449 lines
13 KiB
C++
449 lines
13 KiB
C++
/*
|
|
Open Asset Import Library (ASSIMP)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2010, ASSIMP Development Team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file IFCUtil.cpp
|
|
* @brief Implementation of conversion routines for some common Ifc helper entities.
|
|
*/
|
|
|
|
#include "AssimpPCH.h"
|
|
|
|
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
|
#include "IFCUtil.h"
|
|
#include "ProcessHelper.h"
|
|
|
|
namespace Assimp {
|
|
namespace IFC {
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void TempOpening::Transform(const aiMatrix4x4& mat)
|
|
{
|
|
if(profileMesh) {
|
|
profileMesh->Transform(mat);
|
|
}
|
|
extrusionDir *= aiMatrix3x3(mat);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiMesh* TempMesh::ToMesh()
|
|
{
|
|
ai_assert(verts.size() == std::accumulate(vertcnt.begin(),vertcnt.end(),0));
|
|
|
|
if (verts.empty()) {
|
|
return NULL;
|
|
}
|
|
|
|
std::auto_ptr<aiMesh> mesh(new aiMesh());
|
|
|
|
// copy vertices
|
|
mesh->mNumVertices = static_cast<unsigned int>(verts.size());
|
|
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
|
|
std::copy(verts.begin(),verts.end(),mesh->mVertices);
|
|
|
|
// and build up faces
|
|
mesh->mNumFaces = static_cast<unsigned int>(vertcnt.size());
|
|
mesh->mFaces = new aiFace[mesh->mNumFaces];
|
|
|
|
for(unsigned int i = 0,n=0, acc = 0; i < mesh->mNumFaces; ++n) {
|
|
aiFace& f = mesh->mFaces[i];
|
|
if (!vertcnt[n]) {
|
|
--mesh->mNumFaces;
|
|
continue;
|
|
}
|
|
|
|
f.mNumIndices = vertcnt[n];
|
|
f.mIndices = new unsigned int[f.mNumIndices];
|
|
for(unsigned int a = 0; a < f.mNumIndices; ++a) {
|
|
f.mIndices[a] = acc++;
|
|
}
|
|
|
|
++i;
|
|
}
|
|
|
|
return mesh.release();
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void TempMesh::Clear()
|
|
{
|
|
verts.clear();
|
|
vertcnt.clear();
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void TempMesh::Transform(const aiMatrix4x4& mat)
|
|
{
|
|
BOOST_FOREACH(aiVector3D& v, verts) {
|
|
v *= mat;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------
|
|
aiVector3D TempMesh::Center() const
|
|
{
|
|
return std::accumulate(verts.begin(),verts.end(),aiVector3D(0.f,0.f,0.f)) / static_cast<float>(verts.size());
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void TempMesh::Append(const TempMesh& other)
|
|
{
|
|
verts.insert(verts.end(),other.verts.begin(),other.verts.end());
|
|
vertcnt.insert(vertcnt.end(),other.vertcnt.begin(),other.vertcnt.end());
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void TempMesh::RemoveAdjacentDuplicates()
|
|
{
|
|
|
|
bool drop = false;
|
|
std::vector<aiVector3D>::iterator base = verts.begin();
|
|
BOOST_FOREACH(unsigned int& cnt, vertcnt) {
|
|
if (cnt < 2){
|
|
base += cnt;
|
|
continue;
|
|
}
|
|
|
|
aiVector3D vmin,vmax;
|
|
ArrayBounds(&*base, cnt ,vmin,vmax);
|
|
|
|
|
|
const float epsilon = (vmax-vmin).SquareLength() / 1e9f;
|
|
//const float dotepsilon = 1e-9;
|
|
|
|
//// look for vertices that lie directly on the line between their predecessor and their
|
|
//// successor and replace them with either of them.
|
|
|
|
//for(size_t i = 0; i < cnt; ++i) {
|
|
// aiVector3D& v1 = *(base+i), &v0 = *(base+(i?i-1:cnt-1)), &v2 = *(base+(i+1)%cnt);
|
|
// const aiVector3D& d0 = (v1-v0), &d1 = (v2-v1);
|
|
// const float l0 = d0.SquareLength(), l1 = d1.SquareLength();
|
|
// if (!l0 || !l1) {
|
|
// continue;
|
|
// }
|
|
|
|
// const float d = (d0/sqrt(l0))*(d1/sqrt(l1));
|
|
|
|
// if ( d >= 1.f-dotepsilon ) {
|
|
// v1 = v0;
|
|
// }
|
|
// else if ( d < -1.f+dotepsilon ) {
|
|
// v2 = v1;
|
|
// continue;
|
|
// }
|
|
//}
|
|
|
|
// drop any identical, adjacent vertices. this pass will collect the dropouts
|
|
// of the previous pass as a side-effect.
|
|
FuzzyVectorCompare fz(epsilon);
|
|
std::vector<aiVector3D>::iterator end = base+cnt, e = std::unique( base, end, fz );
|
|
if (e != end) {
|
|
cnt -= static_cast<unsigned int>(std::distance(e, end));
|
|
verts.erase(e,end);
|
|
drop = true;
|
|
}
|
|
|
|
// check front and back vertices for this polygon
|
|
if (cnt > 1 && fz(*base,*(base+cnt-1))) {
|
|
verts.erase(base+ --cnt);
|
|
drop = true;
|
|
}
|
|
|
|
// removing adjacent duplicates shouldn't erase everything :-)
|
|
ai_assert(cnt>0);
|
|
base += cnt;
|
|
}
|
|
if(drop) {
|
|
IFCImporter::LogDebug("removed duplicate vertices");
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool IsTrue(const EXPRESS::BOOLEAN& in)
|
|
{
|
|
return (std::string)in == "TRUE" || (std::string)in == "T";
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
float ConvertSIPrefix(const std::string& prefix)
|
|
{
|
|
if (prefix == "EXA") {
|
|
return 1e18f;
|
|
}
|
|
else if (prefix == "PETA") {
|
|
return 1e15f;
|
|
}
|
|
else if (prefix == "TERA") {
|
|
return 1e12f;
|
|
}
|
|
else if (prefix == "GIGA") {
|
|
return 1e9f;
|
|
}
|
|
else if (prefix == "MEGA") {
|
|
return 1e6f;
|
|
}
|
|
else if (prefix == "KILO") {
|
|
return 1e3f;
|
|
}
|
|
else if (prefix == "HECTO") {
|
|
return 1e2f;
|
|
}
|
|
else if (prefix == "DECA") {
|
|
return 1e-0f;
|
|
}
|
|
else if (prefix == "DECI") {
|
|
return 1e-1f;
|
|
}
|
|
else if (prefix == "CENTI") {
|
|
return 1e-2f;
|
|
}
|
|
else if (prefix == "MILLI") {
|
|
return 1e-3f;
|
|
}
|
|
else if (prefix == "MICRO") {
|
|
return 1e-6f;
|
|
}
|
|
else if (prefix == "NANO") {
|
|
return 1e-9f;
|
|
}
|
|
else if (prefix == "PICO") {
|
|
return 1e-12f;
|
|
}
|
|
else if (prefix == "FEMTO") {
|
|
return 1e-15f;
|
|
}
|
|
else if (prefix == "ATTO") {
|
|
return 1e-18f;
|
|
}
|
|
else {
|
|
IFCImporter::LogError("Unrecognized SI prefix: " + prefix);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertColor(aiColor4D& out, const IfcColourRgb& in)
|
|
{
|
|
out.r = in.Red;
|
|
out.g = in.Green;
|
|
out.b = in.Blue;
|
|
out.a = 1.f;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertColor(aiColor4D& out, const IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base)
|
|
{
|
|
if (const EXPRESS::REAL* const r = in.ToPtr<EXPRESS::REAL>()) {
|
|
out.r = out.g = out.b = *r;
|
|
if(base) {
|
|
out.r *= base->r;
|
|
out.g *= base->g;
|
|
out.b *= base->b;
|
|
out.a = base->a;
|
|
}
|
|
else out.a = 1.0;
|
|
}
|
|
else if (const IfcColourRgb* const rgb = in.ResolveSelectPtr<IfcColourRgb>(conv.db)) {
|
|
ConvertColor(out,*rgb);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertCartesianPoint(aiVector3D& out, const IfcCartesianPoint& in)
|
|
{
|
|
out = aiVector3D();
|
|
for(size_t i = 0; i < in.Coordinates.size(); ++i) {
|
|
out[i] = in.Coordinates[i];
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertVector(aiVector3D& out, const IfcVector& in)
|
|
{
|
|
ConvertDirection(out,in.Orientation);
|
|
out *= in.Magnitude;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertDirection(aiVector3D& out, const IfcDirection& in)
|
|
{
|
|
out = aiVector3D();
|
|
for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
|
|
out[i] = in.DirectionRatios[i];
|
|
}
|
|
const float len = out.Length();
|
|
if (len<1e-6) {
|
|
IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero");
|
|
return;
|
|
}
|
|
out /= len;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void AssignMatrixAxes(aiMatrix4x4& out, const aiVector3D& x, const aiVector3D& y, const aiVector3D& z)
|
|
{
|
|
out.a1 = x.x;
|
|
out.b1 = x.y;
|
|
out.c1 = x.z;
|
|
|
|
out.a2 = y.x;
|
|
out.b2 = y.y;
|
|
out.c2 = y.z;
|
|
|
|
out.a3 = z.x;
|
|
out.b3 = z.y;
|
|
out.c3 = z.z;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertAxisPlacement(aiMatrix4x4& out, const IfcAxis2Placement3D& in)
|
|
{
|
|
aiVector3D loc;
|
|
ConvertCartesianPoint(loc,in.Location);
|
|
|
|
aiVector3D z(0.f,0.f,1.f),r(1.f,0.f,0.f),x;
|
|
|
|
if (in.Axis) {
|
|
ConvertDirection(z,*in.Axis.Get());
|
|
}
|
|
if (in.RefDirection) {
|
|
ConvertDirection(r,*in.RefDirection.Get());
|
|
}
|
|
|
|
aiVector3D v = r.Normalize();
|
|
aiVector3D tmpx = z * (v*z);
|
|
|
|
x = (v-tmpx).Normalize();
|
|
aiVector3D y = (z^x);
|
|
|
|
aiMatrix4x4::Translation(loc,out);
|
|
AssignMatrixAxes(out,x,y,z);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertAxisPlacement(aiMatrix4x4& out, const IfcAxis2Placement2D& in)
|
|
{
|
|
aiVector3D loc;
|
|
ConvertCartesianPoint(loc,in.Location);
|
|
|
|
aiVector3D x(1.f,0.f,0.f);
|
|
if (in.RefDirection) {
|
|
ConvertDirection(x,*in.RefDirection.Get());
|
|
}
|
|
|
|
const aiVector3D y = aiVector3D(x.y,-x.x,0.f);
|
|
|
|
aiMatrix4x4::Translation(loc,out);
|
|
AssignMatrixAxes(out,x,y,aiVector3D(0.f,0.f,1.f));
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertAxisPlacement(aiVector3D& axis, aiVector3D& pos, const IfcAxis1Placement& in)
|
|
{
|
|
ConvertCartesianPoint(pos,in.Location);
|
|
if (in.Axis) {
|
|
ConvertDirection(axis,in.Axis.Get());
|
|
}
|
|
else {
|
|
axis = aiVector3D(0.f,0.f,1.f);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertAxisPlacement(aiMatrix4x4& out, const IfcAxis2Placement& in, ConversionData& conv)
|
|
{
|
|
if(const IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<IfcAxis2Placement3D>(conv.db)) {
|
|
ConvertAxisPlacement(out,*pl3);
|
|
}
|
|
else if(const IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<IfcAxis2Placement2D>(conv.db)) {
|
|
ConvertAxisPlacement(out,*pl2);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertTransformOperator(aiMatrix4x4& out, const IfcCartesianTransformationOperator& op)
|
|
{
|
|
aiVector3D loc;
|
|
ConvertCartesianPoint(loc,op.LocalOrigin);
|
|
|
|
aiVector3D x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
|
|
if (op.Axis1) {
|
|
ConvertDirection(x,*op.Axis1.Get());
|
|
}
|
|
if (op.Axis2) {
|
|
ConvertDirection(y,*op.Axis2.Get());
|
|
}
|
|
if (const IfcCartesianTransformationOperator3D* op2 = op.ToPtr<IfcCartesianTransformationOperator3D>()) {
|
|
if(op2->Axis3) {
|
|
ConvertDirection(z,*op2->Axis3.Get());
|
|
}
|
|
}
|
|
|
|
aiMatrix4x4 locm;
|
|
aiMatrix4x4::Translation(loc,locm);
|
|
AssignMatrixAxes(out,x,y,z);
|
|
|
|
|
|
aiVector3D vscale;
|
|
if (const IfcCartesianTransformationOperator3DnonUniform* nuni = op.ToPtr<IfcCartesianTransformationOperator3DnonUniform>()) {
|
|
vscale.x = nuni->Scale?op.Scale.Get():1.f;
|
|
vscale.y = nuni->Scale2?nuni->Scale2.Get():1.f;
|
|
vscale.z = nuni->Scale3?nuni->Scale3.Get():1.f;
|
|
}
|
|
else {
|
|
const float sc = op.Scale?op.Scale.Get():1.f;
|
|
vscale = aiVector3D(sc,sc,sc);
|
|
}
|
|
|
|
aiMatrix4x4 s;
|
|
aiMatrix4x4::Scaling(vscale,s);
|
|
|
|
out = locm * out * s;
|
|
}
|
|
|
|
} // ! IFC
|
|
} // ! Assimp
|
|
|
|
#endif
|