY::EST_AmbientGreen == (*a)->Semantic)
{
aaiPositions[2][1] = _a;
aaiTypes[2][1] = (*a)->eType;
}
else if (PLY::EST_AmbientBlue == (*a)->Semantic)
{
aaiPositions[22][2] = _a;
aaiTypes[2][2] = (*a)->eType;
}
else if (PLY::EST_AmbientAlpha == (*a)->Semantic)
{
aaiPositions[2][3] = _a;
aaiTypes[2][3] = (*a)->eType;
}
}
break;
}
}
// check whether we have a valid source for the material data
if (NULL != pcList)
{
for (std::vector<ElementInstance*>::const_iterator
i = pcList->alInstances.begin();
i != pcList->alInstances.end();++i)
{
aiColor4D clrOut;
MaterialHelper* pcHelper = new MaterialHelper();
// build the diffuse material color
GetMaterialColor((*i)->alProperties,aaiPositions[0],aaiTypes[0],&clrOut);
pcHelper->AddProperty<aiColor4D>(&clrOut,1,AI_MATKEY_COLOR_DIFFUSE);
// build the specular material color
GetMaterialColor((*i)->alProperties,aaiPositions[1],aaiTypes[1],&clrOut);
pcHelper->AddProperty<aiColor4D>(&clrOut,1,AI_MATKEY_COLOR_SPECULAR);
// build the ambient material color
GetMaterialColor((*i)->alProperties,aaiPositions[2],aaiTypes[2],&clrOut);
pcHelper->AddProperty<aiColor4D>(&clrOut,1,AI_MATKEY_COLOR_AMBIENT);
// handle phong power and shading mode
int iMode;
if (0xFFFFFFFF != iPhong)
{
float fSpec = PLY::PropertyInstance::ConvertTo<float>(
(*i)->alProperties[iPhong].avList.front(),ePhong);
// if shininess is 0 (and the pow() calculation would therefore always
// become 1, not depending on the angle) use gouraud lighting
if (0.0f != fSpec)
{
// scale this with 15 ... hopefully this is correct
fSpec *= 15;
pcHelper->AddProperty<float>(&fSpec, 1, AI_MATKEY_SHININESS);
iMode = (int)aiShadingMode_Phong;
}
else iMode = (int)aiShadingMode_Gouraud;
}
else iMode = (int)aiShadingMode_Gouraud;
pcHelper->AddProperty<int>(&iMode, 1, AI_MATKEY_SHADING_MODEL);
// handle opacity
if (0xFFFFFFFF != iOpacity)
{
float fOpacity = PLY::PropertyInstance::ConvertTo<float>(
(*i)->alProperties[iPhong].avList.front(),eOpacity);
pcHelper->AddProperty<float>(&fOpacity, 1, AI_MATKEY_OPACITY);
}
// add the newly created material instance to the list
pvOut->push_back(pcHelper);
}
}
return;
}