/* --------------------------------------------------------------------------- Free Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the PLY importer class */ #include "PLYLoader.h" #include "MaterialSystem.h" #include "../include/IOStream.h" #include "../include/IOSystem.h" #include "../include/aiMesh.h" #include "../include/aiScene.h" #include "../include/aiAssert.h" #include using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer PLYImporter::PLYImporter() { } // ------------------------------------------------------------------------------------------------ // Destructor, private as well PLYImporter::~PLYImporter() { } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool PLYImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { // simple check of file extension is enough for the moment std::string::size_type pos = pFile.find_last_of('.'); // no file extension - can't read if( pos == std::string::npos) return false; std::string extension = pFile.substr( pos); if (extension.length() < 4)return false; if (extension[0] != '.')return false; if (extension[1] != 'p' && extension[1] != 'P')return false; if (extension[2] != 'l' && extension[2] != 'L')return false; if (extension[3] != 'y' && extension[3] != 'Y')return false; return true; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void PLYImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { boost::scoped_ptr file( pIOHandler->Open( pFile)); // Check whether we can read from the file if( file.get() == NULL) { throw new ImportErrorException( "Failed to open PLY file " + pFile + "."); } // check whether the ply file is large enough to contain // at least the file header size_t fileSize = file->FileSize(); if( fileSize < 10) { throw new ImportErrorException( ".ply File is too small."); } // allocate storage and copy the contents of the file to a memory buffer // (terminate it with zero) this->mBuffer = new unsigned char[fileSize+1]; file->Read( (void*)mBuffer, 1, fileSize); this->mBuffer[fileSize] = '\0'; // the beginning of the file must be PLY if (this->mBuffer[0] != 'P' && this->mBuffer[0] != 'p' || this->mBuffer[1] != 'L' && this->mBuffer[1] != 'l' || this->mBuffer[2] != 'Y' && this->mBuffer[2] != 'y') { throw new ImportErrorException( "Invalid .ply file: Magic number \'ply\' is no there"); } char* szMe = (char*)&this->mBuffer[3]; SkipSpacesAndLineEnd(szMe,(const char**)&szMe); // determine the format of the file data PLY::DOM sPlyDom; if (0 == ASSIMP_strincmp(szMe,"format",6) && IsSpace(*(szMe+6))) { szMe += 7; if (0 == ASSIMP_strincmp(szMe,"ascii",5) && IsSpace(*(szMe+5))) { szMe += 6; SkipLine(szMe,(const char**)&szMe); if(!PLY::DOM::ParseInstance(szMe,&sPlyDom)) { throw new ImportErrorException( "Invalid .ply file: Unable to build DOM (#1)"); } } else if (0 == ASSIMP_strincmp(szMe,"binary_",7)) { bool bIsBE = false; // binary_little_endian // binary_big_endian szMe += 7; #if (defined AI_BUILD_BIG_ENDIAN) if ('l' == *szMe || 'L' == *szMe)bIsBE = true; #else if ('b' == *szMe || 'B' == *szMe)bIsBE = true; #endif // ! AI_BUILD_BIG_ENDIAN // skip the line, parse the rest of the header and build the DOM SkipLine(szMe,(const char**)&szMe); if(!PLY::DOM::ParseInstanceBinary(szMe,&sPlyDom,bIsBE)) { throw new ImportErrorException( "Invalid .ply file: Unable to build DOM (#2)"); } } else { throw new ImportErrorException( "Invalid .ply file: Unknown file format"); } } else { throw new ImportErrorException( "Invalid .ply file: Missing format specification"); } this->pcDOM = &sPlyDom; // now load a list of vertices. This must be sucessfull in order to procede std::vector avPositions; this->LoadVertices(&avPositions,false); if (avPositions.empty()) { throw new ImportErrorException( "Invalid .ply file: No vertices found"); } // now load a list of normals. std::vector avNormals; this->LoadVertices(&avNormals,true); // load the face list std::vector avFaces; this->LoadFaces(&avFaces); // if no face list is existing we assume that the vertex // list is containing a list of triangles if (avFaces.empty()) { if (avPositions.size() < 3) { throw new ImportErrorException( "Invalid .ply file: Not enough vertices to build " "a face list. "); } unsigned int iNum = avPositions.size() / 3; for (unsigned int i = 0; i< iNum;++i) { PLY::Face sFace; sFace.mIndices.push_back((iNum*3)); sFace.mIndices.push_back((iNum*3)+1); sFace.mIndices.push_back((iNum*3)+2); avFaces.push_back(sFace); } } // now load a list of all materials std::vector avMaterials; this->LoadMaterial(&avMaterials); // now load a list of all vertex color channels std::vector avColors; this->LoadVertexColor(&avColors); // now try to load texture coordinates std::vector avTexCoords; this->LoadTextureCoordinates(&avTexCoords); // now replace the default material in all faces and validate all material indices this->ReplaceDefaultMaterial(&avFaces,&avMaterials); // now convert this to a list of aiMesh instances std::vector avMeshes; this->ConvertMeshes(&avFaces,&avPositions,&avNormals, &avColors,&avTexCoords,&avMaterials,&avMeshes); if (avMeshes.empty()) { throw new ImportErrorException( "Invalid .ply file: Unable to extract mesh data "); } // now generate the output scene object. Fill the material list pScene->mNumMaterials = avMaterials.size(); pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials]; for (unsigned int i = 0; i < pScene->mNumMaterials;++i) pScene->mMaterials[i] = avMaterials[i]; // fill the mesh list pScene->mNumMeshes = avMeshes.size(); pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; for (unsigned int i = 0; i < pScene->mNumMeshes;++i) pScene->mMeshes[i] = avMeshes[i]; // generate a simple node structure pScene->mRootNode = new aiNode(); pScene->mRootNode->mNumMeshes = pScene->mNumMeshes; pScene->mRootNode->mMeshes = new unsigned int[pScene->mNumMeshes]; for (unsigned int i = 0; i < pScene->mRootNode->mNumMeshes;++i) pScene->mRootNode->mMeshes[i] = i; // delete the file buffer delete[] this->mBuffer; // DOM is lying on the stack, will be deconstructed automatically return; } // ------------------------------------------------------------------------------------------------ void PLYImporter::ConvertMeshes(std::vector* avFaces, const std::vector* avPositions, const std::vector* avNormals, const std::vector* avColors, const std::vector* avTexCoords, const std::vector* avMaterials, std::vector* avOut) { ai_assert(NULL != avFaces); ai_assert(NULL != avPositions); ai_assert(NULL != avMaterials); // split by materials std::vector* aiSplit = new std::vector[ avMaterials->size()]; unsigned int iNum = 0; for (std::vector::const_iterator i = avFaces->begin(); i != avFaces->end();++i,++iNum) { // index has already been checked aiSplit[(*i).iMaterialIndex].push_back(iNum); } // now generate submeshes for (unsigned int p = 0; p < avMaterials->size();++p) { if (aiSplit[p].size() != 0) { // allocate the mesh object aiMesh* p_pcOut = new aiMesh(); p_pcOut->mMaterialIndex = p; p_pcOut->mNumFaces = aiSplit[p].size(); p_pcOut->mFaces = new aiFace[aiSplit[p].size()]; // at first we need to determine the size of the output vector array unsigned int iNum = 0; for (unsigned int i = 0; i < aiSplit[p].size();++i) { iNum += (*avFaces)[aiSplit[p][i]].mIndices.size(); } p_pcOut->mNumVertices = iNum; p_pcOut->mVertices = new aiVector3D[iNum]; if (!avColors->empty()) p_pcOut->mColors[0] = new aiColor4D[iNum]; if (!avTexCoords->empty()) { p_pcOut->mNumUVComponents[0] = 2; p_pcOut->mTextureCoords[0] = new aiVector3D[iNum]; } if (!avNormals->empty()) p_pcOut->mNormals = new aiVector3D[iNum]; // add all faces iNum = 0; unsigned int iVertex = 0; for (std::vector::const_iterator i = aiSplit[p].begin(); i != aiSplit[p].end();++i,++iNum) { p_pcOut->mFaces[iNum].mNumIndices = (*avFaces)[*i].mIndices.size(); p_pcOut->mFaces[iNum].mIndices = new unsigned int[p_pcOut->mFaces[iNum].mNumIndices]; // build an unique set of vertices/colors for this face for (unsigned int q = 0; q < p_pcOut->mFaces[iNum].mNumIndices;++q) { p_pcOut->mFaces[iNum].mIndices[q] = iVertex; p_pcOut->mVertices[iVertex] = (*avPositions)[(*avFaces)[*i].mIndices[q]]; if (!avColors->empty()) p_pcOut->mColors[0][iVertex] = (*avColors)[(*avFaces)[*i].mIndices[q]]; if (!avTexCoords->empty()) { const aiVector2D& vec = (*avTexCoords)[(*avFaces)[*i].mIndices[q]]; p_pcOut->mTextureCoords[0][iVertex].x = vec.x; p_pcOut->mTextureCoords[0][iVertex].y = vec.y; } if (!avNormals->empty()) p_pcOut->mNormals[iVertex] = (*avNormals)[(*avFaces)[*i].mIndices[q]]; iVertex++; } } // add the mesh to the output list avOut->push_back(p_pcOut); } } delete[] aiSplit; return; } // ------------------------------------------------------------------------------------------------ void PLYImporter::ReplaceDefaultMaterial(std::vector* avFaces, std::vector* avMaterials) { bool bNeedDefaultMat = false; for (std::vector::iterator i = avFaces->begin();i != avFaces->end();++i) { if (0xFFFFFFFF == (*i).iMaterialIndex) { bNeedDefaultMat = true; (*i).iMaterialIndex = avMaterials->size(); } else if ((*i).iMaterialIndex >= avMaterials->size() ) { // clamp the index (*i).iMaterialIndex = avMaterials->size()-1; } } if (bNeedDefaultMat) { // generate a default material MaterialHelper* pcHelper = new MaterialHelper(); // fill in a default material int iMode = (int)aiShadingMode_Gouraud; pcHelper->AddProperty(&iMode, 1, AI_MATKEY_SHADING_MODEL); aiColor3D clr; clr.b = clr.g = clr.r = 0.6f; pcHelper->AddProperty(&clr, 1,AI_MATKEY_COLOR_DIFFUSE); pcHelper->AddProperty(&clr, 1,AI_MATKEY_COLOR_SPECULAR); clr.b = clr.g = clr.r = 0.05f; pcHelper->AddProperty(&clr, 1,AI_MATKEY_COLOR_AMBIENT); avMaterials->push_back(pcHelper); } return; } // ------------------------------------------------------------------------------------------------ void PLYImporter::LoadTextureCoordinates(std::vector* pvOut) { ai_assert(NULL != pvOut); unsigned int aiPositions[2] = {0xFFFFFFFF,0xFFFFFFFF}; PLY::EDataType aiTypes[2]; PLY::ElementInstanceList* pcList = NULL; unsigned int cnt = 0; // serach in the DOM for a vertex entry unsigned int _i = 0; for (std::vector::const_iterator i = this->pcDOM->alElements.begin(); i != this->pcDOM->alElements.end();++i,++_i) { if (PLY::EEST_Vertex == (*i)->eSemantic) { pcList = this->pcDOM->alElementData[_i]; // now check whether which normal components are available unsigned int _a = 0; for (std::vector::const_iterator a = (*i)->alProperties.begin(); a != (*i)->alProperties.end();++a,++_a) { if ((*a)->bIsList)continue; if (PLY::EST_UTextureCoord == (*a)->Semantic) { cnt++; aiPositions[0] = _a; aiTypes[0] = (*a)->eType; } else if (PLY::EST_VTextureCoord == (*a)->Semantic) { cnt++; aiPositions[1] = _a; aiTypes[1] = (*a)->eType; } } } } // check whether we have a valid source for the texture coordinates data if (NULL != pcList && 0 != cnt) { pvOut->reserve(pcList->alInstances.size()); for (std::vector::const_iterator i = pcList->alInstances.begin(); i != pcList->alInstances.end();++i) { // convert the vertices to sp floats aiVector2D vOut; if (0xFFFFFFFF != aiPositions[0]) { vOut.x = PLY::PropertyInstance::ConvertTo( (*i)->alProperties[aiPositions[0]].avList.front(),aiTypes[0]); } if (0xFFFFFFFF != aiPositions[1]) { vOut.y = PLY::PropertyInstance::ConvertTo( (*i)->alProperties[aiPositions[1]].avList.front(),aiTypes[1]); } // and add them to our nice list pvOut->push_back(vOut); } } } // ------------------------------------------------------------------------------------------------ void PLYImporter::LoadVertices(std::vector* pvOut, bool p_bNormals) { ai_assert(NULL != pvOut); unsigned int aiPositions[3] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}; PLY::EDataType aiTypes[3]; PLY::ElementInstanceList* pcList = NULL; unsigned int cnt = 0; // serach in the DOM for a vertex entry unsigned int _i = 0; for (std::vector::const_iterator i = this->pcDOM->alElements.begin(); i != this->pcDOM->alElements.end();++i,++_i) { if (PLY::EEST_Vertex == (*i)->eSemantic) { pcList = this->pcDOM->alElementData[_i]; // load normal vectors? if (p_bNormals) { // now check whether which normal components are available unsigned int _a = 0; for (std::vector::const_iterator a = (*i)->alProperties.begin(); a != (*i)->alProperties.end();++a,++_a) { if ((*a)->bIsList)continue; if (PLY::EST_XNormal == (*a)->Semantic) { cnt++; aiPositions[0] = _a; aiTypes[0] = (*a)->eType; } else if (PLY::EST_YNormal == (*a)->Semantic) { cnt++; aiPositions[1] = _a; aiTypes[1] = (*a)->eType; } else if (PLY::EST_ZNormal == (*a)->Semantic) { cnt++; aiPositions[2] = _a; aiTypes[2] = (*a)->eType; } } } // load vertex coordinates else { // now check whether which coordinate sets are available unsigned int _a = 0; for (std::vector::const_iterator a = (*i)->alProperties.begin(); a != (*i)->alProperties.end();++a,++_a) { if ((*a)->bIsList)continue; if (PLY::EST_XCoord == (*a)->Semantic) { cnt++; aiPositions[0] = _a; aiTypes[0] = (*a)->eType; } else if (PLY::EST_YCoord == (*a)->Semantic) { cnt++; aiPositions[1] = _a; aiTypes[1] = (*a)->eType; } else if (PLY::EST_ZCoord == (*a)->Semantic) { cnt++; aiPositions[2] = _a; aiTypes[2] = (*a)->eType; } if (3 == cnt)break; } } break; } } // check whether we have a valid source for the vertex data if (NULL != pcList && 0 != cnt) { pvOut->reserve(pcList->alInstances.size()); for (std::vector::const_iterator i = pcList->alInstances.begin(); i != pcList->alInstances.end();++i) { // convert the vertices to sp floats aiVector3D vOut; if (0xFFFFFFFF != aiPositions[0]) { vOut.x = PLY::PropertyInstance::ConvertTo( (*i)->alProperties[aiPositions[0]].avList.front(),aiTypes[0]); } if (0xFFFFFFFF != aiPositions[1]) { vOut.y = PLY::PropertyInstance::ConvertTo( (*i)->alProperties[aiPositions[1]].avList.front(),aiTypes[1]); } if (0xFFFFFFFF != aiPositions[2]) { vOut.z = PLY::PropertyInstance::ConvertTo( (*i)->alProperties[aiPositions[2]].avList.front(),aiTypes[2]); } // and add them to our nice list pvOut->push_back(vOut); } } return; } // ------------------------------------------------------------------------------------------------ float PLYImporter::NormalizeColorValue (PLY::PropertyInstance::ValueUnion val, PLY::EDataType eType) { switch (eType) { case EDT_Float: return val.fFloat; case EDT_Double: return (float)val.fDouble; case EDT_UChar: return (float)val.iUInt / (float)0xFF; case EDT_Char: return (float)(val.iInt+(0xFF/2)) / (float)0xFF; case EDT_UShort: return (float)val.iUInt / (float)0xFFFF; case EDT_Short: return (float)(val.iInt+(0xFFFF/2)) / (float)0xFFFF; case EDT_UInt: return (float)val.iUInt / (float)0xFFFF; case EDT_Int: return ((float)val.iInt / (float)0xFF) + 0.5f; }; return 0.0f; } // ------------------------------------------------------------------------------------------------ void PLYImporter::LoadVertexColor(std::vector* pvOut) { ai_assert(NULL != pvOut); unsigned int aiPositions[4] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}; PLY::EDataType aiTypes[4]; unsigned int cnt = 0; PLY::ElementInstanceList* pcList = NULL; // serach in the DOM for a vertex entry unsigned int _i = 0; for (std::vector::const_iterator i = this->pcDOM->alElements.begin(); i != this->pcDOM->alElements.end();++i,++_i) { if (PLY::EEST_Vertex == (*i)->eSemantic) { pcList = this->pcDOM->alElementData[_i]; // now check whether which coordinate sets are available unsigned int _a = 0; for (std::vector::const_iterator a = (*i)->alProperties.begin(); a != (*i)->alProperties.end();++a,++_a) { if ((*a)->bIsList)continue; if (PLY::EST_Red == (*a)->Semantic) { cnt++; aiPositions[0] = _a; aiTypes[0] = (*a)->eType; } else if (PLY::EST_Green == (*a)->Semantic) { cnt++; aiPositions[1] = _a; aiTypes[1] = (*a)->eType; } else if (PLY::EST_Blue == (*a)->Semantic) { cnt++; aiPositions[2] = _a; aiTypes[2] = (*a)->eType; } else if (PLY::EST_Alpha == (*a)->Semantic) { cnt++; aiPositions[3] = _a; aiTypes[3] = (*a)->eType; } if (4 == cnt)break; } break; } } // check whether we have a valid source for the vertex data if (NULL != pcList && 0 != cnt) { pvOut->reserve(pcList->alInstances.size()); for (std::vector::const_iterator i = pcList->alInstances.begin(); i != pcList->alInstances.end();++i) { // convert the vertices to sp floats aiColor4D vOut; if (0xFFFFFFFF != aiPositions[0]) { vOut.r = NormalizeColorValue((*i)->alProperties[ aiPositions[0]].avList.front(),aiTypes[0]); } if (0xFFFFFFFF != aiPositions[1]) { vOut.g = NormalizeColorValue((*i)->alProperties[ aiPositions[1]].avList.front(),aiTypes[1]); } if (0xFFFFFFFF != aiPositions[2]) { vOut.b = NormalizeColorValue((*i)->alProperties[ aiPositions[2]].avList.front(),aiTypes[2]); } // assume 1.0 for the alpha channel ifit is not set if (0xFFFFFFFF == aiPositions[3])vOut.a = 1.0f; else { vOut.a = NormalizeColorValue((*i)->alProperties[ aiPositions[3]].avList.front(),aiTypes[3]); } // and add them to our nice list pvOut->push_back(vOut); } } return; } // ------------------------------------------------------------------------------------------------ void PLYImporter::LoadFaces(std::vector* pvOut) { ai_assert(NULL != pvOut); PLY::ElementInstanceList* pcList = NULL; bool bOne = false; // index of the vertex index list unsigned int iProperty = 0xFFFFFFFF; PLY::EDataType eType; bool bIsTristrip = false; // index of the material index property unsigned int iMaterialIndex = 0xFFFFFFFF; PLY::EDataType eType2; // serach in the DOM for a face entry unsigned int _i = 0; for (std::vector::const_iterator i = this->pcDOM->alElements.begin(); i != this->pcDOM->alElements.end();++i,++_i) { // face = unique number of vertex indices if (PLY::EEST_Face == (*i)->eSemantic) { pcList = this->pcDOM->alElementData[_i]; unsigned int _a = 0; for (std::vector::const_iterator a = (*i)->alProperties.begin(); a != (*i)->alProperties.end();++a,++_a) { if (PLY::EST_VertexIndex == (*a)->Semantic) { // must be a dynamic list! if (!(*a)->bIsList)continue; iProperty = _a; bOne = true; eType = (*a)->eType; } else if (PLY::EST_MaterialIndex == (*a)->Semantic) { if ((*a)->bIsList)continue; iMaterialIndex = _a; bOne = true; eType2 = (*a)->eType; } } break; } // triangle strip // TODO: triangle strip and material index support??? else if (PLY::EEST_TriStrip == (*i)->eSemantic) { // find a list property in this ... pcList = this->pcDOM->alElementData[_i]; unsigned int _a = 0; for (std::vector::const_iterator a = (*i)->alProperties.begin(); a != (*i)->alProperties.end();++a,++_a) { // must be a dynamic list! if (!(*a)->bIsList)continue; iProperty = _a; bOne = true; bIsTristrip = true; eType = (*a)->eType; break; } break; } } // check whether we have at least one per-face information set if (pcList && bOne) { if (!bIsTristrip) { pvOut->reserve(pcList->alInstances.size()); for (std::vector::const_iterator i = pcList->alInstances.begin(); i != pcList->alInstances.end();++i) { PLY::Face sFace; // parse the list of vertex indices if (0xFFFFFFFF != iProperty) { const unsigned int iNum = (*i)->alProperties[iProperty].avList.size(); sFace.mIndices.resize(iNum); if (3 > iNum) { // We must filter out all degenerates. Leave a message // in the log ... // LOG continue; } std::list::const_iterator p = (*i)->alProperties[iProperty].avList.begin(); for (unsigned int a = 0; a < iNum;++a,++p) { sFace.mIndices[a] = PLY::PropertyInstance::ConvertTo(*p,eType); } } // parse the material index if (0xFFFFFFFF != iMaterialIndex) { sFace.iMaterialIndex = PLY::PropertyInstance::ConvertTo( (*i)->alProperties[iMaterialIndex].avList.front(),eType2); } pvOut->push_back(sFace); } } else // triangle strips { // normally we have only one triangle strip instance where // a value of -1 indicates a restart of the strip for (std::vector::const_iterator i = pcList->alInstances.begin(); i != pcList->alInstances.end();++i) { int aiTable[2] = {-1,-1}; for (std::list::const_iterator a = (*i)->alProperties[iProperty].avList.begin(); a != (*i)->alProperties[iProperty].avList.end();++a) { int p = PLY::PropertyInstance::ConvertTo(*a,eType); if (-1 == p) { // restart the strip ... aiTable[0] = aiTable[1] = -1; continue; } if (-1 == aiTable[0]) { aiTable[0] = p; continue; } if (-1 == aiTable[1]) { aiTable[1] = p; continue; } PLY::Face sFace; sFace.mIndices.push_back((unsigned int)aiTable[0]); sFace.mIndices.push_back((unsigned int)aiTable[1]); sFace.mIndices.push_back((unsigned int)p); pvOut->push_back(sFace); aiTable[0] = aiTable[1]; aiTable[1] = p; } } } } return; } // ------------------------------------------------------------------------------------------------ void PLYImporter::GetMaterialColor(const std::vector& avList, unsigned int aiPositions[4], PLY::EDataType aiTypes[4], aiColor4D* clrOut) { ai_assert(NULL != clrOut); if (0xFFFFFFFF == aiPositions[0])clrOut->r = 0.0f; else { clrOut->r = NormalizeColorValue(avList[ aiPositions[0]].avList.front(),aiTypes[0]); } if (0xFFFFFFFF == aiPositions[1])clrOut->g = 0.0f; else { clrOut->g = NormalizeColorValue(avList[ aiPositions[1]].avList.front(),aiTypes[1]); } if (0xFFFFFFFF == aiPositions[2])clrOut->b = 0.0f; else { clrOut->b = NormalizeColorValue(avList[ aiPositions[2]].avList.front(),aiTypes[2]); } // assume 1.0 for the alpha channel ifit is not set if (0xFFFFFFFF == aiPositions[3])clrOut->a = 1.0f; else { clrOut->a = NormalizeColorValue(avList[ aiPositions[3]].avList.front(),aiTypes[3]); } return; } // ------------------------------------------------------------------------------------------------ void PLYImporter::LoadMaterial(std::vector* pvOut) { ai_assert(NULL != pvOut); // diffuse[4], specular[4], ambient[4] // rgba order unsigned int aaiPositions[3][4] = { {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}, {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}, {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}, }; // dto. PLY::EDataType aaiTypes[3][4]; PLY::ElementInstanceList* pcList = NULL; unsigned int iPhong = 0xFFFFFFFF; PLY::EDataType ePhong; unsigned int iOpacity = 0xFFFFFFFF; PLY::EDataType eOpacity; // serach in the DOM for a vertex entry unsigned int _i = 0; for (std::vector::const_iterator i = this->pcDOM->alElements.begin(); i != this->pcDOM->alElements.end();++i,++_i) { if (PLY::EEST_Material == (*i)->eSemantic) { pcList = this->pcDOM->alElementData[_i]; // now check whether which coordinate sets are available unsigned int _a = 0; for (std::vector::const_iterator a = (*i)->alProperties.begin(); a != (*i)->alProperties.end();++a,++_a) { if ((*a)->bIsList)continue; // pohng specularity ----------------------------------- if (PLY::EST_PhongPower == (*a)->Semantic) { iPhong = _a; ePhong = (*a)->eType; } // general opacity ----------------------------------- if (PLY::EST_Opacity == (*a)->Semantic) { iOpacity = _a; eOpacity = (*a)->eType; } // diffuse color channels ----------------------------------- if (PLY::EST_DiffuseRed == (*a)->Semantic) { aaiPositions[0][0] = _a; aaiTypes[0][0] = (*a)->eType; } else if (PLY::EST_DiffuseGreen == (*a)->Semantic) { aaiPositions[0][1] = _a; aaiTypes[0][1] = (*a)->eType; } else if (PLY::EST_DiffuseBlue == (*a)->Semantic) { aaiPositions[0][2] = _a; aaiTypes[0][2] = (*a)->eType; } else if (PLY::EST_DiffuseAlpha == (*a)->Semantic) { aaiPositions[0][3] = _a; aaiTypes[0][3] = (*a)->eType; } // specular color channels ----------------------------------- else if (PLY::EST_SpecularRed == (*a)->Semantic) { aaiPositions[1][0] = _a; aaiTypes[1][0] = (*a)->eType; } else if (PLY::EST_SpecularGreen == (*a)->Semantic) { aaiPositions[1][1] = _a; aaiTypes[1][1] = (*a)->eType; } else if (PLY::EST_SpecularBlue == (*a)->Semantic) { aaiPositions[1][2] = _a; aaiTypes[1][2] = (*a)->eType; } else if (PLY::EST_SpecularAlpha == (*a)->Semantic) { aaiPositions[1][3] = _a; aaiTypes[1][3] = (*a)->eType; } // ambient color channels ----------------------------------- else if (PLY::EST_AmbientRed == (*a)->Semantic) { aaiPositions[2][0] = _a; aaiTypes[2][0] = (*a)->eType; } else if (PLY::EST_AmbientGreen == (*a)->Semantic) { aaiPositions[2][1] = _a; aaiTypes[2][1] = (*a)->eType; } else if (PLY::EST_AmbientBlue == (*a)->Semantic) { aaiPositions[22][2] = _a; aaiTypes[2][2] = (*a)->eType; } else if (PLY::EST_AmbientAlpha == (*a)->Semantic) { aaiPositions[2][3] = _a; aaiTypes[2][3] = (*a)->eType; } } break; } } // check whether we have a valid source for the material data if (NULL != pcList) { for (std::vector::const_iterator i = pcList->alInstances.begin(); i != pcList->alInstances.end();++i) { aiColor4D clrOut; MaterialHelper* pcHelper = new MaterialHelper(); // build the diffuse material color GetMaterialColor((*i)->alProperties,aaiPositions[0],aaiTypes[0],&clrOut); pcHelper->AddProperty(&clrOut,1,AI_MATKEY_COLOR_DIFFUSE); // build the specular material color GetMaterialColor((*i)->alProperties,aaiPositions[1],aaiTypes[1],&clrOut); pcHelper->AddProperty(&clrOut,1,AI_MATKEY_COLOR_SPECULAR); // build the ambient material color GetMaterialColor((*i)->alProperties,aaiPositions[2],aaiTypes[2],&clrOut); pcHelper->AddProperty(&clrOut,1,AI_MATKEY_COLOR_AMBIENT); // handle phong power and shading mode int iMode; if (0xFFFFFFFF != iPhong) { float fSpec = PLY::PropertyInstance::ConvertTo( (*i)->alProperties[iPhong].avList.front(),ePhong); // if shininess is 0 (and the pow() calculation would therefore always // become 1, not depending on the angle) use gouraud lighting if (0.0f != fSpec) { // scale this with 15 ... hopefully this is correct fSpec *= 15; pcHelper->AddProperty(&fSpec, 1, AI_MATKEY_SHININESS); iMode = (int)aiShadingMode_Phong; } else iMode = (int)aiShadingMode_Gouraud; } else iMode = (int)aiShadingMode_Gouraud; pcHelper->AddProperty(&iMode, 1, AI_MATKEY_SHADING_MODEL); // handle opacity if (0xFFFFFFFF != iOpacity) { float fOpacity = PLY::PropertyInstance::ConvertTo( (*i)->alProperties[iPhong].avList.front(),eOpacity); pcHelper->AddProperty(&fOpacity, 1, AI_MATKEY_OPACITY); } // add the newly created material instance to the list pvOut->push_back(pcHelper); } } return; }