assimp/code/NFFLoader.cpp

811 lines
25 KiB
C++

/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file Implementation of the STL importer class */
#include "AssimpPCH.h"
// internal headers
#include "NFFLoader.h"
#include "ParsingUtils.h"
#include "StandardShapes.h"
#include "fast_atof.h"
using namespace Assimp;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
NFFImporter::NFFImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
NFFImporter::~NFFImporter()
{
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool NFFImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
{
// simple check of file extension is enough for the moment
std::string::size_type pos = pFile.find_last_of('.');
// no file extension - can't read
if( pos == std::string::npos)return false;
std::string extension = pFile.substr( pos);
// extensions: enff and nff
if (!extension.length() || extension[0] != '.')return false;
if (extension.length() == 4)
{
return !(extension[1] != 'n' && extension[1] != 'N' ||
extension[2] != 'f' && extension[2] != 'F' ||
extension[3] != 'f' && extension[3] != 'F');
}
else return !( extension.length() != 5 ||
extension[1] != 'e' && extension[1] != 'E' ||
extension[2] != 'n' && extension[2] != 'N' ||
extension[3] != 'f' && extension[3] != 'F' ||
extension[4] != 'f' && extension[4] != 'F');
}
// ------------------------------------------------------------------------------------------------
#define AI_NFF_PARSE_FLOAT(f) \
SkipSpaces(&sz); \
if (!::IsLineEnd(*sz))sz = fast_atof_move(sz, (float&)f);
// ------------------------------------------------------------------------------------------------
#define AI_NFF_PARSE_TRIPLE(v) \
AI_NFF_PARSE_FLOAT(v[0]) \
AI_NFF_PARSE_FLOAT(v[1]) \
AI_NFF_PARSE_FLOAT(v[2])
// ------------------------------------------------------------------------------------------------
#define AI_NFF_PARSE_SHAPE_INFORMATION() \
aiVector3D center, radius(1.0f,std::numeric_limits<float>::quiet_NaN(),std::numeric_limits<float>::quiet_NaN()); \
AI_NFF_PARSE_TRIPLE(center); \
AI_NFF_PARSE_TRIPLE(radius); \
if (is_qnan(radius.z))radius.z = radius.x; \
if (is_qnan(radius.y))radius.y = radius.x; \
currentMesh.radius = radius; \
currentMesh.center = center;
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void NFFImporter::InternReadFile( const std::string& pFile,
aiScene* pScene, IOSystem* pIOHandler)
{
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile, "rb"));
// Check whether we can read from the file
if( file.get() == NULL)
throw new ImportErrorException( "Failed to open NFF file " + pFile + ".");
unsigned int m = (unsigned int)file->FileSize();
// allocate storage and copy the contents of the file to a memory buffer
// (terminate it with zero)
std::vector<char> mBuffer2(m+1);
file->Read(&mBuffer2[0],m,1);
const char* buffer = &mBuffer2[0];
mBuffer2[m] = '\0';
// mesh arrays - separate here to make the handling of
// the pointers below easier.
std::vector<MeshInfo> meshes;
std::vector<MeshInfo> meshesWithNormals;
std::vector<MeshInfo> meshesWithUVCoords;
std::vector<MeshInfo> meshesLocked;
char line[4096];
const char* sz;
// camera parameters
aiVector3D camPos, camUp(0.f,1.f,0.f), camLookAt(0.f,0.f,1.f);
float angle;
aiVector2D resolution;
bool hasCam = false;
MeshInfo* currentMeshWithNormals = NULL;
MeshInfo* currentMesh = NULL;
MeshInfo* currentMeshWithUVCoords = NULL;
ShadingInfo s; // current material info
// degree of tesselation
unsigned int iTesselation = 4;
// some temporary variables we need to parse the file
unsigned int sphere = 0,
cylinder = 0,
cone = 0,
numNamed = 0,
dodecahedron = 0,
octahedron = 0,
tetrahedron = 0,
hexahedron = 0;
// lights imported from the file
std::vector<Light> lights;
// check whether this is the NFF2 file format
if (TokenMatch(buffer,"nff",3))
{
// another NFF file format ... just a raw parser has been implemented
// no support for textures yet, I don't think it is worth the effort
// http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/nff/nff2.html
while (GetNextLine(buffer,line))
{
sz = line;
if (TokenMatch(sz,"version",7))
{
DefaultLogger::get()->info("NFF (alt.) file format: " + std::string(sz));
}
else if (TokenMatch(sz,"viewpos",7))
{
AI_NFF_PARSE_TRIPLE(camPos);
hasCam = true;
}
else if (TokenMatch(sz,"viewdir",7))
{
AI_NFF_PARSE_TRIPLE(camLookAt);
hasCam = true;
}
else if (TokenMatch(sz,"//",2))
{
// comment ...
DefaultLogger::get()->info(sz);
}
else if (!IsSpace(*sz))
{
// must be a new object
meshes.push_back(MeshInfo(PatchType_Simple));
MeshInfo& mesh = meshes.back();
if (!GetNextLine(buffer,line))
{DefaultLogger::get()->warn("NFF2: Unexpected EOF, can't read number of vertices");break;}
SkipSpaces(line,&sz);
unsigned int num = ::strtol10(sz,&sz);
std::vector<aiVector3D> tempPositions;
std::vector<aiVector3D> outPositions;
mesh.vertices.reserve(num*3);
mesh.colors.reserve (num*3);
tempPositions.reserve(num);
for (unsigned int i = 0; i < num; ++i)
{
if (!GetNextLine(buffer,line))
{DefaultLogger::get()->warn("NFF2: Unexpected EOF, can't read vertices");break;}
sz = line;
aiVector3D v;
AI_NFF_PARSE_TRIPLE(v);
tempPositions.push_back(v);
}
if (!GetNextLine(buffer,line))
{DefaultLogger::get()->warn("NFF2: Unexpected EOF, can't read number of faces");break;}
if (!num)throw new ImportErrorException("NFF2: There are zero vertices");
SkipSpaces(line,&sz);
num = ::strtol10(sz,&sz);
mesh.faces.reserve(num);
for (unsigned int i = 0; i < num; ++i)
{
if (!GetNextLine(buffer,line))
{DefaultLogger::get()->warn("NFF2: Unexpected EOF, can't read faces");break;}
SkipSpaces(line,&sz);
unsigned int idx, numIdx = ::strtol10(sz,&sz);
if (numIdx)
{
mesh.faces.push_back(numIdx);
for (unsigned int a = 0; a < numIdx;++a)
{
SkipSpaces(sz,&sz);
idx = ::strtol10(sz,&sz);
if (idx >= (unsigned int)tempPositions.size())
{
DefaultLogger::get()->error("NFF2: Index overflow");
idx = 0;
}
mesh.vertices.push_back(tempPositions[idx]);
}
}
SkipSpaces(sz,&sz);
idx = ::strtol_cppstyle(sz,&sz);
aiColor4D clr;
clr.r = ((numIdx >> 8u) & 0xf) / 16.f;
clr.g = ((numIdx >> 4u) & 0xf) / 16.f;
clr.b = ((numIdx) & 0xf) / 16.f;
clr.a = 1.f;
for (unsigned int a = 0; a < numIdx;++a)
mesh.colors.push_back(clr);
}
if (!num)throw new ImportErrorException("NFF2: There are zero faces");
}
}
camLookAt = camLookAt + camPos;
}
else // "Normal" Neutral file format that is quite more common
{
while (GetNextLine(buffer,line))
{
sz = line;
if ('p' == line[0] || TokenMatch(sz,"tpp",3))
{
MeshInfo* out = NULL;
// 'tpp' - texture polygon patch primitive
if ('t' == line[0])
{
if (meshesWithUVCoords.empty())
{
meshesWithUVCoords.push_back(MeshInfo(PatchType_UVAndNormals));
currentMeshWithUVCoords = &meshesWithUVCoords.back();
}
out = currentMeshWithUVCoords;
}
// 'pp' - polygon patch primitive
else if ('p' == line[1])
{
if (meshesWithNormals.empty())
{
meshesWithNormals.push_back(MeshInfo(PatchType_Normals));
currentMeshWithNormals = &meshesWithNormals.back();
}
sz = &line[2];out = currentMeshWithNormals;
}
// 'p' - polygon primitive
else
{
if (meshes.empty())
{
meshes.push_back(MeshInfo(PatchType_Simple));
currentMesh = &meshes.back();
}
sz = &line[1];out = currentMesh;
}
SkipSpaces(sz,&sz);
m = strtol10(sz);
// ---- flip the face order
out->vertices.resize(out->vertices.size()+m);
if (out != currentMesh)
{
out->normals.resize(out->vertices.size());
}
if (out == currentMeshWithUVCoords)
{
out->uvs.resize(out->vertices.size());
}
for (unsigned int n = 0; n < m;++n)
{
if(!GetNextLine(buffer,line))
{
DefaultLogger::get()->error("NFF: Unexpected EOF was encountered");
continue;
}
aiVector3D v; sz = &line[0];
AI_NFF_PARSE_TRIPLE(v);
out->vertices[out->vertices.size()-n-1] = v;
if (out != currentMesh)
{
AI_NFF_PARSE_TRIPLE(v);
out->normals[out->vertices.size()-n-1] = v;
}
if (out == currentMeshWithUVCoords)
{
// FIX: in one test file this wraps over multiple lines
SkipSpaces(&sz);
if (IsLineEnd(*sz))
{
GetNextLine(buffer,line);
sz = line;
}
AI_NFF_PARSE_FLOAT(v.x);
SkipSpaces(&sz);
if (IsLineEnd(*sz))
{
GetNextLine(buffer,line);
sz = line;
}
AI_NFF_PARSE_FLOAT(v.y);
v.y = 1.f - v.y;
out->uvs[out->vertices.size()-n-1] = v;
}
}
out->faces.push_back(m);
}
// 'f' - shading information block
else if (TokenMatch(sz,"f",1))
{
float d;
// read the RGB colors
AI_NFF_PARSE_TRIPLE(s.color);
// read the other properties
AI_NFF_PARSE_FLOAT(s.diffuse);
AI_NFF_PARSE_FLOAT(s.specular);
AI_NFF_PARSE_FLOAT(d); // skip shininess and transmittance
AI_NFF_PARSE_FLOAT(d);
AI_NFF_PARSE_FLOAT(s.refracti);
// if the next one is NOT a number we assume it is a texture file name
// this feature is used by some NFF files on the internet and it has
// been implemented as it can be really useful
SkipSpaces(&sz);
if (!IsNumeric(*sz))
{
// TODO: Support full file names with spaces and quotation marks ...
const char* p = sz;
while (!IsSpaceOrNewLine( *sz ))++sz;
unsigned int diff = (unsigned int)(sz-p);
if (diff)
{
s.texFile = std::string(p,diff);
}
}
else
{
AI_NFF_PARSE_FLOAT(s.ambient); // optional
}
// check whether we have this material already -
// although we have the RRM-Step, this is necessary here.
// otherwise we would generate hundreds of small meshes
// with just a few faces - this is surely never wanted.
currentMesh = currentMeshWithNormals = currentMeshWithUVCoords = NULL;
for (std::vector<MeshInfo>::iterator it = meshes.begin(), end = meshes.end();
it != end;++it)
{
if ((*it).bLocked)continue;
if ((*it).shader == s)
{
switch ((*it).pType)
{
case PatchType_Normals:
currentMeshWithNormals = &(*it);
break;
case PatchType_Simple:
currentMesh = &(*it);
break;
default:
currentMeshWithUVCoords = &(*it);
break;
};
}
}
if (!currentMesh)
{
meshes.push_back(MeshInfo(PatchType_Simple));
currentMesh = &meshes.back();
currentMesh->shader = s;
}
if (!currentMeshWithNormals)
{
meshesWithNormals.push_back(MeshInfo(PatchType_Normals));
currentMeshWithNormals = &meshesWithNormals.back();
currentMeshWithNormals->shader = s;
}
if (!currentMeshWithUVCoords)
{
meshesWithUVCoords.push_back(MeshInfo(PatchType_UVAndNormals));
currentMeshWithUVCoords = &meshesWithUVCoords.back();
currentMeshWithUVCoords->shader = s;
}
}
// 'l' - light source
else if (TokenMatch(sz,"l",1))
{
lights.push_back(Light());
Light& light = lights.back();
AI_NFF_PARSE_TRIPLE(light.position);
AI_NFF_PARSE_FLOAT (light.intensity);
AI_NFF_PARSE_TRIPLE(light.color);
}
// 's' - sphere
else if (TokenMatch(sz,"s",1))
{
meshesLocked.push_back(MeshInfo(PatchType_Simple,true));
MeshInfo& currentMesh = meshesLocked.back();
currentMesh.shader = s;
AI_NFF_PARSE_SHAPE_INFORMATION();
// we don't need scaling or translation here - we do it in the node's transform
StandardShapes::MakeSphere(iTesselation, currentMesh.vertices);
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
// generate a name for the mesh
::sprintf(currentMesh.name,"sphere_%i",sphere++);
}
// 'dod' - dodecahedron
else if (TokenMatch(sz,"dod",3))
{
meshesLocked.push_back(MeshInfo(PatchType_Simple,true));
MeshInfo& currentMesh = meshesLocked.back();
currentMesh.shader = s;
AI_NFF_PARSE_SHAPE_INFORMATION();
// we don't need scaling or translation here - we do it in the node's transform
StandardShapes::MakeDodecahedron(currentMesh.vertices);
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
// generate a name for the mesh
::sprintf(currentMesh.name,"dodecahedron_%i",dodecahedron++);
}
// 'oct' - octahedron
else if (TokenMatch(sz,"oct",3))
{
meshesLocked.push_back(MeshInfo(PatchType_Simple,true));
MeshInfo& currentMesh = meshesLocked.back();
currentMesh.shader = s;
AI_NFF_PARSE_SHAPE_INFORMATION();
// we don't need scaling or translation here - we do it in the node's transform
StandardShapes::MakeOctahedron(currentMesh.vertices);
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
// generate a name for the mesh
::sprintf(currentMesh.name,"octahedron_%i",octahedron++);
}
// 'tet' - tetrahedron
else if (TokenMatch(sz,"tet",3))
{
meshesLocked.push_back(MeshInfo(PatchType_Simple,true));
MeshInfo& currentMesh = meshesLocked.back();
currentMesh.shader = s;
AI_NFF_PARSE_SHAPE_INFORMATION();
// we don't need scaling or translation here - we do it in the node's transform
StandardShapes::MakeTetrahedron(currentMesh.vertices);
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
// generate a name for the mesh
::sprintf(currentMesh.name,"tetrahedron_%i",tetrahedron++);
}
// 'hex' - hexahedron
else if (TokenMatch(sz,"hex",3))
{
meshesLocked.push_back(MeshInfo(PatchType_Simple,true));
MeshInfo& currentMesh = meshesLocked.back();
currentMesh.shader = s;
AI_NFF_PARSE_SHAPE_INFORMATION();
// we don't need scaling or translation here - we do it in the node's transform
StandardShapes::MakeHexahedron(currentMesh.vertices);
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
// generate a name for the mesh
::sprintf(currentMesh.name,"hexahedron_%i",hexahedron++);
}
// 'c' - cone
else if (TokenMatch(sz,"c",1))
{
meshesLocked.push_back(MeshInfo(PatchType_Simple,true));
MeshInfo& currentMesh = meshes.back();
currentMesh.shader = s;
aiVector3D center1, center2; float radius1, radius2;
AI_NFF_PARSE_TRIPLE(center1);
AI_NFF_PARSE_FLOAT(radius1);
AI_NFF_PARSE_TRIPLE(center2);
AI_NFF_PARSE_FLOAT(radius2);
// compute the center point of the cone/cylinder
center2 = (center2-center1)/2.f;
currentMesh.center = center1+center2;
center1 = -center2;
// generate the cone - it consists of simple triangles
StandardShapes::MakeCone(center1, radius1, center2, radius2, iTesselation, currentMesh.vertices);
currentMesh.faces.resize(currentMesh.vertices.size()/3,3);
// generate a name for the mesh
if (radius1 != radius2)
::sprintf(currentMesh.name,"cone_%i",cone++);
else ::sprintf(currentMesh.name,"cylinder_%i",cylinder++);
}
// 'tess' - tesselation
else if (TokenMatch(sz,"tess",4))
{
SkipSpaces(&sz);
iTesselation = strtol10(sz);
}
// 'from' - camera position
else if (TokenMatch(sz,"from",4))
{
AI_NFF_PARSE_TRIPLE(camPos);
hasCam = true;
}
// 'at' - camera look-at vector
else if (TokenMatch(sz,"at",2))
{
AI_NFF_PARSE_TRIPLE(camLookAt);
hasCam = true;
}
// 'up' - camera up vector
else if (TokenMatch(sz,"up",2))
{
AI_NFF_PARSE_TRIPLE(camUp);
hasCam = true;
}
// 'angle' - (half?) camera field of view
else if (TokenMatch(sz,"angle",5))
{
AI_NFF_PARSE_FLOAT(angle);
hasCam = true;
}
// 'resolution' - used to compute the screen aspect
else if (TokenMatch(sz,"resolution",10))
{
AI_NFF_PARSE_FLOAT(resolution.x);
AI_NFF_PARSE_FLOAT(resolution.y);
hasCam = true;
}
// 'pb' - bezier patch. Not supported yet
else if (TokenMatch(sz,"pb",2))
{
DefaultLogger::get()->error("NFF: Encountered unsupported ID: bezier patch");
}
// 'pn' - NURBS. Not supported yet
else if (TokenMatch(sz,"pn",2) || TokenMatch(sz,"pnn",3))
{
DefaultLogger::get()->error("NFF: Encountered unsupported ID: NURBS");
}
// '' - comment
else if ('#' == line[0])
{
const char* sz;SkipSpaces(&line[1],&sz);
if (!IsLineEnd(*sz))DefaultLogger::get()->info(sz);
}
}
}
// copy all arrays into one large
meshes.reserve (meshes.size()+meshesLocked.size()+meshesWithNormals.size()+meshesWithUVCoords.size());
meshes.insert (meshes.end(),meshesLocked.begin(),meshesLocked.end());
meshes.insert (meshes.end(),meshesWithNormals.begin(),meshesWithNormals.end());
meshes.insert (meshes.end(),meshesWithUVCoords.begin(),meshesWithUVCoords.end());
// now generate output meshes. first find out how many meshes we'll need
std::vector<MeshInfo>::const_iterator it = meshes.begin(), end = meshes.end();
for (;it != end;++it)
{
if (!(*it).faces.empty())
{
++pScene->mNumMeshes;
if ((*it).name[0])++numNamed;
}
}
// generate a dummy root node - assign all unnamed elements such
// as polygons and polygon patches to the root node and generate
// sub nodes for named objects such as spheres and cones.
aiNode* const root = new aiNode();
root->mName.Set("<NFF_Root>");
root->mNumChildren = numNamed + (hasCam ? 1 : 0) + (unsigned int) lights.size();
root->mNumMeshes = pScene->mNumMeshes-numNamed;
aiNode** ppcChildren;
unsigned int* pMeshes;
if (root->mNumMeshes)
pMeshes = root->mMeshes = new unsigned int[root->mNumMeshes];
if (root->mNumChildren)
ppcChildren = root->mChildren = new aiNode*[root->mNumChildren];
// generate the camera
if (hasCam)
{
aiNode* nd = *ppcChildren = new aiNode();
nd->mName.Set("<NFF_Camera>");
nd->mParent = root;
// allocate the camera in the scene
pScene->mNumCameras = 1;
pScene->mCameras = new aiCamera*[1];
aiCamera* c = pScene->mCameras[0] = new aiCamera;
c->mName = nd->mName; // make sure the names are identical
c->mHorizontalFOV = AI_DEG_TO_RAD( angle );
c->mLookAt = camLookAt - camPos;
c->mPosition = camPos;
c->mUp = camUp;
c->mAspect = resolution.x / resolution.y;
++ppcChildren;
}
// generate light sources
if (!lights.empty())
{
pScene->mNumLights = (unsigned int)lights.size();
pScene->mLights = new aiLight*[pScene->mNumLights];
for (unsigned int i = 0; i < pScene->mNumLights;++i,++ppcChildren)
{
const Light& l = lights[i];
aiNode* nd = *ppcChildren = new aiNode();
nd->mParent = root;
nd->mName.length = ::sprintf(nd->mName.data,"<NFF_Light%i>",i);
// allocate the light in the scene data structure
aiLight* out = pScene->mLights[i] = new aiLight();
out->mName = nd->mName; // make sure the names are identical
out->mType = aiLightSource_POINT;
out->mColorDiffuse = out->mColorSpecular = l.color * l.intensity;
out->mPosition = l.position;
}
}
if (!pScene->mNumMeshes)throw new ImportErrorException("NFF: No meshes loaded");
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials = pScene->mNumMeshes];
for (it = meshes.begin(), m = 0; it != end;++it)
{
if ((*it).faces.empty())continue;
const MeshInfo& src = *it;
aiMesh* const mesh = pScene->mMeshes[m] = new aiMesh();
mesh->mNumVertices = (unsigned int)src.vertices.size();
mesh->mNumFaces = (unsigned int)src.faces.size();
// generate sub nodes for named meshes
if (src.name[0])
{
aiNode* const node = *ppcChildren = new aiNode();
node->mParent = root;
node->mNumMeshes = 1;
node->mMeshes = new unsigned int[1];
node->mMeshes[0] = m;
node->mName.Set(src.name);
// setup the transformation matrix of the node
node->mTransformation.a4 = src.center.x;
node->mTransformation.b4 = src.center.y;
node->mTransformation.c4 = src.center.z;
node->mTransformation.a1 = src.radius.x;
node->mTransformation.b2 = src.radius.y;
node->mTransformation.c3 = src.radius.z;
++ppcChildren;
}
else *pMeshes++ = m;
// copy vertex positions
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
::memcpy(mesh->mVertices,&src.vertices[0],
sizeof(aiVector3D)*mesh->mNumVertices);
// NFF2: there could be vertex colors
if (!src.colors.empty())
{
ai_assert(src.colors.size() == src.vertices.size());
// copy vertex colors
mesh->mColors[0] = new aiColor4D[mesh->mNumVertices];
::memcpy(mesh->mColors[0],&src.colors[0],
sizeof(aiColor4D)*mesh->mNumVertices);
}
if (src.pType != PatchType_Simple)
{
ai_assert(src.normals.size() == src.vertices.size());
// copy normal vectors
mesh->mNormals = new aiVector3D[mesh->mNumVertices];
::memcpy(mesh->mNormals,&src.normals[0],
sizeof(aiVector3D)*mesh->mNumVertices);
}
if (src.pType == PatchType_UVAndNormals)
{
ai_assert(src.uvs.size() == src.vertices.size());
// copy texture coordinates
mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices];
::memcpy(mesh->mTextureCoords[0],&src.uvs[0],
sizeof(aiVector3D)*mesh->mNumVertices);
}
// generate faces
unsigned int p = 0;
aiFace* pFace = mesh->mFaces = new aiFace[mesh->mNumFaces];
for (std::vector<unsigned int>::const_iterator it2 = src.faces.begin(),
end2 = src.faces.end();
it2 != end2;++it2,++pFace)
{
pFace->mIndices = new unsigned int [ pFace->mNumIndices = *it2 ];
for (unsigned int o = 0; o < pFace->mNumIndices;++o)
pFace->mIndices[o] = p++;
}
// generate a material for the mesh
MaterialHelper* pcMat = (MaterialHelper*)(pScene->mMaterials[m] = new MaterialHelper());
mesh->mMaterialIndex = m++;
aiString s;
s.Set(AI_DEFAULT_MATERIAL_NAME);
pcMat->AddProperty(&s, AI_MATKEY_NAME);
aiColor3D c = src.shader.color * src.shader.diffuse;
pcMat->AddProperty(&c,1,AI_MATKEY_COLOR_DIFFUSE);
c = src.shader.color * src.shader.specular;
pcMat->AddProperty(&c,1,AI_MATKEY_COLOR_SPECULAR);
if (src.shader.texFile.length())
{
s.Set(src.shader.texFile);
pcMat->AddProperty(&s,AI_MATKEY_TEXTURE_DIFFUSE(0));
}
}
pScene->mRootNode = root;
}