831 lines
25 KiB
C++
831 lines
25 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2012, assimp team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file FBXDocument.cpp
|
|
* @brief Implementation of the FBX DOM classes
|
|
*/
|
|
#include "AssimpPCH.h"
|
|
|
|
#ifndef ASSIMP_BUILD_NO_FBX_IMPORTER
|
|
|
|
#include "FBXParser.h"
|
|
#include "FBXDocument.h"
|
|
#include "FBXUtil.h"
|
|
#include "FBXImporter.h"
|
|
|
|
namespace Assimp {
|
|
namespace FBX {
|
|
|
|
namespace {
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// signal DOM construction error, this is always unrecoverable. Throws DeadlyImportError.
|
|
void DOMError(const std::string& message, const Token& token)
|
|
{
|
|
throw DeadlyImportError(Util::AddTokenText("FBX-DOM",message,&token));
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void DOMError(const std::string& message, const Element* element = NULL)
|
|
{
|
|
if(element) {
|
|
DOMError(message,element->KeyToken());
|
|
}
|
|
throw DeadlyImportError("FBX-DOM " + message);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// extract required compound scope
|
|
const Scope& GetRequiredScope(const Element& el)
|
|
{
|
|
const Scope* const s = el.Compound();
|
|
if(!s) {
|
|
DOMError("expected compound scope",&el);
|
|
}
|
|
|
|
return *s;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// get token at a particular index
|
|
const Token& GetRequiredToken(const Element& el, unsigned int index)
|
|
{
|
|
const TokenList& t = el.Tokens();
|
|
if(index >= t.size()) {
|
|
DOMError(Formatter::format( "missing token at index " ) << index,&el);
|
|
}
|
|
|
|
return *t[index];
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// wrapper around ParseTokenAsID() with DOMError handling
|
|
uint64_t ParseTokenAsID(const Token& t)
|
|
{
|
|
const char* err;
|
|
const uint64_t i = ParseTokenAsID(t,err);
|
|
if(err) {
|
|
DOMError(err,t);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// wrapper around ParseTokenAsDim() with DOMError handling
|
|
size_t ParseTokenAsDim(const Token& t)
|
|
{
|
|
const char* err;
|
|
const size_t i = ParseTokenAsDim(t,err);
|
|
if(err) {
|
|
DOMError(err,t);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// wrapper around ParseTokenAsFloat() with DOMError handling
|
|
float ParseTokenAsFloat(const Token& t)
|
|
{
|
|
const char* err;
|
|
const float i = ParseTokenAsFloat(t,err);
|
|
if(err) {
|
|
DOMError(err,t);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// wrapper around ParseTokenAsInt() with DOMError handling
|
|
int ParseTokenAsInt(const Token& t)
|
|
{
|
|
const char* err;
|
|
const int i = ParseTokenAsInt(t,err);
|
|
if(err) {
|
|
DOMError(err,t);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// wrapper around ParseTokenAsString() with DOMError handling
|
|
std::string ParseTokenAsString(const Token& t)
|
|
{
|
|
const char* err;
|
|
const std::string& i = ParseTokenAsString(t,err);
|
|
if(err) {
|
|
DOMError(err,t);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// extract a required element from a scope, abort if the element cannot be found
|
|
const Element& GetRequiredElement(const Scope& sc, const std::string& index, const Element* element = NULL)
|
|
{
|
|
const Element* el = sc[index];
|
|
if(!el) {
|
|
DOMError("did not find required element \"" + index + "\"",element);
|
|
}
|
|
return *el;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// read an array of float3 tuples
|
|
void ReadVectorDataArray(std::vector<aiVector3D>& out, const Element& el)
|
|
{
|
|
out.clear();
|
|
const TokenList& tok = el.Tokens();
|
|
const size_t dim = ParseTokenAsDim(*tok[0]);
|
|
|
|
// may throw bad_alloc if the input is rubbish, but this need
|
|
// not to be prevented - importing would fail but we wouldn't
|
|
// crash since assimp handles this case properly.
|
|
out.reserve(dim);
|
|
|
|
const Scope& scope = GetRequiredScope(el);
|
|
const Element& a = GetRequiredElement(scope,"a",&el);
|
|
|
|
if (a.Tokens().size() % 3 != 0) {
|
|
DOMError("number of floats is not a multiple of three (3)",&el);
|
|
}
|
|
for (TokenList::const_iterator it = a.Tokens().begin(), end = a.Tokens().end(); it != end; ) {
|
|
aiVector3D v;
|
|
v.x = ParseTokenAsFloat(**it++);
|
|
v.y = ParseTokenAsFloat(**it++);
|
|
v.z = ParseTokenAsFloat(**it++);
|
|
|
|
out.push_back(v);
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// read an array of color4 tuples
|
|
void ReadVectorDataArray(std::vector<aiColor4D>& out, const Element& el)
|
|
{
|
|
out.clear();
|
|
const TokenList& tok = el.Tokens();
|
|
const size_t dim = ParseTokenAsDim(*tok[0]);
|
|
|
|
// see notes in ReadVectorDataArray() above
|
|
out.reserve(dim);
|
|
|
|
const Scope& scope = GetRequiredScope(el);
|
|
const Element& a = GetRequiredElement(scope,"a",&el);
|
|
|
|
if (a.Tokens().size() % 4 != 0) {
|
|
DOMError("number of floats is not a multiple of four (4)",&el);
|
|
}
|
|
for (TokenList::const_iterator it = a.Tokens().begin(), end = a.Tokens().end(); it != end; ) {
|
|
aiColor4D v;
|
|
v.r = ParseTokenAsFloat(**it++);
|
|
v.g = ParseTokenAsFloat(**it++);
|
|
v.b = ParseTokenAsFloat(**it++);
|
|
v.a = ParseTokenAsFloat(**it++);
|
|
|
|
out.push_back(v);
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// read an array of float2 tuples
|
|
void ReadVectorDataArray(std::vector<aiVector2D>& out, const Element& el)
|
|
{
|
|
out.clear();
|
|
const TokenList& tok = el.Tokens();
|
|
const size_t dim = ParseTokenAsDim(*tok[0]);
|
|
|
|
// see notes in ReadVectorDataArray() above
|
|
out.reserve(dim);
|
|
|
|
const Scope& scope = GetRequiredScope(el);
|
|
const Element& a = GetRequiredElement(scope,"a",&el);
|
|
|
|
if (a.Tokens().size() % 2 != 0) {
|
|
DOMError("number of floats is not a multiple of two (2)",&el);
|
|
}
|
|
for (TokenList::const_iterator it = a.Tokens().begin(), end = a.Tokens().end(); it != end; ) {
|
|
aiVector2D v;
|
|
v.x = ParseTokenAsFloat(**it++);
|
|
v.y = ParseTokenAsFloat(**it++);
|
|
|
|
out.push_back(v);
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// read an array of ints
|
|
void ReadVectorDataArray(std::vector<int>& out, const Element& el)
|
|
{
|
|
out.clear();
|
|
const TokenList& tok = el.Tokens();
|
|
const size_t dim = ParseTokenAsDim(*tok[0]);
|
|
|
|
// see notes in ReadVectorDataArray()
|
|
out.reserve(dim);
|
|
|
|
const Scope& scope = GetRequiredScope(el);
|
|
const Element& a = GetRequiredElement(scope,"a",&el);
|
|
|
|
for (TokenList::const_iterator it = a.Tokens().begin(), end = a.Tokens().end(); it != end; ) {
|
|
const int ival = ParseTokenAsInt(**it++);
|
|
out.push_back(ival);
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// read an array of uints
|
|
void ReadVectorDataArray(std::vector<unsigned int>& out, const Element& el)
|
|
{
|
|
out.clear();
|
|
const TokenList& tok = el.Tokens();
|
|
const size_t dim = ParseTokenAsDim(*tok[0]);
|
|
|
|
// see notes in ReadVectorDataArray()
|
|
out.reserve(dim);
|
|
|
|
const Scope& scope = GetRequiredScope(el);
|
|
const Element& a = GetRequiredElement(scope,"a",&el);
|
|
|
|
for (TokenList::const_iterator it = a.Tokens().begin(), end = a.Tokens().end(); it != end; ) {
|
|
const int ival = ParseTokenAsInt(**it++);
|
|
if(ival < 0) {
|
|
DOMError("encountered negative integer index");
|
|
}
|
|
out.push_back(static_cast<unsigned int>(ival));
|
|
}
|
|
}
|
|
} // end anon.
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
LazyObject::LazyObject(const Element& element)
|
|
: element(element)
|
|
{
|
|
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
LazyObject::~LazyObject()
|
|
{
|
|
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
const Object* LazyObject::Get()
|
|
{
|
|
if (object.get()) {
|
|
return object.get();
|
|
}
|
|
|
|
const Token& key = element.KeyToken();
|
|
const TokenList& tokens = element.Tokens();
|
|
|
|
if(tokens.size() < 3) {
|
|
DOMError("expected at least 3 tokens: id, name and class tag",&element);
|
|
}
|
|
|
|
const char* err;
|
|
const std::string name = ParseTokenAsString(*tokens[1],err);
|
|
if (err) {
|
|
DOMError(err,&element);
|
|
}
|
|
|
|
const std::string classtag = ParseTokenAsString(*tokens[2],err);
|
|
if (err) {
|
|
DOMError(err,&element);
|
|
}
|
|
|
|
// this needs to be relatively fast since we do it a lot,
|
|
// so avoid constructing strings all the time.
|
|
const char* obtype = key.begin();
|
|
if (!strncmp(obtype,"Geometry",static_cast<size_t>(key.end()-key.begin()))) {
|
|
|
|
if (!strcmp(classtag.c_str(),"Mesh")) {
|
|
object = new MeshGeometry(element,name);
|
|
}
|
|
}
|
|
|
|
if (!object.get()) {
|
|
//DOMError("failed to convert element to DOM object, class: " + classtag + ", name: " + name,&element);
|
|
}
|
|
|
|
return object.get();
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
Object::Object(const Element& element, const std::string& name)
|
|
: element(element)
|
|
, name(name)
|
|
{
|
|
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
Object::~Object()
|
|
{
|
|
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
Geometry::Geometry(const Element& element, const std::string& name)
|
|
: Object(element,name)
|
|
{
|
|
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
Geometry::~Geometry()
|
|
{
|
|
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
MeshGeometry::MeshGeometry(const Element& element, const std::string& name)
|
|
: Geometry(element,name)
|
|
{
|
|
const Scope* sc = element.Compound();
|
|
if (!sc) {
|
|
DOMError("failed to read Geometry object (class: Mesh), no data scope found");
|
|
}
|
|
|
|
// must have Mesh elements:
|
|
const Element& Vertices = GetRequiredElement(*sc,"Vertices",&element);
|
|
const Element& PolygonVertexIndex = GetRequiredElement(*sc,"PolygonVertexIndex",&element);
|
|
|
|
// optional Mesh elements:
|
|
const ElementCollection& Layer = sc->GetCollection("Layer");
|
|
const ElementCollection& LayerElementMaterial = sc->GetCollection("LayerElementMaterial");
|
|
const ElementCollection& LayerElementUV = sc->GetCollection("LayerElementUV");
|
|
const ElementCollection& LayerElementNormal = sc->GetCollection("LayerElementNormal");
|
|
|
|
std::vector<aiVector3D> tempVerts;
|
|
ReadVectorDataArray(tempVerts,Vertices);
|
|
|
|
std::vector<int> tempFaces;
|
|
ReadVectorDataArray(tempFaces,PolygonVertexIndex);
|
|
|
|
vertices.reserve(tempFaces.size());
|
|
faces.reserve(tempFaces.size() / 3);
|
|
|
|
mapping_offsets.resize(tempVerts.size());
|
|
mapping_counts.resize(tempVerts.size(),0);
|
|
mappings.resize(tempFaces.size());
|
|
|
|
const size_t vertex_count = tempVerts.size();
|
|
|
|
// generate output vertices, computing an adjacency table to
|
|
// preserve the mapping from fbx indices to *this* indexing.
|
|
unsigned int count = 0;
|
|
BOOST_FOREACH(int index, tempFaces) {
|
|
const int absi = index < 0 ? (-index - 1) : index;
|
|
if(static_cast<size_t>(absi) >= vertex_count) {
|
|
DOMError("polygon vertex index out of range",&PolygonVertexIndex);
|
|
}
|
|
|
|
vertices.push_back(tempVerts[absi]);
|
|
++count;
|
|
|
|
++mapping_counts[absi];
|
|
|
|
if (index < 0) {
|
|
faces.push_back(count);
|
|
count = 0;
|
|
}
|
|
}
|
|
|
|
unsigned int cursor = 0;
|
|
for (size_t i = 0, e = tempVerts.size(); i < e; ++i) {
|
|
mapping_offsets[i] = cursor;
|
|
cursor += mapping_counts[i];
|
|
|
|
mapping_counts[i] = 0;
|
|
}
|
|
|
|
cursor = 0;
|
|
BOOST_FOREACH(int index, tempFaces) {
|
|
const int absi = index < 0 ? (-index - 1) : index;
|
|
mappings[mapping_offsets[absi] + mapping_counts[absi]++] = cursor;
|
|
}
|
|
|
|
// ignore all but the first layer, but warn about any further layers
|
|
for (ElementMap::const_iterator it = Layer.first; it != Layer.second; ++it) {
|
|
const TokenList& tokens = (*it).second->Tokens();
|
|
|
|
const char* err;
|
|
const int index = ParseTokenAsInt(*tokens[0], err);
|
|
if(err) {
|
|
DOMError(err,&element);
|
|
}
|
|
|
|
if(index == 0) {
|
|
const Scope& layer = GetRequiredScope(*(*it).second);
|
|
ReadLayer(layer);
|
|
}
|
|
else {
|
|
FBXImporter::LogWarn("ignoring additional geometry layers");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
MeshGeometry::~MeshGeometry()
|
|
{
|
|
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MeshGeometry::ReadLayer(const Scope& layer)
|
|
{
|
|
const ElementCollection& LayerElement = layer.GetCollection("LayerElement");
|
|
for (ElementMap::const_iterator eit = LayerElement.first; eit != LayerElement.second; ++eit) {
|
|
const Scope& elayer = GetRequiredScope(*(*eit).second);
|
|
|
|
ReadLayerElement(elayer);
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MeshGeometry::ReadLayerElement(const Scope& layerElement)
|
|
{
|
|
const Element& Type = GetRequiredElement(layerElement,"Type");
|
|
const Element& TypedIndex = GetRequiredElement(layerElement,"TypedIndex");
|
|
|
|
const std::string& type = ParseTokenAsString(GetRequiredToken(Type,0));
|
|
const int typedIndex = ParseTokenAsInt(GetRequiredToken(TypedIndex,0));
|
|
|
|
const Scope& top = GetRequiredScope(element);
|
|
const ElementCollection candidates = top.GetCollection(type);
|
|
|
|
for (ElementMap::const_iterator it = candidates.first; it != candidates.second; ++it) {
|
|
const int index = ParseTokenAsInt(GetRequiredToken(*(*it).second,0));
|
|
if(index == typedIndex) {
|
|
ReadVertexData(type,typedIndex,GetRequiredScope(*(*it).second));
|
|
return;
|
|
}
|
|
}
|
|
|
|
FBXImporter::LogError(Formatter::format("failed to resolve vertex layer element: ")
|
|
<< type << ", index: " << typedIndex);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scope& source)
|
|
{
|
|
const std::string& MappingInformationType = ParseTokenAsString(GetRequiredToken(
|
|
GetRequiredElement(source,"MappingInformationType"),0)
|
|
);
|
|
|
|
const std::string& ReferenceInformationType = ParseTokenAsString(GetRequiredToken(
|
|
GetRequiredElement(source,"ReferenceInformationType"),0)
|
|
);
|
|
|
|
if (type == "LayerElementUV") {
|
|
if(index >= AI_MAX_NUMBER_OF_TEXTURECOORDS) {
|
|
FBXImporter::LogError(Formatter::format("ignoring UV layer, maximum number of UV channels exceeded: ")
|
|
<< index << " (limit is " << AI_MAX_NUMBER_OF_TEXTURECOORDS << ")" );
|
|
return;
|
|
}
|
|
|
|
ReadVertexDataUV(uvs[index],source,
|
|
MappingInformationType,
|
|
ReferenceInformationType
|
|
);
|
|
}
|
|
else if (type == "LayerElementMaterial") {
|
|
ReadVertexDataMaterials(materials,source,
|
|
MappingInformationType,
|
|
ReferenceInformationType
|
|
);
|
|
}
|
|
else if (type == "LayerElementNormal") {
|
|
ReadVertexDataNormals(normals,source,
|
|
MappingInformationType,
|
|
ReferenceInformationType
|
|
);
|
|
}
|
|
else if (type == "LayerElementTangent") {
|
|
ReadVertexDataTangents(tangents,source,
|
|
MappingInformationType,
|
|
ReferenceInformationType
|
|
);
|
|
}
|
|
else if (type == "LayerElementBinormal") {
|
|
ReadVertexDataBinormals(binormals,source,
|
|
MappingInformationType,
|
|
ReferenceInformationType
|
|
);
|
|
}
|
|
else if (type == "LayerElementColor") {
|
|
if(index >= AI_MAX_NUMBER_OF_COLOR_SETS) {
|
|
FBXImporter::LogError(Formatter::format("ignoring vertex color layer, maximum number of color sets exceeded: ")
|
|
<< index << " (limit is " << AI_MAX_NUMBER_OF_COLOR_SETS << ")" );
|
|
return;
|
|
}
|
|
|
|
ReadVertexDataColors(colors[index],source,
|
|
MappingInformationType,
|
|
ReferenceInformationType
|
|
);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Lengthy utility function to read and resolve a FBX vertex data array - that is, the
|
|
// output is in polygon vertex order. This logic is used for reading normals, UVs, colors,
|
|
// tangents ..
|
|
template <typename T>
|
|
void ResolveVertexDataArray(std::vector<T>& data_out, const Scope& source,
|
|
const std::string& MappingInformationType,
|
|
const std::string& ReferenceInformationType,
|
|
const char* dataElementName,
|
|
const char* indexDataElementName,
|
|
size_t vertex_count,
|
|
const std::vector<unsigned int>& mapping_counts,
|
|
const std::vector<unsigned int>& mapping_offsets,
|
|
const std::vector<unsigned int>& mappings)
|
|
{
|
|
std::vector<T> tempUV;
|
|
ReadVectorDataArray(tempUV,GetRequiredElement(source,dataElementName));
|
|
|
|
// handle permutations of Mapping and Reference type - it would be nice to
|
|
// deal with this more elegantly and with less redundancy, but right
|
|
// now it seems unavoidable.
|
|
if (MappingInformationType == "ByVertice" && ReferenceInformationType == "Direct") {
|
|
data_out.resize(vertex_count);
|
|
for (size_t i = 0, e = tempUV.size(); i < e; ++i) {
|
|
|
|
const unsigned int istart = mapping_offsets[i], iend = istart + mapping_counts[i];
|
|
for (unsigned int j = istart; j < iend; ++j) {
|
|
data_out[mappings[j]] = tempUV[i];
|
|
}
|
|
}
|
|
}
|
|
else if (MappingInformationType == "ByVertice" && ReferenceInformationType == "IndexToDirect") {
|
|
data_out.resize(vertex_count);
|
|
|
|
std::vector<int> uvIndices;
|
|
ReadVectorDataArray(uvIndices,GetRequiredElement(source,indexDataElementName));
|
|
|
|
for (size_t i = 0, e = uvIndices.size(); i < e; ++i) {
|
|
|
|
const unsigned int istart = mapping_offsets[i], iend = istart + mapping_counts[i];
|
|
for (unsigned int j = istart; j < iend; ++j) {
|
|
if(static_cast<size_t>(uvIndices[i]) >= tempUV.size()) {
|
|
DOMError("index out of range",&GetRequiredElement(source,indexDataElementName));
|
|
}
|
|
data_out[mappings[j]] = tempUV[uvIndices[i]];
|
|
}
|
|
}
|
|
}
|
|
else if (MappingInformationType == "ByPolygonVertex" && ReferenceInformationType == "Direct") {
|
|
if (tempUV.size() != vertex_count) {
|
|
FBXImporter::LogError(Formatter::format("length of input data unexpected for ByPolygon mapping: ")
|
|
<< tempUV.size() << ", expected " << vertex_count
|
|
);
|
|
return;
|
|
}
|
|
|
|
data_out.swap(tempUV);
|
|
}
|
|
else if (MappingInformationType == "ByPolygonVertex" && ReferenceInformationType == "IndexToDirect") {
|
|
data_out.resize(vertex_count);
|
|
|
|
std::vector<int> uvIndices;
|
|
ReadVectorDataArray(uvIndices,GetRequiredElement(source,indexDataElementName));
|
|
|
|
if (uvIndices.size() != vertex_count) {
|
|
FBXImporter::LogError("length of input data unexpected for ByPolygonVertex mapping");
|
|
return;
|
|
}
|
|
|
|
unsigned int next = 0;
|
|
BOOST_FOREACH(int i, uvIndices) {
|
|
if(static_cast<size_t>(i) >= tempUV.size()) {
|
|
DOMError("index out of range",&GetRequiredElement(source,indexDataElementName));
|
|
}
|
|
|
|
data_out[next++] = tempUV[i];
|
|
}
|
|
}
|
|
else {
|
|
FBXImporter::LogError(Formatter::format("ignoring vertex data channel, access type not implemented: ")
|
|
<< MappingInformationType << "," << ReferenceInformationType);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MeshGeometry::ReadVertexDataNormals(std::vector<aiVector3D>& normals_out, const Scope& source,
|
|
const std::string& MappingInformationType,
|
|
const std::string& ReferenceInformationType)
|
|
{
|
|
ResolveVertexDataArray(normals_out,source,MappingInformationType,ReferenceInformationType,
|
|
"Normals",
|
|
"NormalsIndex",
|
|
vertices.size(),
|
|
mapping_counts,
|
|
mapping_offsets,
|
|
mappings);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MeshGeometry::ReadVertexDataUV(std::vector<aiVector2D>& uv_out, const Scope& source,
|
|
const std::string& MappingInformationType,
|
|
const std::string& ReferenceInformationType)
|
|
{
|
|
ResolveVertexDataArray(uv_out,source,MappingInformationType,ReferenceInformationType,
|
|
"UV",
|
|
"UVIndex",
|
|
vertices.size(),
|
|
mapping_counts,
|
|
mapping_offsets,
|
|
mappings);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MeshGeometry::ReadVertexDataColors(std::vector<aiColor4D>& colors_out, const Scope& source,
|
|
const std::string& MappingInformationType,
|
|
const std::string& ReferenceInformationType)
|
|
{
|
|
ResolveVertexDataArray(colors_out,source,MappingInformationType,ReferenceInformationType,
|
|
"Color",
|
|
"ColorIndex",
|
|
vertices.size(),
|
|
mapping_counts,
|
|
mapping_offsets,
|
|
mappings);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MeshGeometry::ReadVertexDataTangents(std::vector<aiVector3D>& tangents_out, const Scope& source,
|
|
const std::string& MappingInformationType,
|
|
const std::string& ReferenceInformationType)
|
|
{
|
|
ResolveVertexDataArray(tangents_out,source,MappingInformationType,ReferenceInformationType,
|
|
"Tangent",
|
|
"TangentIndex",
|
|
vertices.size(),
|
|
mapping_counts,
|
|
mapping_offsets,
|
|
mappings);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MeshGeometry::ReadVertexDataBinormals(std::vector<aiVector3D>& binormals_out, const Scope& source,
|
|
const std::string& MappingInformationType,
|
|
const std::string& ReferenceInformationType)
|
|
{
|
|
ResolveVertexDataArray(binormals_out,source,MappingInformationType,ReferenceInformationType,
|
|
"Binormal",
|
|
"BinormalIndex",
|
|
vertices.size(),
|
|
mapping_counts,
|
|
mapping_offsets,
|
|
mappings);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void MeshGeometry::ReadVertexDataMaterials(std::vector<unsigned int>& materials_out, const Scope& source,
|
|
const std::string& MappingInformationType,
|
|
const std::string& ReferenceInformationType)
|
|
{
|
|
const size_t face_count = faces.size();
|
|
ai_assert(face_count);
|
|
|
|
// materials are handled separately. First of all, they are assigned per-face
|
|
// and not per polyvert. Secondly, ReferenceInformationType=IndexToDirect
|
|
// has a slightly different meaning for materials.
|
|
ReadVectorDataArray(materials_out,GetRequiredElement(source,"Materials"));
|
|
|
|
if (MappingInformationType == "AllSame") {
|
|
// easy - same material for all faces
|
|
if (materials_out.empty()) {
|
|
FBXImporter::LogError(Formatter::format("expected material index, ignoring"));
|
|
return;
|
|
}
|
|
else if (materials_out.size() > 1) {
|
|
FBXImporter::LogWarn(Formatter::format("expected only a single material index, ignoring all except the first one"));
|
|
materials_out.clear();
|
|
}
|
|
|
|
materials.assign(vertices.size(),materials_out[0]);
|
|
}
|
|
else if (MappingInformationType == "ByPolygon" && ReferenceInformationType == "IndexToDirect") {
|
|
materials.resize(face_count);
|
|
|
|
if(materials_out.size() != face_count) {
|
|
FBXImporter::LogError(Formatter::format("length of input data unexpected for ByPolygon mapping: ")
|
|
<< materials_out.size() << ", expected " << face_count
|
|
);
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
FBXImporter::LogError(Formatter::format("ignoring material assignments, access type not implemented: ")
|
|
<< MappingInformationType << "," << ReferenceInformationType);
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
Document::Document(const Parser& parser)
|
|
: parser(parser)
|
|
{
|
|
|
|
const Scope& sc = parser.GetRootScope();
|
|
const Element* const eobjects = sc["Objects"];
|
|
if(!eobjects || !eobjects->Compound()) {
|
|
DOMError("no Objects dictionary found");
|
|
}
|
|
|
|
const Scope* const sobjects = eobjects->Compound();
|
|
BOOST_FOREACH(const ElementMap::value_type& el, sobjects->Elements()) {
|
|
|
|
// extract ID
|
|
const TokenList& tok = el.second->Tokens();
|
|
|
|
if (tok.empty()) {
|
|
DOMError("expected ID after object key",el.second);
|
|
}
|
|
|
|
const char* err;
|
|
|
|
const uint64_t id = ParseTokenAsID(*tok[0], err);
|
|
if(err) {
|
|
DOMError(err,el.second);
|
|
}
|
|
|
|
objects[id] = new LazyObject(*el.second);
|
|
// DEBUG - evaluate all objects
|
|
const Object* o = objects[id]->Get();
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
Document::~Document()
|
|
{
|
|
|
|
}
|
|
|
|
} // !FBX
|
|
} // !Assimp
|
|
|
|
#endif
|
|
|