Merge branch 'master' into master

pull/3195/head
Kim Kulling 2020-05-04 10:18:03 +02:00 committed by GitHub
commit c4ea522b6d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
346 changed files with 12204 additions and 13386 deletions

View File

@ -134,6 +134,12 @@ OPTION ( ASSIMP_IGNORE_GIT_HASH
OFF
)
IF ( WIN32 )
OPTION ( ASSIMP_BUILD_ASSIMP_VIEW
"If the Assimp view tool is built. (requires DirectX)"
OFF )
ENDIF()
IF (IOS AND NOT ASSIMP_HUNTER_ENABLED)
IF (NOT CMAKE_BUILD_TYPE)
SET(CMAKE_BUILD_TYPE "Release")

View File

@ -1,705 +0,0 @@
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/// \file AMFImporter.cpp
/// \brief AMF-format files importer for Assimp: main algorithm implementation.
/// \date 2016
/// \author smal.root@gmail.com
#ifndef ASSIMP_BUILD_NO_AMF_IMPORTER
// Header files, Assimp.
#include "AMFImporter.hpp"
#include "AMFImporter_Macro.hpp"
#include <assimp/fast_atof.h>
#include <assimp/DefaultIOSystem.h>
// Header files, stdlib.
#include <memory>
namespace Assimp
{
/// \var aiImporterDesc AMFImporter::Description
/// Conastant which hold importer description
const aiImporterDesc AMFImporter::Description = {
"Additive manufacturing file format(AMF) Importer",
"smalcom",
"",
"See documentation in source code. Chapter: Limitations.",
aiImporterFlags_SupportTextFlavour | aiImporterFlags_LimitedSupport | aiImporterFlags_Experimental,
0,
0,
0,
0,
"amf"
};
void AMFImporter::Clear()
{
mNodeElement_Cur = nullptr;
mUnit.clear();
mMaterial_Converted.clear();
mTexture_Converted.clear();
// Delete all elements
if(!mNodeElement_List.empty())
{
for(CAMFImporter_NodeElement* ne: mNodeElement_List) { delete ne; }
mNodeElement_List.clear();
}
}
AMFImporter::~AMFImporter()
{
if(mReader != nullptr) delete mReader;
// Clear() is accounting if data already is deleted. So, just check again if all data is deleted.
Clear();
}
/*********************************************************************************************************************************************/
/************************************************************ Functions: find set ************************************************************/
/*********************************************************************************************************************************************/
bool AMFImporter::Find_NodeElement(const std::string& pID, const CAMFImporter_NodeElement::EType pType, CAMFImporter_NodeElement** pNodeElement) const
{
for(CAMFImporter_NodeElement* ne: mNodeElement_List)
{
if((ne->ID == pID) && (ne->Type == pType))
{
if(pNodeElement != nullptr) *pNodeElement = ne;
return true;
}
}// for(CAMFImporter_NodeElement* ne: mNodeElement_List)
return false;
}
bool AMFImporter::Find_ConvertedNode(const std::string& pID, std::list<aiNode*>& pNodeList, aiNode** pNode) const
{
aiString node_name(pID.c_str());
for(aiNode* node: pNodeList)
{
if(node->mName == node_name)
{
if(pNode != nullptr) *pNode = node;
return true;
}
}// for(aiNode* node: pNodeList)
return false;
}
bool AMFImporter::Find_ConvertedMaterial(const std::string& pID, const SPP_Material** pConvertedMaterial) const
{
for(const SPP_Material& mat: mMaterial_Converted)
{
if(mat.ID == pID)
{
if(pConvertedMaterial != nullptr) *pConvertedMaterial = &mat;
return true;
}
}// for(const SPP_Material& mat: mMaterial_Converted)
return false;
}
/*********************************************************************************************************************************************/
/************************************************************ Functions: throw set ***********************************************************/
/*********************************************************************************************************************************************/
void AMFImporter::Throw_CloseNotFound(const std::string& pNode)
{
throw DeadlyImportError("Close tag for node <" + pNode + "> not found. Seems file is corrupt.");
}
void AMFImporter::Throw_IncorrectAttr(const std::string& pAttrName)
{
throw DeadlyImportError("Node <" + std::string(mReader->getNodeName()) + "> has incorrect attribute \"" + pAttrName + "\".");
}
void AMFImporter::Throw_IncorrectAttrValue(const std::string& pAttrName)
{
throw DeadlyImportError("Attribute \"" + pAttrName + "\" in node <" + std::string(mReader->getNodeName()) + "> has incorrect value.");
}
void AMFImporter::Throw_MoreThanOnceDefined(const std::string& pNodeType, const std::string& pDescription)
{
throw DeadlyImportError("\"" + pNodeType + "\" node can be used only once in " + mReader->getNodeName() + ". Description: " + pDescription);
}
void AMFImporter::Throw_ID_NotFound(const std::string& pID) const
{
throw DeadlyImportError("Not found node with name \"" + pID + "\".");
}
/*********************************************************************************************************************************************/
/************************************************************* Functions: XML set ************************************************************/
/*********************************************************************************************************************************************/
void AMFImporter::XML_CheckNode_MustHaveChildren()
{
if(mReader->isEmptyElement()) throw DeadlyImportError(std::string("Node <") + mReader->getNodeName() + "> must have children.");
}
void AMFImporter::XML_CheckNode_SkipUnsupported(const std::string& pParentNodeName)
{
static const size_t Uns_Skip_Len = 3;
const char* Uns_Skip[Uns_Skip_Len] = { "composite", "edge", "normal" };
static bool skipped_before[Uns_Skip_Len] = { false, false, false };
std::string nn(mReader->getNodeName());
bool found = false;
bool close_found = false;
size_t sk_idx;
for(sk_idx = 0; sk_idx < Uns_Skip_Len; sk_idx++)
{
if(nn != Uns_Skip[sk_idx]) continue;
found = true;
if(mReader->isEmptyElement())
{
close_found = true;
goto casu_cres;
}
while(mReader->read())
{
if((mReader->getNodeType() == irr::io::EXN_ELEMENT_END) && (nn == mReader->getNodeName()))
{
close_found = true;
goto casu_cres;
}
}
}// for(sk_idx = 0; sk_idx < Uns_Skip_Len; sk_idx++)
casu_cres:
if(!found) throw DeadlyImportError("Unknown node \"" + nn + "\" in " + pParentNodeName + ".");
if(!close_found) Throw_CloseNotFound(nn);
if(!skipped_before[sk_idx])
{
skipped_before[sk_idx] = true;
ASSIMP_LOG_WARN_F("Skipping node \"", nn, "\" in ", pParentNodeName, ".");
}
}
bool AMFImporter::XML_SearchNode(const std::string& pNodeName)
{
while(mReader->read())
{
if((mReader->getNodeType() == irr::io::EXN_ELEMENT) && XML_CheckNode_NameEqual(pNodeName)) return true;
}
return false;
}
bool AMFImporter::XML_ReadNode_GetAttrVal_AsBool(const int pAttrIdx)
{
std::string val(mReader->getAttributeValue(pAttrIdx));
if((val == "false") || (val == "0"))
return false;
else if((val == "true") || (val == "1"))
return true;
else
throw DeadlyImportError("Bool attribute value can contain \"false\"/\"0\" or \"true\"/\"1\" not the \"" + val + "\"");
}
float AMFImporter::XML_ReadNode_GetAttrVal_AsFloat(const int pAttrIdx)
{
std::string val;
float tvalf;
ParseHelper_FixTruncatedFloatString(mReader->getAttributeValue(pAttrIdx), val);
fast_atoreal_move(val.c_str(), tvalf, false);
return tvalf;
}
uint32_t AMFImporter::XML_ReadNode_GetAttrVal_AsU32(const int pAttrIdx)
{
return strtoul10(mReader->getAttributeValue(pAttrIdx));
}
float AMFImporter::XML_ReadNode_GetVal_AsFloat()
{
std::string val;
float tvalf;
if(!mReader->read()) throw DeadlyImportError("XML_ReadNode_GetVal_AsFloat. No data, seems file is corrupt.");
if(mReader->getNodeType() != irr::io::EXN_TEXT) throw DeadlyImportError("XML_ReadNode_GetVal_AsFloat. Invalid type of XML element, seems file is corrupt.");
ParseHelper_FixTruncatedFloatString(mReader->getNodeData(), val);
fast_atoreal_move(val.c_str(), tvalf, false);
return tvalf;
}
uint32_t AMFImporter::XML_ReadNode_GetVal_AsU32()
{
if(!mReader->read()) throw DeadlyImportError("XML_ReadNode_GetVal_AsU32. No data, seems file is corrupt.");
if(mReader->getNodeType() != irr::io::EXN_TEXT) throw DeadlyImportError("XML_ReadNode_GetVal_AsU32. Invalid type of XML element, seems file is corrupt.");
return strtoul10(mReader->getNodeData());
}
void AMFImporter::XML_ReadNode_GetVal_AsString(std::string& pValue)
{
if(!mReader->read()) throw DeadlyImportError("XML_ReadNode_GetVal_AsString. No data, seems file is corrupt.");
if(mReader->getNodeType() != irr::io::EXN_TEXT)
throw DeadlyImportError("XML_ReadNode_GetVal_AsString. Invalid type of XML element, seems file is corrupt.");
pValue = mReader->getNodeData();
}
/*********************************************************************************************************************************************/
/************************************************************ Functions: parse set ***********************************************************/
/*********************************************************************************************************************************************/
void AMFImporter::ParseHelper_Node_Enter(CAMFImporter_NodeElement* pNode)
{
mNodeElement_Cur->Child.push_back(pNode);// add new element to current element child list.
mNodeElement_Cur = pNode;// switch current element to new one.
}
void AMFImporter::ParseHelper_Node_Exit()
{
// check if we can walk up.
if(mNodeElement_Cur != nullptr) mNodeElement_Cur = mNodeElement_Cur->Parent;
}
void AMFImporter::ParseHelper_FixTruncatedFloatString(const char* pInStr, std::string& pOutString)
{
size_t instr_len;
pOutString.clear();
instr_len = strlen(pInStr);
if(!instr_len) return;
pOutString.reserve(instr_len * 3 / 2);
// check and correct floats in format ".x". Must be "x.y".
if(pInStr[0] == '.') pOutString.push_back('0');
pOutString.push_back(pInStr[0]);
for(size_t ci = 1; ci < instr_len; ci++)
{
if((pInStr[ci] == '.') && ((pInStr[ci - 1] == ' ') || (pInStr[ci - 1] == '-') || (pInStr[ci - 1] == '+') || (pInStr[ci - 1] == '\t')))
{
pOutString.push_back('0');
pOutString.push_back('.');
}
else
{
pOutString.push_back(pInStr[ci]);
}
}
}
static bool ParseHelper_Decode_Base64_IsBase64(const char pChar)
{
return (isalnum(pChar) || (pChar == '+') || (pChar == '/'));
}
void AMFImporter::ParseHelper_Decode_Base64(const std::string& pInputBase64, std::vector<uint8_t>& pOutputData) const
{
// With help from
// René Nyffenegger http://www.adp-gmbh.ch/cpp/common/base64.html
const std::string base64_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
uint8_t tidx = 0;
uint8_t arr4[4], arr3[3];
// check input data
if(pInputBase64.size() % 4) throw DeadlyImportError("Base64-encoded data must have size multiply of four.");
// prepare output place
pOutputData.clear();
pOutputData.reserve(pInputBase64.size() / 4 * 3);
for(size_t in_len = pInputBase64.size(), in_idx = 0; (in_len > 0) && (pInputBase64[in_idx] != '='); in_len--)
{
if(ParseHelper_Decode_Base64_IsBase64(pInputBase64[in_idx]))
{
arr4[tidx++] = pInputBase64[in_idx++];
if(tidx == 4)
{
for(tidx = 0; tidx < 4; tidx++) arr4[tidx] = (uint8_t)base64_chars.find(arr4[tidx]);
arr3[0] = (arr4[0] << 2) + ((arr4[1] & 0x30) >> 4);
arr3[1] = ((arr4[1] & 0x0F) << 4) + ((arr4[2] & 0x3C) >> 2);
arr3[2] = ((arr4[2] & 0x03) << 6) + arr4[3];
for(tidx = 0; tidx < 3; tidx++) pOutputData.push_back(arr3[tidx]);
tidx = 0;
}// if(tidx == 4)
}// if(ParseHelper_Decode_Base64_IsBase64(pInputBase64[in_idx]))
else
{
in_idx++;
}// if(ParseHelper_Decode_Base64_IsBase64(pInputBase64[in_idx])) else
}
if(tidx)
{
for(uint8_t i = tidx; i < 4; i++) arr4[i] = 0;
for(uint8_t i = 0; i < 4; i++) arr4[i] = (uint8_t)(base64_chars.find(arr4[i]));
arr3[0] = (arr4[0] << 2) + ((arr4[1] & 0x30) >> 4);
arr3[1] = ((arr4[1] & 0x0F) << 4) + ((arr4[2] & 0x3C) >> 2);
arr3[2] = ((arr4[2] & 0x03) << 6) + arr4[3];
for(uint8_t i = 0; i < (tidx - 1); i++) pOutputData.push_back(arr3[i]);
}
}
void AMFImporter::ParseFile(const std::string& pFile, IOSystem* pIOHandler)
{
irr::io::IrrXMLReader* OldReader = mReader;// store current XMLreader.
std::unique_ptr<IOStream> file(pIOHandler->Open(pFile, "rb"));
// Check whether we can read from the file
if(file.get() == NULL) throw DeadlyImportError("Failed to open AMF file " + pFile + ".");
// generate a XML reader for it
std::unique_ptr<CIrrXML_IOStreamReader> mIOWrapper(new CIrrXML_IOStreamReader(file.get()));
mReader = irr::io::createIrrXMLReader(mIOWrapper.get());
if(!mReader) throw DeadlyImportError("Failed to create XML reader for file" + pFile + ".");
//
// start reading
// search for root tag <amf>
if(XML_SearchNode("amf"))
ParseNode_Root();
else
throw DeadlyImportError("Root node \"amf\" not found.");
delete mReader;
// restore old XMLreader
mReader = OldReader;
}
// <amf
// unit="" - The units to be used. May be "inch", "millimeter", "meter", "feet", or "micron".
// version="" - Version of file format.
// >
// </amf>
// Root XML element.
// Multi elements - No.
void AMFImporter::ParseNode_Root()
{
std::string unit, version;
CAMFImporter_NodeElement *ne( nullptr );
// Read attributes for node <amf>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("unit", unit, mReader->getAttributeValue);
MACRO_ATTRREAD_CHECK_RET("version", version, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND_WSKIP;
// Check attributes
if(!mUnit.empty())
{
if((mUnit != "inch") && (mUnit != "millimeter") && (mUnit != "meter") && (mUnit != "feet") && (mUnit != "micron")) Throw_IncorrectAttrValue("unit");
}
// create root node element.
ne = new CAMFImporter_NodeElement_Root(nullptr);
mNodeElement_Cur = ne;// set first "current" element
// and assign attribute's values
((CAMFImporter_NodeElement_Root*)ne)->Unit = unit;
((CAMFImporter_NodeElement_Root*)ne)->Version = version;
// Check for child nodes
if(!mReader->isEmptyElement())
{
MACRO_NODECHECK_LOOPBEGIN("amf");
if(XML_CheckNode_NameEqual("object")) { ParseNode_Object(); continue; }
if(XML_CheckNode_NameEqual("material")) { ParseNode_Material(); continue; }
if(XML_CheckNode_NameEqual("texture")) { ParseNode_Texture(); continue; }
if(XML_CheckNode_NameEqual("constellation")) { ParseNode_Constellation(); continue; }
if(XML_CheckNode_NameEqual("metadata")) { ParseNode_Metadata(); continue; }
MACRO_NODECHECK_LOOPEND("amf");
mNodeElement_Cur = ne;// force restore "current" element
}// if(!mReader->isEmptyElement())
mNodeElement_List.push_back(ne);// add to node element list because its a new object in graph.
}
// <constellation
// id="" - The Object ID of the new constellation being defined.
// >
// </constellation>
// A collection of objects or constellations with specific relative locations.
// Multi elements - Yes.
// Parent element - <amf>.
void AMFImporter::ParseNode_Constellation()
{
std::string id;
CAMFImporter_NodeElement* ne( nullptr );
// Read attributes for node <constellation>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("id", id, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// create and if needed - define new grouping object.
ne = new CAMFImporter_NodeElement_Constellation(mNodeElement_Cur);
CAMFImporter_NodeElement_Constellation& als = *((CAMFImporter_NodeElement_Constellation*)ne);// alias for convenience
if(!id.empty()) als.ID = id;
// Check for child nodes
if(!mReader->isEmptyElement())
{
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("constellation");
if(XML_CheckNode_NameEqual("instance")) { ParseNode_Instance(); continue; }
if(XML_CheckNode_NameEqual("metadata")) { ParseNode_Metadata(); continue; }
MACRO_NODECHECK_LOOPEND("constellation");
ParseHelper_Node_Exit();
}// if(!mReader->isEmptyElement())
else
{
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
}// if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne);// and to node element list because its a new object in graph.
}
// <instance
// objectid="" - The Object ID of the new constellation being defined.
// >
// </instance>
// A collection of objects or constellations with specific relative locations.
// Multi elements - Yes.
// Parent element - <amf>.
void AMFImporter::ParseNode_Instance()
{
std::string objectid;
CAMFImporter_NodeElement* ne( nullptr );
// Read attributes for node <constellation>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("objectid", objectid, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// used object id must be defined, check that.
if(objectid.empty()) throw DeadlyImportError("\"objectid\" in <instance> must be defined.");
// create and define new grouping object.
ne = new CAMFImporter_NodeElement_Instance(mNodeElement_Cur);
CAMFImporter_NodeElement_Instance& als = *((CAMFImporter_NodeElement_Instance*)ne);// alias for convenience
als.ObjectID = objectid;
// Check for child nodes
if(!mReader->isEmptyElement())
{
bool read_flag[6] = { false, false, false, false, false, false };
als.Delta.Set(0, 0, 0);
als.Rotation.Set(0, 0, 0);
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("instance");
MACRO_NODECHECK_READCOMP_F("deltax", read_flag[0], als.Delta.x);
MACRO_NODECHECK_READCOMP_F("deltay", read_flag[1], als.Delta.y);
MACRO_NODECHECK_READCOMP_F("deltaz", read_flag[2], als.Delta.z);
MACRO_NODECHECK_READCOMP_F("rx", read_flag[3], als.Rotation.x);
MACRO_NODECHECK_READCOMP_F("ry", read_flag[4], als.Rotation.y);
MACRO_NODECHECK_READCOMP_F("rz", read_flag[5], als.Rotation.z);
MACRO_NODECHECK_LOOPEND("instance");
ParseHelper_Node_Exit();
// also convert degrees to radians.
als.Rotation.x = AI_MATH_PI_F * als.Rotation.x / 180.0f;
als.Rotation.y = AI_MATH_PI_F * als.Rotation.y / 180.0f;
als.Rotation.z = AI_MATH_PI_F * als.Rotation.z / 180.0f;
}// if(!mReader->isEmptyElement())
else
{
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
}// if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne);// and to node element list because its a new object in graph.
}
// <object
// id="" - A unique ObjectID for the new object being defined.
// >
// </object>
// An object definition.
// Multi elements - Yes.
// Parent element - <amf>.
void AMFImporter::ParseNode_Object()
{
std::string id;
CAMFImporter_NodeElement* ne( nullptr );
// Read attributes for node <object>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("id", id, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// create and if needed - define new geometry object.
ne = new CAMFImporter_NodeElement_Object(mNodeElement_Cur);
CAMFImporter_NodeElement_Object& als = *((CAMFImporter_NodeElement_Object*)ne);// alias for convenience
if(!id.empty()) als.ID = id;
// Check for child nodes
if(!mReader->isEmptyElement())
{
bool col_read = false;
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("object");
if(XML_CheckNode_NameEqual("color"))
{
// Check if color already defined for object.
if(col_read) Throw_MoreThanOnceDefined("color", "Only one color can be defined for <object>.");
// read data and set flag about it
ParseNode_Color();
col_read = true;
continue;
}
if(XML_CheckNode_NameEqual("mesh")) { ParseNode_Mesh(); continue; }
if(XML_CheckNode_NameEqual("metadata")) { ParseNode_Metadata(); continue; }
MACRO_NODECHECK_LOOPEND("object");
ParseHelper_Node_Exit();
}// if(!mReader->isEmptyElement())
else
{
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
}// if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne);// and to node element list because its a new object in graph.
}
// <metadata
// type="" - The type of the attribute.
// >
// </metadata>
// Specify additional information about an entity.
// Multi elements - Yes.
// Parent element - <amf>, <object>, <volume>, <material>, <vertex>.
//
// Reserved types are:
// "Name" - The alphanumeric label of the entity, to be used by the interpreter if interacting with the user.
// "Description" - A description of the content of the entity
// "URL" - A link to an external resource relating to the entity
// "Author" - Specifies the name(s) of the author(s) of the entity
// "Company" - Specifying the company generating the entity
// "CAD" - specifies the name of the originating CAD software and version
// "Revision" - specifies the revision of the entity
// "Tolerance" - specifies the desired manufacturing tolerance of the entity in entity's unit system
// "Volume" - specifies the total volume of the entity, in the entity's unit system, to be used for verification (object and volume only)
void AMFImporter::ParseNode_Metadata()
{
std::string type, value;
CAMFImporter_NodeElement* ne( nullptr );
// read attribute
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("type", type, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// and value of node.
value = mReader->getNodeData();
// Create node element and assign read data.
ne = new CAMFImporter_NodeElement_Metadata(mNodeElement_Cur);
((CAMFImporter_NodeElement_Metadata*)ne)->Type = type;
((CAMFImporter_NodeElement_Metadata*)ne)->Value = value;
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
mNodeElement_List.push_back(ne);// and to node element list because its a new object in graph.
}
/*********************************************************************************************************************************************/
/******************************************************** Functions: BaseImporter set ********************************************************/
/*********************************************************************************************************************************************/
bool AMFImporter::CanRead(const std::string& pFile, IOSystem* pIOHandler, bool pCheckSig) const
{
const std::string extension = GetExtension(pFile);
if ( extension == "amf" ) {
return true;
}
if(!extension.length() || pCheckSig)
{
const char* tokens[] = { "<amf" };
return SearchFileHeaderForToken( pIOHandler, pFile, tokens, 1 );
}
return false;
}
void AMFImporter::GetExtensionList(std::set<std::string>& pExtensionList)
{
pExtensionList.insert("amf");
}
const aiImporterDesc* AMFImporter::GetInfo () const
{
return &Description;
}
void AMFImporter::InternReadFile(const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler)
{
Clear();// delete old graph.
ParseFile(pFile, pIOHandler);
Postprocess_BuildScene(pScene);
// scene graph is ready, exit.
}
}// namespace Assimp
#endif // !ASSIMP_BUILD_NO_AMF_IMPORTER

View File

@ -1,978 +0,0 @@
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/// \file AMFImporter_Postprocess.cpp
/// \brief Convert built scenegraph and objects to Assimp scenegraph.
/// \date 2016
/// \author smal.root@gmail.com
#ifndef ASSIMP_BUILD_NO_AMF_IMPORTER
#include "AMFImporter.hpp"
// Header files, Assimp.
#include <assimp/SceneCombiner.h>
#include <assimp/StandardShapes.h>
#include <assimp/StringUtils.h>
// Header files, stdlib.
#include <iterator>
namespace Assimp
{
aiColor4D AMFImporter::SPP_Material::GetColor(const float /*pX*/, const float /*pY*/, const float /*pZ*/) const
{
aiColor4D tcol;
// Check if stored data are supported.
if(!Composition.empty())
{
throw DeadlyImportError("IME. GetColor for composition");
}
else if(Color->Composed)
{
throw DeadlyImportError("IME. GetColor, composed color");
}
else
{
tcol = Color->Color;
}
// Check if default color must be used
if((tcol.r == 0) && (tcol.g == 0) && (tcol.b == 0) && (tcol.a == 0))
{
tcol.r = 0.5f;
tcol.g = 0.5f;
tcol.b = 0.5f;
tcol.a = 1;
}
return tcol;
}
void AMFImporter::PostprocessHelper_CreateMeshDataArray(const CAMFImporter_NodeElement_Mesh& pNodeElement, std::vector<aiVector3D>& pVertexCoordinateArray,
std::vector<CAMFImporter_NodeElement_Color*>& pVertexColorArray) const
{
CAMFImporter_NodeElement_Vertices* vn = nullptr;
size_t col_idx;
// All data stored in "vertices", search for it.
for(CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
{
if(ne_child->Type == CAMFImporter_NodeElement::ENET_Vertices) vn = (CAMFImporter_NodeElement_Vertices*)ne_child;
}
// If "vertices" not found then no work for us.
if(vn == nullptr) return;
pVertexCoordinateArray.reserve(vn->Child.size());// all coordinates stored as child and we need to reserve space for future push_back's.
pVertexColorArray.resize(vn->Child.size());// colors count equal vertices count.
col_idx = 0;
// Inside vertices collect all data and place to arrays
for(CAMFImporter_NodeElement* vn_child: vn->Child)
{
// vertices, colors
if(vn_child->Type == CAMFImporter_NodeElement::ENET_Vertex)
{
// by default clear color for current vertex
pVertexColorArray[col_idx] = nullptr;
for(CAMFImporter_NodeElement* vtx: vn_child->Child)
{
if(vtx->Type == CAMFImporter_NodeElement::ENET_Coordinates)
{
pVertexCoordinateArray.push_back(((CAMFImporter_NodeElement_Coordinates*)vtx)->Coordinate);
continue;
}
if(vtx->Type == CAMFImporter_NodeElement::ENET_Color)
{
pVertexColorArray[col_idx] = (CAMFImporter_NodeElement_Color*)vtx;
continue;
}
}// for(CAMFImporter_NodeElement* vtx: vn_child->Child)
col_idx++;
}// if(vn_child->Type == CAMFImporter_NodeElement::ENET_Vertex)
}// for(CAMFImporter_NodeElement* vn_child: vn->Child)
}
size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string& pID_R, const std::string& pID_G, const std::string& pID_B,
const std::string& pID_A)
{
size_t TextureConverted_Index;
std::string TextureConverted_ID;
// check input data
if(pID_R.empty() && pID_G.empty() && pID_B.empty() && pID_A.empty())
throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. At least one texture ID must be defined.");
// Create ID
TextureConverted_ID = pID_R + "_" + pID_G + "_" + pID_B + "_" + pID_A;
// Check if texture specified by set of IDs is converted already.
TextureConverted_Index = 0;
for(const SPP_Texture& tex_convd: mTexture_Converted)
{
if ( tex_convd.ID == TextureConverted_ID ) {
return TextureConverted_Index;
} else {
++TextureConverted_Index;
}
}
//
// Converted texture not found, create it.
//
CAMFImporter_NodeElement_Texture* src_texture[4]{nullptr};
std::vector<CAMFImporter_NodeElement_Texture*> src_texture_4check;
SPP_Texture converted_texture;
{// find all specified source textures
CAMFImporter_NodeElement* t_tex;
// R
if(!pID_R.empty())
{
if(!Find_NodeElement(pID_R, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_R);
src_texture[0] = (CAMFImporter_NodeElement_Texture*)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
}
else
{
src_texture[0] = nullptr;
}
// G
if(!pID_G.empty())
{
if(!Find_NodeElement(pID_G, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_G);
src_texture[1] = (CAMFImporter_NodeElement_Texture*)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
}
else
{
src_texture[1] = nullptr;
}
// B
if(!pID_B.empty())
{
if(!Find_NodeElement(pID_B, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_B);
src_texture[2] = (CAMFImporter_NodeElement_Texture*)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
}
else
{
src_texture[2] = nullptr;
}
// A
if(!pID_A.empty())
{
if(!Find_NodeElement(pID_A, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_A);
src_texture[3] = (CAMFImporter_NodeElement_Texture*)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
}
else
{
src_texture[3] = nullptr;
}
}// END: find all specified source textures
// check that all textures has same size
if(src_texture_4check.size() > 1)
{
for (size_t i = 0, i_e = (src_texture_4check.size() - 1); i < i_e; i++)
{
if((src_texture_4check[i]->Width != src_texture_4check[i + 1]->Width) || (src_texture_4check[i]->Height != src_texture_4check[i + 1]->Height) ||
(src_texture_4check[i]->Depth != src_texture_4check[i + 1]->Depth))
{
throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. Source texture must has the same size.");
}
}
}// if(src_texture_4check.size() > 1)
// set texture attributes
converted_texture.Width = src_texture_4check[0]->Width;
converted_texture.Height = src_texture_4check[0]->Height;
converted_texture.Depth = src_texture_4check[0]->Depth;
// if one of source texture is tiled then converted texture is tiled too.
converted_texture.Tiled = false;
for(uint8_t i = 0; i < src_texture_4check.size(); i++) converted_texture.Tiled |= src_texture_4check[i]->Tiled;
// Create format hint.
strcpy(converted_texture.FormatHint, "rgba0000");// copy initial string.
if(!pID_R.empty()) converted_texture.FormatHint[4] = '8';
if(!pID_G.empty()) converted_texture.FormatHint[5] = '8';
if(!pID_B.empty()) converted_texture.FormatHint[6] = '8';
if(!pID_A.empty()) converted_texture.FormatHint[7] = '8';
//
// Сopy data of textures.
//
size_t tex_size = 0;
size_t step = 0;
size_t off_g = 0;
size_t off_b = 0;
// Calculate size of the target array and rule how data will be copied.
if(!pID_R.empty() && nullptr != src_texture[ 0 ] ) {
tex_size += src_texture[0]->Data.size(); step++, off_g++, off_b++;
}
if(!pID_G.empty() && nullptr != src_texture[ 1 ] ) {
tex_size += src_texture[1]->Data.size(); step++, off_b++;
}
if(!pID_B.empty() && nullptr != src_texture[ 2 ] ) {
tex_size += src_texture[2]->Data.size(); step++;
}
if(!pID_A.empty() && nullptr != src_texture[ 3 ] ) {
tex_size += src_texture[3]->Data.size(); step++;
}
// Create target array.
converted_texture.Data = new uint8_t[tex_size];
// And copy data
auto CopyTextureData = [&](const std::string& pID, const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void
{
if(!pID.empty())
{
for(size_t idx_target = pOffset, idx_src = 0; idx_target < tex_size; idx_target += pStep, idx_src++) {
CAMFImporter_NodeElement_Texture* tex = src_texture[pSrcTexNum];
ai_assert(tex);
converted_texture.Data[idx_target] = tex->Data.at(idx_src);
}
}
};// auto CopyTextureData = [&](const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void
CopyTextureData(pID_R, 0, step, 0);
CopyTextureData(pID_G, off_g, step, 1);
CopyTextureData(pID_B, off_b, step, 2);
CopyTextureData(pID_A, step - 1, step, 3);
// Store new converted texture ID
converted_texture.ID = TextureConverted_ID;
// Store new converted texture
mTexture_Converted.push_back(converted_texture);
return TextureConverted_Index;
}
void AMFImporter::PostprocessHelper_SplitFacesByTextureID(std::list<SComplexFace>& pInputList, std::list<std::list<SComplexFace> >& pOutputList_Separated)
{
auto texmap_is_equal = [](const CAMFImporter_NodeElement_TexMap* pTexMap1, const CAMFImporter_NodeElement_TexMap* pTexMap2) -> bool
{
if((pTexMap1 == nullptr) && (pTexMap2 == nullptr)) return true;
if(pTexMap1 == nullptr) return false;
if(pTexMap2 == nullptr) return false;
if(pTexMap1->TextureID_R != pTexMap2->TextureID_R) return false;
if(pTexMap1->TextureID_G != pTexMap2->TextureID_G) return false;
if(pTexMap1->TextureID_B != pTexMap2->TextureID_B) return false;
if(pTexMap1->TextureID_A != pTexMap2->TextureID_A) return false;
return true;
};
pOutputList_Separated.clear();
if(pInputList.empty()) return;
do
{
SComplexFace face_start = pInputList.front();
std::list<SComplexFace> face_list_cur;
for(std::list<SComplexFace>::iterator it = pInputList.begin(), it_end = pInputList.end(); it != it_end;)
{
if(texmap_is_equal(face_start.TexMap, it->TexMap))
{
auto it_old = it;
++it;
face_list_cur.push_back(*it_old);
pInputList.erase(it_old);
}
else
{
++it;
}
}
if(!face_list_cur.empty()) pOutputList_Separated.push_back(face_list_cur);
} while(!pInputList.empty());
}
void AMFImporter::Postprocess_AddMetadata(const std::list<CAMFImporter_NodeElement_Metadata*>& metadataList, aiNode& sceneNode) const
{
if ( !metadataList.empty() )
{
if(sceneNode.mMetaData != nullptr) throw DeadlyImportError("Postprocess. MetaData member in node are not nullptr. Something went wrong.");
// copy collected metadata to output node.
sceneNode.mMetaData = aiMetadata::Alloc( static_cast<unsigned int>(metadataList.size()) );
size_t meta_idx( 0 );
for(const CAMFImporter_NodeElement_Metadata& metadata: metadataList)
{
sceneNode.mMetaData->Set(static_cast<unsigned int>(meta_idx++), metadata.Type, aiString(metadata.Value));
}
}// if(!metadataList.empty())
}
void AMFImporter::Postprocess_BuildNodeAndObject(const CAMFImporter_NodeElement_Object& pNodeElement, std::list<aiMesh*>& pMeshList, aiNode** pSceneNode)
{
CAMFImporter_NodeElement_Color* object_color = nullptr;
// create new aiNode and set name as <object> has.
*pSceneNode = new aiNode;
(*pSceneNode)->mName = pNodeElement.ID;
// read mesh and color
for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
{
std::vector<aiVector3D> vertex_arr;
std::vector<CAMFImporter_NodeElement_Color*> color_arr;
// color for object
if(ne_child->Type == CAMFImporter_NodeElement::ENET_Color) object_color = (CAMFImporter_NodeElement_Color*)ne_child;
if(ne_child->Type == CAMFImporter_NodeElement::ENET_Mesh)
{
// Create arrays from children of mesh: vertices.
PostprocessHelper_CreateMeshDataArray(*((CAMFImporter_NodeElement_Mesh*)ne_child), vertex_arr, color_arr);
// Use this arrays as a source when creating every aiMesh
Postprocess_BuildMeshSet(*((CAMFImporter_NodeElement_Mesh*)ne_child), vertex_arr, color_arr, object_color, pMeshList, **pSceneNode);
}
}// for(const CAMFImporter_NodeElement* ne_child: pNodeElement)
}
void AMFImporter::Postprocess_BuildMeshSet(const CAMFImporter_NodeElement_Mesh& pNodeElement, const std::vector<aiVector3D>& pVertexCoordinateArray,
const std::vector<CAMFImporter_NodeElement_Color*>& pVertexColorArray,
const CAMFImporter_NodeElement_Color* pObjectColor, std::list<aiMesh*>& pMeshList, aiNode& pSceneNode)
{
std::list<unsigned int> mesh_idx;
// all data stored in "volume", search for it.
for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
{
const CAMFImporter_NodeElement_Color* ne_volume_color = nullptr;
const SPP_Material* cur_mat = nullptr;
if(ne_child->Type == CAMFImporter_NodeElement::ENET_Volume)
{
/******************* Get faces *******************/
const CAMFImporter_NodeElement_Volume* ne_volume = reinterpret_cast<const CAMFImporter_NodeElement_Volume*>(ne_child);
std::list<SComplexFace> complex_faces_list;// List of the faces of the volume.
std::list<std::list<SComplexFace> > complex_faces_toplist;// List of the face list for every mesh.
// check if volume use material
if(!ne_volume->MaterialID.empty())
{
if(!Find_ConvertedMaterial(ne_volume->MaterialID, &cur_mat)) Throw_ID_NotFound(ne_volume->MaterialID);
}
// inside "volume" collect all data and place to arrays or create new objects
for(const CAMFImporter_NodeElement* ne_volume_child: ne_volume->Child)
{
// color for volume
if(ne_volume_child->Type == CAMFImporter_NodeElement::ENET_Color)
{
ne_volume_color = reinterpret_cast<const CAMFImporter_NodeElement_Color*>(ne_volume_child);
}
else if(ne_volume_child->Type == CAMFImporter_NodeElement::ENET_Triangle)// triangles, triangles colors
{
const CAMFImporter_NodeElement_Triangle& tri_al = *reinterpret_cast<const CAMFImporter_NodeElement_Triangle*>(ne_volume_child);
SComplexFace complex_face;
// initialize pointers
complex_face.Color = nullptr;
complex_face.TexMap = nullptr;
// get data from triangle children: color, texture coordinates.
if(tri_al.Child.size())
{
for(const CAMFImporter_NodeElement* ne_triangle_child: tri_al.Child)
{
if(ne_triangle_child->Type == CAMFImporter_NodeElement::ENET_Color)
complex_face.Color = reinterpret_cast<const CAMFImporter_NodeElement_Color*>(ne_triangle_child);
else if(ne_triangle_child->Type == CAMFImporter_NodeElement::ENET_TexMap)
complex_face.TexMap = reinterpret_cast<const CAMFImporter_NodeElement_TexMap*>(ne_triangle_child);
}
}// if(tri_al.Child.size())
// create new face and store it.
complex_face.Face.mNumIndices = 3;
complex_face.Face.mIndices = new unsigned int[3];
complex_face.Face.mIndices[0] = static_cast<unsigned int>(tri_al.V[0]);
complex_face.Face.mIndices[1] = static_cast<unsigned int>(tri_al.V[1]);
complex_face.Face.mIndices[2] = static_cast<unsigned int>(tri_al.V[2]);
complex_faces_list.push_back(complex_face);
}
}// for(const CAMFImporter_NodeElement* ne_volume_child: ne_volume->Child)
/**** Split faces list: one list per mesh ****/
PostprocessHelper_SplitFacesByTextureID(complex_faces_list, complex_faces_toplist);
/***** Create mesh for every faces list ******/
for(std::list<SComplexFace>& face_list_cur: complex_faces_toplist)
{
auto VertexIndex_GetMinimal = [](const std::list<SComplexFace>& pFaceList, const size_t* pBiggerThan) -> size_t
{
size_t rv=0;
if(pBiggerThan != nullptr)
{
bool found = false;
for(const SComplexFace& face: pFaceList)
{
for(size_t idx_vert = 0; idx_vert < face.Face.mNumIndices; idx_vert++)
{
if(face.Face.mIndices[idx_vert] > *pBiggerThan)
{
rv = face.Face.mIndices[idx_vert];
found = true;
break;
}
}
if(found) break;
}
if(!found) return *pBiggerThan;
}
else
{
rv = pFaceList.front().Face.mIndices[0];
}// if(pBiggerThan != nullptr) else
for(const SComplexFace& face: pFaceList)
{
for(size_t vi = 0; vi < face.Face.mNumIndices; vi++)
{
if(face.Face.mIndices[vi] < rv)
{
if(pBiggerThan != nullptr)
{
if(face.Face.mIndices[vi] > *pBiggerThan) rv = face.Face.mIndices[vi];
}
else
{
rv = face.Face.mIndices[vi];
}
}
}
}// for(const SComplexFace& face: pFaceList)
return rv;
};// auto VertexIndex_GetMinimal = [](const std::list<SComplexFace>& pFaceList, const size_t* pBiggerThan) -> size_t
auto VertexIndex_Replace = [](std::list<SComplexFace>& pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void
{
for(const SComplexFace& face: pFaceList)
{
for(size_t vi = 0; vi < face.Face.mNumIndices; vi++)
{
if(face.Face.mIndices[vi] == pIdx_From) face.Face.mIndices[vi] = static_cast<unsigned int>(pIdx_To);
}
}
};// auto VertexIndex_Replace = [](std::list<SComplexFace>& pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void
auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D
{
// Color priorities(In descending order):
// 1. triangle color;
// 2. vertex color;
// 3. volume color;
// 4. object color;
// 5. material;
// 6. default - invisible coat.
//
// Fill vertices colors in color priority list above that's points from 1 to 6.
if((pIdx < pVertexColorArray.size()) && (pVertexColorArray[pIdx] != nullptr))// check for vertex color
{
if(pVertexColorArray[pIdx]->Composed)
throw DeadlyImportError("IME: vertex color composed");
else
return pVertexColorArray[pIdx]->Color;
}
else if(ne_volume_color != nullptr)// check for volume color
{
if(ne_volume_color->Composed)
throw DeadlyImportError("IME: volume color composed");
else
return ne_volume_color->Color;
}
else if(pObjectColor != nullptr)// check for object color
{
if(pObjectColor->Composed)
throw DeadlyImportError("IME: object color composed");
else
return pObjectColor->Color;
}
else if(cur_mat != nullptr)// check for material
{
return cur_mat->GetColor(pVertexCoordinateArray.at(pIdx).x, pVertexCoordinateArray.at(pIdx).y, pVertexCoordinateArray.at(pIdx).z);
}
else// set default color.
{
return {0, 0, 0, 0};
}// if((vi < pVertexColorArray.size()) && (pVertexColorArray[vi] != nullptr)) else
};// auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D
aiMesh* tmesh = new aiMesh;
tmesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;// Only triangles is supported by AMF.
//
// set geometry and colors (vertices)
//
// copy faces/triangles
tmesh->mNumFaces = static_cast<unsigned int>(face_list_cur.size());
tmesh->mFaces = new aiFace[tmesh->mNumFaces];
// Create vertices list and optimize indices. Optimisation mean following.In AMF all volumes use one big list of vertices. And one volume
// can use only part of vertices list, for example: vertices list contain few thousands of vertices and volume use vertices 1, 3, 10.
// Do you need all this thousands of garbage? Of course no. So, optimisation step transformate sparse indices set to continuous.
size_t VertexCount_Max = tmesh->mNumFaces * 3;// 3 - triangles.
std::vector<aiVector3D> vert_arr, texcoord_arr;
std::vector<aiColor4D> col_arr;
vert_arr.reserve(VertexCount_Max * 2);// "* 2" - see below TODO.
col_arr.reserve(VertexCount_Max * 2);
{// fill arrays
size_t vert_idx_from, vert_idx_to;
// first iteration.
vert_idx_to = 0;
vert_idx_from = VertexIndex_GetMinimal(face_list_cur, nullptr);
vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from));
col_arr.push_back(Vertex_CalculateColor(vert_idx_from));
if(vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to);
// rest iterations
do
{
vert_idx_from = VertexIndex_GetMinimal(face_list_cur, &vert_idx_to);
if(vert_idx_from == vert_idx_to) break;// all indices are transferred,
vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from));
col_arr.push_back(Vertex_CalculateColor(vert_idx_from));
vert_idx_to++;
if(vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to);
} while(true);
}// fill arrays. END.
//
// check if triangle colors are used and create additional faces if needed.
//
for(const SComplexFace& face_cur: face_list_cur)
{
if(face_cur.Color != nullptr)
{
aiColor4D face_color;
size_t vert_idx_new = vert_arr.size();
if(face_cur.Color->Composed)
throw DeadlyImportError("IME: face color composed");
else
face_color = face_cur.Color->Color;
for(size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++)
{
vert_arr.push_back(vert_arr.at(face_cur.Face.mIndices[idx_ind]));
col_arr.push_back(face_color);
face_cur.Face.mIndices[idx_ind] = static_cast<unsigned int>(vert_idx_new++);
}
}// if(face_cur.Color != nullptr)
}// for(const SComplexFace& face_cur: face_list_cur)
//
// if texture is used then copy texture coordinates too.
//
if(face_list_cur.front().TexMap != nullptr)
{
size_t idx_vert_new = vert_arr.size();
///TODO: clean unused vertices. "* 2": in certain cases - mesh full of triangle colors - vert_arr will contain duplicated vertices for
/// colored triangles and initial vertices (for colored vertices) which in real became unused. This part need more thinking about
/// optimisation.
bool* idx_vert_used;
idx_vert_used = new bool[VertexCount_Max * 2];
for(size_t i = 0, i_e = VertexCount_Max * 2; i < i_e; i++) idx_vert_used[i] = false;
// This ID's will be used when set materials ID in scene.
tmesh->mMaterialIndex = static_cast<unsigned int>(PostprocessHelper_GetTextureID_Or_Create(face_list_cur.front().TexMap->TextureID_R,
face_list_cur.front().TexMap->TextureID_G,
face_list_cur.front().TexMap->TextureID_B,
face_list_cur.front().TexMap->TextureID_A));
texcoord_arr.resize(VertexCount_Max * 2);
for(const SComplexFace& face_cur: face_list_cur)
{
for(size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++)
{
const size_t idx_vert = face_cur.Face.mIndices[idx_ind];
if(!idx_vert_used[idx_vert])
{
texcoord_arr.at(idx_vert) = face_cur.TexMap->TextureCoordinate[idx_ind];
idx_vert_used[idx_vert] = true;
}
else if(texcoord_arr.at(idx_vert) != face_cur.TexMap->TextureCoordinate[idx_ind])
{
// in that case one vertex is shared with many texture coordinates. We need to duplicate vertex with another texture
// coordinates.
vert_arr.push_back(vert_arr.at(idx_vert));
col_arr.push_back(col_arr.at(idx_vert));
texcoord_arr.at(idx_vert_new) = face_cur.TexMap->TextureCoordinate[idx_ind];
face_cur.Face.mIndices[idx_ind] = static_cast<unsigned int>(idx_vert_new++);
}
}// for(size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++)
}// for(const SComplexFace& face_cur: face_list_cur)
delete [] idx_vert_used;
// shrink array
texcoord_arr.resize(idx_vert_new);
}// if(face_list_cur.front().TexMap != nullptr)
//
// copy collected data to mesh
//
tmesh->mNumVertices = static_cast<unsigned int>(vert_arr.size());
tmesh->mVertices = new aiVector3D[tmesh->mNumVertices];
tmesh->mColors[0] = new aiColor4D[tmesh->mNumVertices];
memcpy(tmesh->mVertices, vert_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D));
memcpy(tmesh->mColors[0], col_arr.data(), tmesh->mNumVertices * sizeof(aiColor4D));
if(texcoord_arr.size() > 0)
{
tmesh->mTextureCoords[0] = new aiVector3D[tmesh->mNumVertices];
memcpy(tmesh->mTextureCoords[0], texcoord_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D));
tmesh->mNumUVComponents[0] = 2;// U and V stored in "x", "y" of aiVector3D.
}
size_t idx_face = 0;
for(const SComplexFace& face_cur: face_list_cur) tmesh->mFaces[idx_face++] = face_cur.Face;
// store new aiMesh
mesh_idx.push_back(static_cast<unsigned int>(pMeshList.size()));
pMeshList.push_back(tmesh);
}// for(const std::list<SComplexFace>& face_list_cur: complex_faces_toplist)
}// if(ne_child->Type == CAMFImporter_NodeElement::ENET_Volume)
}// for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
// if meshes was created then assign new indices with current aiNode
if(!mesh_idx.empty())
{
std::list<unsigned int>::const_iterator mit = mesh_idx.begin();
pSceneNode.mNumMeshes = static_cast<unsigned int>(mesh_idx.size());
pSceneNode.mMeshes = new unsigned int[pSceneNode.mNumMeshes];
for(size_t i = 0; i < pSceneNode.mNumMeshes; i++) pSceneNode.mMeshes[i] = *mit++;
}// if(mesh_idx.size() > 0)
}
void AMFImporter::Postprocess_BuildMaterial(const CAMFImporter_NodeElement_Material& pMaterial)
{
SPP_Material new_mat;
new_mat.ID = pMaterial.ID;
for(const CAMFImporter_NodeElement* mat_child: pMaterial.Child)
{
if(mat_child->Type == CAMFImporter_NodeElement::ENET_Color)
{
new_mat.Color = (CAMFImporter_NodeElement_Color*)mat_child;
}
else if(mat_child->Type == CAMFImporter_NodeElement::ENET_Metadata)
{
new_mat.Metadata.push_back((CAMFImporter_NodeElement_Metadata*)mat_child);
}
}// for(const CAMFImporter_NodeElement* mat_child; pMaterial.Child)
// place converted material to special list
mMaterial_Converted.push_back(new_mat);
}
void AMFImporter::Postprocess_BuildConstellation(CAMFImporter_NodeElement_Constellation& pConstellation, std::list<aiNode*>& pNodeList) const
{
aiNode* con_node;
std::list<aiNode*> ch_node;
// We will build next hierarchy:
// aiNode as parent (<constellation>) for set of nodes as a children
// |- aiNode for transformation (<instance> -> <delta...>, <r...>) - aiNode for pointing to object ("objectid")
// ...
// \_ aiNode for transformation (<instance> -> <delta...>, <r...>) - aiNode for pointing to object ("objectid")
con_node = new aiNode;
con_node->mName = pConstellation.ID;
// Walk through children and search for instances of another objects, constellations.
for(const CAMFImporter_NodeElement* ne: pConstellation.Child)
{
aiMatrix4x4 tmat;
aiNode* t_node;
aiNode* found_node;
if(ne->Type == CAMFImporter_NodeElement::ENET_Metadata) continue;
if(ne->Type != CAMFImporter_NodeElement::ENET_Instance) throw DeadlyImportError("Only <instance> nodes can be in <constellation>.");
// create alias for conveniance
CAMFImporter_NodeElement_Instance& als = *((CAMFImporter_NodeElement_Instance*)ne);
// find referenced object
if(!Find_ConvertedNode(als.ObjectID, pNodeList, &found_node)) Throw_ID_NotFound(als.ObjectID);
// create node for applying transformation
t_node = new aiNode;
t_node->mParent = con_node;
// apply transformation
aiMatrix4x4::Translation(als.Delta, tmat), t_node->mTransformation *= tmat;
aiMatrix4x4::RotationX(als.Rotation.x, tmat), t_node->mTransformation *= tmat;
aiMatrix4x4::RotationY(als.Rotation.y, tmat), t_node->mTransformation *= tmat;
aiMatrix4x4::RotationZ(als.Rotation.z, tmat), t_node->mTransformation *= tmat;
// create array for one child node
t_node->mNumChildren = 1;
t_node->mChildren = new aiNode*[t_node->mNumChildren];
SceneCombiner::Copy(&t_node->mChildren[0], found_node);
t_node->mChildren[0]->mParent = t_node;
ch_node.push_back(t_node);
}// for(const CAMFImporter_NodeElement* ne: pConstellation.Child)
// copy found aiNode's as children
if(ch_node.empty()) throw DeadlyImportError("<constellation> must have at least one <instance>.");
size_t ch_idx = 0;
con_node->mNumChildren = static_cast<unsigned int>(ch_node.size());
con_node->mChildren = new aiNode*[con_node->mNumChildren];
for(aiNode* node: ch_node) con_node->mChildren[ch_idx++] = node;
// and place "root" of <constellation> node to node list
pNodeList.push_back(con_node);
}
void AMFImporter::Postprocess_BuildScene(aiScene* pScene)
{
std::list<aiNode*> node_list;
std::list<aiMesh*> mesh_list;
std::list<CAMFImporter_NodeElement_Metadata*> meta_list;
//
// Because for AMF "material" is just complex colors mixing so aiMaterial will not be used.
// For building aiScene we are must to do few steps:
// at first creating root node for aiScene.
pScene->mRootNode = new aiNode;
pScene->mRootNode->mParent = nullptr;
pScene->mFlags |= AI_SCENE_FLAGS_ALLOW_SHARED;
// search for root(<amf>) element
CAMFImporter_NodeElement* root_el = nullptr;
for(CAMFImporter_NodeElement* ne: mNodeElement_List)
{
if(ne->Type != CAMFImporter_NodeElement::ENET_Root) continue;
root_el = ne;
break;
}// for(const CAMFImporter_NodeElement* ne: mNodeElement_List)
// Check if root element are found.
if(root_el == nullptr) throw DeadlyImportError("Root(<amf>) element not found.");
// after that walk through children of root and collect data. Five types of nodes can be placed at top level - in <amf>: <object>, <material>, <texture>,
// <constellation> and <metadata>. But at first we must read <material> and <texture> because they will be used in <object>. <metadata> can be read
// at any moment.
//
// 1. <material>
// 2. <texture> will be converted later when processing triangles list. \sa Postprocess_BuildMeshSet
for(const CAMFImporter_NodeElement* root_child: root_el->Child)
{
if(root_child->Type == CAMFImporter_NodeElement::ENET_Material) Postprocess_BuildMaterial(*((CAMFImporter_NodeElement_Material*)root_child));
}
// After "appearance" nodes we must read <object> because it will be used in <constellation> -> <instance>.
//
// 3. <object>
for(const CAMFImporter_NodeElement* root_child: root_el->Child)
{
if(root_child->Type == CAMFImporter_NodeElement::ENET_Object)
{
aiNode* tnode = nullptr;
// for <object> mesh and node must be built: object ID assigned to aiNode name and will be used in future for <instance>
Postprocess_BuildNodeAndObject(*((CAMFImporter_NodeElement_Object*)root_child), mesh_list, &tnode);
if(tnode != nullptr) node_list.push_back(tnode);
}
}// for(const CAMFImporter_NodeElement* root_child: root_el->Child)
// And finally read rest of nodes.
//
for(const CAMFImporter_NodeElement* root_child: root_el->Child)
{
// 4. <constellation>
if(root_child->Type == CAMFImporter_NodeElement::ENET_Constellation)
{
// <object> and <constellation> at top of self abstraction use aiNode. So we can use only aiNode list for creating new aiNode's.
Postprocess_BuildConstellation(*((CAMFImporter_NodeElement_Constellation*)root_child), node_list);
}
// 5, <metadata>
if(root_child->Type == CAMFImporter_NodeElement::ENET_Metadata) meta_list.push_back((CAMFImporter_NodeElement_Metadata*)root_child);
}// for(const CAMFImporter_NodeElement* root_child: root_el->Child)
// at now we can add collected metadata to root node
Postprocess_AddMetadata(meta_list, *pScene->mRootNode);
//
// Check constellation children
//
// As said in specification:
// "When multiple objects and constellations are defined in a single file, only the top level objects and constellations are available for printing."
// What that means? For example: if some object is used in constellation then you must show only constellation but not original object.
// And at this step we are checking that relations.
nl_clean_loop:
if(node_list.size() > 1)
{
// walk through all nodes
for(std::list<aiNode*>::iterator nl_it = node_list.begin(); nl_it != node_list.end(); ++nl_it)
{
// and try to find them in another top nodes.
std::list<aiNode*>::const_iterator next_it = nl_it;
++next_it;
for(; next_it != node_list.end(); ++next_it)
{
if((*next_it)->FindNode((*nl_it)->mName) != nullptr)
{
// if current top node(nl_it) found in another top node then erase it from node_list and restart search loop.
node_list.erase(nl_it);
goto nl_clean_loop;
}
}// for(; next_it != node_list.end(); next_it++)
}// for(std::list<aiNode*>::const_iterator nl_it = node_list.begin(); nl_it != node_list.end(); nl_it++)
}
//
// move created objects to aiScene
//
//
// Nodes
if(!node_list.empty())
{
std::list<aiNode*>::const_iterator nl_it = node_list.begin();
pScene->mRootNode->mNumChildren = static_cast<unsigned int>(node_list.size());
pScene->mRootNode->mChildren = new aiNode*[pScene->mRootNode->mNumChildren];
for(size_t i = 0; i < pScene->mRootNode->mNumChildren; i++)
{
// Objects and constellation that must be showed placed at top of hierarchy in <amf> node. So all aiNode's in node_list must have
// mRootNode only as parent.
(*nl_it)->mParent = pScene->mRootNode;
pScene->mRootNode->mChildren[i] = *nl_it++;
}
}// if(node_list.size() > 0)
//
// Meshes
if(!mesh_list.empty())
{
std::list<aiMesh*>::const_iterator ml_it = mesh_list.begin();
pScene->mNumMeshes = static_cast<unsigned int>(mesh_list.size());
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
for(size_t i = 0; i < pScene->mNumMeshes; i++) pScene->mMeshes[i] = *ml_it++;
}// if(mesh_list.size() > 0)
//
// Textures
pScene->mNumTextures = static_cast<unsigned int>(mTexture_Converted.size());
if(pScene->mNumTextures > 0)
{
size_t idx;
idx = 0;
pScene->mTextures = new aiTexture*[pScene->mNumTextures];
for(const SPP_Texture& tex_convd: mTexture_Converted)
{
pScene->mTextures[idx] = new aiTexture;
pScene->mTextures[idx]->mWidth = static_cast<unsigned int>(tex_convd.Width);
pScene->mTextures[idx]->mHeight = static_cast<unsigned int>(tex_convd.Height);
pScene->mTextures[idx]->pcData = (aiTexel*)tex_convd.Data;
// texture format description.
strcpy(pScene->mTextures[idx]->achFormatHint, tex_convd.FormatHint);
idx++;
}// for(const SPP_Texture& tex_convd: mTexture_Converted)
// Create materials for embedded textures.
idx = 0;
pScene->mNumMaterials = static_cast<unsigned int>(mTexture_Converted.size());
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials];
for(const SPP_Texture& tex_convd: mTexture_Converted)
{
const aiString texture_id(AI_EMBEDDED_TEXNAME_PREFIX + to_string(idx));
const int mode = aiTextureOp_Multiply;
const int repeat = tex_convd.Tiled ? 1 : 0;
pScene->mMaterials[idx] = new aiMaterial;
pScene->mMaterials[idx]->AddProperty(&texture_id, AI_MATKEY_TEXTURE_DIFFUSE(0));
pScene->mMaterials[idx]->AddProperty(&mode, 1, AI_MATKEY_TEXOP_DIFFUSE(0));
pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0));
pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0));
idx++;
}
}// if(pScene->mNumTextures > 0)
}// END: after that walk through children of root and collect data
}// namespace Assimp
#endif // !ASSIMP_BUILD_NO_AMF_IMPORTER

View File

@ -46,11 +46,11 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// internal headers
#include "3DSLoader.h"
#include "Common/TargetAnimation.h"
#include <assimp/StringComparison.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/StringComparison.h>
#include <memory>
#include <cctype>
#include <memory>
using namespace Assimp;
@ -58,8 +58,7 @@ static const unsigned int NotSet = 0xcdcdcdcd;
// ------------------------------------------------------------------------------------------------
// Setup final material indices, generae a default material if necessary
void Discreet3DSImporter::ReplaceDefaultMaterial()
{
void Discreet3DSImporter::ReplaceDefaultMaterial() {
// Try to find an existing material that matches the
// typical default material setting:
// - no textures
@ -67,8 +66,7 @@ void Discreet3DSImporter::ReplaceDefaultMaterial()
// NOTE: This is here to workaround the fact that some
// exporters are writing a default material, too.
unsigned int idx(NotSet);
for (unsigned int i = 0; i < mScene->mMaterials.size();++i)
{
for (unsigned int i = 0; i < mScene->mMaterials.size(); ++i) {
std::string s = mScene->mMaterials[i].mName;
for (std::string::iterator it = s.begin(); it != s.end(); ++it) {
*it = static_cast<char>(::tolower(*it));
@ -86,8 +84,7 @@ void Discreet3DSImporter::ReplaceDefaultMaterial()
mScene->mMaterials[i].sTexOpacity.mMapName.length() != 0 ||
mScene->mMaterials[i].sTexEmissive.mMapName.length() != 0 ||
mScene->mMaterials[i].sTexSpecular.mMapName.length() != 0 ||
mScene->mMaterials[i].sTexShininess.mMapName.length() != 0 )
{
mScene->mMaterials[i].sTexShininess.mMapName.length() != 0) {
continue;
}
idx = i;
@ -101,29 +98,23 @@ void Discreet3DSImporter::ReplaceDefaultMaterial()
unsigned int cnt = 0;
for (std::vector<D3DS::Mesh>::iterator
i = mScene->mMeshes.begin();
i != mScene->mMeshes.end();++i)
{
i != mScene->mMeshes.end(); ++i) {
for (std::vector<unsigned int>::iterator
a = (*i).mFaceMaterials.begin();
a != (*i).mFaceMaterials.end();++a)
{
a != (*i).mFaceMaterials.end(); ++a) {
// NOTE: The additional check seems to be necessary,
// some exporters seem to generate invalid data here
if (0xcdcdcdcd == (*a))
{
if (0xcdcdcdcd == (*a)) {
(*a) = idx;
++cnt;
}
else if ( (*a) >= mScene->mMaterials.size())
{
} else if ((*a) >= mScene->mMaterials.size()) {
(*a) = idx;
ASSIMP_LOG_WARN("Material index overflow in 3DS file. Using default material");
++cnt;
}
}
}
if (cnt && idx == mScene->mMaterials.size())
{
if (cnt && idx == mScene->mMaterials.size()) {
// We need to create our own default material
D3DS::Material sMat("%%%DEFAULT");
sMat.mDiffuse = aiColor3D(0.3f, 0.3f, 0.3f);
@ -135,20 +126,15 @@ void Discreet3DSImporter::ReplaceDefaultMaterial()
// ------------------------------------------------------------------------------------------------
// Check whether all indices are valid. Otherwise we'd crash before the validation step is reached
void Discreet3DSImporter::CheckIndices(D3DS::Mesh& sMesh)
{
for (std::vector< D3DS::Face >::iterator i = sMesh.mFaces.begin(); i != sMesh.mFaces.end();++i)
{
void Discreet3DSImporter::CheckIndices(D3DS::Mesh &sMesh) {
for (std::vector<D3DS::Face>::iterator i = sMesh.mFaces.begin(); i != sMesh.mFaces.end(); ++i) {
// check whether all indices are in range
for (unsigned int a = 0; a < 3;++a)
{
if ((*i).mIndices[a] >= sMesh.mPositions.size())
{
for (unsigned int a = 0; a < 3; ++a) {
if ((*i).mIndices[a] >= sMesh.mPositions.size()) {
ASSIMP_LOG_WARN("3DS: Vertex index overflow)");
(*i).mIndices[a] = (uint32_t)sMesh.mPositions.size() - 1;
}
if ( !sMesh.mTexCoords.empty() && (*i).mIndices[a] >= sMesh.mTexCoords.size())
{
if (!sMesh.mTexCoords.empty() && (*i).mIndices[a] >= sMesh.mTexCoords.size()) {
ASSIMP_LOG_WARN("3DS: Texture coordinate index overflow)");
(*i).mIndices[a] = (uint32_t)sMesh.mTexCoords.size() - 1;
}
@ -158,8 +144,7 @@ void Discreet3DSImporter::CheckIndices(D3DS::Mesh& sMesh)
// ------------------------------------------------------------------------------------------------
// Generate out unique verbose format representation
void Discreet3DSImporter::MakeUnique(D3DS::Mesh& sMesh)
{
void Discreet3DSImporter::MakeUnique(D3DS::Mesh &sMesh) {
// TODO: really necessary? I don't think. Just a waste of memory and time
// to do it now in a separate buffer.
@ -169,13 +154,11 @@ void Discreet3DSImporter::MakeUnique(D3DS::Mesh& sMesh)
if (sMesh.mTexCoords.size())
vNew2.resize(sMesh.mFaces.size() * 3);
for (unsigned int i = 0, base = 0; i < sMesh.mFaces.size();++i)
{
for (unsigned int i = 0, base = 0; i < sMesh.mFaces.size(); ++i) {
D3DS::Face &face = sMesh.mFaces[i];
// Positions
for (unsigned int a = 0; a < 3;++a,++base)
{
for (unsigned int a = 0; a < 3; ++a, ++base) {
vNew[base] = sMesh.mPositions[face.mIndices[a]];
if (sMesh.mTexCoords.size())
vNew2[base] = sMesh.mTexCoords[face.mIndices[a]];
@ -189,8 +172,7 @@ void Discreet3DSImporter::MakeUnique(D3DS::Mesh& sMesh)
// ------------------------------------------------------------------------------------------------
// Convert a 3DS texture to texture keys in an aiMaterial
void CopyTexture(aiMaterial& mat, D3DS::Texture& texture, aiTextureType type)
{
void CopyTexture(aiMaterial &mat, D3DS::Texture &texture, aiTextureType type) {
// Setup the texture name
aiString tex;
tex.Set(texture.mMapName);
@ -207,8 +189,7 @@ void CopyTexture(aiMaterial& mat, D3DS::Texture& texture, aiTextureType type)
// Mirroring - double the scaling values
// FIXME: this is not really correct ...
if (texture.mMapMode == aiTextureMapMode_Mirror)
{
if (texture.mMapMode == aiTextureMapMode_Mirror) {
texture.mScaleU *= 2.0;
texture.mScaleV *= 2.0;
texture.mOffsetU /= 2.0;
@ -222,12 +203,10 @@ void CopyTexture(aiMaterial& mat, D3DS::Texture& texture, aiTextureType type)
// ------------------------------------------------------------------------------------------------
// Convert a 3DS material to an aiMaterial
void Discreet3DSImporter::ConvertMaterial(D3DS::Material &oldMat,
aiMaterial& mat)
{
aiMaterial &mat) {
// NOTE: Pass the background image to the viewer by bypassing the
// material system. This is an evil hack, never do it again!
if (0 != mBackgroundImage.length() && bHasBG)
{
if (0 != mBackgroundImage.length() && bHasBG) {
aiString tex;
tex.Set(mBackgroundImage);
mat.AddProperty(&tex, AI_MATKEY_GLOBAL_BACKGROUND_IMAGE);
@ -253,14 +232,10 @@ void Discreet3DSImporter::ConvertMaterial(D3DS::Material& oldMat,
// Phong shininess and shininess strength
if (D3DS::Discreet3DS::Phong == oldMat.mShading ||
D3DS::Discreet3DS::Metal == oldMat.mShading)
{
if (!oldMat.mSpecularExponent || !oldMat.mShininessStrength)
{
D3DS::Discreet3DS::Metal == oldMat.mShading) {
if (!oldMat.mSpecularExponent || !oldMat.mShininessStrength) {
oldMat.mShading = D3DS::Discreet3DS::Gouraud;
}
else
{
} else {
mat.AddProperty(&oldMat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
mat.AddProperty(&oldMat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH);
}
@ -273,43 +248,45 @@ void Discreet3DSImporter::ConvertMaterial(D3DS::Material& oldMat,
mat.AddProperty<ai_real>(&oldMat.mBumpHeight, 1, AI_MATKEY_BUMPSCALING);
// Two sided rendering?
if (oldMat.mTwoSided)
{
if (oldMat.mTwoSided) {
int i = 1;
mat.AddProperty<int>(&i, 1, AI_MATKEY_TWOSIDED);
}
// Shading mode
aiShadingMode eShading = aiShadingMode_NoShading;
switch (oldMat.mShading)
{
switch (oldMat.mShading) {
case D3DS::Discreet3DS::Flat:
eShading = aiShadingMode_Flat; break;
eShading = aiShadingMode_Flat;
break;
// I don't know what "Wire" shading should be,
// assume it is simple lambertian diffuse shading
case D3DS::Discreet3DS::Wire:
{
case D3DS::Discreet3DS::Wire: {
// Set the wireframe flag
unsigned int iWire = 1;
mat.AddProperty<int>((int *)&iWire, 1, AI_MATKEY_ENABLE_WIREFRAME);
}
case D3DS::Discreet3DS::Gouraud:
eShading = aiShadingMode_Gouraud; break;
eShading = aiShadingMode_Gouraud;
break;
// assume cook-torrance shading for metals.
case D3DS::Discreet3DS::Phong:
eShading = aiShadingMode_Phong; break;
eShading = aiShadingMode_Phong;
break;
case D3DS::Discreet3DS::Metal:
eShading = aiShadingMode_CookTorrance; break;
eShading = aiShadingMode_CookTorrance;
break;
// FIX to workaround a warning with GCC 4 who complained
// about a missing case Blinn: here - Blinn isn't a valid
// value in the 3DS Loader, it is just needed for ASE
case D3DS::Discreet3DS::Blinn:
eShading = aiShadingMode_Blinn; break;
eShading = aiShadingMode_Blinn;
break;
}
int eShading_ = static_cast<int>(eShading);
mat.AddProperty<int>(&eShading_, 1, AI_MATKEY_SHADING_MODEL);
@ -352,8 +329,7 @@ void Discreet3DSImporter::ConvertMaterial(D3DS::Material& oldMat,
// ------------------------------------------------------------------------------------------------
// Split meshes by their materials and generate output aiMesh'es
void Discreet3DSImporter::ConvertMeshes(aiScene* pcOut)
{
void Discreet3DSImporter::ConvertMeshes(aiScene *pcOut) {
std::vector<aiMesh *> avOutMeshes;
avOutMeshes.reserve(mScene->mMeshes.size() * 2);
@ -368,13 +344,11 @@ void Discreet3DSImporter::ConvertMeshes(aiScene* pcOut)
unsigned int iNum = 0;
for (std::vector<unsigned int>::const_iterator a = (*i).mFaceMaterials.begin();
a != (*i).mFaceMaterials.end();++a,++iNum)
{
a != (*i).mFaceMaterials.end(); ++a, ++iNum) {
aiSplit[*a].push_back(iNum);
}
// now generate submeshes
for (unsigned int p = 0; p < mScene->mMaterials.size();++p)
{
for (unsigned int p = 0; p < mScene->mMaterials.size(); ++p) {
if (aiSplit[p].empty()) {
continue;
}
@ -399,20 +373,17 @@ void Discreet3DSImporter::ConvertMeshes(aiScene* pcOut)
meshOut->mVertices = new aiVector3D[meshOut->mNumVertices];
meshOut->mNormals = new aiVector3D[meshOut->mNumVertices];
if ((*i).mTexCoords.size())
{
if ((*i).mTexCoords.size()) {
meshOut->mTextureCoords[0] = new aiVector3D[meshOut->mNumVertices];
}
for (unsigned int q = 0, base = 0; q < aiSplit[p].size();++q)
{
for (unsigned int q = 0, base = 0; q < aiSplit[p].size(); ++q) {
unsigned int index = aiSplit[p][q];
aiFace &face = meshOut->mFaces[q];
face.mIndices = new unsigned int[3];
face.mNumIndices = 3;
for (unsigned int a = 0; a < 3;++a,++base)
{
for (unsigned int a = 0; a < 3; ++a, ++base) {
unsigned int idx = (*i).mFaces[index].mIndices[a];
meshOut->mVertices[base] = (*i).mPositions[idx];
meshOut->mNormals[base] = (*i).mNormals[idx];
@ -442,24 +413,21 @@ void Discreet3DSImporter::ConvertMeshes(aiScene* pcOut)
// ------------------------------------------------------------------------------------------------
// Add a node to the scenegraph and setup its final transformation
void Discreet3DSImporter::AddNodeToGraph(aiScene *pcSOut, aiNode *pcOut,
D3DS::Node* pcIn, aiMatrix4x4& /*absTrafo*/)
{
D3DS::Node *pcIn, aiMatrix4x4 & /*absTrafo*/) {
std::vector<unsigned int> iArray;
iArray.reserve(3);
aiMatrix4x4 abs;
// Find all meshes with the same name as the node
for (unsigned int a = 0; a < pcSOut->mNumMeshes;++a)
{
for (unsigned int a = 0; a < pcSOut->mNumMeshes; ++a) {
const D3DS::Mesh *pcMesh = (const D3DS::Mesh *)pcSOut->mMeshes[a]->mColors[0];
ai_assert(NULL != pcMesh);
ai_assert(nullptr != pcMesh);
if (pcIn->mName == pcMesh->mName)
iArray.push_back(a);
}
if (!iArray.empty())
{
if (!iArray.empty()) {
// The matrix should be identical for all meshes with the
// same name. It HAS to be identical for all meshes .....
D3DS::Mesh *imesh = ((D3DS::Mesh *)pcSOut->mMeshes[iArray[0]]->mColors[0]);
@ -467,7 +435,8 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
// Compute the inverse of the transformation matrix to move the
// vertices back to their relative and local space
aiMatrix4x4 mInv = imesh->mMat, mInvTransposed = imesh->mMat;
mInv.Inverse();mInvTransposed.Transpose();
mInv.Inverse();
mInvTransposed.Transpose();
aiVector3D pivot = pcIn->vPivot;
pcOut->mNumMeshes = (unsigned int)iArray.size();
@ -476,8 +445,7 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
const unsigned int iIndex = iArray[i];
aiMesh *const mesh = pcSOut->mMeshes[iIndex];
if (mesh->mColors[1] == NULL)
{
if (mesh->mColors[1] == nullptr) {
// Transform the vertices back into their local space
// fixme: consider computing normals after this, so we don't need to transform them
const aiVector3D *const pvEnd = mesh->mVertices + mesh->mNumVertices;
@ -489,8 +457,7 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
}
// Handle negative transformation matrix determinant -> invert vertex x
if (imesh->mMat.Determinant() < 0.0f)
{
if (imesh->mMat.Determinant() < 0.0f) {
/* we *must* have normals */
for (pvCurrent = mesh->mVertices, t2 = mesh->mNormals; pvCurrent != pvEnd; ++pvCurrent, ++t2) {
pvCurrent->x *= -1.f;
@ -500,16 +467,14 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
}
// Handle pivot point
if (pivot.x || pivot.y || pivot.z)
{
if (pivot.x || pivot.y || pivot.z) {
for (pvCurrent = mesh->mVertices; pvCurrent != pvEnd; ++pvCurrent) {
*pvCurrent -= pivot;
}
}
mesh->mColors[1] = (aiColor4D *)1;
}
else
} else
mesh->mColors[1] = (aiColor4D *)1;
// Setup the mesh index
@ -519,15 +484,13 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
// Setup the name of the node
// First instance keeps its name otherwise something might break, all others will be postfixed with their instance number
if (pcIn->mInstanceNumber > 1)
{
if (pcIn->mInstanceNumber > 1) {
char tmp[12];
ASSIMP_itoa10(tmp, pcIn->mInstanceNumber);
std::string tempStr = pcIn->mName + "_inst_";
tempStr += tmp;
pcOut->mName.Set(tempStr);
}
else
} else
pcOut->mName.Set(pcIn->mName);
// Now build the transformation matrix of the node
@ -540,26 +503,28 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
}
pcOut->mTransformation = aiMatrix4x4(pcIn->aRotationKeys[0].mValue.GetMatrix());
}
else if (pcIn->aCameraRollKeys.size())
{
} else if (pcIn->aCameraRollKeys.size()) {
aiMatrix4x4::RotationZ(AI_DEG_TO_RAD(-pcIn->aCameraRollKeys[0].mValue),
pcOut->mTransformation);
}
// SCALING
aiMatrix4x4 &m = pcOut->mTransformation;
if (pcIn->aScalingKeys.size())
{
if (pcIn->aScalingKeys.size()) {
const aiVector3D &v = pcIn->aScalingKeys[0].mValue;
m.a1 *= v.x; m.b1 *= v.x; m.c1 *= v.x;
m.a2 *= v.y; m.b2 *= v.y; m.c2 *= v.y;
m.a3 *= v.z; m.b3 *= v.z; m.c3 *= v.z;
m.a1 *= v.x;
m.b1 *= v.x;
m.c1 *= v.x;
m.a2 *= v.y;
m.b2 *= v.y;
m.c2 *= v.y;
m.a3 *= v.z;
m.b3 *= v.z;
m.c3 *= v.z;
}
// TRANSLATION
if (pcIn->aPositionKeys.size())
{
if (pcIn->aPositionKeys.size()) {
const aiVector3D &v = pcIn->aPositionKeys[0].mValue;
m.a4 += v.x;
m.b4 += v.y;
@ -569,21 +534,18 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
// Generate animation channels for the node
if (pcIn->aPositionKeys.size() > 1 || pcIn->aRotationKeys.size() > 1 ||
pcIn->aScalingKeys.size() > 1 || pcIn->aCameraRollKeys.size() > 1 ||
pcIn->aTargetPositionKeys.size() > 1)
{
pcIn->aTargetPositionKeys.size() > 1) {
aiAnimation *anim = pcSOut->mAnimations[0];
ai_assert(nullptr != anim);
if (pcIn->aCameraRollKeys.size() > 1)
{
if (pcIn->aCameraRollKeys.size() > 1) {
ASSIMP_LOG_DEBUG("3DS: Converting camera roll track ...");
// Camera roll keys - in fact they're just rotations
// around the camera's z axis. The angles are given
// in degrees (and they're clockwise).
pcIn->aRotationKeys.resize(pcIn->aCameraRollKeys.size());
for (unsigned int i = 0; i < pcIn->aCameraRollKeys.size();++i)
{
for (unsigned int i = 0; i < pcIn->aCameraRollKeys.size(); ++i) {
aiQuatKey &q = pcIn->aRotationKeys[i];
aiFloatKey &f = pcIn->aCameraRollKeys[i];
@ -652,8 +614,7 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
nda->mNodeName.Set(pcIn->mName);
// POSITION keys
if (pcIn->aPositionKeys.size() > 0)
{
if (pcIn->aPositionKeys.size() > 0) {
nda->mNumPositionKeys = (unsigned int)pcIn->aPositionKeys.size();
nda->mPositionKeys = new aiVectorKey[nda->mNumPositionKeys];
::memcpy(nda->mPositionKeys, &pcIn->aPositionKeys[0],
@ -661,15 +622,13 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
}
// ROTATION keys
if (pcIn->aRotationKeys.size() > 0)
{
if (pcIn->aRotationKeys.size() > 0) {
nda->mNumRotationKeys = (unsigned int)pcIn->aRotationKeys.size();
nda->mRotationKeys = new aiQuatKey[nda->mNumRotationKeys];
// Rotations are quaternion offsets
aiQuaternion abs1;
for (unsigned int n = 0; n < nda->mNumRotationKeys;++n)
{
for (unsigned int n = 0; n < nda->mNumRotationKeys; ++n) {
const aiQuatKey &q = pcIn->aRotationKeys[n];
abs1 = (n ? abs1 * q.mValue : q.mValue);
@ -679,8 +638,7 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
}
// SCALING keys
if (pcIn->aScalingKeys.size() > 0)
{
if (pcIn->aScalingKeys.size() > 0) {
nda->mNumScalingKeys = (unsigned int)pcIn->aScalingKeys.size();
nda->mScalingKeys = new aiVectorKey[nda->mNumScalingKeys];
::memcpy(nda->mScalingKeys, &pcIn->aScalingKeys[0],
@ -694,8 +652,7 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
// Recursively process all children
const unsigned int size = static_cast<unsigned int>(pcIn->mChildren.size());
for (unsigned int i = 0; i < size;++i)
{
for (unsigned int i = 0; i < size; ++i) {
pcOut->mChildren[i] = new aiNode();
pcOut->mChildren[i]->mParent = pcOut;
AddNodeToGraph(pcSOut, pcOut->mChildren[i], pcIn->mChildren[i], abs);
@ -704,16 +661,14 @@ void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,
// ------------------------------------------------------------------------------------------------
// Find out how many node animation channels we'll have finally
void CountTracks(D3DS::Node* node, unsigned int& cnt)
{
void CountTracks(D3DS::Node *node, unsigned int &cnt) {
//////////////////////////////////////////////////////////////////////////////
// We will never generate more than one channel for a node, so
// this is rather easy here.
if (node->aPositionKeys.size() > 1 || node->aRotationKeys.size() > 1 ||
node->aScalingKeys.size() > 1 || node->aCameraRollKeys.size() > 1 ||
node->aTargetPositionKeys.size() > 1)
{
node->aTargetPositionKeys.size() > 1) {
++cnt;
// account for the additional channel for the camera/spotlight target position
@ -727,11 +682,9 @@ void CountTracks(D3DS::Node* node, unsigned int& cnt)
// ------------------------------------------------------------------------------------------------
// Generate the output node graph
void Discreet3DSImporter::GenerateNodeGraph(aiScene* pcOut)
{
void Discreet3DSImporter::GenerateNodeGraph(aiScene *pcOut) {
pcOut->mRootNode = new aiNode();
if (0 == mRootNode->mChildren.size())
{
if (0 == mRootNode->mChildren.size()) {
//////////////////////////////////////////////////////////////////////////////
// It seems the file is so messed up that it has not even a hierarchy.
// generate a flat hiearachy which looks like this:
@ -752,8 +705,7 @@ void Discreet3DSImporter::GenerateNodeGraph(aiScene* pcOut)
// Build dummy nodes for all meshes
unsigned int a = 0;
for (unsigned int i = 0; i < pcOut->mNumMeshes;++i,++a)
{
for (unsigned int i = 0; i < pcOut->mNumMeshes; ++i, ++a) {
aiNode *pcNode = pcOut->mRootNode->mChildren[a] = new aiNode();
pcNode->mParent = pcOut->mRootNode;
pcNode->mMeshes = new unsigned int[1];
@ -765,8 +717,7 @@ void Discreet3DSImporter::GenerateNodeGraph(aiScene* pcOut)
}
// Build dummy nodes for all cameras
for (unsigned int i = 0; i < (unsigned int )mScene->mCameras.size();++i,++a)
{
for (unsigned int i = 0; i < (unsigned int)mScene->mCameras.size(); ++i, ++a) {
aiNode *pcNode = pcOut->mRootNode->mChildren[a] = new aiNode();
pcNode->mParent = pcOut->mRootNode;
@ -775,24 +726,20 @@ void Discreet3DSImporter::GenerateNodeGraph(aiScene* pcOut)
}
// Build dummy nodes for all lights
for (unsigned int i = 0; i < (unsigned int )mScene->mLights.size();++i,++a)
{
for (unsigned int i = 0; i < (unsigned int)mScene->mLights.size(); ++i, ++a) {
aiNode *pcNode = pcOut->mRootNode->mChildren[a] = new aiNode();
pcNode->mParent = pcOut->mRootNode;
// Build a name for the node
pcNode->mName = mScene->mLights[i]->mName;
}
}
else
{
} else {
// First of all: find out how many scaling, rotation and translation
// animation tracks we'll have afterwards
unsigned int numChannel = 0;
CountTracks(mRootNode, numChannel);
if (numChannel)
{
if (numChannel) {
// Allocate a primary animation channel
pcOut->mNumAnimations = 1;
pcOut->mAnimations = new aiAnimation *[1];
@ -811,37 +758,34 @@ void Discreet3DSImporter::GenerateNodeGraph(aiScene* pcOut)
}
// We used the first and second vertex color set to store some temporary values so we need to cleanup here
for (unsigned int a = 0; a < pcOut->mNumMeshes; ++a)
{
pcOut->mMeshes[a]->mColors[0] = NULL;
pcOut->mMeshes[a]->mColors[1] = NULL;
for (unsigned int a = 0; a < pcOut->mNumMeshes; ++a) {
pcOut->mMeshes[a]->mColors[0] = nullptr;
pcOut->mMeshes[a]->mColors[1] = nullptr;
}
pcOut->mRootNode->mTransformation = aiMatrix4x4(
1.f, 0.f, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
0.f, -1.f, 0.f, 0.f,
0.f,0.f,0.f,1.f) * pcOut->mRootNode->mTransformation;
0.f, 0.f, 0.f, 1.f) *
pcOut->mRootNode->mTransformation;
// If the root node is unnamed name it "<3DSRoot>"
if (::strstr(pcOut->mRootNode->mName.data, "UNNAMED") ||
(pcOut->mRootNode->mName.data[0] == '$' && pcOut->mRootNode->mName.data[1] == '$') )
{
(pcOut->mRootNode->mName.data[0] == '$' && pcOut->mRootNode->mName.data[1] == '$')) {
pcOut->mRootNode->mName.Set("<3DSRoot>");
}
}
// ------------------------------------------------------------------------------------------------
// Convert all meshes in the scene and generate the final output scene.
void Discreet3DSImporter::ConvertScene(aiScene* pcOut)
{
void Discreet3DSImporter::ConvertScene(aiScene *pcOut) {
// Allocate enough storage for all output materials
pcOut->mNumMaterials = (unsigned int)mScene->mMaterials.size();
pcOut->mMaterials = new aiMaterial *[pcOut->mNumMaterials];
// ... and convert the 3DS materials to aiMaterial's
for (unsigned int i = 0; i < pcOut->mNumMaterials;++i)
{
for (unsigned int i = 0; i < pcOut->mNumMaterials; ++i) {
aiMaterial *pcNew = new aiMaterial();
ConvertMaterial(mScene->mMaterials[i], *pcNew);
pcOut->mMaterials[i] = pcNew;
@ -852,16 +796,14 @@ void Discreet3DSImporter::ConvertScene(aiScene* pcOut)
// Now copy all light sources to the output scene
pcOut->mNumLights = (unsigned int)mScene->mLights.size();
if (pcOut->mNumLights)
{
if (pcOut->mNumLights) {
pcOut->mLights = new aiLight *[pcOut->mNumLights];
::memcpy(pcOut->mLights, &mScene->mLights[0], sizeof(void *) * pcOut->mNumLights);
}
// Now copy all cameras to the output scene
pcOut->mNumCameras = (unsigned int)mScene->mCameras.size();
if (pcOut->mNumCameras)
{
if (pcOut->mNumCameras) {
pcOut->mCameras = new aiCamera *[pcOut->mNumCameras];
::memcpy(pcOut->mCameras, &mScene->mCameras[0], sizeof(void *) * pcOut->mNumCameras);
}

View File

@ -43,16 +43,16 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef ASSIMP_BUILD_NO_EXPORT
#ifndef ASSIMP_BUILD_NO_3DS_EXPORTER
#include "3DS/3DSExporter.h"
#include "3DS/3DSLoader.h"
#include "3DS/3DSHelper.h"
#include "AssetLib/3DS/3DSExporter.h"
#include "AssetLib/3DS/3DSHelper.h"
#include "AssetLib/3DS/3DSLoader.h"
#include "PostProcessing/SplitLargeMeshes.h"
#include <assimp/SceneCombiner.h>
#include <assimp/StringComparison.h>
#include <assimp/IOSystem.hpp>
#include <assimp/DefaultLogger.hpp>
#include <assimp/Exporter.hpp>
#include <assimp/IOSystem.hpp>
#include <memory>
@ -70,14 +70,13 @@ namespace {
// size based on the then-position of the output stream cursor is filled in.
class ChunkWriter {
enum {
CHUNK_SIZE_NOT_SET = 0xdeadbeef
, SIZE_OFFSET = 2
CHUNK_SIZE_NOT_SET = 0xdeadbeef,
SIZE_OFFSET = 2
};
public:
ChunkWriter(StreamWriterLE& writer, uint16_t chunk_type)
: writer(writer)
{
public:
ChunkWriter(StreamWriterLE &writer, uint16_t chunk_type) :
writer(writer) {
chunk_start_pos = writer.GetCurrentPos();
writer.PutU2(chunk_type);
writer.PutU4((uint32_t)CHUNK_SIZE_NOT_SET);
@ -99,7 +98,6 @@ namespace {
std::size_t chunk_start_pos;
};
// Return an unique name for a given |mesh| attached to |node| that
// preserves the mesh's given name if it has one. |index| is the index
// of the mesh in |aiScene::mMeshes|.
@ -149,12 +147,11 @@ namespace {
CollectMeshes(node->mChildren[i], meshes);
}
}
}
} // namespace
// ------------------------------------------------------------------------------------------------
// Worker function for exporting a scene to 3DS. Prototyped and registered in Exporter.cpp
void ExportScene3DS(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* /*pProperties*/)
{
void ExportScene3DS(const char *pFile, IOSystem *pIOSystem, const aiScene *pScene, const ExportProperties * /*pProperties*/) {
std::shared_ptr<IOStream> outfile(pIOSystem->Open(pFile, "wb"));
if (!outfile) {
throw DeadlyExportError("Could not open output .3ds file: " + std::string(pFile));
@ -186,10 +183,8 @@ void ExportScene3DS(const char* pFile, IOSystem* pIOSystem, const aiScene* pScen
} // end of namespace Assimp
// ------------------------------------------------------------------------------------------------
Discreet3DSExporter:: Discreet3DSExporter(std::shared_ptr<IOStream> &outfile, const aiScene* scene)
: scene(scene)
, writer(outfile)
{
Discreet3DSExporter::Discreet3DSExporter(std::shared_ptr<IOStream> &outfile, const aiScene *scene) :
scene(scene), writer(outfile) {
CollectTrafos(scene->mRootNode, trafos);
CollectMeshes(scene->mRootNode, meshes);
@ -217,10 +212,8 @@ Discreet3DSExporter::~Discreet3DSExporter() {
// empty
}
// ------------------------------------------------------------------------------------------------
int Discreet3DSExporter::WriteHierarchy(const aiNode& node, int seq, int sibling_level)
{
int Discreet3DSExporter::WriteHierarchy(const aiNode &node, int seq, int sibling_level) {
// 3DS scene hierarchy is serialized as in http://www.martinreddy.net/gfx/3d/3DS.spec
{
ChunkWriter curRootChunk(writer, Discreet3DS::CHUNK_TRACKINFO);
@ -276,8 +269,7 @@ int Discreet3DSExporter::WriteHierarchy(const aiNode& node, int seq, int sibling
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSExporter::WriteMaterials()
{
void Discreet3DSExporter::WriteMaterials() {
for (unsigned int i = 0; i < scene->mNumMaterials; ++i) {
ChunkWriter curRootChunk(writer, Discreet3DS::CHUNK_MAT_MATERIAL);
const aiMaterial &mat = *scene->mMaterials[i];
@ -341,7 +333,6 @@ void Discreet3DSExporter::WriteMaterials()
writer.PutU2(static_cast<uint16_t>(shading_mode_out));
}
float f;
if (mat.Get(AI_MATKEY_SHININESS, f) == AI_SUCCESS) {
ChunkWriter chunk(writer, Discreet3DS::CHUNK_MAT_SHININESS);
@ -370,8 +361,7 @@ void Discreet3DSExporter::WriteMaterials()
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSExporter::WriteTexture(const aiMaterial& mat, aiTextureType type, uint16_t chunk_flags)
{
void Discreet3DSExporter::WriteTexture(const aiMaterial &mat, aiTextureType type, uint16_t chunk_flags) {
aiString path;
aiTextureMapMode map_mode[2] = {
aiTextureMapMode_Wrap, aiTextureMapMode_Wrap
@ -400,8 +390,7 @@ void Discreet3DSExporter::WriteTexture(const aiMaterial& mat, aiTextureType type
uint16_t val = 0; // WRAP
if (map_mode[0] == aiTextureMapMode_Mirror) {
val = 0x2;
}
else if (map_mode[0] == aiTextureMapMode_Decal) {
} else if (map_mode[0] == aiTextureMapMode_Decal) {
val = 0x10;
}
writer.PutU2(val);
@ -410,8 +399,7 @@ void Discreet3DSExporter::WriteTexture(const aiMaterial& mat, aiTextureType type
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSExporter::WriteMeshes()
{
void Discreet3DSExporter::WriteMeshes() {
// NOTE: 3DS allows for instances. However:
// i) not all importers support reading them
// ii) instances are not as flexible as they are in assimp, in particular,
@ -441,7 +429,6 @@ void Discreet3DSExporter::WriteMeshes()
const std::string &name = GetMeshName(mesh, mesh_idx, node);
WriteString(name);
// TRIMESH chunk
ChunkWriter chunk2(writer, Discreet3DS::CHUNK_TRIMESH);
@ -524,8 +511,7 @@ void Discreet3DSExporter::WriteMeshes()
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSExporter::WriteFaceMaterialChunk(const aiMesh& mesh)
{
void Discreet3DSExporter::WriteFaceMaterialChunk(const aiMesh &mesh) {
ChunkWriter curChunk(writer, Discreet3DS::CHUNK_FACEMAT);
const std::string &name = GetMaterialName(*scene->mMaterials[mesh.mMaterialIndex], mesh.mMaterialIndex);
WriteString(name);
@ -577,6 +563,5 @@ void Discreet3DSExporter::WritePercentChunk(double f) {
writer.PutF8(f);
}
#endif // ASSIMP_BUILD_NO_3DS_EXPORTER
#endif // ASSIMP_BUILD_NO_EXPORT

View File

@ -45,15 +45,14 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* http://www.the-labs.com/Blender/3DS-details.html
*/
#ifndef ASSIMP_BUILD_NO_3DS_IMPORTER
#include "3DSLoader.h"
#include <assimp/IOSystem.hpp>
#include <assimp/StringComparison.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/importerdesc.h>
#include <assimp/StringComparison.h>
#include <assimp/IOSystem.hpp>
using namespace Assimp;
@ -85,8 +84,7 @@ static const aiImporterDesc desc = {
if (chunkSize <= 0) \
continue; \
const unsigned int oldReadLimit = stream->SetReadLimit( \
stream->GetCurrentPos() + chunkSize); \
stream->GetCurrentPos() + chunkSize);
// ------------------------------------------------------------------------------------------------
// End a parsing block
@ -100,15 +98,8 @@ static const aiImporterDesc desc = {
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
Discreet3DSImporter::Discreet3DSImporter()
: stream()
, mLastNodeIndex()
, mCurrentNode()
, mRootNode()
, mScene()
, mMasterScale()
, bHasBG()
, bIsPrj() {
Discreet3DSImporter::Discreet3DSImporter() :
stream(), mLastNodeIndex(), mCurrentNode(), mRootNode(), mScene(), mMasterScale(), bHasBG(), bIsPrj() {
// empty
}
@ -151,8 +142,7 @@ void Discreet3DSImporter::SetupProperties(const Importer* /*pImp*/) {
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void Discreet3DSImporter::InternReadFile(const std::string &pFile,
aiScene* pScene, IOSystem* pIOHandler)
{
aiScene *pScene, IOSystem *pIOHandler) {
StreamReaderLE theStream(pIOHandler->Open(pFile, "rb"));
// We should have at least one chunk
@ -172,7 +162,7 @@ void Discreet3DSImporter::InternReadFile( const std::string& pFile,
mRootNode = mCurrentNode;
mRootNode->mHierarchyPos = -1;
mRootNode->mHierarchyIndex = -1;
mRootNode->mParent = NULL;
mRootNode->mParent = nullptr;
mMasterScale = 1.0f;
mBackgroundImage = "";
bHasBG = false;
@ -224,8 +214,10 @@ void Discreet3DSImporter::InternReadFile( const std::string& pFile,
// Applies a master-scaling factor to the imported scene
void Discreet3DSImporter::ApplyMasterScale(aiScene *pScene) {
// There are some 3DS files with a zero scaling factor
if (!mMasterScale)mMasterScale = 1.0f;
else mMasterScale = 1.0f / mMasterScale;
if (!mMasterScale)
mMasterScale = 1.0f;
else
mMasterScale = 1.0f / mMasterScale;
// Construct an uniform scaling matrix and multiply with it
pScene->mRootNode->mTransformation *= aiMatrix4x4(
@ -239,8 +231,7 @@ void Discreet3DSImporter::ApplyMasterScale(aiScene* pScene) {
// ------------------------------------------------------------------------------------------------
// Reads a new chunk from the file
void Discreet3DSImporter::ReadChunk(Discreet3DS::Chunk* pcOut)
{
void Discreet3DSImporter::ReadChunk(Discreet3DS::Chunk *pcOut) {
ai_assert(pcOut != nullptr);
pcOut->Flag = stream->GetI2();
@ -257,8 +248,7 @@ void Discreet3DSImporter::ReadChunk(Discreet3DS::Chunk* pcOut)
// ------------------------------------------------------------------------------------------------
// Skip a chunk
void Discreet3DSImporter::SkipChunk()
{
void Discreet3DSImporter::SkipChunk() {
Discreet3DS::Chunk psChunk;
ReadChunk(&psChunk);
@ -268,13 +258,11 @@ void Discreet3DSImporter::SkipChunk()
// ------------------------------------------------------------------------------------------------
// Process the primary chunk of the file
void Discreet3DSImporter::ParseMainChunk()
{
void Discreet3DSImporter::ParseMainChunk() {
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_PRJ:
bIsPrj = true;
@ -289,13 +277,11 @@ void Discreet3DSImporter::ParseMainChunk()
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseEditorChunk()
{
void Discreet3DSImporter::ParseEditorChunk() {
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_OBJMESH:
ParseObjectChunk();
@ -308,36 +294,31 @@ void Discreet3DSImporter::ParseEditorChunk()
ParseKeyframeChunk();
break;
case Discreet3DS::CHUNK_VERSION:
{
case Discreet3DS::CHUNK_VERSION: {
// print the version number
char buff[10];
ASSIMP_itoa10(buff, stream->GetI2());
ASSIMP_LOG_INFO_F(std::string("3DS file format version: "), buff);
}
break;
} break;
};
ASSIMP_3DS_END_CHUNK();
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseObjectChunk()
{
void Discreet3DSImporter::ParseObjectChunk() {
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_OBJBLOCK:
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_OBJBLOCK: {
unsigned int cnt = 0;
const char *sz = (const char *)stream->GetPtr();
// Get the name of the geometry object
while (stream->GetI1())++cnt;
while (stream->GetI1())
++cnt;
ParseChunk(sz, cnt);
}
break;
} break;
case Discreet3DS::CHUNK_MAT_MATERIAL:
@ -351,24 +332,22 @@ void Discreet3DSImporter::ParseObjectChunk()
// This is the ambient base color of the scene.
// We add it to the ambient color of all materials
ParseColorChunk(&mClrAmbient, true);
if (is_qnan(mClrAmbient.r))
{
if (is_qnan(mClrAmbient.r)) {
// We failed to read the ambient base color.
ASSIMP_LOG_ERROR("3DS: Failed to read ambient base color");
mClrAmbient.r = mClrAmbient.g = mClrAmbient.b = 0.0f;
}
break;
case Discreet3DS::CHUNK_BIT_MAP:
{
case Discreet3DS::CHUNK_BIT_MAP: {
// Specifies the background image. The string should already be
// properly 0 terminated but we need to be sure
unsigned int cnt = 0;
const char *sz = (const char *)stream->GetPtr();
while (stream->GetI1())++cnt;
while (stream->GetI1())
++cnt;
mBackgroundImage = std::string(sz, cnt);
}
break;
} break;
case Discreet3DS::CHUNK_BIT_MAP_EXISTS:
bHasBG = true;
@ -383,8 +362,7 @@ void Discreet3DSImporter::ParseObjectChunk()
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseChunk(const char* name, unsigned int num)
{
void Discreet3DSImporter::ParseChunk(const char *name, unsigned int num) {
ASSIMP_3DS_BEGIN_CHUNK();
// IMPLEMENTATION NOTE;
@ -393,20 +371,16 @@ void Discreet3DSImporter::ParseChunk(const char* name, unsigned int num)
// to to be able to return valid cameras/lights even if no scenegraph is given.
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_TRIMESH:
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_TRIMESH: {
// this starts a new triangle mesh
mScene->mMeshes.push_back(D3DS::Mesh(std::string(name, num)));
// Read mesh chunks
ParseMeshChunk();
}
break;
} break;
case Discreet3DS::CHUNK_LIGHT:
{
case Discreet3DS::CHUNK_LIGHT: {
// This starts a new light
aiLight *light = new aiLight();
mScene->mLights.push_back(light);
@ -429,15 +403,13 @@ void Discreet3DSImporter::ParseChunk(const char* name, unsigned int num)
light->mColorSpecular = light->mColorDiffuse;
light->mColorAmbient = mClrAmbient;
if (light->mType == aiLightSource_UNDEFINED)
{
if (light->mType == aiLightSource_UNDEFINED) {
// It must be a point light
light->mType = aiLightSource_POINT;
}}
break;
}
} break;
case Discreet3DS::CHUNK_CAMERA:
{
case Discreet3DS::CHUNK_CAMERA: {
// This starts a new camera
aiCamera *camera = new aiCamera();
mScene->mCameras.push_back(camera);
@ -459,8 +431,8 @@ void Discreet3DSImporter::ParseChunk(const char* name, unsigned int num)
ASSIMP_LOG_ERROR("3DS: Unable to read proper camera look-at vector");
camera->mLookAt = aiVector3D(0.0, 1.0, 0.0);
}
else camera->mLookAt /= len;
} else
camera->mLookAt /= len;
// And finally - the camera rotation angle, in counter clockwise direction
const ai_real angle = AI_DEG_TO_RAD(stream->GetF4());
@ -476,21 +448,19 @@ void Discreet3DSImporter::ParseChunk(const char* name, unsigned int num)
// Now check for further subchunks
if (!bIsPrj) /* fixme */ {
ParseCameraChunk();
}}
break;
}
} break;
};
ASSIMP_3DS_END_CHUNK();
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseLightChunk()
{
void Discreet3DSImporter::ParseLightChunk() {
ASSIMP_3DS_BEGIN_CHUNK();
aiLight *light = mScene->mLights.back();
// get chunk type
switch (chunk.Flag)
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_DL_SPOTLIGHT:
// Now we can be sure that the light is a spot light
light->mType = aiLightSource_SPOT;
@ -531,14 +501,12 @@ void Discreet3DSImporter::ParseLightChunk()
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseCameraChunk()
{
void Discreet3DSImporter::ParseCameraChunk() {
ASSIMP_3DS_BEGIN_CHUNK();
aiCamera *camera = mScene->mCameras.back();
// get chunk type
switch (chunk.Flag)
{
switch (chunk.Flag) {
// near and far clip plane
case Discreet3DS::CHUNK_CAM_RANGES:
camera->mClipPlaneNear = stream->GetF4();
@ -550,13 +518,11 @@ void Discreet3DSImporter::ParseCameraChunk()
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseKeyframeChunk()
{
void Discreet3DSImporter::ParseKeyframeChunk() {
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_TRACKCAMTGT:
case Discreet3DS::CHUNK_TRACKSPOTL:
case Discreet3DS::CHUNK_TRACKCAMERA:
@ -574,8 +540,7 @@ void Discreet3DSImporter::ParseKeyframeChunk()
// ------------------------------------------------------------------------------------------------
// Little helper function for ParseHierarchyChunk
void Discreet3DSImporter::InverseNodeSearch(D3DS::Node* pcNode,D3DS::Node* pcCurrent)
{
void Discreet3DSImporter::InverseNodeSearch(D3DS::Node *pcNode, D3DS::Node *pcCurrent) {
if (!pcCurrent) {
mRootNode->push_back(pcNode);
return;
@ -584,8 +549,8 @@ void Discreet3DSImporter::InverseNodeSearch(D3DS::Node* pcNode,D3DS::Node* pcCur
if (pcCurrent->mHierarchyPos == pcNode->mHierarchyPos) {
if (pcCurrent->mParent) {
pcCurrent->mParent->push_back(pcNode);
}
else pcCurrent->push_back(pcNode);
} else
pcCurrent->push_back(pcNode);
return;
}
return InverseNodeSearch(pcNode, pcCurrent->mParent);
@ -611,15 +576,13 @@ D3DS::Node* FindNode(D3DS::Node* root, const std::string& name) {
// ------------------------------------------------------------------------------------------------
// Binary predicate for std::unique()
template <class T>
bool KeyUniqueCompare(const T& first, const T& second)
{
bool KeyUniqueCompare(const T &first, const T &second) {
return first.mTime == second.mTime;
}
// ------------------------------------------------------------------------------------------------
// Skip some additional import data.
void Discreet3DSImporter::SkipTCBInfo()
{
void Discreet3DSImporter::SkipTCBInfo() {
unsigned int flags = stream->GetI2();
if (!flags) {
@ -649,13 +612,11 @@ void Discreet3DSImporter::SkipTCBInfo()
// ------------------------------------------------------------------------------------------------
// Read hierarchy and keyframe info
void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
{
void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent) {
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_TRACKOBJNAME:
// This is the name of the object to which the track applies. The chunk also
@ -666,7 +627,8 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
unsigned int cnt = 0;
const char *sz = (const char *)stream->GetPtr();
while (stream->GetI1())++cnt;
while (stream->GetI1())
++cnt;
std::string name = std::string(sz, cnt);
// Now find out whether we have this node already (target animation channels
@ -674,11 +636,9 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
D3DS::Node *pcNode = FindNode(mRootNode, name);
int instanceNumber = 1;
if ( pcNode)
{
if (pcNode) {
// if the source is not a CHUNK_TRACKINFO block it won't be an object instance
if (parent != Discreet3DS::CHUNK_TRACKINFO)
{
if (parent != Discreet3DS::CHUNK_TRACKINFO) {
mCurrentNode = pcNode;
break;
}
@ -702,14 +662,12 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
// add to the parent of the last touched node
mCurrentNode->mParent->push_back(pcNode);
mLastNodeIndex++;
}
else if(hierarchy >= mLastNodeIndex) {
} else if (hierarchy >= mLastNodeIndex) {
// place it at the current position in the hierarchy
mCurrentNode->push_back(pcNode);
mLastNodeIndex = hierarchy;
}
else {
} else {
// need to go back to the specified position in the hierarchy.
InverseNodeSearch(pcNode, mCurrentNode);
mLastNodeIndex++;
@ -724,7 +682,8 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
// This is the "real" name of a $$$DUMMY object
{
const char *sz = (const char *)stream->GetPtr();
while (stream->GetI1());
while (stream->GetI1())
;
// If object name is DUMMY, take this one instead
if (mCurrentNode->mName == "$$$DUMMY") {
@ -736,8 +695,7 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
case Discreet3DS::CHUNK_TRACKPIVOT:
if ( Discreet3DS::CHUNK_TRACKINFO != parent)
{
if (Discreet3DS::CHUNK_TRACKINFO != parent) {
ASSIMP_LOG_WARN("3DS: Skipping pivot subchunk for non usual object");
break;
}
@ -748,11 +706,9 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
mCurrentNode->vPivot.z = stream->GetF4();
break;
// ////////////////////////////////////////////////////////////////////
// POSITION KEYFRAME
case Discreet3DS::CHUNK_TRACKPOS:
{
case Discreet3DS::CHUNK_TRACKPOS: {
stream->IncPtr(10);
const unsigned int numFrames = stream->GetI4();
bool sortKeys = false;
@ -762,8 +718,8 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
std::vector<aiVectorKey> *l;
if (Discreet3DS::CHUNK_TRACKCAMTGT == parent || Discreet3DS::CHUNK_TRACKLIGTGT == parent) {
l = &mCurrentNode->aTargetPositionKeys;
}
else l = & mCurrentNode->aPositionKeys;
} else
l = &mCurrentNode->aPositionKeys;
l->reserve(numFrames);
for (unsigned int i = 0; i < numFrames; ++i) {
@ -790,14 +746,14 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
if (sortKeys) {
std::stable_sort(l->begin(), l->end());
l->erase(std::unique(l->begin(), l->end(), &KeyUniqueCompare<aiVectorKey>), l->end());
}}
}
}
break;
// ////////////////////////////////////////////////////////////////////
// CAMERA ROLL KEYFRAME
case Discreet3DS::CHUNK_TRACKROLL:
{
case Discreet3DS::CHUNK_TRACKROLL: {
// roll keys are accepted for cameras only
if (parent != Discreet3DS::CHUNK_TRACKCAMERA) {
ASSIMP_LOG_WARN("3DS: Ignoring roll track for non-camera object");
@ -832,24 +788,19 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
if (sortKeys) {
std::stable_sort(l->begin(), l->end());
l->erase(std::unique(l->begin(), l->end(), &KeyUniqueCompare<aiFloatKey>), l->end());
}}
break;
}
} break;
// ////////////////////////////////////////////////////////////////////
// CAMERA FOV KEYFRAME
case Discreet3DS::CHUNK_TRACKFOV:
{
case Discreet3DS::CHUNK_TRACKFOV: {
ASSIMP_LOG_ERROR("3DS: Skipping FOV animation track. "
"This is not supported");
}
break;
} break;
// ////////////////////////////////////////////////////////////////////
// ROTATION KEYFRAME
case Discreet3DS::CHUNK_TRACKROTATE:
{
case Discreet3DS::CHUNK_TRACKROTATE: {
stream->IncPtr(10);
const unsigned int numFrames = stream->GetI4();
@ -888,13 +839,12 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
if (sortKeys) {
std::stable_sort(l->begin(), l->end());
l->erase(std::unique(l->begin(), l->end(), &KeyUniqueCompare<aiQuatKey>), l->end());
}}
break;
}
} break;
// ////////////////////////////////////////////////////////////////////
// SCALING KEYFRAME
case Discreet3DS::CHUNK_TRACKSCALE:
{
case Discreet3DS::CHUNK_TRACKSCALE: {
stream->IncPtr(10);
const unsigned int numFrames = stream->GetI2();
stream->IncPtr(2);
@ -931,8 +881,8 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
if (sortKeys) {
std::stable_sort(l->begin(), l->end());
l->erase(std::unique(l->begin(), l->end(), &KeyUniqueCompare<aiVectorKey>), l->end());
}}
break;
}
} break;
};
ASSIMP_3DS_END_CHUNK();
@ -940,18 +890,15 @@ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent)
// ------------------------------------------------------------------------------------------------
// Read a face chunk - it contains smoothing groups and material assignments
void Discreet3DSImporter::ParseFaceChunk()
{
void Discreet3DSImporter::ParseFaceChunk() {
ASSIMP_3DS_BEGIN_CHUNK();
// Get the mesh we're currently working on
D3DS::Mesh &mMesh = mScene->mMeshes.back();
// Get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_SMOOLIST:
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_SMOOLIST: {
// This is the list of smoothing groups - a bitfield for every face.
// Up to 32 smoothing groups assigned to a single face.
unsigned int num = chunkSize / 4, m = 0;
@ -961,14 +908,14 @@ void Discreet3DSImporter::ParseFaceChunk()
for (std::vector<D3DS::Face>::iterator i = mMesh.mFaces.begin(); m != num; ++i, ++m) {
// nth bit is set for nth smoothing group
(*i).iSmoothGroup = stream->GetI4();
}}
break;
}
} break;
case Discreet3DS::CHUNK_FACEMAT:
{
case Discreet3DS::CHUNK_FACEMAT: {
// at fist an asciiz with the material name
const char *sz = (const char *)stream->GetPtr();
while (stream->GetI1());
while (stream->GetI1())
;
// find the index of the material
unsigned int idx = 0xcdcdcdcd, cnt = 0;
@ -991,28 +938,25 @@ void Discreet3DSImporter::ParseFaceChunk()
// check range
if (fidx >= mMesh.mFaceMaterials.size()) {
ASSIMP_LOG_ERROR("3DS: Invalid face index in face material list");
} else
mMesh.mFaceMaterials[fidx] = idx;
}
else mMesh.mFaceMaterials[fidx] = idx;
}}
break;
} break;
};
ASSIMP_3DS_END_CHUNK();
}
// ------------------------------------------------------------------------------------------------
// Read a mesh chunk. Here's the actual mesh data
void Discreet3DSImporter::ParseMeshChunk()
{
void Discreet3DSImporter::ParseMeshChunk() {
ASSIMP_3DS_BEGIN_CHUNK();
// Get the mesh we're currently working on
D3DS::Mesh &mMesh = mScene->mMeshes.back();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_VERTLIST:
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_VERTLIST: {
// This is the list of all vertices in the current mesh
int num = (int)(uint16_t)stream->GetI2();
mMesh.mPositions.reserve(num);
@ -1022,10 +966,9 @@ void Discreet3DSImporter::ParseMeshChunk()
v.y = stream->GetF4();
v.z = stream->GetF4();
mMesh.mPositions.push_back(v);
}}
break;
case Discreet3DS::CHUNK_TRMATRIX:
{
}
} break;
case Discreet3DS::CHUNK_TRMATRIX: {
// This is the RLEATIVE transformation matrix of the current mesh. Vertices are
// pretransformed by this matrix wonder.
mMesh.mMat.a1 = stream->GetF4();
@ -1040,11 +983,9 @@ void Discreet3DSImporter::ParseMeshChunk()
mMesh.mMat.a4 = stream->GetF4();
mMesh.mMat.b4 = stream->GetF4();
mMesh.mMat.c4 = stream->GetF4();
}
break;
} break;
case Discreet3DS::CHUNK_MAPLIST:
{
case Discreet3DS::CHUNK_MAPLIST: {
// This is the list of all UV coords in the current mesh
int num = (int)(uint16_t)stream->GetI2();
mMesh.mTexCoords.reserve(num);
@ -1053,11 +994,10 @@ void Discreet3DSImporter::ParseMeshChunk()
v.x = stream->GetF4();
v.y = stream->GetF4();
mMesh.mTexCoords.push_back(v);
}}
break;
}
} break;
case Discreet3DS::CHUNK_FACELIST:
{
case Discreet3DS::CHUNK_FACELIST: {
// This is the list of all faces in the current mesh
int num = (int)(uint16_t)stream->GetI2();
mMesh.mFaces.reserve(num);
@ -1081,19 +1021,16 @@ void Discreet3DSImporter::ParseMeshChunk()
chunkSize = (int)stream->GetRemainingSizeToLimit();
if (chunkSize > (int)sizeof(Discreet3DS::Chunk))
ParseFaceChunk();
}
break;
} break;
};
ASSIMP_3DS_END_CHUNK();
}
// ------------------------------------------------------------------------------------------------
// Read a 3DS material chunk
void Discreet3DSImporter::ParseMaterialChunk()
{
void Discreet3DSImporter::ParseMaterialChunk() {
ASSIMP_3DS_BEGIN_CHUNK();
switch (chunk.Flag)
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_MAT_MATNAME:
{
@ -1106,13 +1043,11 @@ void Discreet3DSImporter::ParseMaterialChunk()
if (!cnt) {
// This may not be, we use the default name instead
ASSIMP_LOG_ERROR("3DS: Empty material name");
}
else mScene->mMaterials.back().mName = std::string(sz,cnt);
}
break;
} else
mScene->mMaterials.back().mName = std::string(sz, cnt);
} break;
case Discreet3DS::CHUNK_MAT_DIFFUSE:
{
case Discreet3DS::CHUNK_MAT_DIFFUSE: {
// This is the diffuse material color
aiColor3D *pc = &mScene->mMaterials.back().mDiffuse;
ParseColorChunk(pc);
@ -1120,11 +1055,10 @@ void Discreet3DSImporter::ParseMaterialChunk()
// color chunk is invalid. Simply ignore it
ASSIMP_LOG_ERROR("3DS: Unable to read DIFFUSE chunk");
pc->r = pc->g = pc->b = 1.0f;
}}
break;
}
} break;
case Discreet3DS::CHUNK_MAT_SPECULAR:
{
case Discreet3DS::CHUNK_MAT_SPECULAR: {
// This is the specular material color
aiColor3D *pc = &mScene->mMaterials.back().mSpecular;
ParseColorChunk(pc);
@ -1132,11 +1066,10 @@ void Discreet3DSImporter::ParseMaterialChunk()
// color chunk is invalid. Simply ignore it
ASSIMP_LOG_ERROR("3DS: Unable to read SPECULAR chunk");
pc->r = pc->g = pc->b = 1.0f;
}}
break;
}
} break;
case Discreet3DS::CHUNK_MAT_AMBIENT:
{
case Discreet3DS::CHUNK_MAT_AMBIENT: {
// This is the ambient material color
aiColor3D *pc = &mScene->mMaterials.back().mAmbient;
ParseColorChunk(pc);
@ -1144,11 +1077,10 @@ void Discreet3DSImporter::ParseMaterialChunk()
// color chunk is invalid. Simply ignore it
ASSIMP_LOG_ERROR("3DS: Unable to read AMBIENT chunk");
pc->r = pc->g = pc->b = 0.0f;
}}
break;
}
} break;
case Discreet3DS::CHUNK_MAT_SELF_ILLUM:
{
case Discreet3DS::CHUNK_MAT_SELF_ILLUM: {
// This is the emissive material color
aiColor3D *pc = &mScene->mMaterials.back().mEmissive;
ParseColorChunk(pc);
@ -1156,11 +1088,10 @@ void Discreet3DSImporter::ParseMaterialChunk()
// color chunk is invalid. Simply ignore it
ASSIMP_LOG_ERROR("3DS: Unable to read EMISSIVE chunk");
pc->r = pc->g = pc->b = 0.0f;
}}
break;
}
} break;
case Discreet3DS::CHUNK_MAT_TRANSPARENCY:
{
case Discreet3DS::CHUNK_MAT_TRANSPARENCY: {
// This is the material's transparency
ai_real *pcf = &mScene->mMaterials.back().mTransparency;
*pcf = ParsePercentageChunk();
@ -1170,8 +1101,7 @@ void Discreet3DSImporter::ParseMaterialChunk()
*pcf = ai_real(1.0);
else
*pcf = ai_real(1.0) - *pcf * (ai_real)0xFFFF / ai_real(100.0);
}
break;
} break;
case Discreet3DS::CHUNK_MAT_SHADING:
// This is the material shading mode
@ -1183,37 +1113,32 @@ void Discreet3DSImporter::ParseMaterialChunk()
mScene->mMaterials.back().mTwoSided = true;
break;
case Discreet3DS::CHUNK_MAT_SHININESS:
{ // This is the shininess of the material
case Discreet3DS::CHUNK_MAT_SHININESS: { // This is the shininess of the material
ai_real *pcf = &mScene->mMaterials.back().mSpecularExponent;
*pcf = ParsePercentageChunk();
if (is_qnan(*pcf))
*pcf = 0.0;
else *pcf *= (ai_real)0xFFFF;
}
break;
else
*pcf *= (ai_real)0xFFFF;
} break;
case Discreet3DS::CHUNK_MAT_SHININESS_PERCENT:
{ // This is the shininess strength of the material
case Discreet3DS::CHUNK_MAT_SHININESS_PERCENT: { // This is the shininess strength of the material
ai_real *pcf = &mScene->mMaterials.back().mShininessStrength;
*pcf = ParsePercentageChunk();
if (is_qnan(*pcf))
*pcf = ai_real(0.0);
else
*pcf *= (ai_real)0xffff / ai_real(100.0);
}
break;
} break;
case Discreet3DS::CHUNK_MAT_SELF_ILPCT:
{ // This is the self illumination strength of the material
case Discreet3DS::CHUNK_MAT_SELF_ILPCT: { // This is the self illumination strength of the material
ai_real f = ParsePercentageChunk();
if (is_qnan(f))
f = ai_real(0.0);
else
f *= (ai_real)0xFFFF / ai_real(100.0);
mScene->mMaterials.back().mEmissive = aiColor3D(f, f, f);
}
break;
} break;
// Parse texture chunks
case Discreet3DS::CHUNK_MAT_TEXTURE:
@ -1249,24 +1174,19 @@ void Discreet3DSImporter::ParseMaterialChunk()
}
// ------------------------------------------------------------------------------------------------
void Discreet3DSImporter::ParseTextureChunk(D3DS::Texture* pcOut)
{
void Discreet3DSImporter::ParseTextureChunk(D3DS::Texture *pcOut) {
ASSIMP_3DS_BEGIN_CHUNK();
// get chunk type
switch (chunk.Flag)
{
case Discreet3DS::CHUNK_MAPFILE:
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_MAPFILE: {
// The material name string is already zero-terminated, but we need to be sure ...
const char *sz = (const char *)stream->GetPtr();
unsigned int cnt = 0;
while (stream->GetI1())
++cnt;
pcOut->mMapName = std::string(sz, cnt);
}
break;
} break;
case Discreet3DS::CHUNK_PERCENTD:
// Manually parse the blend factor
@ -1286,8 +1206,7 @@ void Discreet3DSImporter::ParseTextureChunk(D3DS::Texture* pcOut)
case Discreet3DS::CHUNK_MAT_MAP_USCALE:
// Texture coordinate scaling in the U direction
pcOut->mScaleU = stream->GetF4();
if (0.0f == pcOut->mScaleU)
{
if (0.0f == pcOut->mScaleU) {
ASSIMP_LOG_WARN("Texture coordinate scaling in the x direction is zero. Assuming 1.");
pcOut->mScaleU = 1.0f;
}
@ -1295,8 +1214,7 @@ void Discreet3DSImporter::ParseTextureChunk(D3DS::Texture* pcOut)
case Discreet3DS::CHUNK_MAT_MAP_VSCALE:
// Texture coordinate scaling in the V direction
pcOut->mScaleV = stream->GetF4();
if (0.0f == pcOut->mScaleV)
{
if (0.0f == pcOut->mScaleV) {
ASSIMP_LOG_WARN("Texture coordinate scaling in the y direction is zero. Assuming 1.");
pcOut->mScaleV = 1.0f;
}
@ -1317,8 +1235,7 @@ void Discreet3DSImporter::ParseTextureChunk(D3DS::Texture* pcOut)
pcOut->mRotation = -AI_DEG_TO_RAD(stream->GetF4());
break;
case Discreet3DS::CHUNK_MAT_MAP_TILING:
{
case Discreet3DS::CHUNK_MAT_MAP_TILING: {
const uint16_t iFlags = stream->GetI2();
// Get the mapping mode (for both axes)
@ -1329,9 +1246,9 @@ void Discreet3DSImporter::ParseTextureChunk(D3DS::Texture* pcOut)
pcOut->mMapMode = aiTextureMapMode_Decal;
// wrapping in all remaining cases
else pcOut->mMapMode = aiTextureMapMode_Wrap;
}
break;
else
pcOut->mMapMode = aiTextureMapMode_Wrap;
} break;
};
ASSIMP_3DS_END_CHUNK();
@ -1354,9 +1271,8 @@ ai_real Discreet3DSImporter::ParsePercentageChunk() {
// ------------------------------------------------------------------------------------------------
// Read a color chunk. If a percentage chunk is found instead it is read as a grayscale color
void Discreet3DSImporter::ParseColorChunk( aiColor3D* out, bool acceptPercent )
{
ai_assert(out != NULL);
void Discreet3DSImporter::ParseColorChunk(aiColor3D *out, bool acceptPercent) {
ai_assert(out != nullptr);
// error return value
const ai_real qnan = get_qnan();
@ -1369,8 +1285,7 @@ void Discreet3DSImporter::ParseColorChunk( aiColor3D* out, bool acceptPercent )
bool bGamma = false;
// Get the type of the chunk
switch(chunk.Flag)
{
switch (chunk.Flag) {
case Discreet3DS::CHUNK_LINRGBF:
bGamma = true;
@ -1386,8 +1301,7 @@ void Discreet3DSImporter::ParseColorChunk( aiColor3D* out, bool acceptPercent )
case Discreet3DS::CHUNK_LINRGBB:
bGamma = true;
case Discreet3DS::CHUNK_RGBB:
{
case Discreet3DS::CHUNK_RGBB: {
if (sizeof(char) * 3 > diff) {
*out = clrError;
return;
@ -1396,8 +1310,7 @@ void Discreet3DSImporter::ParseColorChunk( aiColor3D* out, bool acceptPercent )
out->r = (ai_real)(uint8_t)stream->GetI1() * invVal;
out->g = (ai_real)(uint8_t)stream->GetI1() * invVal;
out->b = (ai_real)(uint8_t)stream->GetI1() * invVal;
}
break;
} break;
// Percentage chunks are accepted, too.
case Discreet3DS::CHUNK_PERCENTF:

View File

@ -44,13 +44,13 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "D3MFExporter.h"
#include <assimp/scene.h>
#include <assimp/IOSystem.hpp>
#include <assimp/IOStream.hpp>
#include <assimp/Exporter.hpp>
#include <assimp/DefaultLogger.hpp>
#include <assimp/StringUtils.h>
#include <assimp/Exceptional.h>
#include <assimp/StringUtils.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/Exporter.hpp>
#include <assimp/IOStream.hpp>
#include <assimp/IOSystem.hpp>
#include "3MFXmlTags.h"
#include "D3MFOpcPackage.h"
@ -83,15 +83,8 @@ void ExportScene3MF( const char* pFile, IOSystem* pIOSystem, const aiScene* pSce
namespace D3MF {
D3MFExporter::D3MFExporter( const char* pFile, const aiScene* pScene )
: mArchiveName( pFile )
, m_zipArchive( nullptr )
, mScene( pScene )
, mModelOutput()
, mRelOutput()
, mContentOutput()
, mBuildItems()
, mRelations() {
D3MFExporter::D3MFExporter(const char *pFile, const aiScene *pScene) :
mArchiveName(pFile), m_zipArchive(nullptr), mScene(pScene), mModelOutput(), mRelOutput(), mContentOutput(), mBuildItems(), mRelations() {
// empty
}
@ -192,7 +185,6 @@ bool D3MFExporter::export3DModel() {
writeObjects();
mModelOutput << "</" << XmlTag::resources << ">";
mModelOutput << std::endl;
writeBuild();
@ -262,8 +254,7 @@ void D3MFExporter::writeBaseMaterials() {
(int)((ai_real)color.g) * 255,
(int)((ai_real)color.b) * 255,
(int)((ai_real)color.a) * 255,
true
);
true);
} else {
hexDiffuseColor = "#";
@ -406,7 +397,6 @@ void D3MFExporter::writeRelInfoToFile( const std::string &folder, const std::str
zip_entry_close(m_zipArchive);
}
} // Namespace D3MF
} // Namespace Assimp

View File

@ -44,24 +44,24 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "D3MFImporter.h"
#include <assimp/scene.h>
#include <assimp/IOSystem.hpp>
#include <assimp/DefaultLogger.hpp>
#include <assimp/importerdesc.h>
#include <assimp/StringComparison.h>
#include <assimp/StringUtils.h>
#include <assimp/ZipArchiveIOSystem.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/IOSystem.hpp>
#include <cassert>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include <map>
#include <cassert>
#include <memory>
#include "D3MFOpcPackage.h"
#include <assimp/irrXMLWrapper.h>
#include "3MFXmlTags.h"
#include "D3MFOpcPackage.h"
#include <assimp/fast_atof.h>
#include <assimp/irrXMLWrapper.h>
#include <iomanip>
@ -73,12 +73,12 @@ public:
using MatArray = std::vector<aiMaterial *>;
using MatId2MatArray = std::map<unsigned int, std::vector<unsigned int>>;
XmlSerializer(XmlReader* xmlReader)
: mMeshes()
, mMatArray()
, mActiveMatGroup( 99999999 )
, mMatId2MatArray()
, xmlReader(xmlReader){
XmlSerializer(XmlReader *xmlReader) :
mMeshes(),
mMatArray(),
mActiveMatGroup(99999999),
mMatId2MatArray(),
xmlReader(xmlReader) {
// empty
}
@ -316,7 +316,6 @@ private:
++buf;
diffuse.r = static_cast<ai_real>(strtol(comp, NULL, 16)) / ai_real(255.0);
comp[0] = *buf;
++buf;
comp[1] = *buf;
@ -346,7 +345,6 @@ private:
if (parseColor(color, diffuse)) {
mat->AddProperty<aiColor4D>(&diffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
}
}
aiMaterial *readMaterialDef() {
aiMaterial *mat(nullptr);
@ -432,8 +430,8 @@ static const aiImporterDesc desc = {
"3mf"
};
D3MFImporter::D3MFImporter()
: BaseImporter() {
D3MFImporter::D3MFImporter() :
BaseImporter() {
// empty
}

View File

@ -192,7 +192,7 @@ void AC3DImporter::LoadObjectSection(std::vector<Object> &objects) {
objects.push_back(Object());
Object &obj = objects.back();
aiLight *light = NULL;
aiLight *light = nullptr;
if (!ASSIMP_strincmp(buffer, "light", 5)) {
// This is a light source. Add it to the list
mLights->push_back(light = new aiLight());
@ -535,7 +535,7 @@ aiNode *AC3DImporter::ConvertObjectSection(Object &object,
// allocate UV coordinates, but only if the texture name for the
// surface is not empty
aiVector3D *uv = NULL;
aiVector3D *uv = nullptr;
if (object.texture.length()) {
uv = mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices];
mesh->mNumUVComponents[0] = 2;

View File

@ -56,27 +56,20 @@ struct aiMesh;
struct aiMaterial;
struct aiLight;
namespace Assimp {
// ---------------------------------------------------------------------------
/** AC3D (*.ac) importer class
*/
class AC3DImporter : public BaseImporter
{
class AC3DImporter : public BaseImporter {
public:
AC3DImporter();
~AC3DImporter();
// Represents an AC3D material
struct Material
{
Material()
: rgb (0.6f,0.6f,0.6f)
, spec (1.f,1.f,1.f)
, shin (0.f)
, trans (0.f)
{}
struct Material {
Material() :
rgb(0.6f, 0.6f, 0.6f), spec(1.f, 1.f, 1.f), shin(0.f), trans(0.f) {}
// base color of the material
aiColor3D rgb;
@ -101,12 +94,9 @@ public:
};
// Represents an AC3D surface
struct Surface
{
Surface()
: mat (0)
, flags (0)
{}
struct Surface {
Surface() :
mat(0), flags(0) {}
unsigned int mat, flags;
@ -115,27 +105,12 @@ public:
};
// Represents an AC3D object
struct Object
{
Object()
: type (World)
, name( "" )
, children()
, texture( "" )
, texRepeat( 1.f, 1.f )
, texOffset( 0.0f, 0.0f )
, rotation()
, translation()
, vertices()
, surfaces()
, numRefs (0)
, subDiv (0)
, crease()
{}
struct Object {
Object() :
type(World), name(""), children(), texture(""), texRepeat(1.f, 1.f), texOffset(0.0f, 0.0f), rotation(), translation(), vertices(), surfaces(), numRefs(0), subDiv(0), crease() {}
// Type description
enum Type
{
enum Type {
World = 0x0,
Poly = 0x1,
Group = 0x2,
@ -177,9 +152,7 @@ public:
float crease;
};
public:
// -------------------------------------------------------------------
/** Returns whether the class can handle the format of the given file.
* See BaseImporter::CanRead() for details.
@ -188,7 +161,6 @@ public:
bool checkSig) const;
protected:
// -------------------------------------------------------------------
/** Return importer meta information.
* See #BaseImporter::GetInfo for the details */
@ -207,7 +179,6 @@ protected:
void SetupProperties(const Importer *pImp);
private:
// -------------------------------------------------------------------
/** Get the next line from the file.
* @return false if the end of the file was reached*/
@ -231,7 +202,7 @@ private:
std::vector<aiMesh *> &meshes,
std::vector<aiMaterial *> &outMaterials,
const std::vector<Material> &materials,
aiNode* parent = NULL);
aiNode *parent = nullptr);
// -------------------------------------------------------------------
/** Convert a material

View File

@ -0,0 +1,672 @@
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/// \file AMFImporter.cpp
/// \brief AMF-format files importer for Assimp: main algorithm implementation.
/// \date 2016
/// \author smal.root@gmail.com
#ifndef ASSIMP_BUILD_NO_AMF_IMPORTER
// Header files, Assimp.
#include "AMFImporter.hpp"
#include "AMFImporter_Macro.hpp"
#include <assimp/DefaultIOSystem.h>
#include <assimp/fast_atof.h>
// Header files, stdlib.
#include <memory>
namespace Assimp {
/// \var aiImporterDesc AMFImporter::Description
/// Conastant which hold importer description
const aiImporterDesc AMFImporter::Description = {
"Additive manufacturing file format(AMF) Importer",
"smalcom",
"",
"See documentation in source code. Chapter: Limitations.",
aiImporterFlags_SupportTextFlavour | aiImporterFlags_LimitedSupport | aiImporterFlags_Experimental,
0,
0,
0,
0,
"amf"
};
void AMFImporter::Clear() {
mNodeElement_Cur = nullptr;
mUnit.clear();
mMaterial_Converted.clear();
mTexture_Converted.clear();
// Delete all elements
if (!mNodeElement_List.empty()) {
for (CAMFImporter_NodeElement *ne : mNodeElement_List) {
delete ne;
}
mNodeElement_List.clear();
}
}
AMFImporter::~AMFImporter() {
if (mReader != nullptr) delete mReader;
// Clear() is accounting if data already is deleted. So, just check again if all data is deleted.
Clear();
}
/*********************************************************************************************************************************************/
/************************************************************ Functions: find set ************************************************************/
/*********************************************************************************************************************************************/
bool AMFImporter::Find_NodeElement(const std::string &pID, const CAMFImporter_NodeElement::EType pType, CAMFImporter_NodeElement **pNodeElement) const {
for (CAMFImporter_NodeElement *ne : mNodeElement_List) {
if ((ne->ID == pID) && (ne->Type == pType)) {
if (pNodeElement != nullptr) *pNodeElement = ne;
return true;
}
} // for(CAMFImporter_NodeElement* ne: mNodeElement_List)
return false;
}
bool AMFImporter::Find_ConvertedNode(const std::string &pID, std::list<aiNode *> &pNodeList, aiNode **pNode) const {
aiString node_name(pID.c_str());
for (aiNode *node : pNodeList) {
if (node->mName == node_name) {
if (pNode != nullptr) *pNode = node;
return true;
}
} // for(aiNode* node: pNodeList)
return false;
}
bool AMFImporter::Find_ConvertedMaterial(const std::string &pID, const SPP_Material **pConvertedMaterial) const {
for (const SPP_Material &mat : mMaterial_Converted) {
if (mat.ID == pID) {
if (pConvertedMaterial != nullptr) *pConvertedMaterial = &mat;
return true;
}
} // for(const SPP_Material& mat: mMaterial_Converted)
return false;
}
/*********************************************************************************************************************************************/
/************************************************************ Functions: throw set ***********************************************************/
/*********************************************************************************************************************************************/
void AMFImporter::Throw_CloseNotFound(const std::string &pNode) {
throw DeadlyImportError("Close tag for node <" + pNode + "> not found. Seems file is corrupt.");
}
void AMFImporter::Throw_IncorrectAttr(const std::string &pAttrName) {
throw DeadlyImportError("Node <" + std::string(mReader->getNodeName()) + "> has incorrect attribute \"" + pAttrName + "\".");
}
void AMFImporter::Throw_IncorrectAttrValue(const std::string &pAttrName) {
throw DeadlyImportError("Attribute \"" + pAttrName + "\" in node <" + std::string(mReader->getNodeName()) + "> has incorrect value.");
}
void AMFImporter::Throw_MoreThanOnceDefined(const std::string &pNodeType, const std::string &pDescription) {
throw DeadlyImportError("\"" + pNodeType + "\" node can be used only once in " + mReader->getNodeName() + ". Description: " + pDescription);
}
void AMFImporter::Throw_ID_NotFound(const std::string &pID) const {
throw DeadlyImportError("Not found node with name \"" + pID + "\".");
}
/*********************************************************************************************************************************************/
/************************************************************* Functions: XML set ************************************************************/
/*********************************************************************************************************************************************/
void AMFImporter::XML_CheckNode_MustHaveChildren() {
if (mReader->isEmptyElement()) throw DeadlyImportError(std::string("Node <") + mReader->getNodeName() + "> must have children.");
}
void AMFImporter::XML_CheckNode_SkipUnsupported(const std::string &pParentNodeName) {
static const size_t Uns_Skip_Len = 3;
const char *Uns_Skip[Uns_Skip_Len] = { "composite", "edge", "normal" };
static bool skipped_before[Uns_Skip_Len] = { false, false, false };
std::string nn(mReader->getNodeName());
bool found = false;
bool close_found = false;
size_t sk_idx;
for (sk_idx = 0; sk_idx < Uns_Skip_Len; sk_idx++) {
if (nn != Uns_Skip[sk_idx]) continue;
found = true;
if (mReader->isEmptyElement()) {
close_found = true;
goto casu_cres;
}
while (mReader->read()) {
if ((mReader->getNodeType() == irr::io::EXN_ELEMENT_END) && (nn == mReader->getNodeName())) {
close_found = true;
goto casu_cres;
}
}
} // for(sk_idx = 0; sk_idx < Uns_Skip_Len; sk_idx++)
casu_cres:
if (!found) throw DeadlyImportError("Unknown node \"" + nn + "\" in " + pParentNodeName + ".");
if (!close_found) Throw_CloseNotFound(nn);
if (!skipped_before[sk_idx]) {
skipped_before[sk_idx] = true;
ASSIMP_LOG_WARN_F("Skipping node \"", nn, "\" in ", pParentNodeName, ".");
}
}
bool AMFImporter::XML_SearchNode(const std::string &pNodeName) {
while (mReader->read()) {
if ((mReader->getNodeType() == irr::io::EXN_ELEMENT) && XML_CheckNode_NameEqual(pNodeName)) return true;
}
return false;
}
bool AMFImporter::XML_ReadNode_GetAttrVal_AsBool(const int pAttrIdx) {
std::string val(mReader->getAttributeValue(pAttrIdx));
if ((val == "false") || (val == "0"))
return false;
else if ((val == "true") || (val == "1"))
return true;
else
throw DeadlyImportError("Bool attribute value can contain \"false\"/\"0\" or \"true\"/\"1\" not the \"" + val + "\"");
}
float AMFImporter::XML_ReadNode_GetAttrVal_AsFloat(const int pAttrIdx) {
std::string val;
float tvalf;
ParseHelper_FixTruncatedFloatString(mReader->getAttributeValue(pAttrIdx), val);
fast_atoreal_move(val.c_str(), tvalf, false);
return tvalf;
}
uint32_t AMFImporter::XML_ReadNode_GetAttrVal_AsU32(const int pAttrIdx) {
return strtoul10(mReader->getAttributeValue(pAttrIdx));
}
float AMFImporter::XML_ReadNode_GetVal_AsFloat() {
std::string val;
float tvalf;
if (!mReader->read()) throw DeadlyImportError("XML_ReadNode_GetVal_AsFloat. No data, seems file is corrupt.");
if (mReader->getNodeType() != irr::io::EXN_TEXT) throw DeadlyImportError("XML_ReadNode_GetVal_AsFloat. Invalid type of XML element, seems file is corrupt.");
ParseHelper_FixTruncatedFloatString(mReader->getNodeData(), val);
fast_atoreal_move(val.c_str(), tvalf, false);
return tvalf;
}
uint32_t AMFImporter::XML_ReadNode_GetVal_AsU32() {
if (!mReader->read()) throw DeadlyImportError("XML_ReadNode_GetVal_AsU32. No data, seems file is corrupt.");
if (mReader->getNodeType() != irr::io::EXN_TEXT) throw DeadlyImportError("XML_ReadNode_GetVal_AsU32. Invalid type of XML element, seems file is corrupt.");
return strtoul10(mReader->getNodeData());
}
void AMFImporter::XML_ReadNode_GetVal_AsString(std::string &pValue) {
if (!mReader->read()) throw DeadlyImportError("XML_ReadNode_GetVal_AsString. No data, seems file is corrupt.");
if (mReader->getNodeType() != irr::io::EXN_TEXT)
throw DeadlyImportError("XML_ReadNode_GetVal_AsString. Invalid type of XML element, seems file is corrupt.");
pValue = mReader->getNodeData();
}
/*********************************************************************************************************************************************/
/************************************************************ Functions: parse set ***********************************************************/
/*********************************************************************************************************************************************/
void AMFImporter::ParseHelper_Node_Enter(CAMFImporter_NodeElement *pNode) {
mNodeElement_Cur->Child.push_back(pNode); // add new element to current element child list.
mNodeElement_Cur = pNode; // switch current element to new one.
}
void AMFImporter::ParseHelper_Node_Exit() {
// check if we can walk up.
if (mNodeElement_Cur != nullptr) mNodeElement_Cur = mNodeElement_Cur->Parent;
}
void AMFImporter::ParseHelper_FixTruncatedFloatString(const char *pInStr, std::string &pOutString) {
size_t instr_len;
pOutString.clear();
instr_len = strlen(pInStr);
if (!instr_len) return;
pOutString.reserve(instr_len * 3 / 2);
// check and correct floats in format ".x". Must be "x.y".
if (pInStr[0] == '.') pOutString.push_back('0');
pOutString.push_back(pInStr[0]);
for (size_t ci = 1; ci < instr_len; ci++) {
if ((pInStr[ci] == '.') && ((pInStr[ci - 1] == ' ') || (pInStr[ci - 1] == '-') || (pInStr[ci - 1] == '+') || (pInStr[ci - 1] == '\t'))) {
pOutString.push_back('0');
pOutString.push_back('.');
} else {
pOutString.push_back(pInStr[ci]);
}
}
}
static bool ParseHelper_Decode_Base64_IsBase64(const char pChar) {
return (isalnum(pChar) || (pChar == '+') || (pChar == '/'));
}
void AMFImporter::ParseHelper_Decode_Base64(const std::string &pInputBase64, std::vector<uint8_t> &pOutputData) const {
// With help from
// René Nyffenegger http://www.adp-gmbh.ch/cpp/common/base64.html
const std::string base64_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
uint8_t tidx = 0;
uint8_t arr4[4], arr3[3];
// check input data
if (pInputBase64.size() % 4) throw DeadlyImportError("Base64-encoded data must have size multiply of four.");
// prepare output place
pOutputData.clear();
pOutputData.reserve(pInputBase64.size() / 4 * 3);
for (size_t in_len = pInputBase64.size(), in_idx = 0; (in_len > 0) && (pInputBase64[in_idx] != '='); in_len--) {
if (ParseHelper_Decode_Base64_IsBase64(pInputBase64[in_idx])) {
arr4[tidx++] = pInputBase64[in_idx++];
if (tidx == 4) {
for (tidx = 0; tidx < 4; tidx++)
arr4[tidx] = (uint8_t)base64_chars.find(arr4[tidx]);
arr3[0] = (arr4[0] << 2) + ((arr4[1] & 0x30) >> 4);
arr3[1] = ((arr4[1] & 0x0F) << 4) + ((arr4[2] & 0x3C) >> 2);
arr3[2] = ((arr4[2] & 0x03) << 6) + arr4[3];
for (tidx = 0; tidx < 3; tidx++)
pOutputData.push_back(arr3[tidx]);
tidx = 0;
} // if(tidx == 4)
} // if(ParseHelper_Decode_Base64_IsBase64(pInputBase64[in_idx]))
else {
in_idx++;
} // if(ParseHelper_Decode_Base64_IsBase64(pInputBase64[in_idx])) else
}
if (tidx) {
for (uint8_t i = tidx; i < 4; i++)
arr4[i] = 0;
for (uint8_t i = 0; i < 4; i++)
arr4[i] = (uint8_t)(base64_chars.find(arr4[i]));
arr3[0] = (arr4[0] << 2) + ((arr4[1] & 0x30) >> 4);
arr3[1] = ((arr4[1] & 0x0F) << 4) + ((arr4[2] & 0x3C) >> 2);
arr3[2] = ((arr4[2] & 0x03) << 6) + arr4[3];
for (uint8_t i = 0; i < (tidx - 1); i++)
pOutputData.push_back(arr3[i]);
}
}
void AMFImporter::ParseFile(const std::string &pFile, IOSystem *pIOHandler) {
irr::io::IrrXMLReader *OldReader = mReader; // store current XMLreader.
std::unique_ptr<IOStream> file(pIOHandler->Open(pFile, "rb"));
// Check whether we can read from the file
if (file.get() == NULL) throw DeadlyImportError("Failed to open AMF file " + pFile + ".");
// generate a XML reader for it
std::unique_ptr<CIrrXML_IOStreamReader> mIOWrapper(new CIrrXML_IOStreamReader(file.get()));
mReader = irr::io::createIrrXMLReader(mIOWrapper.get());
if (!mReader) throw DeadlyImportError("Failed to create XML reader for file" + pFile + ".");
//
// start reading
// search for root tag <amf>
if (XML_SearchNode("amf"))
ParseNode_Root();
else
throw DeadlyImportError("Root node \"amf\" not found.");
delete mReader;
// restore old XMLreader
mReader = OldReader;
}
// <amf
// unit="" - The units to be used. May be "inch", "millimeter", "meter", "feet", or "micron".
// version="" - Version of file format.
// >
// </amf>
// Root XML element.
// Multi elements - No.
void AMFImporter::ParseNode_Root() {
std::string unit, version;
CAMFImporter_NodeElement *ne(nullptr);
// Read attributes for node <amf>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("unit", unit, mReader->getAttributeValue);
MACRO_ATTRREAD_CHECK_RET("version", version, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND_WSKIP;
// Check attributes
if (!mUnit.empty()) {
if ((mUnit != "inch") && (mUnit != "millimeter") && (mUnit != "meter") && (mUnit != "feet") && (mUnit != "micron")) Throw_IncorrectAttrValue("unit");
}
// create root node element.
ne = new CAMFImporter_NodeElement_Root(nullptr);
mNodeElement_Cur = ne; // set first "current" element
// and assign attribute's values
((CAMFImporter_NodeElement_Root *)ne)->Unit = unit;
((CAMFImporter_NodeElement_Root *)ne)->Version = version;
// Check for child nodes
if (!mReader->isEmptyElement()) {
MACRO_NODECHECK_LOOPBEGIN("amf");
if (XML_CheckNode_NameEqual("object")) {
ParseNode_Object();
continue;
}
if (XML_CheckNode_NameEqual("material")) {
ParseNode_Material();
continue;
}
if (XML_CheckNode_NameEqual("texture")) {
ParseNode_Texture();
continue;
}
if (XML_CheckNode_NameEqual("constellation")) {
ParseNode_Constellation();
continue;
}
if (XML_CheckNode_NameEqual("metadata")) {
ParseNode_Metadata();
continue;
}
MACRO_NODECHECK_LOOPEND("amf");
mNodeElement_Cur = ne; // force restore "current" element
} // if(!mReader->isEmptyElement())
mNodeElement_List.push_back(ne); // add to node element list because its a new object in graph.
}
// <constellation
// id="" - The Object ID of the new constellation being defined.
// >
// </constellation>
// A collection of objects or constellations with specific relative locations.
// Multi elements - Yes.
// Parent element - <amf>.
void AMFImporter::ParseNode_Constellation() {
std::string id;
CAMFImporter_NodeElement *ne(nullptr);
// Read attributes for node <constellation>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("id", id, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// create and if needed - define new grouping object.
ne = new CAMFImporter_NodeElement_Constellation(mNodeElement_Cur);
CAMFImporter_NodeElement_Constellation &als = *((CAMFImporter_NodeElement_Constellation *)ne); // alias for convenience
if (!id.empty()) als.ID = id;
// Check for child nodes
if (!mReader->isEmptyElement()) {
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("constellation");
if (XML_CheckNode_NameEqual("instance")) {
ParseNode_Instance();
continue;
}
if (XML_CheckNode_NameEqual("metadata")) {
ParseNode_Metadata();
continue;
}
MACRO_NODECHECK_LOOPEND("constellation");
ParseHelper_Node_Exit();
} // if(!mReader->isEmptyElement())
else {
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
} // if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
// <instance
// objectid="" - The Object ID of the new constellation being defined.
// >
// </instance>
// A collection of objects or constellations with specific relative locations.
// Multi elements - Yes.
// Parent element - <amf>.
void AMFImporter::ParseNode_Instance() {
std::string objectid;
CAMFImporter_NodeElement *ne(nullptr);
// Read attributes for node <constellation>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("objectid", objectid, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// used object id must be defined, check that.
if (objectid.empty()) throw DeadlyImportError("\"objectid\" in <instance> must be defined.");
// create and define new grouping object.
ne = new CAMFImporter_NodeElement_Instance(mNodeElement_Cur);
CAMFImporter_NodeElement_Instance &als = *((CAMFImporter_NodeElement_Instance *)ne); // alias for convenience
als.ObjectID = objectid;
// Check for child nodes
if (!mReader->isEmptyElement()) {
bool read_flag[6] = { false, false, false, false, false, false };
als.Delta.Set(0, 0, 0);
als.Rotation.Set(0, 0, 0);
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("instance");
MACRO_NODECHECK_READCOMP_F("deltax", read_flag[0], als.Delta.x);
MACRO_NODECHECK_READCOMP_F("deltay", read_flag[1], als.Delta.y);
MACRO_NODECHECK_READCOMP_F("deltaz", read_flag[2], als.Delta.z);
MACRO_NODECHECK_READCOMP_F("rx", read_flag[3], als.Rotation.x);
MACRO_NODECHECK_READCOMP_F("ry", read_flag[4], als.Rotation.y);
MACRO_NODECHECK_READCOMP_F("rz", read_flag[5], als.Rotation.z);
MACRO_NODECHECK_LOOPEND("instance");
ParseHelper_Node_Exit();
// also convert degrees to radians.
als.Rotation.x = AI_MATH_PI_F * als.Rotation.x / 180.0f;
als.Rotation.y = AI_MATH_PI_F * als.Rotation.y / 180.0f;
als.Rotation.z = AI_MATH_PI_F * als.Rotation.z / 180.0f;
} // if(!mReader->isEmptyElement())
else {
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
} // if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
// <object
// id="" - A unique ObjectID for the new object being defined.
// >
// </object>
// An object definition.
// Multi elements - Yes.
// Parent element - <amf>.
void AMFImporter::ParseNode_Object() {
std::string id;
CAMFImporter_NodeElement *ne(nullptr);
// Read attributes for node <object>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("id", id, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// create and if needed - define new geometry object.
ne = new CAMFImporter_NodeElement_Object(mNodeElement_Cur);
CAMFImporter_NodeElement_Object &als = *((CAMFImporter_NodeElement_Object *)ne); // alias for convenience
if (!id.empty()) als.ID = id;
// Check for child nodes
if (!mReader->isEmptyElement()) {
bool col_read = false;
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("object");
if (XML_CheckNode_NameEqual("color")) {
// Check if color already defined for object.
if (col_read) Throw_MoreThanOnceDefined("color", "Only one color can be defined for <object>.");
// read data and set flag about it
ParseNode_Color();
col_read = true;
continue;
}
if (XML_CheckNode_NameEqual("mesh")) {
ParseNode_Mesh();
continue;
}
if (XML_CheckNode_NameEqual("metadata")) {
ParseNode_Metadata();
continue;
}
MACRO_NODECHECK_LOOPEND("object");
ParseHelper_Node_Exit();
} // if(!mReader->isEmptyElement())
else {
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
} // if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
// <metadata
// type="" - The type of the attribute.
// >
// </metadata>
// Specify additional information about an entity.
// Multi elements - Yes.
// Parent element - <amf>, <object>, <volume>, <material>, <vertex>.
//
// Reserved types are:
// "Name" - The alphanumeric label of the entity, to be used by the interpreter if interacting with the user.
// "Description" - A description of the content of the entity
// "URL" - A link to an external resource relating to the entity
// "Author" - Specifies the name(s) of the author(s) of the entity
// "Company" - Specifying the company generating the entity
// "CAD" - specifies the name of the originating CAD software and version
// "Revision" - specifies the revision of the entity
// "Tolerance" - specifies the desired manufacturing tolerance of the entity in entity's unit system
// "Volume" - specifies the total volume of the entity, in the entity's unit system, to be used for verification (object and volume only)
void AMFImporter::ParseNode_Metadata() {
std::string type, value;
CAMFImporter_NodeElement *ne(nullptr);
// read attribute
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("type", type, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// and value of node.
value = mReader->getNodeData();
// Create node element and assign read data.
ne = new CAMFImporter_NodeElement_Metadata(mNodeElement_Cur);
((CAMFImporter_NodeElement_Metadata *)ne)->Type = type;
((CAMFImporter_NodeElement_Metadata *)ne)->Value = value;
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
/*********************************************************************************************************************************************/
/******************************************************** Functions: BaseImporter set ********************************************************/
/*********************************************************************************************************************************************/
bool AMFImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool pCheckSig) const {
const std::string extension = GetExtension(pFile);
if (extension == "amf") {
return true;
}
if (!extension.length() || pCheckSig) {
const char *tokens[] = { "<amf" };
return SearchFileHeaderForToken(pIOHandler, pFile, tokens, 1);
}
return false;
}
void AMFImporter::GetExtensionList(std::set<std::string> &pExtensionList) {
pExtensionList.insert("amf");
}
const aiImporterDesc *AMFImporter::GetInfo() const {
return &Description;
}
void AMFImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
Clear(); // delete old graph.
ParseFile(pFile, pIOHandler);
Postprocess_BuildScene(pScene);
// scene graph is ready, exit.
}
} // namespace Assimp
#endif // !ASSIMP_BUILD_NO_AMF_IMPORTER

View File

@ -0,0 +1,872 @@
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/// \file AMFImporter_Postprocess.cpp
/// \brief Convert built scenegraph and objects to Assimp scenegraph.
/// \date 2016
/// \author smal.root@gmail.com
#ifndef ASSIMP_BUILD_NO_AMF_IMPORTER
#include "AMFImporter.hpp"
// Header files, Assimp.
#include <assimp/SceneCombiner.h>
#include <assimp/StandardShapes.h>
#include <assimp/StringUtils.h>
// Header files, stdlib.
#include <iterator>
namespace Assimp {
aiColor4D AMFImporter::SPP_Material::GetColor(const float /*pX*/, const float /*pY*/, const float /*pZ*/) const {
aiColor4D tcol;
// Check if stored data are supported.
if (!Composition.empty()) {
throw DeadlyImportError("IME. GetColor for composition");
} else if (Color->Composed) {
throw DeadlyImportError("IME. GetColor, composed color");
} else {
tcol = Color->Color;
}
// Check if default color must be used
if ((tcol.r == 0) && (tcol.g == 0) && (tcol.b == 0) && (tcol.a == 0)) {
tcol.r = 0.5f;
tcol.g = 0.5f;
tcol.b = 0.5f;
tcol.a = 1;
}
return tcol;
}
void AMFImporter::PostprocessHelper_CreateMeshDataArray(const CAMFImporter_NodeElement_Mesh &pNodeElement, std::vector<aiVector3D> &pVertexCoordinateArray,
std::vector<CAMFImporter_NodeElement_Color *> &pVertexColorArray) const {
CAMFImporter_NodeElement_Vertices *vn = nullptr;
size_t col_idx;
// All data stored in "vertices", search for it.
for (CAMFImporter_NodeElement *ne_child : pNodeElement.Child) {
if (ne_child->Type == CAMFImporter_NodeElement::ENET_Vertices) vn = (CAMFImporter_NodeElement_Vertices *)ne_child;
}
// If "vertices" not found then no work for us.
if (vn == nullptr) return;
pVertexCoordinateArray.reserve(vn->Child.size()); // all coordinates stored as child and we need to reserve space for future push_back's.
pVertexColorArray.resize(vn->Child.size()); // colors count equal vertices count.
col_idx = 0;
// Inside vertices collect all data and place to arrays
for (CAMFImporter_NodeElement *vn_child : vn->Child) {
// vertices, colors
if (vn_child->Type == CAMFImporter_NodeElement::ENET_Vertex) {
// by default clear color for current vertex
pVertexColorArray[col_idx] = nullptr;
for (CAMFImporter_NodeElement *vtx : vn_child->Child) {
if (vtx->Type == CAMFImporter_NodeElement::ENET_Coordinates) {
pVertexCoordinateArray.push_back(((CAMFImporter_NodeElement_Coordinates *)vtx)->Coordinate);
continue;
}
if (vtx->Type == CAMFImporter_NodeElement::ENET_Color) {
pVertexColorArray[col_idx] = (CAMFImporter_NodeElement_Color *)vtx;
continue;
}
} // for(CAMFImporter_NodeElement* vtx: vn_child->Child)
col_idx++;
} // if(vn_child->Type == CAMFImporter_NodeElement::ENET_Vertex)
} // for(CAMFImporter_NodeElement* vn_child: vn->Child)
}
size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string &pID_R, const std::string &pID_G, const std::string &pID_B,
const std::string &pID_A) {
size_t TextureConverted_Index;
std::string TextureConverted_ID;
// check input data
if (pID_R.empty() && pID_G.empty() && pID_B.empty() && pID_A.empty())
throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. At least one texture ID must be defined.");
// Create ID
TextureConverted_ID = pID_R + "_" + pID_G + "_" + pID_B + "_" + pID_A;
// Check if texture specified by set of IDs is converted already.
TextureConverted_Index = 0;
for (const SPP_Texture &tex_convd : mTexture_Converted) {
if (tex_convd.ID == TextureConverted_ID) {
return TextureConverted_Index;
} else {
++TextureConverted_Index;
}
}
//
// Converted texture not found, create it.
//
CAMFImporter_NodeElement_Texture *src_texture[4]{ nullptr };
std::vector<CAMFImporter_NodeElement_Texture *> src_texture_4check;
SPP_Texture converted_texture;
{ // find all specified source textures
CAMFImporter_NodeElement *t_tex;
// R
if (!pID_R.empty()) {
if (!Find_NodeElement(pID_R, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_R);
src_texture[0] = (CAMFImporter_NodeElement_Texture *)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture *)t_tex);
} else {
src_texture[0] = nullptr;
}
// G
if (!pID_G.empty()) {
if (!Find_NodeElement(pID_G, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_G);
src_texture[1] = (CAMFImporter_NodeElement_Texture *)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture *)t_tex);
} else {
src_texture[1] = nullptr;
}
// B
if (!pID_B.empty()) {
if (!Find_NodeElement(pID_B, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_B);
src_texture[2] = (CAMFImporter_NodeElement_Texture *)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture *)t_tex);
} else {
src_texture[2] = nullptr;
}
// A
if (!pID_A.empty()) {
if (!Find_NodeElement(pID_A, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_A);
src_texture[3] = (CAMFImporter_NodeElement_Texture *)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture *)t_tex);
} else {
src_texture[3] = nullptr;
}
} // END: find all specified source textures
// check that all textures has same size
if (src_texture_4check.size() > 1) {
for (size_t i = 0, i_e = (src_texture_4check.size() - 1); i < i_e; i++) {
if ((src_texture_4check[i]->Width != src_texture_4check[i + 1]->Width) || (src_texture_4check[i]->Height != src_texture_4check[i + 1]->Height) ||
(src_texture_4check[i]->Depth != src_texture_4check[i + 1]->Depth)) {
throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. Source texture must has the same size.");
}
}
} // if(src_texture_4check.size() > 1)
// set texture attributes
converted_texture.Width = src_texture_4check[0]->Width;
converted_texture.Height = src_texture_4check[0]->Height;
converted_texture.Depth = src_texture_4check[0]->Depth;
// if one of source texture is tiled then converted texture is tiled too.
converted_texture.Tiled = false;
for (uint8_t i = 0; i < src_texture_4check.size(); i++)
converted_texture.Tiled |= src_texture_4check[i]->Tiled;
// Create format hint.
strcpy(converted_texture.FormatHint, "rgba0000"); // copy initial string.
if (!pID_R.empty()) converted_texture.FormatHint[4] = '8';
if (!pID_G.empty()) converted_texture.FormatHint[5] = '8';
if (!pID_B.empty()) converted_texture.FormatHint[6] = '8';
if (!pID_A.empty()) converted_texture.FormatHint[7] = '8';
//
// Сopy data of textures.
//
size_t tex_size = 0;
size_t step = 0;
size_t off_g = 0;
size_t off_b = 0;
// Calculate size of the target array and rule how data will be copied.
if (!pID_R.empty() && nullptr != src_texture[0]) {
tex_size += src_texture[0]->Data.size();
step++, off_g++, off_b++;
}
if (!pID_G.empty() && nullptr != src_texture[1]) {
tex_size += src_texture[1]->Data.size();
step++, off_b++;
}
if (!pID_B.empty() && nullptr != src_texture[2]) {
tex_size += src_texture[2]->Data.size();
step++;
}
if (!pID_A.empty() && nullptr != src_texture[3]) {
tex_size += src_texture[3]->Data.size();
step++;
}
// Create target array.
converted_texture.Data = new uint8_t[tex_size];
// And copy data
auto CopyTextureData = [&](const std::string &pID, const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void {
if (!pID.empty()) {
for (size_t idx_target = pOffset, idx_src = 0; idx_target < tex_size; idx_target += pStep, idx_src++) {
CAMFImporter_NodeElement_Texture *tex = src_texture[pSrcTexNum];
ai_assert(tex);
converted_texture.Data[idx_target] = tex->Data.at(idx_src);
}
}
}; // auto CopyTextureData = [&](const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void
CopyTextureData(pID_R, 0, step, 0);
CopyTextureData(pID_G, off_g, step, 1);
CopyTextureData(pID_B, off_b, step, 2);
CopyTextureData(pID_A, step - 1, step, 3);
// Store new converted texture ID
converted_texture.ID = TextureConverted_ID;
// Store new converted texture
mTexture_Converted.push_back(converted_texture);
return TextureConverted_Index;
}
void AMFImporter::PostprocessHelper_SplitFacesByTextureID(std::list<SComplexFace> &pInputList, std::list<std::list<SComplexFace>> &pOutputList_Separated) {
auto texmap_is_equal = [](const CAMFImporter_NodeElement_TexMap *pTexMap1, const CAMFImporter_NodeElement_TexMap *pTexMap2) -> bool {
if ((pTexMap1 == nullptr) && (pTexMap2 == nullptr)) return true;
if (pTexMap1 == nullptr) return false;
if (pTexMap2 == nullptr) return false;
if (pTexMap1->TextureID_R != pTexMap2->TextureID_R) return false;
if (pTexMap1->TextureID_G != pTexMap2->TextureID_G) return false;
if (pTexMap1->TextureID_B != pTexMap2->TextureID_B) return false;
if (pTexMap1->TextureID_A != pTexMap2->TextureID_A) return false;
return true;
};
pOutputList_Separated.clear();
if (pInputList.empty()) return;
do {
SComplexFace face_start = pInputList.front();
std::list<SComplexFace> face_list_cur;
for (std::list<SComplexFace>::iterator it = pInputList.begin(), it_end = pInputList.end(); it != it_end;) {
if (texmap_is_equal(face_start.TexMap, it->TexMap)) {
auto it_old = it;
++it;
face_list_cur.push_back(*it_old);
pInputList.erase(it_old);
} else {
++it;
}
}
if (!face_list_cur.empty()) pOutputList_Separated.push_back(face_list_cur);
} while (!pInputList.empty());
}
void AMFImporter::Postprocess_AddMetadata(const std::list<CAMFImporter_NodeElement_Metadata *> &metadataList, aiNode &sceneNode) const {
if (!metadataList.empty()) {
if (sceneNode.mMetaData != nullptr) throw DeadlyImportError("Postprocess. MetaData member in node are not nullptr. Something went wrong.");
// copy collected metadata to output node.
sceneNode.mMetaData = aiMetadata::Alloc(static_cast<unsigned int>(metadataList.size()));
size_t meta_idx(0);
for (const CAMFImporter_NodeElement_Metadata &metadata : metadataList) {
sceneNode.mMetaData->Set(static_cast<unsigned int>(meta_idx++), metadata.Type, aiString(metadata.Value));
}
} // if(!metadataList.empty())
}
void AMFImporter::Postprocess_BuildNodeAndObject(const CAMFImporter_NodeElement_Object &pNodeElement, std::list<aiMesh *> &pMeshList, aiNode **pSceneNode) {
CAMFImporter_NodeElement_Color *object_color = nullptr;
// create new aiNode and set name as <object> has.
*pSceneNode = new aiNode;
(*pSceneNode)->mName = pNodeElement.ID;
// read mesh and color
for (const CAMFImporter_NodeElement *ne_child : pNodeElement.Child) {
std::vector<aiVector3D> vertex_arr;
std::vector<CAMFImporter_NodeElement_Color *> color_arr;
// color for object
if (ne_child->Type == CAMFImporter_NodeElement::ENET_Color) object_color = (CAMFImporter_NodeElement_Color *)ne_child;
if (ne_child->Type == CAMFImporter_NodeElement::ENET_Mesh) {
// Create arrays from children of mesh: vertices.
PostprocessHelper_CreateMeshDataArray(*((CAMFImporter_NodeElement_Mesh *)ne_child), vertex_arr, color_arr);
// Use this arrays as a source when creating every aiMesh
Postprocess_BuildMeshSet(*((CAMFImporter_NodeElement_Mesh *)ne_child), vertex_arr, color_arr, object_color, pMeshList, **pSceneNode);
}
} // for(const CAMFImporter_NodeElement* ne_child: pNodeElement)
}
void AMFImporter::Postprocess_BuildMeshSet(const CAMFImporter_NodeElement_Mesh &pNodeElement, const std::vector<aiVector3D> &pVertexCoordinateArray,
const std::vector<CAMFImporter_NodeElement_Color *> &pVertexColorArray,
const CAMFImporter_NodeElement_Color *pObjectColor, std::list<aiMesh *> &pMeshList, aiNode &pSceneNode) {
std::list<unsigned int> mesh_idx;
// all data stored in "volume", search for it.
for (const CAMFImporter_NodeElement *ne_child : pNodeElement.Child) {
const CAMFImporter_NodeElement_Color *ne_volume_color = nullptr;
const SPP_Material *cur_mat = nullptr;
if (ne_child->Type == CAMFImporter_NodeElement::ENET_Volume) {
/******************* Get faces *******************/
const CAMFImporter_NodeElement_Volume *ne_volume = reinterpret_cast<const CAMFImporter_NodeElement_Volume *>(ne_child);
std::list<SComplexFace> complex_faces_list; // List of the faces of the volume.
std::list<std::list<SComplexFace>> complex_faces_toplist; // List of the face list for every mesh.
// check if volume use material
if (!ne_volume->MaterialID.empty()) {
if (!Find_ConvertedMaterial(ne_volume->MaterialID, &cur_mat)) Throw_ID_NotFound(ne_volume->MaterialID);
}
// inside "volume" collect all data and place to arrays or create new objects
for (const CAMFImporter_NodeElement *ne_volume_child : ne_volume->Child) {
// color for volume
if (ne_volume_child->Type == CAMFImporter_NodeElement::ENET_Color) {
ne_volume_color = reinterpret_cast<const CAMFImporter_NodeElement_Color *>(ne_volume_child);
} else if (ne_volume_child->Type == CAMFImporter_NodeElement::ENET_Triangle) // triangles, triangles colors
{
const CAMFImporter_NodeElement_Triangle &tri_al = *reinterpret_cast<const CAMFImporter_NodeElement_Triangle *>(ne_volume_child);
SComplexFace complex_face;
// initialize pointers
complex_face.Color = nullptr;
complex_face.TexMap = nullptr;
// get data from triangle children: color, texture coordinates.
if (tri_al.Child.size()) {
for (const CAMFImporter_NodeElement *ne_triangle_child : tri_al.Child) {
if (ne_triangle_child->Type == CAMFImporter_NodeElement::ENET_Color)
complex_face.Color = reinterpret_cast<const CAMFImporter_NodeElement_Color *>(ne_triangle_child);
else if (ne_triangle_child->Type == CAMFImporter_NodeElement::ENET_TexMap)
complex_face.TexMap = reinterpret_cast<const CAMFImporter_NodeElement_TexMap *>(ne_triangle_child);
}
} // if(tri_al.Child.size())
// create new face and store it.
complex_face.Face.mNumIndices = 3;
complex_face.Face.mIndices = new unsigned int[3];
complex_face.Face.mIndices[0] = static_cast<unsigned int>(tri_al.V[0]);
complex_face.Face.mIndices[1] = static_cast<unsigned int>(tri_al.V[1]);
complex_face.Face.mIndices[2] = static_cast<unsigned int>(tri_al.V[2]);
complex_faces_list.push_back(complex_face);
}
} // for(const CAMFImporter_NodeElement* ne_volume_child: ne_volume->Child)
/**** Split faces list: one list per mesh ****/
PostprocessHelper_SplitFacesByTextureID(complex_faces_list, complex_faces_toplist);
/***** Create mesh for every faces list ******/
for (std::list<SComplexFace> &face_list_cur : complex_faces_toplist) {
auto VertexIndex_GetMinimal = [](const std::list<SComplexFace> &pFaceList, const size_t *pBiggerThan) -> size_t {
size_t rv = 0;
if (pBiggerThan != nullptr) {
bool found = false;
for (const SComplexFace &face : pFaceList) {
for (size_t idx_vert = 0; idx_vert < face.Face.mNumIndices; idx_vert++) {
if (face.Face.mIndices[idx_vert] > *pBiggerThan) {
rv = face.Face.mIndices[idx_vert];
found = true;
break;
}
}
if (found) break;
}
if (!found) return *pBiggerThan;
} else {
rv = pFaceList.front().Face.mIndices[0];
} // if(pBiggerThan != nullptr) else
for (const SComplexFace &face : pFaceList) {
for (size_t vi = 0; vi < face.Face.mNumIndices; vi++) {
if (face.Face.mIndices[vi] < rv) {
if (pBiggerThan != nullptr) {
if (face.Face.mIndices[vi] > *pBiggerThan) rv = face.Face.mIndices[vi];
} else {
rv = face.Face.mIndices[vi];
}
}
}
} // for(const SComplexFace& face: pFaceList)
return rv;
}; // auto VertexIndex_GetMinimal = [](const std::list<SComplexFace>& pFaceList, const size_t* pBiggerThan) -> size_t
auto VertexIndex_Replace = [](std::list<SComplexFace> &pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void {
for (const SComplexFace &face : pFaceList) {
for (size_t vi = 0; vi < face.Face.mNumIndices; vi++) {
if (face.Face.mIndices[vi] == pIdx_From) face.Face.mIndices[vi] = static_cast<unsigned int>(pIdx_To);
}
}
}; // auto VertexIndex_Replace = [](std::list<SComplexFace>& pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void
auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D {
// Color priorities(In descending order):
// 1. triangle color;
// 2. vertex color;
// 3. volume color;
// 4. object color;
// 5. material;
// 6. default - invisible coat.
//
// Fill vertices colors in color priority list above that's points from 1 to 6.
if ((pIdx < pVertexColorArray.size()) && (pVertexColorArray[pIdx] != nullptr)) // check for vertex color
{
if (pVertexColorArray[pIdx]->Composed)
throw DeadlyImportError("IME: vertex color composed");
else
return pVertexColorArray[pIdx]->Color;
} else if (ne_volume_color != nullptr) // check for volume color
{
if (ne_volume_color->Composed)
throw DeadlyImportError("IME: volume color composed");
else
return ne_volume_color->Color;
} else if (pObjectColor != nullptr) // check for object color
{
if (pObjectColor->Composed)
throw DeadlyImportError("IME: object color composed");
else
return pObjectColor->Color;
} else if (cur_mat != nullptr) // check for material
{
return cur_mat->GetColor(pVertexCoordinateArray.at(pIdx).x, pVertexCoordinateArray.at(pIdx).y, pVertexCoordinateArray.at(pIdx).z);
} else // set default color.
{
return { 0, 0, 0, 0 };
} // if((vi < pVertexColorArray.size()) && (pVertexColorArray[vi] != nullptr)) else
}; // auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D
aiMesh *tmesh = new aiMesh;
tmesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; // Only triangles is supported by AMF.
//
// set geometry and colors (vertices)
//
// copy faces/triangles
tmesh->mNumFaces = static_cast<unsigned int>(face_list_cur.size());
tmesh->mFaces = new aiFace[tmesh->mNumFaces];
// Create vertices list and optimize indices. Optimisation mean following.In AMF all volumes use one big list of vertices. And one volume
// can use only part of vertices list, for example: vertices list contain few thousands of vertices and volume use vertices 1, 3, 10.
// Do you need all this thousands of garbage? Of course no. So, optimisation step transformate sparse indices set to continuous.
size_t VertexCount_Max = tmesh->mNumFaces * 3; // 3 - triangles.
std::vector<aiVector3D> vert_arr, texcoord_arr;
std::vector<aiColor4D> col_arr;
vert_arr.reserve(VertexCount_Max * 2); // "* 2" - see below TODO.
col_arr.reserve(VertexCount_Max * 2);
{ // fill arrays
size_t vert_idx_from, vert_idx_to;
// first iteration.
vert_idx_to = 0;
vert_idx_from = VertexIndex_GetMinimal(face_list_cur, nullptr);
vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from));
col_arr.push_back(Vertex_CalculateColor(vert_idx_from));
if (vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to);
// rest iterations
do {
vert_idx_from = VertexIndex_GetMinimal(face_list_cur, &vert_idx_to);
if (vert_idx_from == vert_idx_to) break; // all indices are transferred,
vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from));
col_arr.push_back(Vertex_CalculateColor(vert_idx_from));
vert_idx_to++;
if (vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to);
} while (true);
} // fill arrays. END.
//
// check if triangle colors are used and create additional faces if needed.
//
for (const SComplexFace &face_cur : face_list_cur) {
if (face_cur.Color != nullptr) {
aiColor4D face_color;
size_t vert_idx_new = vert_arr.size();
if (face_cur.Color->Composed)
throw DeadlyImportError("IME: face color composed");
else
face_color = face_cur.Color->Color;
for (size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++) {
vert_arr.push_back(vert_arr.at(face_cur.Face.mIndices[idx_ind]));
col_arr.push_back(face_color);
face_cur.Face.mIndices[idx_ind] = static_cast<unsigned int>(vert_idx_new++);
}
} // if(face_cur.Color != nullptr)
} // for(const SComplexFace& face_cur: face_list_cur)
//
// if texture is used then copy texture coordinates too.
//
if (face_list_cur.front().TexMap != nullptr) {
size_t idx_vert_new = vert_arr.size();
///TODO: clean unused vertices. "* 2": in certain cases - mesh full of triangle colors - vert_arr will contain duplicated vertices for
/// colored triangles and initial vertices (for colored vertices) which in real became unused. This part need more thinking about
/// optimisation.
bool *idx_vert_used;
idx_vert_used = new bool[VertexCount_Max * 2];
for (size_t i = 0, i_e = VertexCount_Max * 2; i < i_e; i++)
idx_vert_used[i] = false;
// This ID's will be used when set materials ID in scene.
tmesh->mMaterialIndex = static_cast<unsigned int>(PostprocessHelper_GetTextureID_Or_Create(face_list_cur.front().TexMap->TextureID_R,
face_list_cur.front().TexMap->TextureID_G,
face_list_cur.front().TexMap->TextureID_B,
face_list_cur.front().TexMap->TextureID_A));
texcoord_arr.resize(VertexCount_Max * 2);
for (const SComplexFace &face_cur : face_list_cur) {
for (size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++) {
const size_t idx_vert = face_cur.Face.mIndices[idx_ind];
if (!idx_vert_used[idx_vert]) {
texcoord_arr.at(idx_vert) = face_cur.TexMap->TextureCoordinate[idx_ind];
idx_vert_used[idx_vert] = true;
} else if (texcoord_arr.at(idx_vert) != face_cur.TexMap->TextureCoordinate[idx_ind]) {
// in that case one vertex is shared with many texture coordinates. We need to duplicate vertex with another texture
// coordinates.
vert_arr.push_back(vert_arr.at(idx_vert));
col_arr.push_back(col_arr.at(idx_vert));
texcoord_arr.at(idx_vert_new) = face_cur.TexMap->TextureCoordinate[idx_ind];
face_cur.Face.mIndices[idx_ind] = static_cast<unsigned int>(idx_vert_new++);
}
} // for(size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++)
} // for(const SComplexFace& face_cur: face_list_cur)
delete[] idx_vert_used;
// shrink array
texcoord_arr.resize(idx_vert_new);
} // if(face_list_cur.front().TexMap != nullptr)
//
// copy collected data to mesh
//
tmesh->mNumVertices = static_cast<unsigned int>(vert_arr.size());
tmesh->mVertices = new aiVector3D[tmesh->mNumVertices];
tmesh->mColors[0] = new aiColor4D[tmesh->mNumVertices];
memcpy(tmesh->mVertices, vert_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D));
memcpy(tmesh->mColors[0], col_arr.data(), tmesh->mNumVertices * sizeof(aiColor4D));
if (texcoord_arr.size() > 0) {
tmesh->mTextureCoords[0] = new aiVector3D[tmesh->mNumVertices];
memcpy(tmesh->mTextureCoords[0], texcoord_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D));
tmesh->mNumUVComponents[0] = 2; // U and V stored in "x", "y" of aiVector3D.
}
size_t idx_face = 0;
for (const SComplexFace &face_cur : face_list_cur)
tmesh->mFaces[idx_face++] = face_cur.Face;
// store new aiMesh
mesh_idx.push_back(static_cast<unsigned int>(pMeshList.size()));
pMeshList.push_back(tmesh);
} // for(const std::list<SComplexFace>& face_list_cur: complex_faces_toplist)
} // if(ne_child->Type == CAMFImporter_NodeElement::ENET_Volume)
} // for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
// if meshes was created then assign new indices with current aiNode
if (!mesh_idx.empty()) {
std::list<unsigned int>::const_iterator mit = mesh_idx.begin();
pSceneNode.mNumMeshes = static_cast<unsigned int>(mesh_idx.size());
pSceneNode.mMeshes = new unsigned int[pSceneNode.mNumMeshes];
for (size_t i = 0; i < pSceneNode.mNumMeshes; i++)
pSceneNode.mMeshes[i] = *mit++;
} // if(mesh_idx.size() > 0)
}
void AMFImporter::Postprocess_BuildMaterial(const CAMFImporter_NodeElement_Material &pMaterial) {
SPP_Material new_mat;
new_mat.ID = pMaterial.ID;
for (const CAMFImporter_NodeElement *mat_child : pMaterial.Child) {
if (mat_child->Type == CAMFImporter_NodeElement::ENET_Color) {
new_mat.Color = (CAMFImporter_NodeElement_Color *)mat_child;
} else if (mat_child->Type == CAMFImporter_NodeElement::ENET_Metadata) {
new_mat.Metadata.push_back((CAMFImporter_NodeElement_Metadata *)mat_child);
}
} // for(const CAMFImporter_NodeElement* mat_child; pMaterial.Child)
// place converted material to special list
mMaterial_Converted.push_back(new_mat);
}
void AMFImporter::Postprocess_BuildConstellation(CAMFImporter_NodeElement_Constellation &pConstellation, std::list<aiNode *> &pNodeList) const {
aiNode *con_node;
std::list<aiNode *> ch_node;
// We will build next hierarchy:
// aiNode as parent (<constellation>) for set of nodes as a children
// |- aiNode for transformation (<instance> -> <delta...>, <r...>) - aiNode for pointing to object ("objectid")
// ...
// \_ aiNode for transformation (<instance> -> <delta...>, <r...>) - aiNode for pointing to object ("objectid")
con_node = new aiNode;
con_node->mName = pConstellation.ID;
// Walk through children and search for instances of another objects, constellations.
for (const CAMFImporter_NodeElement *ne : pConstellation.Child) {
aiMatrix4x4 tmat;
aiNode *t_node;
aiNode *found_node;
if (ne->Type == CAMFImporter_NodeElement::ENET_Metadata) continue;
if (ne->Type != CAMFImporter_NodeElement::ENET_Instance) throw DeadlyImportError("Only <instance> nodes can be in <constellation>.");
// create alias for conveniance
CAMFImporter_NodeElement_Instance &als = *((CAMFImporter_NodeElement_Instance *)ne);
// find referenced object
if (!Find_ConvertedNode(als.ObjectID, pNodeList, &found_node)) Throw_ID_NotFound(als.ObjectID);
// create node for applying transformation
t_node = new aiNode;
t_node->mParent = con_node;
// apply transformation
aiMatrix4x4::Translation(als.Delta, tmat), t_node->mTransformation *= tmat;
aiMatrix4x4::RotationX(als.Rotation.x, tmat), t_node->mTransformation *= tmat;
aiMatrix4x4::RotationY(als.Rotation.y, tmat), t_node->mTransformation *= tmat;
aiMatrix4x4::RotationZ(als.Rotation.z, tmat), t_node->mTransformation *= tmat;
// create array for one child node
t_node->mNumChildren = 1;
t_node->mChildren = new aiNode *[t_node->mNumChildren];
SceneCombiner::Copy(&t_node->mChildren[0], found_node);
t_node->mChildren[0]->mParent = t_node;
ch_node.push_back(t_node);
} // for(const CAMFImporter_NodeElement* ne: pConstellation.Child)
// copy found aiNode's as children
if (ch_node.empty()) throw DeadlyImportError("<constellation> must have at least one <instance>.");
size_t ch_idx = 0;
con_node->mNumChildren = static_cast<unsigned int>(ch_node.size());
con_node->mChildren = new aiNode *[con_node->mNumChildren];
for (aiNode *node : ch_node)
con_node->mChildren[ch_idx++] = node;
// and place "root" of <constellation> node to node list
pNodeList.push_back(con_node);
}
void AMFImporter::Postprocess_BuildScene(aiScene *pScene) {
std::list<aiNode *> node_list;
std::list<aiMesh *> mesh_list;
std::list<CAMFImporter_NodeElement_Metadata *> meta_list;
//
// Because for AMF "material" is just complex colors mixing so aiMaterial will not be used.
// For building aiScene we are must to do few steps:
// at first creating root node for aiScene.
pScene->mRootNode = new aiNode;
pScene->mRootNode->mParent = nullptr;
pScene->mFlags |= AI_SCENE_FLAGS_ALLOW_SHARED;
// search for root(<amf>) element
CAMFImporter_NodeElement *root_el = nullptr;
for (CAMFImporter_NodeElement *ne : mNodeElement_List) {
if (ne->Type != CAMFImporter_NodeElement::ENET_Root) continue;
root_el = ne;
break;
} // for(const CAMFImporter_NodeElement* ne: mNodeElement_List)
// Check if root element are found.
if (root_el == nullptr) throw DeadlyImportError("Root(<amf>) element not found.");
// after that walk through children of root and collect data. Five types of nodes can be placed at top level - in <amf>: <object>, <material>, <texture>,
// <constellation> and <metadata>. But at first we must read <material> and <texture> because they will be used in <object>. <metadata> can be read
// at any moment.
//
// 1. <material>
// 2. <texture> will be converted later when processing triangles list. \sa Postprocess_BuildMeshSet
for (const CAMFImporter_NodeElement *root_child : root_el->Child) {
if (root_child->Type == CAMFImporter_NodeElement::ENET_Material) Postprocess_BuildMaterial(*((CAMFImporter_NodeElement_Material *)root_child));
}
// After "appearance" nodes we must read <object> because it will be used in <constellation> -> <instance>.
//
// 3. <object>
for (const CAMFImporter_NodeElement *root_child : root_el->Child) {
if (root_child->Type == CAMFImporter_NodeElement::ENET_Object) {
aiNode *tnode = nullptr;
// for <object> mesh and node must be built: object ID assigned to aiNode name and will be used in future for <instance>
Postprocess_BuildNodeAndObject(*((CAMFImporter_NodeElement_Object *)root_child), mesh_list, &tnode);
if (tnode != nullptr) node_list.push_back(tnode);
}
} // for(const CAMFImporter_NodeElement* root_child: root_el->Child)
// And finally read rest of nodes.
//
for (const CAMFImporter_NodeElement *root_child : root_el->Child) {
// 4. <constellation>
if (root_child->Type == CAMFImporter_NodeElement::ENET_Constellation) {
// <object> and <constellation> at top of self abstraction use aiNode. So we can use only aiNode list for creating new aiNode's.
Postprocess_BuildConstellation(*((CAMFImporter_NodeElement_Constellation *)root_child), node_list);
}
// 5, <metadata>
if (root_child->Type == CAMFImporter_NodeElement::ENET_Metadata) meta_list.push_back((CAMFImporter_NodeElement_Metadata *)root_child);
} // for(const CAMFImporter_NodeElement* root_child: root_el->Child)
// at now we can add collected metadata to root node
Postprocess_AddMetadata(meta_list, *pScene->mRootNode);
//
// Check constellation children
//
// As said in specification:
// "When multiple objects and constellations are defined in a single file, only the top level objects and constellations are available for printing."
// What that means? For example: if some object is used in constellation then you must show only constellation but not original object.
// And at this step we are checking that relations.
nl_clean_loop:
if (node_list.size() > 1) {
// walk through all nodes
for (std::list<aiNode *>::iterator nl_it = node_list.begin(); nl_it != node_list.end(); ++nl_it) {
// and try to find them in another top nodes.
std::list<aiNode *>::const_iterator next_it = nl_it;
++next_it;
for (; next_it != node_list.end(); ++next_it) {
if ((*next_it)->FindNode((*nl_it)->mName) != nullptr) {
// if current top node(nl_it) found in another top node then erase it from node_list and restart search loop.
node_list.erase(nl_it);
goto nl_clean_loop;
}
} // for(; next_it != node_list.end(); next_it++)
} // for(std::list<aiNode*>::const_iterator nl_it = node_list.begin(); nl_it != node_list.end(); nl_it++)
}
//
// move created objects to aiScene
//
//
// Nodes
if (!node_list.empty()) {
std::list<aiNode *>::const_iterator nl_it = node_list.begin();
pScene->mRootNode->mNumChildren = static_cast<unsigned int>(node_list.size());
pScene->mRootNode->mChildren = new aiNode *[pScene->mRootNode->mNumChildren];
for (size_t i = 0; i < pScene->mRootNode->mNumChildren; i++) {
// Objects and constellation that must be showed placed at top of hierarchy in <amf> node. So all aiNode's in node_list must have
// mRootNode only as parent.
(*nl_it)->mParent = pScene->mRootNode;
pScene->mRootNode->mChildren[i] = *nl_it++;
}
} // if(node_list.size() > 0)
//
// Meshes
if (!mesh_list.empty()) {
std::list<aiMesh *>::const_iterator ml_it = mesh_list.begin();
pScene->mNumMeshes = static_cast<unsigned int>(mesh_list.size());
pScene->mMeshes = new aiMesh *[pScene->mNumMeshes];
for (size_t i = 0; i < pScene->mNumMeshes; i++)
pScene->mMeshes[i] = *ml_it++;
} // if(mesh_list.size() > 0)
//
// Textures
pScene->mNumTextures = static_cast<unsigned int>(mTexture_Converted.size());
if (pScene->mNumTextures > 0) {
size_t idx;
idx = 0;
pScene->mTextures = new aiTexture *[pScene->mNumTextures];
for (const SPP_Texture &tex_convd : mTexture_Converted) {
pScene->mTextures[idx] = new aiTexture;
pScene->mTextures[idx]->mWidth = static_cast<unsigned int>(tex_convd.Width);
pScene->mTextures[idx]->mHeight = static_cast<unsigned int>(tex_convd.Height);
pScene->mTextures[idx]->pcData = (aiTexel *)tex_convd.Data;
// texture format description.
strcpy(pScene->mTextures[idx]->achFormatHint, tex_convd.FormatHint);
idx++;
} // for(const SPP_Texture& tex_convd: mTexture_Converted)
// Create materials for embedded textures.
idx = 0;
pScene->mNumMaterials = static_cast<unsigned int>(mTexture_Converted.size());
pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials];
for (const SPP_Texture &tex_convd : mTexture_Converted) {
const aiString texture_id(AI_EMBEDDED_TEXNAME_PREFIX + to_string(idx));
const int mode = aiTextureOp_Multiply;
const int repeat = tex_convd.Tiled ? 1 : 0;
pScene->mMaterials[idx] = new aiMaterial;
pScene->mMaterials[idx]->AddProperty(&texture_id, AI_MATKEY_TEXTURE_DIFFUSE(0));
pScene->mMaterials[idx]->AddProperty(&mode, 1, AI_MATKEY_TEXOP_DIFFUSE(0));
pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0));
pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0));
idx++;
}
} // if(pScene->mNumTextures > 0)
} // END: after that walk through children of root and collect data
} // namespace Assimp
#endif // !ASSIMP_BUILD_NO_AMF_IMPORTER

View File

@ -51,15 +51,15 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// internal headers
#include "ASELoader.h"
#include <assimp/StringComparison.h>
#include <assimp/SkeletonMeshBuilder.h>
#include "Common/TargetAnimation.h"
#include <assimp/SkeletonMeshBuilder.h>
#include <assimp/StringComparison.h>
#include <assimp/Importer.hpp>
#include <assimp/IOSystem.hpp>
#include <assimp/DefaultLogger.hpp>
#include <assimp/scene.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/IOSystem.hpp>
#include <assimp/Importer.hpp>
#include <memory>
@ -84,12 +84,8 @@ static const aiImporterDesc desc = {
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
ASEImporter::ASEImporter()
: mParser()
, mBuffer()
, pcScene()
, configRecomputeNormals()
, noSkeletonMesh() {
ASEImporter::ASEImporter() :
mParser(), mBuffer(), pcScene(), configRecomputeNormals(), noSkeletonMesh() {
// empty
}
@ -126,7 +122,9 @@ const aiImporterDesc* ASEImporter::GetInfo () const {
// Setup configuration options
void ASEImporter::SetupProperties(const Importer *pImp) {
configRecomputeNormals = (pImp->GetPropertyInteger(
AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS,1) ? true : false);
AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS, 1) ?
true :
false);
noSkeletonMesh = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_NO_SKELETON_MESHES, 0) != 0;
}
@ -226,17 +224,20 @@ void ASEImporter::InternReadFile( const std::string& pFile,
// into one huge list.
//------------------------------------------------------------------
std::vector<BaseNode *> nodes;
nodes.reserve(mParser->m_vMeshes.size() +mParser->m_vLights.size()
+ mParser->m_vCameras.size() + mParser->m_vDummies.size());
nodes.reserve(mParser->m_vMeshes.size() + mParser->m_vLights.size() + mParser->m_vCameras.size() + mParser->m_vDummies.size());
// Lights
for (auto &light : mParser->m_vLights)nodes.push_back(&light);
for (auto &light : mParser->m_vLights)
nodes.push_back(&light);
// Cameras
for (auto &camera : mParser->m_vCameras)nodes.push_back(&camera);
for (auto &camera : mParser->m_vCameras)
nodes.push_back(&camera);
// Meshes
for (auto &mesh : mParser->m_vMeshes)nodes.push_back(&mesh);
for (auto &mesh : mParser->m_vMeshes)
nodes.push_back(&mesh);
// Dummies
for (auto &dummy : mParser->m_vDummies)nodes.push_back(&dummy);
for (auto &dummy : mParser->m_vDummies)
nodes.push_back(&dummy);
// build the final node graph
BuildNodes(nodes);
@ -263,9 +264,8 @@ void ASEImporter::InternReadFile( const std::string& pFile,
}
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::GenerateDefaultMaterial()
{
ai_assert(NULL != mParser);
void ASEImporter::GenerateDefaultMaterial() {
ai_assert(nullptr != mParser);
bool bHas = false;
for (std::vector<ASE::Mesh>::iterator i = mParser->m_vMeshes.begin(); i != mParser->m_vMeshes.end(); ++i) {
@ -288,8 +288,7 @@ void ASEImporter::GenerateDefaultMaterial()
}
// ------------------------------------------------------------------------------------------------
void ASEImporter::BuildAnimations(const std::vector<BaseNode*>& nodes)
{
void ASEImporter::BuildAnimations(const std::vector<BaseNode *> &nodes) {
// check whether we have at least one mesh which has animations
std::vector<ASE::BaseNode *>::const_iterator i = nodes.begin();
unsigned int iNum = 0;
@ -370,8 +369,7 @@ void ASEImporter::BuildAnimations(const std::vector<BaseNode*>& nodes)
nd->mNodeName.Set(me->mName);
// copy position keys
if (me->mAnim.akeyPositions.size() > 1 )
{
if (me->mAnim.akeyPositions.size() > 1) {
// Allocate the key array and fill it
nd->mNumPositionKeys = (unsigned int)me->mAnim.akeyPositions.size();
nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys];
@ -424,8 +422,7 @@ void ASEImporter::BuildAnimations(const std::vector<BaseNode*>& nodes)
// ------------------------------------------------------------------------------------------------
// Build output cameras
void ASEImporter::BuildCameras()
{
void ASEImporter::BuildCameras() {
if (!mParser->m_vCameras.empty()) {
pcScene->mNumCameras = (unsigned int)mParser->m_vCameras.size();
pcScene->mCameras = new aiCamera *[pcScene->mNumCameras];
@ -446,8 +443,7 @@ void ASEImporter::BuildCameras()
// ------------------------------------------------------------------------------------------------
// Build output lights
void ASEImporter::BuildLights()
{
void ASEImporter::BuildLights() {
if (!mParser->m_vLights.empty()) {
pcScene->mNumLights = (unsigned int)mParser->m_vLights.size();
pcScene->mLights = new aiLight *[pcScene->mNumLights];
@ -462,8 +458,7 @@ void ASEImporter::BuildLights()
out->mDirection = aiVector3D(0.f, 0.f, -1.f);
out->mName.Set(in.mName);
switch (in.mLightType)
{
switch (in.mLightType) {
case ASE::Light::TARGET:
out->mType = aiLightSource_SPOT;
out->mAngleInnerCone = AI_DEG_TO_RAD(in.mAngle);
@ -486,16 +481,14 @@ void ASEImporter::BuildLights()
// ------------------------------------------------------------------------------------------------
void ASEImporter::AddNodes(const std::vector<BaseNode *> &nodes,
aiNode* pcParent,const char* szName)
{
aiNode *pcParent, const char *szName) {
aiMatrix4x4 m;
AddNodes(nodes, pcParent, szName, m);
}
// ------------------------------------------------------------------------------------------------
// Add meshes to a given node
void ASEImporter::AddMeshes(const ASE::BaseNode* snode,aiNode* node)
{
void ASEImporter::AddMeshes(const ASE::BaseNode *snode, aiNode *node) {
for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i) {
// Get the name of the mesh (the mesh instance has been temporarily stored in the third vertex color)
const aiMesh *pcMesh = pcScene->mMeshes[i];
@ -549,8 +542,7 @@ void ASEImporter::AddMeshes(const ASE::BaseNode* snode,aiNode* node)
// Add child nodes to a given parent node
void ASEImporter::AddNodes(const std::vector<BaseNode *> &nodes,
aiNode *pcParent, const char *szName,
const aiMatrix4x4& mat)
{
const aiMatrix4x4 &mat) {
const size_t len = szName ? ::strlen(szName) : 0;
ai_assert(4 <= AI_MAX_NUMBER_OF_COLOR_SETS);
@ -564,8 +556,7 @@ void ASEImporter::AddNodes (const std::vector<BaseNode*>& nodes,
if (szName) {
if (len != snode->mParent.length() || ::strcmp(szName, snode->mParent.c_str()))
continue;
}
else if (snode->mParent.length())
} else if (snode->mParent.length())
continue;
(*it)->mProcessed = true;
@ -595,8 +586,7 @@ void ASEImporter::AddNodes (const std::vector<BaseNode*>& nodes,
// slightly inconvinient here and a better solution should
// be used when this code is refactored next.
AddMeshes(snode, node);
}
else if (is_not_qnan( snode->mTargetPosition.x )) {
} else if (is_not_qnan(snode->mTargetPosition.x)) {
// If this is a target camera or light we generate a small
// child node which marks the position of the camera
// target (the direction information is contained in *this*
@ -644,7 +634,7 @@ void ASEImporter::AddNodes (const std::vector<BaseNode*>& nodes,
// ------------------------------------------------------------------------------------------------
// Build the output node graph
void ASEImporter::BuildNodes(std::vector<BaseNode *> &nodes) {
ai_assert(NULL != pcScene);
ai_assert(nullptr != pcScene);
// allocate the one and only root node
aiNode *root = pcScene->mRootNode = new aiNode();
@ -663,7 +653,7 @@ void ASEImporter::BuildNodes(std::vector<BaseNode*>& nodes) {
}
// add all nodes
AddNodes(nodes,ch,NULL);
AddNodes(nodes, ch, nullptr);
// now iterate through al nodes and find those that have not yet
// been added to the nodegraph (= their parent could not be recognized)
@ -723,9 +713,9 @@ void ASEImporter::BuildNodes(std::vector<BaseNode*>& nodes) {
pcScene->mRootNode->mNumChildren = (unsigned int)apcNodes.size();
}
// Reset the third color set to NULL - we used this field to store a temporary pointer
// Reset the third color set to nullptr - we used this field to store a temporary pointer
for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i)
pcScene->mMeshes[i]->mColors[2] = NULL;
pcScene->mMeshes[i]->mColors[2] = nullptr;
// The root node should not have at least one child or the file is valid
if (!pcScene->mRootNode->mNumChildren) {
@ -773,8 +763,7 @@ void ASEImporter::BuildUniqueRepresentation(ASE::Mesh& mesh) {
// iterate through all faces in the mesh
unsigned int iCurrent = 0, fi = 0;
for (std::vector<ASE::Face>::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end(); ++i, ++fi) {
for (unsigned int n = 0; n < 3;++n,++iCurrent)
{
for (unsigned int n = 0; n < 3; ++n, ++iCurrent) {
mPositions[iCurrent] = mesh.mPositions[(*i).mIndices[n]];
// add texture coordinates
@ -814,8 +803,7 @@ void ASEImporter::BuildUniqueRepresentation(ASE::Mesh& mesh) {
// ------------------------------------------------------------------------------------------------
// Copy a texture from the ASE structs to the output material
void CopyASETexture(aiMaterial& mat, ASE::Texture& texture, aiTextureType type)
{
void CopyASETexture(aiMaterial &mat, ASE::Texture &texture, aiTextureType type) {
// Setup the texture name
aiString tex;
tex.Set(texture.mMapName);
@ -831,8 +819,7 @@ void CopyASETexture(aiMaterial& mat, ASE::Texture& texture, aiTextureType type)
// ------------------------------------------------------------------------------------------------
// Convert from ASE material to output material
void ASEImporter::ConvertMaterial(ASE::Material& mat)
{
void ASEImporter::ConvertMaterial(ASE::Material &mat) {
// LARGE TODO: Much code her is copied from 3DS ... join them maybe?
// Allocate the output material
@ -855,16 +842,14 @@ void ASEImporter::ConvertMaterial(ASE::Material& mat)
mat.pcInstance->AddProperty(&mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
// shininess
if (0.0f != mat.mSpecularExponent && 0.0f != mat.mShininessStrength)
{
if (0.0f != mat.mSpecularExponent && 0.0f != mat.mShininessStrength) {
mat.pcInstance->AddProperty(&mat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
mat.pcInstance->AddProperty(&mat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH);
}
// If there is no shininess, we can disable phong lighting
else if (D3DS::Discreet3DS::Metal == mat.mShading ||
D3DS::Discreet3DS::Phong == mat.mShading ||
D3DS::Discreet3DS::Blinn == mat.mShading)
{
D3DS::Discreet3DS::Blinn == mat.mShading) {
mat.mShading = D3DS::Discreet3DS::Gouraud;
}
@ -872,35 +857,37 @@ void ASEImporter::ConvertMaterial(ASE::Material& mat)
mat.pcInstance->AddProperty<ai_real>(&mat.mTransparency, 1, AI_MATKEY_OPACITY);
// Two sided rendering?
if (mat.mTwoSided)
{
if (mat.mTwoSided) {
int i = 1;
mat.pcInstance->AddProperty<int>(&i, 1, AI_MATKEY_TWOSIDED);
}
// shading mode
aiShadingMode eShading = aiShadingMode_NoShading;
switch (mat.mShading)
{
switch (mat.mShading) {
case D3DS::Discreet3DS::Flat:
eShading = aiShadingMode_Flat; break;
eShading = aiShadingMode_Flat;
break;
case D3DS::Discreet3DS::Phong:
eShading = aiShadingMode_Phong; break;
eShading = aiShadingMode_Phong;
break;
case D3DS::Discreet3DS::Blinn:
eShading = aiShadingMode_Blinn; break;
eShading = aiShadingMode_Blinn;
break;
// I don't know what "Wire" shading should be,
// assume it is simple lambertian diffuse (L dot N) shading
case D3DS::Discreet3DS::Wire:
{
case D3DS::Discreet3DS::Wire: {
// set the wireframe flag
unsigned int iWire = 1;
mat.pcInstance->AddProperty<int>((int *)&iWire, 1, AI_MATKEY_ENABLE_WIREFRAME);
}
case D3DS::Discreet3DS::Gouraud:
eShading = aiShadingMode_Gouraud; break;
eShading = aiShadingMode_Gouraud;
break;
case D3DS::Discreet3DS::Metal:
eShading = aiShadingMode_CookTorrance; break;
eShading = aiShadingMode_CookTorrance;
break;
}
mat.pcInstance->AddProperty<int>((int *)&eShading, 1, AI_MATKEY_SHADING_MODEL);
@ -934,7 +921,8 @@ void ASEImporter::ConvertMaterial(ASE::Material& mat)
// store the name of the material itself, too
if (mat.mName.length() > 0) {
aiString tex;tex.Set( mat.mName);
aiString tex;
tex.Set(mat.mName);
mat.pcInstance->AddProperty(&tex, AI_MATKEY_NAME);
}
return;
@ -942,8 +930,7 @@ void ASEImporter::ConvertMaterial(ASE::Material& mat)
// ------------------------------------------------------------------------------------------------
// Build output meshes
void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMeshes)
{
void ASEImporter::ConvertMeshes(ASE::Mesh &mesh, std::vector<aiMesh *> &avOutMeshes) {
// validate the material index of the mesh
if (mesh.iMaterialIndex >= mParser->m_vMaterials.size()) {
mesh.iMaterialIndex = (unsigned int)mParser->m_vMaterials.size() - 1;
@ -952,8 +939,7 @@ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMesh
// If the material the mesh is assigned to is consisting of submeshes, split it
if (!mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty()) {
std::vector<ASE::Material> vSubMaterials = mParser->
m_vMaterials[mesh.iMaterialIndex].avSubMaterials;
std::vector<ASE::Material> vSubMaterials = mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials;
std::vector<unsigned int> *aiSplit = new std::vector<unsigned int>[vSubMaterials.size()];
@ -965,8 +951,8 @@ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMesh
// use the last material instead
aiSplit[vSubMaterials.size() - 1].push_back(i);
}
else aiSplit[mesh.mFaces[i].iMaterial].push_back(i);
} else
aiSplit[mesh.mFaces[i].iMaterial].push_back(i);
}
// now generate submeshes
@ -994,7 +980,7 @@ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMesh
p_pcOut->mNumFaces = (unsigned int)aiSplit[p].size();
// receive output vertex weights
std::vector<std::pair<unsigned int, float> > *avOutputBones = NULL;
std::vector<std::pair<unsigned int, float>> *avOutputBones = nullptr;
if (!mesh.mBones.empty()) {
avOutputBones = new std::vector<std::pair<unsigned int, float>>[mesh.mBones.size()];
}
@ -1041,8 +1027,7 @@ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMesh
}
// convert texture coordinates (up to AI_MAX_NUMBER_OF_TEXTURECOORDS sets supported)
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) {
if (!mesh.amTexCoords[c].empty())
{
if (!mesh.amTexCoords[c].empty()) {
p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices];
iBase = 0;
for (unsigned int q = 0; q < aiSplit[p].size(); ++q) {
@ -1075,8 +1060,7 @@ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMesh
p_pcOut->mBones = new aiBone *[p_pcOut->mNumBones];
aiBone **pcBone = p_pcOut->mBones;
for (unsigned int mrspock = 0; mrspock < mesh.mBones.size();++mrspock)
{
for (unsigned int mrspock = 0; mrspock < mesh.mBones.size(); ++mrspock) {
if (!avOutputBones[mrspock].empty()) {
// we will need this bone. add it to the output mesh and
// add all per-vertex weights
@ -1086,8 +1070,7 @@ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMesh
pc->mNumWeights = (unsigned int)avOutputBones[mrspock].size();
pc->mWeights = new aiVertexWeight[pc->mNumWeights];
for (unsigned int captainkirk = 0; captainkirk < pc->mNumWeights;++captainkirk)
{
for (unsigned int captainkirk = 0; captainkirk < pc->mNumWeights; ++captainkirk) {
const std::pair<unsigned int, float> &ref = avOutputBones[mrspock][captainkirk];
pc->mWeights[captainkirk].mVertexId = ref.first;
pc->mWeights[captainkirk].mWeight = ref.second;
@ -1102,9 +1085,7 @@ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMesh
}
// delete storage
delete[] aiSplit;
}
else
{
} else {
// Otherwise we can simply copy the data to one output mesh
// This codepath needs less memory and uses fast memcpy()s
// to do the actual copying. So I think it is worth the
@ -1189,8 +1170,7 @@ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMesh
for (std::vector<std::pair<int, float>>::const_iterator
ronaldweasley = (*harrypotter).mBoneWeights.begin();
ronaldweasley != (*harrypotter).mBoneWeights.end();++ronaldweasley)
{
ronaldweasley != (*harrypotter).mBoneWeights.end(); ++ronaldweasley) {
aiVertexWeight weight;
weight.mVertexId = quak;
weight.mWeight = (*ronaldweasley).second;
@ -1222,21 +1202,18 @@ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector<aiMesh*>& avOutMesh
// ------------------------------------------------------------------------------------------------
// Setup proper material indices and build output materials
void ASEImporter::BuildMaterialIndices()
{
ai_assert(NULL != pcScene);
void ASEImporter::BuildMaterialIndices() {
ai_assert(nullptr != pcScene);
// iterate through all materials and check whether we need them
for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size();++iMat)
{
for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size(); ++iMat) {
ASE::Material &mat = mParser->m_vMaterials[iMat];
if (mat.bNeed) {
// Convert it to the aiMaterial layout
ConvertMaterial(mat);
++pcScene->mNumMaterials;
}
for (unsigned int iSubMat = 0; iSubMat < mat.avSubMaterials.size();++iSubMat)
{
for (unsigned int iSubMat = 0; iSubMat < mat.avSubMaterials.size(); ++iSubMat) {
ASE::Material &submat = mat.avSubMaterials[iSubMat];
if (submat.bNeed) {
// Convert it to the aiMaterial layout
@ -1253,9 +1230,8 @@ void ASEImporter::BuildMaterialIndices()
unsigned int iNum = 0;
for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size(); ++iMat) {
ASE::Material &mat = mParser->m_vMaterials[iMat];
if (mat.bNeed)
{
ai_assert(NULL != mat.pcInstance);
if (mat.bNeed) {
ai_assert(nullptr != mat.pcInstance);
pcScene->mMaterials[iNum] = mat.pcInstance;
// Store the internal material, too
@ -1263,14 +1239,12 @@ void ASEImporter::BuildMaterialIndices()
// Iterate through all meshes and search for one which is using
// this top-level material index
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh)
{
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes; ++iMesh) {
aiMesh *mesh = pcScene->mMeshes[iMesh];
if (ASE::Face::DEFAULT_MATINDEX == mesh->mMaterialIndex &&
iMat == (uintptr_t)mesh->mColors[3])
{
iMat == (uintptr_t)mesh->mColors[3]) {
mesh->mMaterialIndex = iNum;
mesh->mColors[3] = NULL;
mesh->mColors[3] = nullptr;
}
}
iNum++;
@ -1278,7 +1252,7 @@ void ASEImporter::BuildMaterialIndices()
for (unsigned int iSubMat = 0; iSubMat < mat.avSubMaterials.size(); ++iSubMat) {
ASE::Material &submat = mat.avSubMaterials[iSubMat];
if (submat.bNeed) {
ai_assert(NULL != submat.pcInstance);
ai_assert(nullptr != submat.pcInstance);
pcScene->mMaterials[iNum] = submat.pcInstance;
// Store the internal material, too
@ -1291,7 +1265,7 @@ void ASEImporter::BuildMaterialIndices()
if (iSubMat == mesh->mMaterialIndex && iMat == (uintptr_t)mesh->mColors[3]) {
mesh->mMaterialIndex = iNum;
mesh->mColors[3] = NULL;
mesh->mColors[3] = nullptr;
}
}
iNum++;
@ -1307,13 +1281,11 @@ void ASEImporter::BuildMaterialIndices()
// Generate normal vectors basing on smoothing groups
bool ASEImporter::GenerateNormals(ASE::Mesh &mesh) {
if (!mesh.mNormals.empty() && !configRecomputeNormals)
{
if (!mesh.mNormals.empty() && !configRecomputeNormals) {
// Check whether there are only uninitialized normals. If there are
// some, skip all normals from the file and compute them on our own
for (std::vector<aiVector3D>::const_iterator qq = mesh.mNormals.begin(); qq != mesh.mNormals.end(); ++qq) {
if ((*qq).x || (*qq).y || (*qq).z)
{
if ((*qq).x || (*qq).y || (*qq).z) {
return true;
}
}

File diff suppressed because it is too large Load Diff

View File

@ -57,7 +57,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <assimp/qnan.h>
// ASE is quite similar to 3ds. We can reuse some structures
#include "3DS/3DSLoader.h"
#include "AssetLib/3DS/3DSLoader.h"
namespace Assimp {
namespace ASE {

View File

@ -4,7 +4,6 @@ Open Asset Import Library (assimp)
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,

View File

@ -4,7 +4,6 @@ Open Asset Import Library (assimp)
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
@ -269,7 +268,7 @@ private:
public:
AssbinChunkWriter(IOStream *container, uint32_t magic, size_t initial = 4096) :
buffer(NULL),
buffer(nullptr),
magic(magic),
container(container),
cur_size(0),

View File

@ -4,7 +4,6 @@ Open Asset Import Library (assimp)
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,

View File

@ -48,7 +48,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef ASSIMP_BUILD_NO_ASSBIN_IMPORTER
// internal headers
#include "Assbin/AssbinLoader.h"
#include "AssetLib/Assbin/AssbinLoader.h"
#include "Common/assbin_chunks.h"
#include <assimp/MemoryIOWrapper.h>
#include <assimp/anim.h>

View File

@ -9,16 +9,17 @@ Licensed under a 3-clause BSD license. See the LICENSE file for more information
#ifndef ASSIMP_BUILD_NO_EXPORT
#ifndef ASSIMP_BUILD_NO_ASSJSON_EXPORTER
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/Exporter.hpp>
#include <assimp/IOStream.hpp>
#include <assimp/IOSystem.hpp>
#include <assimp/scene.h>
#include <assimp/Importer.hpp>
#include <assimp/Exceptional.h>
#include <sstream>
#include <limits>
#include <cassert>
#include <limits>
#include <memory>
#include <sstream>
#define CURRENT_FORMAT_VERSION 100
@ -42,10 +43,8 @@ public:
Flag_WriteSpecialFloats = 0x2,
};
JSONWriter(Assimp::IOStream& out, unsigned int flags = 0u)
: out(out)
, first()
, flags(flags) {
JSONWriter(Assimp::IOStream &out, unsigned int flags = 0u) :
out(out), first(), flags(flags) {
// make sure that all formatting happens using the standard, C locale and not the user's current locale
buff.imbue(std::locale("C"));
}
@ -156,8 +155,7 @@ public:
void Delimit() {
if (!first) {
buff << ',';
}
else {
} else {
buff << ' ';
first = false;
}
@ -468,8 +466,7 @@ void Write(JSONWriter& out, const aiMaterial& ai, bool is_elem = true) {
out.Element(reinterpret_cast<float *>(prop->mData)[ii]);
}
out.EndArray();
}
else {
} else {
out.SimpleValue(*reinterpret_cast<float *>(prop->mData));
}
break;
@ -486,19 +483,15 @@ void Write(JSONWriter& out, const aiMaterial& ai, bool is_elem = true) {
}
break;
case aiPTI_String:
{
case aiPTI_String: {
aiString s;
aiGetMaterialString(&ai, prop->mKey.data, prop->mSemantic, prop->mIndex, &s);
out.SimpleValue(s);
}
break;
case aiPTI_Buffer:
{
} break;
case aiPTI_Buffer: {
// binary data is written as series of hex-encoded octets
out.SimpleValue(prop->mData, prop->mDataLength);
}
break;
} break;
default:
assert(false);
}
@ -525,8 +518,7 @@ void Write(JSONWriter& out, const aiTexture& ai, bool is_elem = true) {
out.Key("data");
if (!ai.mHeight) {
out.SimpleValue(ai.pcData, ai.mWidth);
}
else {
} else {
out.StartArray();
for (unsigned int y = 0; y < ai.mHeight; ++y) {
out.StartArray(true);
@ -585,7 +577,6 @@ void Write(JSONWriter& out, const aiLight& ai, bool is_elem = true) {
if (ai.mType != aiLightSource_POINT) {
out.Key("direction");
Write(out, ai.mDirection, false);
}
if (ai.mType != aiLightSource_DIRECTIONAL) {
@ -774,11 +765,10 @@ void Write(JSONWriter& out, const aiScene& ai) {
out.EndObj();
}
void ExportAssimp2Json(const char *file, Assimp::IOSystem *io, const aiScene *scene, const Assimp::ExportProperties *) {
std::unique_ptr<Assimp::IOStream> str(io->Open(file, "wt"));
if (!str) {
//throw Assimp::DeadlyExportError("could not open output file");
throw DeadlyExportError("could not open output file");
}
// get a copy of the scene so we can modify it
@ -795,15 +785,14 @@ void ExportAssimp2Json(const char* file, Assimp::IOSystem* io, const aiScene* sc
JSONWriter s(*str, JSONWriter::Flag_WriteSpecialFloats);
Write(s, *scenecopy_tmp);
}
catch (...) {
} catch (...) {
aiFreeScene(scenecopy_tmp);
throw;
}
aiFreeScene(scenecopy_tmp);
}
}
} // namespace Assimp
#endif // ASSIMP_BUILD_NO_ASSJSON_EXPORTER
#endif // ASSIMP_BUILD_NO_EXPORT

View File

@ -0,0 +1,659 @@
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file AssxmlFileWriter.cpp
* @brief Implementation of Assxml file writer.
*/
#include "AssxmlFileWriter.h"
#include "PostProcessing/ProcessHelper.h"
#include <assimp/version.h>
#include <assimp/Exporter.hpp>
#include <assimp/IOStream.hpp>
#include <assimp/IOSystem.hpp>
#include <stdarg.h>
#ifdef ASSIMP_BUILD_NO_OWN_ZLIB
#include <zlib.h>
#else
#include <contrib/zlib/zlib.h>
#endif
#include <stdio.h>
#include <time.h>
#include <memory>
using namespace Assimp;
namespace Assimp {
namespace AssxmlFileWriter {
// -----------------------------------------------------------------------------------
static int ioprintf(IOStream *io, const char *format, ...) {
using namespace std;
if (nullptr == io) {
return -1;
}
static const int Size = 4096;
char sz[Size];
::memset(sz, '\0', Size);
va_list va;
va_start(va, format);
const unsigned int nSize = vsnprintf(sz, Size - 1, format, va);
ai_assert(nSize < Size);
va_end(va);
io->Write(sz, sizeof(char), nSize);
return nSize;
}
// -----------------------------------------------------------------------------------
// Convert a name to standard XML format
static void ConvertName(aiString &out, const aiString &in) {
out.length = 0;
for (unsigned int i = 0; i < in.length; ++i) {
switch (in.data[i]) {
case '<':
out.Append("&lt;");
break;
case '>':
out.Append("&gt;");
break;
case '&':
out.Append("&amp;");
break;
case '\"':
out.Append("&quot;");
break;
case '\'':
out.Append("&apos;");
break;
default:
out.data[out.length++] = in.data[i];
}
}
out.data[out.length] = 0;
}
// -----------------------------------------------------------------------------------
// Write a single node as text dump
static void WriteNode(const aiNode *node, IOStream *io, unsigned int depth) {
char prefix[512];
for (unsigned int i = 0; i < depth; ++i)
prefix[i] = '\t';
prefix[depth] = '\0';
const aiMatrix4x4 &m = node->mTransformation;
aiString name;
ConvertName(name, node->mName);
ioprintf(io, "%s<Node name=\"%s\"> \n"
"%s\t<Matrix4> \n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t</Matrix4> \n",
prefix, name.data, prefix,
prefix, m.a1, m.a2, m.a3, m.a4,
prefix, m.b1, m.b2, m.b3, m.b4,
prefix, m.c1, m.c2, m.c3, m.c4,
prefix, m.d1, m.d2, m.d3, m.d4, prefix);
if (node->mNumMeshes) {
ioprintf(io, "%s\t<MeshRefs num=\"%u\">\n%s\t",
prefix, node->mNumMeshes, prefix);
for (unsigned int i = 0; i < node->mNumMeshes; ++i) {
ioprintf(io, "%u ", node->mMeshes[i]);
}
ioprintf(io, "\n%s\t</MeshRefs>\n", prefix);
}
if (node->mNumChildren) {
ioprintf(io, "%s\t<NodeList num=\"%u\">\n",
prefix, node->mNumChildren);
for (unsigned int i = 0; i < node->mNumChildren; ++i) {
WriteNode(node->mChildren[i], io, depth + 2);
}
ioprintf(io, "%s\t</NodeList>\n", prefix);
}
ioprintf(io, "%s</Node>\n", prefix);
}
// -----------------------------------------------------------------------------------
// Some chuncks of text will need to be encoded for XML
// http://stackoverflow.com/questions/5665231/most-efficient-way-to-escape-xml-html-in-c-string#5665377
static std::string encodeXML(const std::string &data) {
std::string buffer;
buffer.reserve(data.size());
for (size_t pos = 0; pos != data.size(); ++pos) {
switch (data[pos]) {
case '&': buffer.append("&amp;"); break;
case '\"': buffer.append("&quot;"); break;
case '\'': buffer.append("&apos;"); break;
case '<': buffer.append("&lt;"); break;
case '>': buffer.append("&gt;"); break;
default: buffer.append(&data[pos], 1); break;
}
}
return buffer;
}
// -----------------------------------------------------------------------------------
// Write a text model dump
static void WriteDump(const char *pFile, const char *cmd, const aiScene *scene, IOStream *io, bool shortened) {
time_t tt = ::time(NULL);
#if _WIN32
tm *p = gmtime(&tt);
#else
struct tm now;
tm *p = gmtime_r(&tt, &now);
#endif
ai_assert(nullptr != p);
std::string c = cmd;
std::string::size_type s;
// https://sourceforge.net/tracker/?func=detail&aid=3167364&group_id=226462&atid=1067632
// -- not allowed in XML comments
while ((s = c.find("--")) != std::string::npos) {
c[s] = '?';
}
// write header
std::string header(
"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n"
"<ASSIMP format_id=\"1\">\n\n"
"<!-- XML Model dump produced by assimp dump\n"
" Library version: %u.%u.%u\n"
" Source: %s\n"
" Command line: %s\n"
" %s\n"
"-->"
" \n\n"
"<Scene flags=\"%u\" postprocessing=\"%u\">\n");
const unsigned int majorVersion(aiGetVersionMajor());
const unsigned int minorVersion(aiGetVersionMinor());
const unsigned int rev(aiGetVersionRevision());
const char *curtime(asctime(p));
ioprintf(io, header.c_str(), majorVersion, minorVersion, rev, pFile, c.c_str(), curtime, scene->mFlags, 0u);
// write the node graph
WriteNode(scene->mRootNode, io, 0);
#if 0
// write cameras
for (unsigned int i = 0; i < scene->mNumCameras;++i) {
aiCamera* cam = scene->mCameras[i];
ConvertName(name,cam->mName);
// camera header
ioprintf(io,"\t<Camera parent=\"%s\">\n"
"\t\t<Vector3 name=\"up\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Float name=\"fov\" > %f </Float>\n"
"\t\t<Float name=\"aspect\" > %f </Float>\n"
"\t\t<Float name=\"near_clip\" > %f </Float>\n"
"\t\t<Float name=\"far_clip\" > %f </Float>\n"
"\t</Camera>\n",
name.data,
cam->mUp.x,cam->mUp.y,cam->mUp.z,
cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z,
cam->mPosition.x,cam->mPosition.y,cam->mPosition.z,
cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i);
}
// write lights
for (unsigned int i = 0; i < scene->mNumLights;++i) {
aiLight* l = scene->mLights[i];
ConvertName(name,l->mName);
// light header
ioprintf(io,"\t<Light parent=\"%s\"> type=\"%s\"\n"
"\t\t<Vector3 name=\"diffuse\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"specular\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"ambient\" > %0 8f %0 8f %0 8f </Vector3>\n",
name.data,
(l->mType == aiLightSource_DIRECTIONAL ? "directional" :
(l->mType == aiLightSource_POINT ? "point" : "spot" )),
l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b,
l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b,
l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b);
if (l->mType != aiLightSource_DIRECTIONAL) {
ioprintf(io,
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Float name=\"atten_cst\" > %f </Float>\n"
"\t\t<Float name=\"atten_lin\" > %f </Float>\n"
"\t\t<Float name=\"atten_sqr\" > %f </Float>\n",
l->mPosition.x,l->mPosition.y,l->mPosition.z,
l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic);
}
if (l->mType != aiLightSource_POINT) {
ioprintf(io,
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n",
l->mDirection.x,l->mDirection.y,l->mDirection.z);
}
if (l->mType == aiLightSource_SPOT) {
ioprintf(io,
"\t\t<Float name=\"cone_out\" > %f </Float>\n"
"\t\t<Float name=\"cone_inn\" > %f </Float>\n",
l->mAngleOuterCone,l->mAngleInnerCone);
}
ioprintf(io,"\t</Light>\n");
}
#endif
aiString name;
// write textures
if (scene->mNumTextures) {
ioprintf(io, "<TextureList num=\"%u\">\n", scene->mNumTextures);
for (unsigned int i = 0; i < scene->mNumTextures; ++i) {
aiTexture *tex = scene->mTextures[i];
bool compressed = (tex->mHeight == 0);
// mesh header
ioprintf(io, "\t<Texture width=\"%u\" height=\"%u\" compressed=\"%s\"> \n",
(compressed ? -1 : tex->mWidth), (compressed ? -1 : tex->mHeight),
(compressed ? "true" : "false"));
if (compressed) {
ioprintf(io, "\t\t<Data length=\"%u\"> \n", tex->mWidth);
if (!shortened) {
for (unsigned int n = 0; n < tex->mWidth; ++n) {
ioprintf(io, "\t\t\t%2x", reinterpret_cast<uint8_t *>(tex->pcData)[n]);
if (n && !(n % 50)) {
ioprintf(io, "\n");
}
}
}
} else if (!shortened) {
ioprintf(io, "\t\t<Data length=\"%u\"> \n", tex->mWidth * tex->mHeight * 4);
// const unsigned int width = (unsigned int)std::log10((double)std::max(tex->mHeight,tex->mWidth))+1;
for (unsigned int y = 0; y < tex->mHeight; ++y) {
for (unsigned int x = 0; x < tex->mWidth; ++x) {
aiTexel *tx = tex->pcData + y * tex->mWidth + x;
unsigned int r = tx->r, g = tx->g, b = tx->b, a = tx->a;
ioprintf(io, "\t\t\t%2x %2x %2x %2x", r, g, b, a);
// group by four for readability
if (0 == (x + y * tex->mWidth) % 4) {
ioprintf(io, "\n");
}
}
}
}
ioprintf(io, "\t\t</Data>\n\t</Texture>\n");
}
ioprintf(io, "</TextureList>\n");
}
// write materials
if (scene->mNumMaterials) {
ioprintf(io, "<MaterialList num=\"%u\">\n", scene->mNumMaterials);
for (unsigned int i = 0; i < scene->mNumMaterials; ++i) {
const aiMaterial *mat = scene->mMaterials[i];
ioprintf(io, "\t<Material>\n");
ioprintf(io, "\t\t<MatPropertyList num=\"%u\">\n", mat->mNumProperties);
for (unsigned int n = 0; n < mat->mNumProperties; ++n) {
const aiMaterialProperty *prop = mat->mProperties[n];
const char *sz = "";
if (prop->mType == aiPTI_Float) {
sz = "float";
} else if (prop->mType == aiPTI_Integer) {
sz = "integer";
} else if (prop->mType == aiPTI_String) {
sz = "string";
} else if (prop->mType == aiPTI_Buffer) {
sz = "binary_buffer";
}
ioprintf(io, "\t\t\t<MatProperty key=\"%s\" \n\t\t\ttype=\"%s\" tex_usage=\"%s\" tex_index=\"%u\"",
prop->mKey.data, sz,
::TextureTypeToString((aiTextureType)prop->mSemantic), prop->mIndex);
if (prop->mType == aiPTI_Float) {
ioprintf(io, " size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength / sizeof(float)));
for (unsigned int pp = 0; pp < prop->mDataLength / sizeof(float); ++pp) {
ioprintf(io, "%f ", *((float *)(prop->mData + pp * sizeof(float))));
}
} else if (prop->mType == aiPTI_Integer) {
ioprintf(io, " size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength / sizeof(int)));
for (unsigned int pp = 0; pp < prop->mDataLength / sizeof(int); ++pp) {
ioprintf(io, "%i ", *((int *)(prop->mData + pp * sizeof(int))));
}
} else if (prop->mType == aiPTI_Buffer) {
ioprintf(io, " size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength));
for (unsigned int pp = 0; pp < prop->mDataLength; ++pp) {
ioprintf(io, "%2x ", prop->mData[pp]);
if (pp && 0 == pp % 30) {
ioprintf(io, "\n\t\t\t\t");
}
}
} else if (prop->mType == aiPTI_String) {
ioprintf(io, ">\n\t\t\t\t\"%s\"", encodeXML(prop->mData + 4).c_str() /* skip length */);
}
ioprintf(io, "\n\t\t\t</MatProperty>\n");
}
ioprintf(io, "\t\t</MatPropertyList>\n");
ioprintf(io, "\t</Material>\n");
}
ioprintf(io, "</MaterialList>\n");
}
// write animations
if (scene->mNumAnimations) {
ioprintf(io, "<AnimationList num=\"%u\">\n", scene->mNumAnimations);
for (unsigned int i = 0; i < scene->mNumAnimations; ++i) {
aiAnimation *anim = scene->mAnimations[i];
// anim header
ConvertName(name, anim->mName);
ioprintf(io, "\t<Animation name=\"%s\" duration=\"%e\" tick_cnt=\"%e\">\n",
name.data, anim->mDuration, anim->mTicksPerSecond);
// write bone animation channels
if (anim->mNumChannels) {
ioprintf(io, "\t\t<NodeAnimList num=\"%u\">\n", anim->mNumChannels);
for (unsigned int n = 0; n < anim->mNumChannels; ++n) {
aiNodeAnim *nd = anim->mChannels[n];
// node anim header
ConvertName(name, nd->mNodeName);
ioprintf(io, "\t\t\t<NodeAnim node=\"%s\">\n", name.data);
if (!shortened) {
// write position keys
if (nd->mNumPositionKeys) {
ioprintf(io, "\t\t\t\t<PositionKeyList num=\"%u\">\n", nd->mNumPositionKeys);
for (unsigned int a = 0; a < nd->mNumPositionKeys; ++a) {
aiVectorKey *vc = nd->mPositionKeys + a;
ioprintf(io, "\t\t\t\t\t<PositionKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</PositionKey>\n",
vc->mTime, vc->mValue.x, vc->mValue.y, vc->mValue.z);
}
ioprintf(io, "\t\t\t\t</PositionKeyList>\n");
}
// write scaling keys
if (nd->mNumScalingKeys) {
ioprintf(io, "\t\t\t\t<ScalingKeyList num=\"%u\">\n", nd->mNumScalingKeys);
for (unsigned int a = 0; a < nd->mNumScalingKeys; ++a) {
aiVectorKey *vc = nd->mScalingKeys + a;
ioprintf(io, "\t\t\t\t\t<ScalingKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</ScalingKey>\n",
vc->mTime, vc->mValue.x, vc->mValue.y, vc->mValue.z);
}
ioprintf(io, "\t\t\t\t</ScalingKeyList>\n");
}
// write rotation keys
if (nd->mNumRotationKeys) {
ioprintf(io, "\t\t\t\t<RotationKeyList num=\"%u\">\n", nd->mNumRotationKeys);
for (unsigned int a = 0; a < nd->mNumRotationKeys; ++a) {
aiQuatKey *vc = nd->mRotationKeys + a;
ioprintf(io, "\t\t\t\t\t<RotationKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t\t\t</RotationKey>\n",
vc->mTime, vc->mValue.x, vc->mValue.y, vc->mValue.z, vc->mValue.w);
}
ioprintf(io, "\t\t\t\t</RotationKeyList>\n");
}
}
ioprintf(io, "\t\t\t</NodeAnim>\n");
}
ioprintf(io, "\t\t</NodeAnimList>\n");
}
ioprintf(io, "\t</Animation>\n");
}
ioprintf(io, "</AnimationList>\n");
}
// write meshes
if (scene->mNumMeshes) {
ioprintf(io, "<MeshList num=\"%u\">\n", scene->mNumMeshes);
for (unsigned int i = 0; i < scene->mNumMeshes; ++i) {
aiMesh *mesh = scene->mMeshes[i];
// const unsigned int width = (unsigned int)std::log10((double)mesh->mNumVertices)+1;
// mesh header
ioprintf(io, "\t<Mesh types=\"%s %s %s %s\" material_index=\"%u\">\n",
(mesh->mPrimitiveTypes & aiPrimitiveType_POINT ? "points" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_LINE ? "lines" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON ? "polygons" : ""),
mesh->mMaterialIndex);
// bones
if (mesh->mNumBones) {
ioprintf(io, "\t\t<BoneList num=\"%u\">\n", mesh->mNumBones);
for (unsigned int n = 0; n < mesh->mNumBones; ++n) {
aiBone *bone = mesh->mBones[n];
ConvertName(name, bone->mName);
// bone header
ioprintf(io, "\t\t\t<Bone name=\"%s\">\n"
"\t\t\t\t<Matrix4> \n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t</Matrix4> \n",
name.data,
bone->mOffsetMatrix.a1, bone->mOffsetMatrix.a2, bone->mOffsetMatrix.a3, bone->mOffsetMatrix.a4,
bone->mOffsetMatrix.b1, bone->mOffsetMatrix.b2, bone->mOffsetMatrix.b3, bone->mOffsetMatrix.b4,
bone->mOffsetMatrix.c1, bone->mOffsetMatrix.c2, bone->mOffsetMatrix.c3, bone->mOffsetMatrix.c4,
bone->mOffsetMatrix.d1, bone->mOffsetMatrix.d2, bone->mOffsetMatrix.d3, bone->mOffsetMatrix.d4);
if (!shortened && bone->mNumWeights) {
ioprintf(io, "\t\t\t\t<WeightList num=\"%u\">\n", bone->mNumWeights);
// bone weights
for (unsigned int a = 0; a < bone->mNumWeights; ++a) {
aiVertexWeight *wght = bone->mWeights + a;
ioprintf(io, "\t\t\t\t\t<Weight index=\"%u\">\n\t\t\t\t\t\t%f\n\t\t\t\t\t</Weight>\n",
wght->mVertexId, wght->mWeight);
}
ioprintf(io, "\t\t\t\t</WeightList>\n");
}
ioprintf(io, "\t\t\t</Bone>\n");
}
ioprintf(io, "\t\t</BoneList>\n");
}
// faces
if (!shortened && mesh->mNumFaces) {
ioprintf(io, "\t\t<FaceList num=\"%u\">\n", mesh->mNumFaces);
for (unsigned int n = 0; n < mesh->mNumFaces; ++n) {
aiFace &f = mesh->mFaces[n];
ioprintf(io, "\t\t\t<Face num=\"%u\">\n"
"\t\t\t\t",
f.mNumIndices);
for (unsigned int j = 0; j < f.mNumIndices; ++j)
ioprintf(io, "%u ", f.mIndices[j]);
ioprintf(io, "\n\t\t\t</Face>\n");
}
ioprintf(io, "\t\t</FaceList>\n");
}
// vertex positions
if (mesh->HasPositions()) {
ioprintf(io, "\t\t<Positions num=\"%u\" set=\"0\" num_components=\"3\"> \n", mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io, "\t\t%0 8f %0 8f %0 8f\n",
mesh->mVertices[n].x,
mesh->mVertices[n].y,
mesh->mVertices[n].z);
}
}
ioprintf(io, "\t\t</Positions>\n");
}
// vertex normals
if (mesh->HasNormals()) {
ioprintf(io, "\t\t<Normals num=\"%u\" set=\"0\" num_components=\"3\"> \n", mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io, "\t\t%0 8f %0 8f %0 8f\n",
mesh->mNormals[n].x,
mesh->mNormals[n].y,
mesh->mNormals[n].z);
}
}
ioprintf(io, "\t\t</Normals>\n");
}
// vertex tangents and bitangents
if (mesh->HasTangentsAndBitangents()) {
ioprintf(io, "\t\t<Tangents num=\"%u\" set=\"0\" num_components=\"3\"> \n", mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io, "\t\t%0 8f %0 8f %0 8f\n",
mesh->mTangents[n].x,
mesh->mTangents[n].y,
mesh->mTangents[n].z);
}
}
ioprintf(io, "\t\t</Tangents>\n");
ioprintf(io, "\t\t<Bitangents num=\"%u\" set=\"0\" num_components=\"3\"> \n", mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io, "\t\t%0 8f %0 8f %0 8f\n",
mesh->mBitangents[n].x,
mesh->mBitangents[n].y,
mesh->mBitangents[n].z);
}
}
ioprintf(io, "\t\t</Bitangents>\n");
}
// texture coordinates
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
if (!mesh->mTextureCoords[a])
break;
ioprintf(io, "\t\t<TextureCoords num=\"%u\" set=\"%u\" num_components=\"%u\"> \n", mesh->mNumVertices,
a, mesh->mNumUVComponents[a]);
if (!shortened) {
if (mesh->mNumUVComponents[a] == 3) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io, "\t\t%0 8f %0 8f %0 8f\n",
mesh->mTextureCoords[a][n].x,
mesh->mTextureCoords[a][n].y,
mesh->mTextureCoords[a][n].z);
}
} else {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io, "\t\t%0 8f %0 8f\n",
mesh->mTextureCoords[a][n].x,
mesh->mTextureCoords[a][n].y);
}
}
}
ioprintf(io, "\t\t</TextureCoords>\n");
}
// vertex colors
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) {
if (!mesh->mColors[a])
break;
ioprintf(io, "\t\t<Colors num=\"%u\" set=\"%u\" num_components=\"4\"> \n", mesh->mNumVertices, a);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io, "\t\t%0 8f %0 8f %0 8f %0 8f\n",
mesh->mColors[a][n].r,
mesh->mColors[a][n].g,
mesh->mColors[a][n].b,
mesh->mColors[a][n].a);
}
}
ioprintf(io, "\t\t</Colors>\n");
}
ioprintf(io, "\t</Mesh>\n");
}
ioprintf(io, "</MeshList>\n");
}
ioprintf(io, "</Scene>\n</ASSIMP>");
}
} // end of namespace AssxmlFileWriter
void DumpSceneToAssxml(
const char *pFile, const char *cmd, IOSystem *pIOSystem,
const aiScene *pScene, bool shortened) {
std::unique_ptr<IOStream> file(pIOSystem->Open(pFile, "wt"));
if (!file.get()) {
throw std::runtime_error("Unable to open output file " + std::string(pFile) + '\n');
}
AssxmlFileWriter::WriteDump(pFile, cmd, pScene, file.get(), shortened);
}
} // end of namespace Assimp

View File

@ -0,0 +1,744 @@
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file B3DImporter.cpp
* @brief Implementation of the b3d importer class
*/
#ifndef ASSIMP_BUILD_NO_B3D_IMPORTER
// internal headers
#include "AssetLib/B3D/B3DImporter.h"
#include "PostProcessing/ConvertToLHProcess.h"
#include "PostProcessing/TextureTransform.h"
#include <assimp/StringUtils.h>
#include <assimp/anim.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/IOSystem.hpp>
#include <memory>
using namespace Assimp;
using namespace std;
static const aiImporterDesc desc = {
"BlitzBasic 3D Importer",
"",
"",
"http://www.blitzbasic.com/",
aiImporterFlags_SupportBinaryFlavour,
0,
0,
0,
0,
"b3d"
};
#ifdef _MSC_VER
#pragma warning(disable : 4018)
#endif
//#define DEBUG_B3D
template <typename T>
void DeleteAllBarePointers(std::vector<T> &x) {
for (auto p : x) {
delete p;
}
}
B3DImporter::~B3DImporter() {
}
// ------------------------------------------------------------------------------------------------
bool B3DImporter::CanRead(const std::string &pFile, IOSystem * /*pIOHandler*/, bool /*checkSig*/) const {
size_t pos = pFile.find_last_of('.');
if (pos == string::npos) {
return false;
}
string ext = pFile.substr(pos + 1);
if (ext.size() != 3) {
return false;
}
return (ext[0] == 'b' || ext[0] == 'B') && (ext[1] == '3') && (ext[2] == 'd' || ext[2] == 'D');
}
// ------------------------------------------------------------------------------------------------
// Loader meta information
const aiImporterDesc *B3DImporter::GetInfo() const {
return &desc;
}
// ------------------------------------------------------------------------------------------------
void B3DImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
std::unique_ptr<IOStream> file(pIOHandler->Open(pFile));
// Check whether we can read from the file
if (file.get() == nullptr) {
throw DeadlyImportError("Failed to open B3D file " + pFile + ".");
}
// check whether the .b3d file is large enough to contain
// at least one chunk.
size_t fileSize = file->FileSize();
if (fileSize < 8) {
throw DeadlyImportError("B3D File is too small.");
}
_pos = 0;
_buf.resize(fileSize);
file->Read(&_buf[0], 1, fileSize);
_stack.clear();
ReadBB3D(pScene);
}
// ------------------------------------------------------------------------------------------------
AI_WONT_RETURN void B3DImporter::Oops() {
throw DeadlyImportError("B3D Importer - INTERNAL ERROR");
}
// ------------------------------------------------------------------------------------------------
AI_WONT_RETURN void B3DImporter::Fail(string str) {
#ifdef DEBUG_B3D
ASSIMP_LOG_ERROR_F("Error in B3D file data: ", str);
#endif
throw DeadlyImportError("B3D Importer - error in B3D file data: " + str);
}
// ------------------------------------------------------------------------------------------------
int B3DImporter::ReadByte() {
if (_pos > _buf.size()) {
Fail("EOF");
}
return _buf[_pos++];
}
// ------------------------------------------------------------------------------------------------
int B3DImporter::ReadInt() {
if (_pos + 4 > _buf.size()) {
Fail("EOF");
}
int n;
memcpy(&n, &_buf[_pos], 4);
_pos += 4;
return n;
}
// ------------------------------------------------------------------------------------------------
float B3DImporter::ReadFloat() {
if (_pos + 4 > _buf.size()) {
Fail("EOF");
}
float n;
memcpy(&n, &_buf[_pos], 4);
_pos += 4;
return n;
}
// ------------------------------------------------------------------------------------------------
aiVector2D B3DImporter::ReadVec2() {
float x = ReadFloat();
float y = ReadFloat();
return aiVector2D(x, y);
}
// ------------------------------------------------------------------------------------------------
aiVector3D B3DImporter::ReadVec3() {
float x = ReadFloat();
float y = ReadFloat();
float z = ReadFloat();
return aiVector3D(x, y, z);
}
// ------------------------------------------------------------------------------------------------
aiQuaternion B3DImporter::ReadQuat() {
// (aramis_acg) Fix to adapt the loader to changed quat orientation
float w = -ReadFloat();
float x = ReadFloat();
float y = ReadFloat();
float z = ReadFloat();
return aiQuaternion(w, x, y, z);
}
// ------------------------------------------------------------------------------------------------
string B3DImporter::ReadString() {
if (_pos > _buf.size()) {
Fail("EOF");
}
string str;
while (_pos < _buf.size()) {
char c = (char)ReadByte();
if (!c) {
return str;
}
str += c;
}
return string();
}
// ------------------------------------------------------------------------------------------------
string B3DImporter::ReadChunk() {
string tag;
for (int i = 0; i < 4; ++i) {
tag += char(ReadByte());
}
#ifdef DEBUG_B3D
ASSIMP_LOG_DEBUG_F("ReadChunk: ", tag);
#endif
unsigned sz = (unsigned)ReadInt();
_stack.push_back(_pos + sz);
return tag;
}
// ------------------------------------------------------------------------------------------------
void B3DImporter::ExitChunk() {
_pos = _stack.back();
_stack.pop_back();
}
// ------------------------------------------------------------------------------------------------
size_t B3DImporter::ChunkSize() {
return _stack.back() - _pos;
}
// ------------------------------------------------------------------------------------------------
template <class T>
T *B3DImporter::to_array(const vector<T> &v) {
if (v.empty()) {
return 0;
}
T *p = new T[v.size()];
for (size_t i = 0; i < v.size(); ++i) {
p[i] = v[i];
}
return p;
}
// ------------------------------------------------------------------------------------------------
template <class T>
T **unique_to_array(vector<std::unique_ptr<T>> &v) {
if (v.empty()) {
return 0;
}
T **p = new T *[v.size()];
for (size_t i = 0; i < v.size(); ++i) {
p[i] = v[i].release();
}
return p;
}
// ------------------------------------------------------------------------------------------------
void B3DImporter::ReadTEXS() {
while (ChunkSize()) {
string name = ReadString();
/*int flags=*/ReadInt();
/*int blend=*/ReadInt();
/*aiVector2D pos=*/ReadVec2();
/*aiVector2D scale=*/ReadVec2();
/*float rot=*/ReadFloat();
_textures.push_back(name);
}
}
// ------------------------------------------------------------------------------------------------
void B3DImporter::ReadBRUS() {
int n_texs = ReadInt();
if (n_texs < 0 || n_texs > 8) {
Fail("Bad texture count");
}
while (ChunkSize()) {
string name = ReadString();
aiVector3D color = ReadVec3();
float alpha = ReadFloat();
float shiny = ReadFloat();
/*int blend=**/ ReadInt();
int fx = ReadInt();
std::unique_ptr<aiMaterial> mat(new aiMaterial);
// Name
aiString ainame(name);
mat->AddProperty(&ainame, AI_MATKEY_NAME);
// Diffuse color
mat->AddProperty(&color, 1, AI_MATKEY_COLOR_DIFFUSE);
// Opacity
mat->AddProperty(&alpha, 1, AI_MATKEY_OPACITY);
// Specular color
aiColor3D speccolor(shiny, shiny, shiny);
mat->AddProperty(&speccolor, 1, AI_MATKEY_COLOR_SPECULAR);
// Specular power
float specpow = shiny * 128;
mat->AddProperty(&specpow, 1, AI_MATKEY_SHININESS);
// Double sided
if (fx & 0x10) {
int i = 1;
mat->AddProperty(&i, 1, AI_MATKEY_TWOSIDED);
}
//Textures
for (int i = 0; i < n_texs; ++i) {
int texid = ReadInt();
if (texid < -1 || (texid >= 0 && texid >= static_cast<int>(_textures.size()))) {
Fail("Bad texture id");
}
if (i == 0 && texid >= 0) {
aiString texname(_textures[texid]);
mat->AddProperty(&texname, AI_MATKEY_TEXTURE_DIFFUSE(0));
}
}
_materials.emplace_back(std::move(mat));
}
}
// ------------------------------------------------------------------------------------------------
void B3DImporter::ReadVRTS() {
_vflags = ReadInt();
_tcsets = ReadInt();
_tcsize = ReadInt();
if (_tcsets < 0 || _tcsets > 4 || _tcsize < 0 || _tcsize > 4) {
Fail("Bad texcoord data");
}
int sz = 12 + (_vflags & 1 ? 12 : 0) + (_vflags & 2 ? 16 : 0) + (_tcsets * _tcsize * 4);
size_t n_verts = ChunkSize() / sz;
int v0 = static_cast<int>(_vertices.size());
_vertices.resize(v0 + n_verts);
for (unsigned int i = 0; i < n_verts; ++i) {
Vertex &v = _vertices[v0 + i];
memset(v.bones, 0, sizeof(v.bones));
memset(v.weights, 0, sizeof(v.weights));
v.vertex = ReadVec3();
if (_vflags & 1) {
v.normal = ReadVec3();
}
if (_vflags & 2) {
ReadQuat(); //skip v 4bytes...
}
for (int j = 0; j < _tcsets; ++j) {
float t[4] = { 0, 0, 0, 0 };
for (int k = 0; k < _tcsize; ++k) {
t[k] = ReadFloat();
}
t[1] = 1 - t[1];
if (!j) {
v.texcoords = aiVector3D(t[0], t[1], t[2]);
}
}
}
}
// ------------------------------------------------------------------------------------------------
void B3DImporter::ReadTRIS(int v0) {
int matid = ReadInt();
if (matid == -1) {
matid = 0;
} else if (matid < 0 || matid >= (int)_materials.size()) {
#ifdef DEBUG_B3D
ASSIMP_LOG_ERROR_F("material id=", matid);
#endif
Fail("Bad material id");
}
std::unique_ptr<aiMesh> mesh(new aiMesh);
mesh->mMaterialIndex = matid;
mesh->mNumFaces = 0;
mesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;
size_t n_tris = ChunkSize() / 12;
aiFace *face = mesh->mFaces = new aiFace[n_tris];
for (unsigned int i = 0; i < n_tris; ++i) {
int i0 = ReadInt() + v0;
int i1 = ReadInt() + v0;
int i2 = ReadInt() + v0;
if (i0 < 0 || i0 >= (int)_vertices.size() || i1 < 0 || i1 >= (int)_vertices.size() || i2 < 0 || i2 >= (int)_vertices.size()) {
#ifdef DEBUG_B3D
ASSIMP_LOG_ERROR_F("Bad triangle index: i0=", i0, ", i1=", i1, ", i2=", i2);
#endif
Fail("Bad triangle index");
continue;
}
face->mNumIndices = 3;
face->mIndices = new unsigned[3];
face->mIndices[0] = i0;
face->mIndices[1] = i1;
face->mIndices[2] = i2;
++mesh->mNumFaces;
++face;
}
_meshes.emplace_back(std::move(mesh));
}
// ------------------------------------------------------------------------------------------------
void B3DImporter::ReadMESH() {
/*int matid=*/ReadInt();
int v0 = static_cast<int>(_vertices.size());
while (ChunkSize()) {
string t = ReadChunk();
if (t == "VRTS") {
ReadVRTS();
} else if (t == "TRIS") {
ReadTRIS(v0);
}
ExitChunk();
}
}
// ------------------------------------------------------------------------------------------------
void B3DImporter::ReadBONE(int id) {
while (ChunkSize()) {
int vertex = ReadInt();
float weight = ReadFloat();
if (vertex < 0 || vertex >= (int)_vertices.size()) {
Fail("Bad vertex index");
}
Vertex &v = _vertices[vertex];
for (int i = 0; i < 4; ++i) {
if (!v.weights[i]) {
v.bones[i] = static_cast<unsigned char>(id);
v.weights[i] = weight;
break;
}
}
}
}
// ------------------------------------------------------------------------------------------------
void B3DImporter::ReadKEYS(aiNodeAnim *nodeAnim) {
vector<aiVectorKey> trans, scale;
vector<aiQuatKey> rot;
int flags = ReadInt();
while (ChunkSize()) {
int frame = ReadInt();
if (flags & 1) {
trans.push_back(aiVectorKey(frame, ReadVec3()));
}
if (flags & 2) {
scale.push_back(aiVectorKey(frame, ReadVec3()));
}
if (flags & 4) {
rot.push_back(aiQuatKey(frame, ReadQuat()));
}
}
if (flags & 1) {
nodeAnim->mNumPositionKeys = static_cast<unsigned int>(trans.size());
nodeAnim->mPositionKeys = to_array(trans);
}
if (flags & 2) {
nodeAnim->mNumScalingKeys = static_cast<unsigned int>(scale.size());
nodeAnim->mScalingKeys = to_array(scale);
}
if (flags & 4) {
nodeAnim->mNumRotationKeys = static_cast<unsigned int>(rot.size());
nodeAnim->mRotationKeys = to_array(rot);
}
}
// ------------------------------------------------------------------------------------------------
void B3DImporter::ReadANIM() {
/*int flags=*/ReadInt();
int frames = ReadInt();
float fps = ReadFloat();
std::unique_ptr<aiAnimation> anim(new aiAnimation);
anim->mDuration = frames;
anim->mTicksPerSecond = fps;
_animations.emplace_back(std::move(anim));
}
// ------------------------------------------------------------------------------------------------
aiNode *B3DImporter::ReadNODE(aiNode *parent) {
string name = ReadString();
aiVector3D t = ReadVec3();
aiVector3D s = ReadVec3();
aiQuaternion r = ReadQuat();
aiMatrix4x4 trans, scale, rot;
aiMatrix4x4::Translation(t, trans);
aiMatrix4x4::Scaling(s, scale);
rot = aiMatrix4x4(r.GetMatrix());
aiMatrix4x4 tform = trans * rot * scale;
int nodeid = static_cast<int>(_nodes.size());
aiNode *node = new aiNode(name);
_nodes.push_back(node);
node->mParent = parent;
node->mTransformation = tform;
std::unique_ptr<aiNodeAnim> nodeAnim;
vector<unsigned> meshes;
vector<aiNode *> children;
while (ChunkSize()) {
const string chunk = ReadChunk();
if (chunk == "MESH") {
unsigned int n = static_cast<unsigned int>(_meshes.size());
ReadMESH();
for (unsigned int i = n; i < static_cast<unsigned int>(_meshes.size()); ++i) {
meshes.push_back(i);
}
} else if (chunk == "BONE") {
ReadBONE(nodeid);
} else if (chunk == "ANIM") {
ReadANIM();
} else if (chunk == "KEYS") {
if (!nodeAnim) {
nodeAnim.reset(new aiNodeAnim);
nodeAnim->mNodeName = node->mName;
}
ReadKEYS(nodeAnim.get());
} else if (chunk == "NODE") {
aiNode *child = ReadNODE(node);
children.push_back(child);
}
ExitChunk();
}
if (nodeAnim) {
_nodeAnims.emplace_back(std::move(nodeAnim));
}
node->mNumMeshes = static_cast<unsigned int>(meshes.size());
node->mMeshes = to_array(meshes);
node->mNumChildren = static_cast<unsigned int>(children.size());
node->mChildren = to_array(children);
return node;
}
// ------------------------------------------------------------------------------------------------
void B3DImporter::ReadBB3D(aiScene *scene) {
_textures.clear();
_materials.clear();
_vertices.clear();
_meshes.clear();
DeleteAllBarePointers(_nodes);
_nodes.clear();
_nodeAnims.clear();
_animations.clear();
string t = ReadChunk();
if (t == "BB3D") {
int version = ReadInt();
if (!DefaultLogger::isNullLogger()) {
char dmp[128];
ai_snprintf(dmp, 128, "B3D file format version: %i", version);
ASSIMP_LOG_INFO(dmp);
}
while (ChunkSize()) {
const string chunk = ReadChunk();
if (chunk == "TEXS") {
ReadTEXS();
} else if (chunk == "BRUS") {
ReadBRUS();
} else if (chunk == "NODE") {
ReadNODE(0);
}
ExitChunk();
}
}
ExitChunk();
if (!_nodes.size()) {
Fail("No nodes");
}
if (!_meshes.size()) {
Fail("No meshes");
}
// Fix nodes/meshes/bones
for (size_t i = 0; i < _nodes.size(); ++i) {
aiNode *node = _nodes[i];
for (size_t j = 0; j < node->mNumMeshes; ++j) {
aiMesh *mesh = _meshes[node->mMeshes[j]].get();
int n_tris = mesh->mNumFaces;
int n_verts = mesh->mNumVertices = n_tris * 3;
aiVector3D *mv = mesh->mVertices = new aiVector3D[n_verts], *mn = 0, *mc = 0;
if (_vflags & 1) {
mn = mesh->mNormals = new aiVector3D[n_verts];
}
if (_tcsets) {
mc = mesh->mTextureCoords[0] = new aiVector3D[n_verts];
}
aiFace *face = mesh->mFaces;
vector<vector<aiVertexWeight>> vweights(_nodes.size());
for (int vertIdx = 0; vertIdx < n_verts; vertIdx += 3) {
for (int faceIndex = 0; faceIndex < 3; ++faceIndex) {
Vertex &v = _vertices[face->mIndices[faceIndex]];
*mv++ = v.vertex;
if (mn) *mn++ = v.normal;
if (mc) *mc++ = v.texcoords;
face->mIndices[faceIndex] = vertIdx + faceIndex;
for (int k = 0; k < 4; ++k) {
if (!v.weights[k])
break;
int bone = v.bones[k];
float weight = v.weights[k];
vweights[bone].push_back(aiVertexWeight(vertIdx + faceIndex, weight));
}
}
++face;
}
vector<aiBone *> bones;
for (size_t weightIndx = 0; weightIndx < vweights.size(); ++weightIndx) {
vector<aiVertexWeight> &weights = vweights[weightIndx];
if (!weights.size()) {
continue;
}
aiBone *bone = new aiBone;
bones.push_back(bone);
aiNode *bnode = _nodes[weightIndx];
bone->mName = bnode->mName;
bone->mNumWeights = static_cast<unsigned int>(weights.size());
bone->mWeights = to_array(weights);
aiMatrix4x4 mat = bnode->mTransformation;
while (bnode->mParent) {
bnode = bnode->mParent;
mat = bnode->mTransformation * mat;
}
bone->mOffsetMatrix = mat.Inverse();
}
mesh->mNumBones = static_cast<unsigned int>(bones.size());
mesh->mBones = to_array(bones);
}
}
//nodes
scene->mRootNode = _nodes[0];
_nodes.clear(); // node ownership now belongs to scene
//material
if (!_materials.size()) {
_materials.emplace_back(std::unique_ptr<aiMaterial>(new aiMaterial));
}
scene->mNumMaterials = static_cast<unsigned int>(_materials.size());
scene->mMaterials = unique_to_array(_materials);
//meshes
scene->mNumMeshes = static_cast<unsigned int>(_meshes.size());
scene->mMeshes = unique_to_array(_meshes);
//animations
if (_animations.size() == 1 && _nodeAnims.size()) {
aiAnimation *anim = _animations.back().get();
anim->mNumChannels = static_cast<unsigned int>(_nodeAnims.size());
anim->mChannels = unique_to_array(_nodeAnims);
scene->mNumAnimations = static_cast<unsigned int>(_animations.size());
scene->mAnimations = unique_to_array(_animations);
}
// convert to RH
MakeLeftHandedProcess makeleft;
makeleft.Execute(scene);
FlipWindingOrderProcess flip;
flip.Execute(scene);
}
#endif // !! ASSIMP_BUILD_NO_B3D_IMPORTER

View File

@ -0,0 +1,543 @@
/** Implementation of the BVH loader */
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
#ifndef ASSIMP_BUILD_NO_BVH_IMPORTER
#include "BVHLoader.h"
#include <assimp/SkeletonMeshBuilder.h>
#include <assimp/TinyFormatter.h>
#include <assimp/fast_atof.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/IOSystem.hpp>
#include <assimp/Importer.hpp>
#include <map>
#include <memory>
using namespace Assimp;
using namespace Assimp::Formatter;
static const aiImporterDesc desc = {
"BVH Importer (MoCap)",
"",
"",
"",
aiImporterFlags_SupportTextFlavour,
0,
0,
0,
0,
"bvh"
};
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
BVHLoader::BVHLoader() :
mLine(),
mAnimTickDuration(),
mAnimNumFrames(),
noSkeletonMesh() {}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
BVHLoader::~BVHLoader() {}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool BVHLoader::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool cs) const {
// check file extension
const std::string extension = GetExtension(pFile);
if (extension == "bvh")
return true;
if ((!extension.length() || cs) && pIOHandler) {
const char *tokens[] = { "HIERARCHY" };
return SearchFileHeaderForToken(pIOHandler, pFile, tokens, 1);
}
return false;
}
// ------------------------------------------------------------------------------------------------
void BVHLoader::SetupProperties(const Importer *pImp) {
noSkeletonMesh = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_NO_SKELETON_MESHES, 0) != 0;
}
// ------------------------------------------------------------------------------------------------
// Loader meta information
const aiImporterDesc *BVHLoader::GetInfo() const {
return &desc;
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void BVHLoader::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
mFileName = pFile;
// read file into memory
std::unique_ptr<IOStream> file(pIOHandler->Open(pFile));
if (file.get() == nullptr) {
throw DeadlyImportError("Failed to open file " + pFile + ".");
}
size_t fileSize = file->FileSize();
if (fileSize == 0) {
throw DeadlyImportError("File is too small.");
}
mBuffer.resize(fileSize);
file->Read(&mBuffer.front(), 1, fileSize);
// start reading
mReader = mBuffer.begin();
mLine = 1;
ReadStructure(pScene);
if (!noSkeletonMesh) {
// build a dummy mesh for the skeleton so that we see something at least
SkeletonMeshBuilder meshBuilder(pScene);
}
// construct an animation from all the motion data we read
CreateAnimation(pScene);
}
// ------------------------------------------------------------------------------------------------
// Reads the file
void BVHLoader::ReadStructure(aiScene *pScene) {
// first comes hierarchy
std::string header = GetNextToken();
if (header != "HIERARCHY")
ThrowException("Expected header string \"HIERARCHY\".");
ReadHierarchy(pScene);
// then comes the motion data
std::string motion = GetNextToken();
if (motion != "MOTION")
ThrowException("Expected beginning of motion data \"MOTION\".");
ReadMotion(pScene);
}
// ------------------------------------------------------------------------------------------------
// Reads the hierarchy
void BVHLoader::ReadHierarchy(aiScene *pScene) {
std::string root = GetNextToken();
if (root != "ROOT")
ThrowException("Expected root node \"ROOT\".");
// Go read the hierarchy from here
pScene->mRootNode = ReadNode();
}
// ------------------------------------------------------------------------------------------------
// Reads a node and recursively its childs and returns the created node;
aiNode *BVHLoader::ReadNode() {
// first token is name
std::string nodeName = GetNextToken();
if (nodeName.empty() || nodeName == "{")
ThrowException(format() << "Expected node name, but found \"" << nodeName << "\".");
// then an opening brace should follow
std::string openBrace = GetNextToken();
if (openBrace != "{")
ThrowException(format() << "Expected opening brace \"{\", but found \"" << openBrace << "\".");
// Create a node
aiNode *node = new aiNode(nodeName);
std::vector<aiNode *> childNodes;
// and create an bone entry for it
mNodes.push_back(Node(node));
Node &internNode = mNodes.back();
// now read the node's contents
std::string siteToken;
while (1) {
std::string token = GetNextToken();
// node offset to parent node
if (token == "OFFSET")
ReadNodeOffset(node);
else if (token == "CHANNELS")
ReadNodeChannels(internNode);
else if (token == "JOINT") {
// child node follows
aiNode *child = ReadNode();
child->mParent = node;
childNodes.push_back(child);
} else if (token == "End") {
// The real symbol is "End Site". Second part comes in a separate token
siteToken.clear();
siteToken = GetNextToken();
if (siteToken != "Site")
ThrowException(format() << "Expected \"End Site\" keyword, but found \"" << token << " " << siteToken << "\".");
aiNode *child = ReadEndSite(nodeName);
child->mParent = node;
childNodes.push_back(child);
} else if (token == "}") {
// we're done with that part of the hierarchy
break;
} else {
// everything else is a parse error
ThrowException(format() << "Unknown keyword \"" << token << "\".");
}
}
// add the child nodes if there are any
if (childNodes.size() > 0) {
node->mNumChildren = static_cast<unsigned int>(childNodes.size());
node->mChildren = new aiNode *[node->mNumChildren];
std::copy(childNodes.begin(), childNodes.end(), node->mChildren);
}
// and return the sub-hierarchy we built here
return node;
}
// ------------------------------------------------------------------------------------------------
// Reads an end node and returns the created node.
aiNode *BVHLoader::ReadEndSite(const std::string &pParentName) {
// check opening brace
std::string openBrace = GetNextToken();
if (openBrace != "{")
ThrowException(format() << "Expected opening brace \"{\", but found \"" << openBrace << "\".");
// Create a node
aiNode *node = new aiNode("EndSite_" + pParentName);
// now read the node's contents. Only possible entry is "OFFSET"
std::string token;
while (1) {
token.clear();
token = GetNextToken();
// end node's offset
if (token == "OFFSET") {
ReadNodeOffset(node);
} else if (token == "}") {
// we're done with the end node
break;
} else {
// everything else is a parse error
ThrowException(format() << "Unknown keyword \"" << token << "\".");
}
}
// and return the sub-hierarchy we built here
return node;
}
// ------------------------------------------------------------------------------------------------
// Reads a node offset for the given node
void BVHLoader::ReadNodeOffset(aiNode *pNode) {
// Offset consists of three floats to read
aiVector3D offset;
offset.x = GetNextTokenAsFloat();
offset.y = GetNextTokenAsFloat();
offset.z = GetNextTokenAsFloat();
// build a transformation matrix from it
pNode->mTransformation = aiMatrix4x4(1.0f, 0.0f, 0.0f, offset.x,
0.0f, 1.0f, 0.0f, offset.y,
0.0f, 0.0f, 1.0f, offset.z,
0.0f, 0.0f, 0.0f, 1.0f);
}
// ------------------------------------------------------------------------------------------------
// Reads the animation channels for the given node
void BVHLoader::ReadNodeChannels(BVHLoader::Node &pNode) {
// number of channels. Use the float reader because we're lazy
float numChannelsFloat = GetNextTokenAsFloat();
unsigned int numChannels = (unsigned int)numChannelsFloat;
for (unsigned int a = 0; a < numChannels; a++) {
std::string channelToken = GetNextToken();
if (channelToken == "Xposition")
pNode.mChannels.push_back(Channel_PositionX);
else if (channelToken == "Yposition")
pNode.mChannels.push_back(Channel_PositionY);
else if (channelToken == "Zposition")
pNode.mChannels.push_back(Channel_PositionZ);
else if (channelToken == "Xrotation")
pNode.mChannels.push_back(Channel_RotationX);
else if (channelToken == "Yrotation")
pNode.mChannels.push_back(Channel_RotationY);
else if (channelToken == "Zrotation")
pNode.mChannels.push_back(Channel_RotationZ);
else
ThrowException(format() << "Invalid channel specifier \"" << channelToken << "\".");
}
}
// ------------------------------------------------------------------------------------------------
// Reads the motion data
void BVHLoader::ReadMotion(aiScene * /*pScene*/) {
// Read number of frames
std::string tokenFrames = GetNextToken();
if (tokenFrames != "Frames:")
ThrowException(format() << "Expected frame count \"Frames:\", but found \"" << tokenFrames << "\".");
float numFramesFloat = GetNextTokenAsFloat();
mAnimNumFrames = (unsigned int)numFramesFloat;
// Read frame duration
std::string tokenDuration1 = GetNextToken();
std::string tokenDuration2 = GetNextToken();
if (tokenDuration1 != "Frame" || tokenDuration2 != "Time:")
ThrowException(format() << "Expected frame duration \"Frame Time:\", but found \"" << tokenDuration1 << " " << tokenDuration2 << "\".");
mAnimTickDuration = GetNextTokenAsFloat();
// resize value vectors for each node
for (std::vector<Node>::iterator it = mNodes.begin(); it != mNodes.end(); ++it)
it->mChannelValues.reserve(it->mChannels.size() * mAnimNumFrames);
// now read all the data and store it in the corresponding node's value vector
for (unsigned int frame = 0; frame < mAnimNumFrames; ++frame) {
// on each line read the values for all nodes
for (std::vector<Node>::iterator it = mNodes.begin(); it != mNodes.end(); ++it) {
// get as many values as the node has channels
for (unsigned int c = 0; c < it->mChannels.size(); ++c)
it->mChannelValues.push_back(GetNextTokenAsFloat());
}
// after one frame worth of values for all nodes there should be a newline, but we better don't rely on it
}
}
// ------------------------------------------------------------------------------------------------
// Retrieves the next token
std::string BVHLoader::GetNextToken() {
// skip any preceding whitespace
while (mReader != mBuffer.end()) {
if (!isspace(*mReader))
break;
// count lines
if (*mReader == '\n')
mLine++;
++mReader;
}
// collect all chars till the next whitespace. BVH is easy in respect to that.
std::string token;
while (mReader != mBuffer.end()) {
if (isspace(*mReader))
break;
token.push_back(*mReader);
++mReader;
// little extra logic to make sure braces are counted correctly
if (token == "{" || token == "}")
break;
}
// empty token means end of file, which is just fine
return token;
}
// ------------------------------------------------------------------------------------------------
// Reads the next token as a float
float BVHLoader::GetNextTokenAsFloat() {
std::string token = GetNextToken();
if (token.empty())
ThrowException("Unexpected end of file while trying to read a float");
// check if the float is valid by testing if the atof() function consumed every char of the token
const char *ctoken = token.c_str();
float result = 0.0f;
ctoken = fast_atoreal_move<float>(ctoken, result);
if (ctoken != token.c_str() + token.length())
ThrowException(format() << "Expected a floating point number, but found \"" << token << "\".");
return result;
}
// ------------------------------------------------------------------------------------------------
// Aborts the file reading with an exception
AI_WONT_RETURN void BVHLoader::ThrowException(const std::string &pError) {
throw DeadlyImportError(format() << mFileName << ":" << mLine << " - " << pError);
}
// ------------------------------------------------------------------------------------------------
// Constructs an animation for the motion data and stores it in the given scene
void BVHLoader::CreateAnimation(aiScene *pScene) {
// create the animation
pScene->mNumAnimations = 1;
pScene->mAnimations = new aiAnimation *[1];
aiAnimation *anim = new aiAnimation;
pScene->mAnimations[0] = anim;
// put down the basic parameters
anim->mName.Set("Motion");
anim->mTicksPerSecond = 1.0 / double(mAnimTickDuration);
anim->mDuration = double(mAnimNumFrames - 1);
// now generate the tracks for all nodes
anim->mNumChannels = static_cast<unsigned int>(mNodes.size());
anim->mChannels = new aiNodeAnim *[anim->mNumChannels];
// FIX: set the array elements to NULL to ensure proper deletion if an exception is thrown
for (unsigned int i = 0; i < anim->mNumChannels; ++i)
anim->mChannels[i] = NULL;
for (unsigned int a = 0; a < anim->mNumChannels; a++) {
const Node &node = mNodes[a];
const std::string nodeName = std::string(node.mNode->mName.data);
aiNodeAnim *nodeAnim = new aiNodeAnim;
anim->mChannels[a] = nodeAnim;
nodeAnim->mNodeName.Set(nodeName);
std::map<BVHLoader::ChannelType, int> channelMap;
//Build map of channels
for (unsigned int channel = 0; channel < node.mChannels.size(); ++channel) {
channelMap[node.mChannels[channel]] = channel;
}
// translational part, if given
if (node.mChannels.size() == 6) {
nodeAnim->mNumPositionKeys = mAnimNumFrames;
nodeAnim->mPositionKeys = new aiVectorKey[mAnimNumFrames];
aiVectorKey *poskey = nodeAnim->mPositionKeys;
for (unsigned int fr = 0; fr < mAnimNumFrames; ++fr) {
poskey->mTime = double(fr);
// Now compute all translations
for (BVHLoader::ChannelType channel = Channel_PositionX; channel <= Channel_PositionZ; channel = (BVHLoader::ChannelType)(channel + 1)) {
//Find channel in node
std::map<BVHLoader::ChannelType, int>::iterator mapIter = channelMap.find(channel);
if (mapIter == channelMap.end())
throw DeadlyImportError("Missing position channel in node " + nodeName);
else {
int channelIdx = mapIter->second;
switch (channel) {
case Channel_PositionX:
poskey->mValue.x = node.mChannelValues[fr * node.mChannels.size() + channelIdx];
break;
case Channel_PositionY:
poskey->mValue.y = node.mChannelValues[fr * node.mChannels.size() + channelIdx];
break;
case Channel_PositionZ:
poskey->mValue.z = node.mChannelValues[fr * node.mChannels.size() + channelIdx];
break;
default:
break;
}
}
}
++poskey;
}
} else {
// if no translation part is given, put a default sequence
aiVector3D nodePos(node.mNode->mTransformation.a4, node.mNode->mTransformation.b4, node.mNode->mTransformation.c4);
nodeAnim->mNumPositionKeys = 1;
nodeAnim->mPositionKeys = new aiVectorKey[1];
nodeAnim->mPositionKeys[0].mTime = 0.0;
nodeAnim->mPositionKeys[0].mValue = nodePos;
}
// rotation part. Always present. First find value offsets
{
// Then create the number of rotation keys
nodeAnim->mNumRotationKeys = mAnimNumFrames;
nodeAnim->mRotationKeys = new aiQuatKey[mAnimNumFrames];
aiQuatKey *rotkey = nodeAnim->mRotationKeys;
for (unsigned int fr = 0; fr < mAnimNumFrames; ++fr) {
aiMatrix4x4 temp;
aiMatrix3x3 rotMatrix;
for (BVHLoader::ChannelType channel = Channel_RotationX; channel <= Channel_RotationZ; channel = (BVHLoader::ChannelType)(channel + 1)) {
//Find channel in node
std::map<BVHLoader::ChannelType, int>::iterator mapIter = channelMap.find(channel);
if (mapIter == channelMap.end())
throw DeadlyImportError("Missing rotation channel in node " + nodeName);
else {
int channelIdx = mapIter->second;
// translate ZXY euler angels into a quaternion
const float angle = node.mChannelValues[fr * node.mChannels.size() + channelIdx] * float(AI_MATH_PI) / 180.0f;
// Compute rotation transformations in the right order
switch (channel) {
case Channel_RotationX:
aiMatrix4x4::RotationX(angle, temp);
rotMatrix *= aiMatrix3x3(temp);
break;
case Channel_RotationY:
aiMatrix4x4::RotationY(angle, temp);
rotMatrix *= aiMatrix3x3(temp);
break;
case Channel_RotationZ:
aiMatrix4x4::RotationZ(angle, temp);
rotMatrix *= aiMatrix3x3(temp);
break;
default:
break;
}
}
}
rotkey->mTime = double(fr);
rotkey->mValue = aiQuaternion(rotMatrix);
++rotkey;
}
}
// scaling part. Always just a default track
{
nodeAnim->mNumScalingKeys = 1;
nodeAnim->mScalingKeys = new aiVectorKey[1];
nodeAnim->mScalingKeys[0].mTime = 0.0;
nodeAnim->mScalingKeys[0].mValue.Set(1.0f, 1.0f, 1.0f);
}
}
}
#endif // !! ASSIMP_BUILD_NO_BVH_IMPORTER

View File

@ -53,8 +53,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
struct aiNode;
namespace Assimp
{
namespace Assimp {
// --------------------------------------------------------------------------------
/** Loader class to read Motion Capturing data from a .bvh file.
@ -63,12 +62,10 @@ namespace Assimp
* the hierarchy. It contains no actual mesh data, but we generate a dummy mesh
* inside the loader just to be able to see something.
*/
class BVHLoader : public BaseImporter
{
class BVHLoader : public BaseImporter {
/** Possible animation channels for which the motion data holds the values */
enum ChannelType
{
enum ChannelType {
Channel_PositionX,
Channel_PositionY,
Channel_PositionZ,
@ -78,21 +75,19 @@ class BVHLoader : public BaseImporter
};
/** Collected list of node. Will be bones of the dummy mesh some day, addressed by their array index */
struct Node
{
struct Node {
const aiNode *mNode;
std::vector<ChannelType> mChannels;
std::vector<float> mChannelValues; // motion data values for that node. Of size NumChannels * NumFrames
Node()
: mNode(nullptr)
{ }
Node() :
mNode(nullptr) {}
explicit Node( const aiNode* pNode) : mNode( pNode) { }
explicit Node(const aiNode *pNode) :
mNode(pNode) {}
};
public:
BVHLoader();
~BVHLoader();
@ -105,8 +100,6 @@ public:
const aiImporterDesc *GetInfo() const;
protected:
/** Imports the given file into the given scene structure.
* See BaseImporter::InternReadFile() for details
*/

View File

@ -44,19 +44,18 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef ASSIMP_BUILD_NO_BLEND_IMPORTER
#include "BlenderBMesh.h"
#include "BlenderDNA.h"
#include "BlenderScene.h"
#include "BlenderBMesh.h"
#include "BlenderTessellator.h"
namespace Assimp
{
template< > const char* LogFunctions< BlenderBMeshConverter >::Prefix()
{
namespace Assimp {
template <>
const char *LogFunctions<BlenderBMeshConverter>::Prefix() {
static auto prefix = "BLEND_BMESH: ";
return prefix;
}
}
} // namespace Assimp
using namespace Assimp;
using namespace Assimp::Blender;
@ -65,32 +64,28 @@ using namespace Assimp::Formatter;
// ------------------------------------------------------------------------------------------------
BlenderBMeshConverter::BlenderBMeshConverter(const Mesh *mesh) :
BMesh(mesh),
triMesh( NULL )
{
triMesh(nullptr) {
ai_assert(nullptr != mesh);
}
// ------------------------------------------------------------------------------------------------
BlenderBMeshConverter::~BlenderBMeshConverter( )
{
BlenderBMeshConverter::~BlenderBMeshConverter() {
DestroyTriMesh();
}
// ------------------------------------------------------------------------------------------------
bool BlenderBMeshConverter::ContainsBMesh( ) const
{
bool BlenderBMeshConverter::ContainsBMesh() const {
// TODO - Should probably do some additional verification here
return BMesh->totpoly && BMesh->totloop && BMesh->totvert;
}
// ------------------------------------------------------------------------------------------------
const Mesh* BlenderBMeshConverter::TriangulateBMesh( )
{
const Mesh *BlenderBMeshConverter::TriangulateBMesh() {
AssertValidMesh();
AssertValidSizes();
PrepareTriMesh();
for ( int i = 0; i < BMesh->totpoly; ++i )
{
for (int i = 0; i < BMesh->totpoly; ++i) {
const MPoly &poly = BMesh->mpoly[i];
ConvertPolyToFaces(poly);
}
@ -99,32 +94,25 @@ const Mesh* BlenderBMeshConverter::TriangulateBMesh( )
}
// ------------------------------------------------------------------------------------------------
void BlenderBMeshConverter::AssertValidMesh( )
{
if ( !ContainsBMesh( ) )
{
void BlenderBMeshConverter::AssertValidMesh() {
if (!ContainsBMesh()) {
ThrowException("BlenderBMeshConverter requires a BMesh with \"polygons\" - please call BlenderBMeshConverter::ContainsBMesh to check this first");
}
}
// ------------------------------------------------------------------------------------------------
void BlenderBMeshConverter::AssertValidSizes( )
{
if ( BMesh->totpoly != static_cast<int>( BMesh->mpoly.size( ) ) )
{
void BlenderBMeshConverter::AssertValidSizes() {
if (BMesh->totpoly != static_cast<int>(BMesh->mpoly.size())) {
ThrowException("BMesh poly array has incorrect size");
}
if ( BMesh->totloop != static_cast<int>( BMesh->mloop.size( ) ) )
{
if (BMesh->totloop != static_cast<int>(BMesh->mloop.size())) {
ThrowException("BMesh loop array has incorrect size");
}
}
// ------------------------------------------------------------------------------------------------
void BlenderBMeshConverter::PrepareTriMesh( )
{
if ( triMesh )
{
void BlenderBMeshConverter::PrepareTriMesh() {
if (triMesh) {
DestroyTriMesh();
}
@ -134,34 +122,27 @@ void BlenderBMeshConverter::PrepareTriMesh( )
}
// ------------------------------------------------------------------------------------------------
void BlenderBMeshConverter::DestroyTriMesh( )
{
void BlenderBMeshConverter::DestroyTriMesh() {
delete triMesh;
triMesh = NULL;
triMesh = nullptr;
}
// ------------------------------------------------------------------------------------------------
void BlenderBMeshConverter::ConvertPolyToFaces( const MPoly& poly )
{
void BlenderBMeshConverter::ConvertPolyToFaces(const MPoly &poly) {
const MLoop *polyLoop = &BMesh->mloop[poly.loopstart];
if ( poly.totloop == 3 || poly.totloop == 4 )
{
if (poly.totloop == 3 || poly.totloop == 4) {
AddFace(polyLoop[0].v, polyLoop[1].v, polyLoop[2].v, poly.totloop == 4 ? polyLoop[3].v : 0);
// UVs are optional, so only convert when present.
if ( BMesh->mloopuv.size() )
{
if ( (poly.loopstart + poly.totloop ) > static_cast<int>( BMesh->mloopuv.size() ) )
{
if (BMesh->mloopuv.size()) {
if ((poly.loopstart + poly.totloop) > static_cast<int>(BMesh->mloopuv.size())) {
ThrowException("BMesh uv loop array has incorrect size");
}
const MLoopUV *loopUV = &BMesh->mloopuv[poly.loopstart];
AddTFace(loopUV[0].uv, loopUV[1].uv, loopUV[2].uv, poly.totloop == 4 ? loopUV[3].uv : 0);
}
}
else if ( poly.totloop > 4 )
{
} else if (poly.totloop > 4) {
#if ASSIMP_BLEND_WITH_GLU_TESSELLATE
BlenderTessellatorGL tessGL(*this);
tessGL.Tessellate(polyLoop, poly.totloop, triMesh->mvert);
@ -173,8 +154,7 @@ void BlenderBMeshConverter::ConvertPolyToFaces( const MPoly& poly )
}
// ------------------------------------------------------------------------------------------------
void BlenderBMeshConverter::AddFace( int v1, int v2, int v3, int v4 )
{
void BlenderBMeshConverter::AddFace(int v1, int v2, int v3, int v4) {
MFace face;
face.v1 = v1;
face.v2 = v2;
@ -188,15 +168,13 @@ void BlenderBMeshConverter::AddFace( int v1, int v2, int v3, int v4 )
}
// ------------------------------------------------------------------------------------------------
void BlenderBMeshConverter::AddTFace( const float* uv1, const float *uv2, const float *uv3, const float* uv4 )
{
void BlenderBMeshConverter::AddTFace(const float *uv1, const float *uv2, const float *uv3, const float *uv4) {
MTFace mtface;
memcpy(&mtface.uv[0], uv1, sizeof(float) * 2);
memcpy(&mtface.uv[1], uv2, sizeof(float) * 2);
memcpy(&mtface.uv[2], uv3, sizeof(float) * 2);
if ( uv4 )
{
if (uv4) {
memcpy(&mtface.uv[3], uv4, sizeof(float) * 2);
}

View File

@ -0,0 +1,181 @@
#include "BlenderCustomData.h"
#include "BlenderDNA.h"
#include <array>
#include <functional>
namespace Assimp {
namespace Blender {
/**
* @brief read/convert of Structure array to memory
*/
template <typename T>
bool read(const Structure &s, T *p, const size_t cnt, const FileDatabase &db) {
for (size_t i = 0; i < cnt; ++i) {
T read;
s.Convert(read, db);
*p = read;
p++;
}
return true;
}
/**
* @brief pointer to function read memory for n CustomData types
*/
typedef bool (*PRead)(ElemBase *pOut, const size_t cnt, const FileDatabase &db);
typedef ElemBase *(*PCreate)(const size_t cnt);
typedef void (*PDestroy)(ElemBase *);
#define IMPL_STRUCT_READ(ty) \
bool read##ty(ElemBase *v, const size_t cnt, const FileDatabase &db) { \
ty *ptr = dynamic_cast<ty *>(v); \
if (nullptr == ptr) { \
return false; \
} \
return read<ty>(db.dna[#ty], ptr, cnt, db); \
}
#define IMPL_STRUCT_CREATE(ty) \
ElemBase *create##ty(const size_t cnt) { \
return new ty[cnt]; \
}
#define IMPL_STRUCT_DESTROY(ty) \
void destroy##ty(ElemBase *pE) { \
ty *p = dynamic_cast<ty *>(pE); \
delete[] p; \
}
/**
* @brief helper macro to define Structure functions
*/
#define IMPL_STRUCT(ty) \
IMPL_STRUCT_READ(ty) \
IMPL_STRUCT_CREATE(ty) \
IMPL_STRUCT_DESTROY(ty)
// supported structures for CustomData
IMPL_STRUCT(MVert)
IMPL_STRUCT(MEdge)
IMPL_STRUCT(MFace)
IMPL_STRUCT(MTFace)
IMPL_STRUCT(MTexPoly)
IMPL_STRUCT(MLoopUV)
IMPL_STRUCT(MLoopCol)
IMPL_STRUCT(MPoly)
IMPL_STRUCT(MLoop)
/**
* @brief describes the size of data and the read function to be used for single CustomerData.type
*/
struct CustomDataTypeDescription {
PRead Read; ///< function to read one CustomData type element
PCreate Create; ///< function to allocate n type elements
PDestroy Destroy;
CustomDataTypeDescription(PRead read, PCreate create, PDestroy destroy) :
Read(read), Create(create), Destroy(destroy) {}
};
/**
* @brief helper macro to define Structure type specific CustomDataTypeDescription
* @note IMPL_STRUCT_READ for same ty must be used earlier to implement the typespecific read function
*/
#define DECL_STRUCT_CUSTOMDATATYPEDESCRIPTION(ty) \
CustomDataTypeDescription { &read##ty, &create##ty, &destroy##ty }
/**
* @brief helper macro to define CustomDataTypeDescription for UNSUPPORTED type
*/
#define DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION \
CustomDataTypeDescription { nullptr, nullptr, nullptr }
/**
* @brief descriptors for data pointed to from CustomDataLayer.data
* @note some of the CustomData uses already well defined Structures
* other (like CD_ORCO, ...) uses arrays of rawtypes or even arrays of Structures
* use a special readfunction for that cases
*/
std::array<CustomDataTypeDescription, CD_NUMTYPES> customDataTypeDescriptions = { { DECL_STRUCT_CUSTOMDATATYPEDESCRIPTION(MVert),
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_STRUCT_CUSTOMDATATYPEDESCRIPTION(MEdge),
DECL_STRUCT_CUSTOMDATATYPEDESCRIPTION(MFace),
DECL_STRUCT_CUSTOMDATATYPEDESCRIPTION(MTFace),
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_STRUCT_CUSTOMDATATYPEDESCRIPTION(MTexPoly),
DECL_STRUCT_CUSTOMDATATYPEDESCRIPTION(MLoopUV),
DECL_STRUCT_CUSTOMDATATYPEDESCRIPTION(MLoopCol),
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_STRUCT_CUSTOMDATATYPEDESCRIPTION(MPoly),
DECL_STRUCT_CUSTOMDATATYPEDESCRIPTION(MLoop),
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION,
DECL_UNSUPPORTED_CUSTOMDATATYPEDESCRIPTION } };
bool isValidCustomDataType(const int cdtype) {
return cdtype >= 0 && cdtype < CD_NUMTYPES;
}
bool readCustomData(std::shared_ptr<ElemBase> &out, const int cdtype, const size_t cnt, const FileDatabase &db) {
if (!isValidCustomDataType(cdtype)) {
throw Error((Formatter::format(), "CustomData.type ", cdtype, " out of index"));
}
const CustomDataTypeDescription cdtd = customDataTypeDescriptions[cdtype];
if (cdtd.Read && cdtd.Create && cdtd.Destroy && cnt > 0) {
// allocate cnt elements and parse them from file
out.reset(cdtd.Create(cnt), cdtd.Destroy);
return cdtd.Read(out.get(), cnt, db);
}
return false;
}
std::shared_ptr<CustomDataLayer> getCustomDataLayer(const CustomData &customdata, const CustomDataType cdtype, const std::string &name) {
for (auto it = customdata.layers.begin(); it != customdata.layers.end(); ++it) {
if (it->get()->type == cdtype && name == it->get()->name) {
return *it;
}
}
return nullptr;
}
const ElemBase *getCustomDataLayerData(const CustomData &customdata, const CustomDataType cdtype, const std::string &name) {
const std::shared_ptr<CustomDataLayer> pLayer = getCustomDataLayer(customdata, cdtype, name);
if (pLayer && pLayer->data) {
return pLayer->data.get();
}
return nullptr;
}
} // namespace Blender
} // namespace Assimp

View File

@ -45,12 +45,11 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* serialized set of data structures.
*/
#ifndef ASSIMP_BUILD_NO_BLEND_IMPORTER
#include "BlenderDNA.h"
#include <assimp/StreamReader.h>
#include <assimp/fast_atof.h>
#include <assimp/TinyFormatter.h>
#include <assimp/fast_atof.h>
using namespace Assimp;
using namespace Assimp::Blender;
@ -72,8 +71,7 @@ struct Type {
};
// ------------------------------------------------------------------------------------------------
void DNAParser::Parse ()
{
void DNAParser::Parse() {
StreamReaderAny &stream = *db.reader.get();
DNA &dna = db.dna;
@ -94,7 +92,8 @@ void DNAParser::Parse ()
}
// type dictionary
for (;stream.GetCurrentPos() & 0x3; stream.GetI1());
for (; stream.GetCurrentPos() & 0x3; stream.GetI1())
;
if (!match4(stream, "TYPE")) {
throw DeadlyImportError("BlenderDNA: Expected TYPE field");
}
@ -107,7 +106,8 @@ void DNAParser::Parse ()
}
// type length dictionary
for (;stream.GetCurrentPos() & 0x3; stream.GetI1());
for (; stream.GetCurrentPos() & 0x3; stream.GetI1())
;
if (!match4(stream, "TLEN")) {
throw DeadlyImportError("BlenderDNA: Expected TLEN field");
}
@ -117,7 +117,8 @@ void DNAParser::Parse ()
}
// structures dictionary
for (;stream.GetCurrentPos() & 0x3; stream.GetI1());
for (; stream.GetCurrentPos() & 0x3; stream.GetI1())
;
if (!match4(stream, "STRC")) {
throw DeadlyImportError("BlenderDNA: Expected STRC field");
}
@ -131,8 +132,7 @@ void DNAParser::Parse ()
if (n >= types.size()) {
throw DeadlyImportError((format(),
"BlenderDNA: Invalid type index in structure name", n,
" (there are only ", types.size(), " entries)"
));
" (there are only ", types.size(), " entries)"));
}
// maintain separate indexes
@ -153,8 +153,7 @@ void DNAParser::Parse ()
if (j >= types.size()) {
throw DeadlyImportError((format(),
"BlenderDNA: Invalid type index in structure field ", j,
" (there are only ", types.size(), " entries)"
));
" (there are only ", types.size(), " entries)"));
}
s.fields.push_back(Field());
Field &f = s.fields.back();
@ -167,8 +166,7 @@ void DNAParser::Parse ()
if (j >= names.size()) {
throw DeadlyImportError((format(),
"BlenderDNA: Invalid name index in structure field ", j,
" (there are only ", names.size(), " entries)"
));
" (there are only ", names.size(), " entries)"));
}
f.name = names[j];
@ -192,8 +190,7 @@ void DNAParser::Parse ()
if (rb == std::string::npos) {
throw DeadlyImportError((format(),
"BlenderDNA: Encountered invalid array declaration ",
f.name
));
f.name));
}
f.flags |= FieldFlag_Array;
@ -220,13 +217,11 @@ void DNAParser::Parse ()
dna.RegisterConverters();
}
#ifdef ASSIMP_BUILD_BLENDER_DEBUG
#include <fstream>
// ------------------------------------------------------------------------------------------------
void DNA :: DumpToFile()
{
void DNA ::DumpToFile() {
// we don't bother using the VFS here for this is only for debugging.
// (and all your bases are belong to us).
@ -235,8 +230,10 @@ void DNA :: DumpToFile()
ASSIMP_LOG_ERROR("Could not dump dna to dna.txt");
return;
}
f << "Field format: type name offset size" << "\n";
f << "Structure format: name size" << "\n";
f << "Field format: type name offset size"
<< "\n";
f << "Structure format: name size"
<< "\n";
for (const Structure &s : structures) {
f << s.name << " " << s.size << "\n\n";
@ -254,9 +251,7 @@ void DNA :: DumpToFile()
// ------------------------------------------------------------------------------------------------
/*static*/ void DNA ::ExtractArraySize(
const std::string &out,
size_t array_sizes[2]
)
{
size_t array_sizes[2]) {
array_sizes[0] = array_sizes[1] = 1;
std::string::size_type pos = out.find('[');
if (pos++ == std::string::npos) {
@ -274,9 +269,7 @@ void DNA :: DumpToFile()
// ------------------------------------------------------------------------------------------------
std::shared_ptr<ElemBase> DNA ::ConvertBlobToStructure(
const Structure &structure,
const FileDatabase& db
) const
{
const FileDatabase &db) const {
std::map<std::string, FactoryPair>::const_iterator it = converters.find(structure.name);
if (it == converters.end()) {
return std::shared_ptr<ElemBase>();
@ -292,16 +285,14 @@ std::shared_ptr< ElemBase > DNA :: ConvertBlobToStructure(
DNA::FactoryPair DNA ::GetBlobToStructureConverter(
const Structure &structure,
const FileDatabase & /*db*/
) const
{
) const {
std::map<std::string, FactoryPair>::const_iterator it = converters.find(structure.name);
return it == converters.end() ? FactoryPair() : (*it).second;
}
// basing on http://www.blender.org/development/architecture/notes-on-sdna/
// ------------------------------------------------------------------------------------------------
void DNA :: AddPrimitiveStructures()
{
void DNA ::AddPrimitiveStructures() {
// NOTE: these are just dummies. Their presence enforces
// Structure::Convert<target_type> to be called on these
// empty structures. These converters are special
@ -320,19 +311,16 @@ void DNA :: AddPrimitiveStructures()
structures.back().name = "short";
structures.back().size = 2;
indices["char"] = structures.size();
structures.push_back(Structure());
structures.back().name = "char";
structures.back().size = 1;
indices["float"] = structures.size();
structures.push_back(Structure());
structures.back().name = "float";
structures.back().size = 4;
indices["double"] = structures.size();
structures.push_back(Structure());
structures.back().name = "double";
@ -342,8 +330,7 @@ void DNA :: AddPrimitiveStructures()
}
// ------------------------------------------------------------------------------------------------
void SectionParser :: Next()
{
void SectionParser ::Next() {
stream.SetCurrentPos(current.start + current.size);
const char tmp[] = {
@ -370,6 +357,4 @@ void SectionParser :: Next()
#endif
}
#endif

View File

@ -49,10 +49,10 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <assimp/BaseImporter.h>
#include <assimp/StreamReader.h>
#include <assimp/DefaultLogger.hpp>
#include <stdint.h>
#include <memory>
#include <assimp/DefaultLogger.hpp>
#include <map>
#include <memory>
// enable verbose log output. really verbose, so be careful.
#ifdef ASSIMP_BUILD_DEBUG
@ -63,7 +63,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
namespace Assimp {
template <bool,bool> class StreamReader;
template <bool, bool>
class StreamReader;
typedef StreamReader<true, true> StreamReaderAny;
namespace Blender {
@ -82,8 +83,8 @@ class ObjectCache;
* ancestry. */
// -------------------------------------------------------------------------------
struct Error : DeadlyImportError {
Error (const std::string& s)
: DeadlyImportError(s) {
Error(const std::string &s) :
DeadlyImportError(s) {
// empty
}
};
@ -93,9 +94,8 @@ struct Error : DeadlyImportError {
* descendents. It serves as base class for all data structure fields. */
// -------------------------------------------------------------------------------
struct ElemBase {
ElemBase()
: dna_type(nullptr)
{
ElemBase() :
dna_type(nullptr) {
// empty
}
@ -120,8 +120,8 @@ struct ElemBase {
* they used to point to.*/
// -------------------------------------------------------------------------------
struct Pointer {
Pointer()
: val() {
Pointer() :
val() {
// empty
}
uint64_t val;
@ -131,8 +131,8 @@ struct Pointer {
/** Represents a generic offset within a BLEND file */
// -------------------------------------------------------------------------------
struct FileOffset {
FileOffset()
: val() {
FileOffset() :
val() {
// empty
}
uint64_t val;
@ -212,16 +212,15 @@ enum ErrorPolicy {
* meaningful contents. */
// -------------------------------------------------------------------------------
class Structure {
template <template <typename> class> friend class ObjectCache;
template <template <typename> class>
friend class ObjectCache;
public:
Structure()
: cache_idx(static_cast<size_t>(-1) ){
Structure() :
cache_idx(static_cast<size_t>(-1)) {
// empty
}
public:
// publicly accessible members
std::string name;
vector<Field> fields;
@ -229,8 +228,6 @@ public:
size_t size;
public:
// --------------------------------------------------------
/** Access a field of the structure by its canonical name. The pointer version
* returns NULL on failure while the reference version raises an import error. */
@ -251,8 +248,6 @@ public:
return name != other.name;
}
public:
// --------------------------------------------------------
/** Try to read an instance of the structure from the stream
* and attempt to convert to `T`. This is done by
@ -260,7 +255,8 @@ public:
* a compiler complain is the result.
* @param dest Destination value to be written
* @param db File database, including input stream. */
template <typename T> void Convert (T& dest, const FileDatabase& db) const;
template <typename T>
void Convert(T &dest, const FileDatabase &db) const;
// --------------------------------------------------------
// generic converter
@ -269,9 +265,8 @@ public:
// --------------------------------------------------------
// generic allocator
template <typename T> std::shared_ptr<ElemBase> Allocate() const;
template <typename T>
std::shared_ptr<ElemBase> Allocate() const;
// --------------------------------------------------------
// field parsing for 1d arrays
@ -332,7 +327,6 @@ public:
bool ReadCustomDataPtr(std::shared_ptr<ElemBase> &out, int cdtype, const char *name, const FileDatabase &db) const;
private:
// --------------------------------------------------------
template <template <typename> class TOUT, typename T>
bool ResolvePointer(TOUT<T> &out, const Pointer &ptrval,
@ -354,15 +348,16 @@ private:
const FileDatabase &db) const;
private:
// ------------------------------------------------------------------------------
template <typename T> T* _allocate(std::shared_ptr<T>& out, size_t& s) const {
template <typename T>
T *_allocate(std::shared_ptr<T> &out, size_t &s) const {
out = std::shared_ptr<T>(new T());
s = 1;
return out.get();
}
template <typename T> T* _allocate(vector<T>& out, size_t& s) const {
template <typename T>
T *_allocate(vector<T> &out, size_t &s) const {
out.resize(s);
return s ? &out.front() : NULL;
}
@ -394,12 +389,12 @@ private:
};
private:
mutable size_t cache_idx;
};
// --------------------------------------------------------
template <> struct Structure :: _defaultInitializer<ErrorPolicy_Warn> {
template <>
struct Structure ::_defaultInitializer<ErrorPolicy_Warn> {
template <typename T>
void operator()(T &out, const char *reason = "<add reason>") {
@ -410,7 +405,8 @@ template <> struct Structure :: _defaultInitializer<ErrorPolicy_Warn> {
}
};
template <> struct Structure :: _defaultInitializer<ErrorPolicy_Fail> {
template <>
struct Structure ::_defaultInitializer<ErrorPolicy_Fail> {
template <typename T>
void operator()(T & /*out*/, const char * = "") {
@ -421,13 +417,12 @@ template <> struct Structure :: _defaultInitializer<ErrorPolicy_Fail> {
};
// -------------------------------------------------------------------------------------------------------
template <> inline bool Structure :: ResolvePointer<std::shared_ptr,ElemBase>(std::shared_ptr<ElemBase>& out,
template <>
inline bool Structure ::ResolvePointer<std::shared_ptr, ElemBase>(std::shared_ptr<ElemBase> &out,
const Pointer &ptrval,
const FileDatabase &db,
const Field &f,
bool
) const;
bool) const;
// -------------------------------------------------------------------------------
/** Represents the full data structure information for a single BLEND file.
@ -435,14 +430,11 @@ template <> inline bool Structure :: ResolvePointer<std::shared_ptr,ElemBase>(st
* #DNAParser does the reading and represents currently the only place where
* DNA is altered.*/
// -------------------------------------------------------------------------------
class DNA
{
class DNA {
public:
typedef void (Structure::*ConvertProcPtr)(
std::shared_ptr<ElemBase> in,
const FileDatabase&
) const;
const FileDatabase &) const;
typedef std::shared_ptr<ElemBase> (
Structure::*AllocProcPtr)() const;
@ -450,13 +442,11 @@ public:
typedef std::pair<AllocProcPtr, ConvertProcPtr> FactoryPair;
public:
std::map<std::string, FactoryPair> converters;
vector<Structure> structures;
std::map<std::string, size_t> indices;
public:
// --------------------------------------------------------
/** Access a structure by its canonical name, the pointer version returns NULL on failure
* while the reference version raises an error. */
@ -468,7 +458,6 @@ public:
inline const Structure &operator[](const size_t i) const;
public:
// --------------------------------------------------------
/** Add structure definitions for all the primitive types,
* i.e. integer, short, char, float */
@ -483,7 +472,6 @@ public:
* known at compile time (consier Object::data).*/
void RegisterConverters();
// --------------------------------------------------------
/** Take an input blob from the stream, interpret it according to
* a its structure name and convert it to the intermediate
@ -493,8 +481,7 @@ public:
* @return A null pointer if no appropriate converter is available.*/
std::shared_ptr<ElemBase> ConvertBlobToStructure(
const Structure &structure,
const FileDatabase& db
) const;
const FileDatabase &db) const;
// --------------------------------------------------------
/** Find a suitable conversion function for a given Structure.
@ -506,9 +493,7 @@ public:
* @return A null pointer in .first if no appropriate converter is available.*/
FactoryPair GetBlobToStructureConverter(
const Structure &structure,
const FileDatabase& db
) const;
const FileDatabase &db) const;
#ifdef ASSIMP_BUILD_BLENDER_DEBUG
// --------------------------------------------------------
@ -528,24 +513,28 @@ public:
* encountered. */
static void ExtractArraySize(
const std::string &out,
size_t array_sizes[2]
);
size_t array_sizes[2]);
};
// special converters for primitive types
template <> inline void Structure :: Convert<int> (int& dest,const FileDatabase& db) const;
template <> inline void Structure :: Convert<short> (short& dest,const FileDatabase& db) const;
template <> inline void Structure :: Convert<char> (char& dest,const FileDatabase& db) const;
template <> inline void Structure :: Convert<float> (float& dest,const FileDatabase& db) const;
template <> inline void Structure :: Convert<double> (double& dest,const FileDatabase& db) const;
template <> inline void Structure :: Convert<Pointer> (Pointer& dest,const FileDatabase& db) const;
template <>
inline void Structure ::Convert<int>(int &dest, const FileDatabase &db) const;
template <>
inline void Structure ::Convert<short>(short &dest, const FileDatabase &db) const;
template <>
inline void Structure ::Convert<char>(char &dest, const FileDatabase &db) const;
template <>
inline void Structure ::Convert<float>(float &dest, const FileDatabase &db) const;
template <>
inline void Structure ::Convert<double>(double &dest, const FileDatabase &db) const;
template <>
inline void Structure ::Convert<Pointer>(Pointer &dest, const FileDatabase &db) const;
// -------------------------------------------------------------------------------
/** Describes a master file block header. Each master file sections holds n
* elements of a certain SDNA structure (or otherwise unspecified data). */
// -------------------------------------------------------------------------------
struct FileBlockHead
{
struct FileBlockHead {
// points right after the header of the file block
StreamReaderAny::pos start;
@ -561,8 +550,6 @@ struct FileBlockHead
// number of structure instances to follow
size_t num;
// file blocks are sorted by address to quickly locate specific memory addresses
bool operator<(const FileBlockHead &o) const {
return address.val < o.address.val;
@ -582,45 +569,36 @@ inline bool operator< (const Pointer& a, const Pointer& b) {
// -------------------------------------------------------------------------------
/** Utility to read all master file blocks in turn. */
// -------------------------------------------------------------------------------
class SectionParser
{
class SectionParser {
public:
// --------------------------------------------------------
/** @param stream Inout stream, must point to the
* first section in the file. Call Next() once
* to have it read.
* @param ptr64 Pointer size in file is 64 bits? */
SectionParser(StreamReaderAny& stream,bool ptr64)
: stream(stream)
, ptr64(ptr64)
{
SectionParser(StreamReaderAny &stream, bool ptr64) :
stream(stream), ptr64(ptr64) {
current.size = current.start = 0;
}
public:
// --------------------------------------------------------
const FileBlockHead &GetCurrent() const {
return current;
}
public:
// --------------------------------------------------------
/** Advance to the next section.
* @throw DeadlyImportError if the last chunk was passed. */
void Next();
public:
FileBlockHead current;
StreamReaderAny &stream;
bool ptr64;
};
#ifndef ASSIMP_BUILD_BLENDER_NO_STATS
// -------------------------------------------------------------------------------
/** Import statistics, i.e. number of file blocks read*/
@ -628,17 +606,13 @@ public:
class Statistics {
public:
Statistics ()
: fields_read ()
, pointers_resolved ()
, cache_hits ()
Statistics() :
fields_read(), pointers_resolved(), cache_hits()
// , blocks_read ()
, cached_objects ()
{}
,
cached_objects() {}
public:
/** total number of fields we read */
unsigned int fields_read;
@ -662,17 +636,13 @@ public:
* avoids circular references and avoids object duplication. */
// -------------------------------------------------------------------------------
template <template <typename> class TOUT>
class ObjectCache
{
class ObjectCache {
public:
typedef std::map<Pointer, TOUT<ElemBase>> StructureCache;
public:
ObjectCache(const FileDatabase& db)
: db(db)
{
ObjectCache(const FileDatabase &db) :
db(db) {
// currently there are only ~400 structure records per blend file.
// we read only a small part of them and don't cache objects
// which we don't need, so this should suffice.
@ -680,14 +650,14 @@ public:
}
public:
// --------------------------------------------------------
/** Check whether a specific item is in the cache.
* @param s Data type of the item
* @param out Output pointer. Unchanged if the
* cache doesn't know the item yet.
* @param ptr Item address to look for. */
template <typename T> void get (
template <typename T>
void get(
const Structure &s,
TOUT<T> &out,
const Pointer &ptr) const;
@ -700,27 +670,27 @@ public:
* @param s Data type of the item
* @param out Item to insert into the cache
* @param ptr address (cache key) of the item. */
template <typename T> void set
(const Structure& s,
template <typename T>
void set(const Structure &s,
const TOUT<T> &out,
const Pointer &ptr);
private:
mutable vector<StructureCache> caches;
const FileDatabase &db;
};
// -------------------------------------------------------------------------------
// -------------------------------------------------------------------------------
template <> class ObjectCache<Blender::vector>
{
template <>
class ObjectCache<Blender::vector> {
public:
ObjectCache(const FileDatabase &) {}
template <typename T> void get(const Structure&, vector<T>&, const Pointer&) {}
template <typename T> void set(const Structure&, const vector<T>&, const Pointer&) {}
template <typename T>
void get(const Structure &, vector<T> &, const Pointer &) {}
template <typename T>
void set(const Structure &, const vector<T> &, const Pointer &) {}
};
#ifdef _MSC_VER
@ -731,16 +701,13 @@ public:
/** Memory representation of a full BLEND file and all its dependencies. The
* output aiScene is constructed from an instance of this data structure. */
// -------------------------------------------------------------------------------
class FileDatabase
{
template <template <typename> class TOUT> friend class ObjectCache;
class FileDatabase {
template <template <typename> class TOUT>
friend class ObjectCache;
public:
FileDatabase()
: _cacheArrays(*this)
, _cache(*this)
, next_cache_idx()
{}
FileDatabase() :
_cacheArrays(*this), _cache(*this), next_cache_idx() {}
public:
// publicly accessible fields
@ -752,7 +719,6 @@ public:
vector<FileBlockHead> entries;
public:
Statistics &stats() const {
return _stats;
}
@ -772,8 +738,6 @@ public:
}
private:
#ifndef ASSIMP_BUILD_BLENDER_NO_STATS
mutable Statistics _stats;
#endif
@ -791,18 +755,14 @@ private:
// -------------------------------------------------------------------------------
/** Factory to extract a #DNA from the DNA1 file block in a BLEND file. */
// -------------------------------------------------------------------------------
class DNAParser
{
class DNAParser {
public:
/** Bind the parser to a empty DNA and an input stream */
DNAParser(FileDatabase& db)
: db(db)
{}
DNAParser(FileDatabase &db) :
db(db) {}
public:
// --------------------------------------------------------
/** Locate the DNA in the file and parse it. The input
* stream is expected to point to the beginning of the DN1
@ -814,14 +774,12 @@ public:
void Parse();
public:
/** Obtain a reference to the extracted DNA information */
const Blender::DNA &GetDNA() const {
return db.dna;
}
private:
FileDatabase &db;
};
@ -835,9 +793,8 @@ private:
*/
bool readCustomData(std::shared_ptr<ElemBase> &out, int cdtype, size_t cnt, const FileDatabase &db);
} // end Blend
} // end Assimp
} // namespace Blender
} // namespace Assimp
#include "BlenderDNA.inl"

View File

@ -795,7 +795,7 @@ const Structure& DNA :: operator [] (const std::string& ss) const
const Structure* DNA :: Get (const std::string& ss) const
{
std::map<std::string, size_t>::const_iterator it = indices.find(ss);
return it == indices.end() ? NULL : &structures[(*it).second];
return it == indices.end() ? nullptr : &structures[(*it).second];
}
//--------------------------------------------------------------------------------

View File

@ -68,7 +68,7 @@ static const fpCreateModifier creators[] = {
&god<BlenderModifier_Mirror>,
&god<BlenderModifier_Subdivision>,
NULL // sentinel
nullptr // sentinel
};
// ------------------------------------------------------------------------------------------------
@ -127,7 +127,7 @@ void BlenderModifierShowcase::ApplyModifiers(aiNode &out, ConversionData &conv_d
modifier->DoIt(out, conv_data, *static_cast<const ElemBase *>(cur), in, orig_object);
cnt++;
curgod = NULL;
curgod = nullptr;
break;
}
}

View File

@ -0,0 +1,838 @@
/*
Open Asset Import Library (ASSIMP)
----------------------------------------------------------------------
Copyright (c) 2006-2020, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file BlenderScene.cpp
* @brief MACHINE GENERATED BY ./scripts/BlenderImporter/genblenddna.py
*/
#ifndef ASSIMP_BUILD_NO_BLEND_IMPORTER
#include "BlenderScene.h"
#include "BlenderCustomData.h"
#include "BlenderDNA.h"
#include "BlenderSceneGen.h"
using namespace Assimp;
using namespace Assimp::Blender;
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<Object>(
Object &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.id, "id", db);
int temp = 0;
ReadField<ErrorPolicy_Fail>(temp, "type", db);
dest.type = static_cast<Assimp::Blender::Object::Type>(temp);
ReadFieldArray2<ErrorPolicy_Warn>(dest.obmat, "obmat", db);
ReadFieldArray2<ErrorPolicy_Warn>(dest.parentinv, "parentinv", db);
ReadFieldArray<ErrorPolicy_Warn>(dest.parsubstr, "parsubstr", db);
{
std::shared_ptr<Object> parent;
ReadFieldPtr<ErrorPolicy_Warn>(parent, "*parent", db);
dest.parent = parent.get();
}
ReadFieldPtr<ErrorPolicy_Warn>(dest.track, "*track", db);
ReadFieldPtr<ErrorPolicy_Warn>(dest.proxy, "*proxy", db);
ReadFieldPtr<ErrorPolicy_Warn>(dest.proxy_from, "*proxy_from", db);
ReadFieldPtr<ErrorPolicy_Warn>(dest.proxy_group, "*proxy_group", db);
ReadFieldPtr<ErrorPolicy_Warn>(dest.dup_group, "*dup_group", db);
ReadFieldPtr<ErrorPolicy_Fail>(dest.data, "*data", db);
ReadField<ErrorPolicy_Igno>(dest.modifiers, "modifiers", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<Group>(
Group &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.id, "id", db);
ReadField<ErrorPolicy_Igno>(dest.layer, "layer", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.gobject, "*gobject", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MTex>(
MTex &dest,
const FileDatabase &db) const {
int temp_short = 0;
ReadField<ErrorPolicy_Igno>(temp_short, "mapto", db);
dest.mapto = static_cast<Assimp::Blender::MTex::MapType>(temp_short);
int temp = 0;
ReadField<ErrorPolicy_Igno>(temp, "blendtype", db);
dest.blendtype = static_cast<Assimp::Blender::MTex::BlendType>(temp);
ReadFieldPtr<ErrorPolicy_Igno>(dest.object, "*object", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.tex, "*tex", db);
ReadFieldArray<ErrorPolicy_Igno>(dest.uvname, "uvname", db);
ReadField<ErrorPolicy_Igno>(temp, "projx", db);
dest.projx = static_cast<Assimp::Blender::MTex::Projection>(temp);
ReadField<ErrorPolicy_Igno>(temp, "projy", db);
dest.projy = static_cast<Assimp::Blender::MTex::Projection>(temp);
ReadField<ErrorPolicy_Igno>(temp, "projz", db);
dest.projz = static_cast<Assimp::Blender::MTex::Projection>(temp);
ReadField<ErrorPolicy_Igno>(dest.mapping, "mapping", db);
ReadFieldArray<ErrorPolicy_Igno>(dest.ofs, "ofs", db);
ReadFieldArray<ErrorPolicy_Igno>(dest.size, "size", db);
ReadField<ErrorPolicy_Igno>(dest.rot, "rot", db);
ReadField<ErrorPolicy_Igno>(dest.texflag, "texflag", db);
ReadField<ErrorPolicy_Igno>(dest.colormodel, "colormodel", db);
ReadField<ErrorPolicy_Igno>(dest.pmapto, "pmapto", db);
ReadField<ErrorPolicy_Igno>(dest.pmaptoneg, "pmaptoneg", db);
ReadField<ErrorPolicy_Warn>(dest.r, "r", db);
ReadField<ErrorPolicy_Warn>(dest.g, "g", db);
ReadField<ErrorPolicy_Warn>(dest.b, "b", db);
ReadField<ErrorPolicy_Warn>(dest.k, "k", db);
ReadField<ErrorPolicy_Igno>(dest.colspecfac, "colspecfac", db);
ReadField<ErrorPolicy_Igno>(dest.mirrfac, "mirrfac", db);
ReadField<ErrorPolicy_Igno>(dest.alphafac, "alphafac", db);
ReadField<ErrorPolicy_Igno>(dest.difffac, "difffac", db);
ReadField<ErrorPolicy_Igno>(dest.specfac, "specfac", db);
ReadField<ErrorPolicy_Igno>(dest.emitfac, "emitfac", db);
ReadField<ErrorPolicy_Igno>(dest.hardfac, "hardfac", db);
ReadField<ErrorPolicy_Igno>(dest.norfac, "norfac", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<TFace>(
TFace &dest,
const FileDatabase &db) const {
ReadFieldArray2<ErrorPolicy_Fail>(dest.uv, "uv", db);
ReadFieldArray<ErrorPolicy_Fail>(dest.col, "col", db);
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
ReadField<ErrorPolicy_Igno>(dest.mode, "mode", db);
ReadField<ErrorPolicy_Igno>(dest.tile, "tile", db);
ReadField<ErrorPolicy_Igno>(dest.unwrap, "unwrap", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<SubsurfModifierData>(
SubsurfModifierData &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.modifier, "modifier", db);
ReadField<ErrorPolicy_Warn>(dest.subdivType, "subdivType", db);
ReadField<ErrorPolicy_Fail>(dest.levels, "levels", db);
ReadField<ErrorPolicy_Igno>(dest.renderLevels, "renderLevels", db);
ReadField<ErrorPolicy_Igno>(dest.flags, "flags", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MFace>(
MFace &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.v1, "v1", db);
ReadField<ErrorPolicy_Fail>(dest.v2, "v2", db);
ReadField<ErrorPolicy_Fail>(dest.v3, "v3", db);
ReadField<ErrorPolicy_Fail>(dest.v4, "v4", db);
ReadField<ErrorPolicy_Fail>(dest.mat_nr, "mat_nr", db);
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<Lamp>(
Lamp &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.id, "id", db);
int temp = 0;
ReadField<ErrorPolicy_Fail>(temp, "type", db);
dest.type = static_cast<Assimp::Blender::Lamp::Type>(temp);
ReadField<ErrorPolicy_Igno>(dest.flags, "flag", db);
ReadField<ErrorPolicy_Igno>(dest.colormodel, "colormodel", db);
ReadField<ErrorPolicy_Igno>(dest.totex, "totex", db);
ReadField<ErrorPolicy_Warn>(dest.r, "r", db);
ReadField<ErrorPolicy_Warn>(dest.g, "g", db);
ReadField<ErrorPolicy_Warn>(dest.b, "b", db);
ReadField<ErrorPolicy_Warn>(dest.k, "k", db);
ReadField<ErrorPolicy_Igno>(dest.energy, "energy", db);
ReadField<ErrorPolicy_Warn>(dest.dist, "dist", db);
ReadField<ErrorPolicy_Igno>(dest.spotsize, "spotsize", db);
ReadField<ErrorPolicy_Igno>(dest.spotblend, "spotblend", db);
ReadField<ErrorPolicy_Warn>(dest.constant_coefficient, "coeff_const", db);
ReadField<ErrorPolicy_Warn>(dest.linear_coefficient, "coeff_lin", db);
ReadField<ErrorPolicy_Warn>(dest.quadratic_coefficient, "coeff_quad", db);
ReadField<ErrorPolicy_Igno>(dest.att1, "att1", db);
ReadField<ErrorPolicy_Igno>(dest.att2, "att2", db);
ReadField<ErrorPolicy_Igno>(temp, "falloff_type", db);
dest.falloff_type = static_cast<Assimp::Blender::Lamp::FalloffType>(temp);
ReadField<ErrorPolicy_Igno>(dest.sun_brightness, "sun_brightness", db);
ReadField<ErrorPolicy_Igno>(dest.area_size, "area_size", db);
ReadField<ErrorPolicy_Igno>(dest.area_sizey, "area_sizey", db);
ReadField<ErrorPolicy_Igno>(dest.area_sizez, "area_sizez", db);
ReadField<ErrorPolicy_Igno>(dest.area_shape, "area_shape", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MDeformWeight>(
MDeformWeight &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.def_nr, "def_nr", db);
ReadField<ErrorPolicy_Fail>(dest.weight, "weight", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<PackedFile>(
PackedFile &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Warn>(dest.size, "size", db);
ReadField<ErrorPolicy_Warn>(dest.seek, "seek", db);
ReadFieldPtr<ErrorPolicy_Warn>(dest.data, "*data", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<Base>(
Base &dest,
const FileDatabase &db) const {
// note: as per https://github.com/assimp/assimp/issues/128,
// reading the Object linked list recursively is prone to stack overflow.
// This structure converter is therefore an hand-written exception that
// does it iteratively.
const int initial_pos = db.reader->GetCurrentPos();
std::pair<Base *, int> todo = std::make_pair(&dest, initial_pos);
for (;;) {
Base &cur_dest = *todo.first;
db.reader->SetCurrentPos(todo.second);
// we know that this is a double-linked, circular list which we never
// traverse backwards, so don't bother resolving the back links.
cur_dest.prev = nullptr;
ReadFieldPtr<ErrorPolicy_Warn>(cur_dest.object, "*object", db);
// the return value of ReadFieldPtr indicates whether the object
// was already cached. In this case, we don't need to resolve
// it again.
if (!ReadFieldPtr<ErrorPolicy_Warn>(cur_dest.next, "*next", db, true) && cur_dest.next) {
todo = std::make_pair(&*cur_dest.next, db.reader->GetCurrentPos());
continue;
}
break;
}
db.reader->SetCurrentPos(initial_pos + size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MTFace>(
MTFace &dest,
const FileDatabase &db) const {
ReadFieldArray2<ErrorPolicy_Fail>(dest.uv, "uv", db);
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
ReadField<ErrorPolicy_Igno>(dest.mode, "mode", db);
ReadField<ErrorPolicy_Igno>(dest.tile, "tile", db);
ReadField<ErrorPolicy_Igno>(dest.unwrap, "unwrap", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<Material>(
Material &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.id, "id", db);
ReadField<ErrorPolicy_Warn>(dest.r, "r", db);
ReadField<ErrorPolicy_Warn>(dest.g, "g", db);
ReadField<ErrorPolicy_Warn>(dest.b, "b", db);
ReadField<ErrorPolicy_Warn>(dest.specr, "specr", db);
ReadField<ErrorPolicy_Warn>(dest.specg, "specg", db);
ReadField<ErrorPolicy_Warn>(dest.specb, "specb", db);
ReadField<ErrorPolicy_Igno>(dest.har, "har", db);
ReadField<ErrorPolicy_Warn>(dest.ambr, "ambr", db);
ReadField<ErrorPolicy_Warn>(dest.ambg, "ambg", db);
ReadField<ErrorPolicy_Warn>(dest.ambb, "ambb", db);
ReadField<ErrorPolicy_Igno>(dest.mirr, "mirr", db);
ReadField<ErrorPolicy_Igno>(dest.mirg, "mirg", db);
ReadField<ErrorPolicy_Igno>(dest.mirb, "mirb", db);
ReadField<ErrorPolicy_Warn>(dest.emit, "emit", db);
ReadField<ErrorPolicy_Igno>(dest.ray_mirror, "ray_mirror", db);
ReadField<ErrorPolicy_Warn>(dest.alpha, "alpha", db);
ReadField<ErrorPolicy_Igno>(dest.ref, "ref", db);
ReadField<ErrorPolicy_Igno>(dest.translucency, "translucency", db);
ReadField<ErrorPolicy_Igno>(dest.mode, "mode", db);
ReadField<ErrorPolicy_Igno>(dest.roughness, "roughness", db);
ReadField<ErrorPolicy_Igno>(dest.darkness, "darkness", db);
ReadField<ErrorPolicy_Igno>(dest.refrac, "refrac", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.group, "*group", db);
ReadField<ErrorPolicy_Warn>(dest.diff_shader, "diff_shader", db);
ReadField<ErrorPolicy_Warn>(dest.spec_shader, "spec_shader", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.mtex, "*mtex", db);
ReadField<ErrorPolicy_Igno>(dest.amb, "amb", db);
ReadField<ErrorPolicy_Igno>(dest.ang, "ang", db);
ReadField<ErrorPolicy_Igno>(dest.spectra, "spectra", db);
ReadField<ErrorPolicy_Igno>(dest.spec, "spec", db);
ReadField<ErrorPolicy_Igno>(dest.zoffs, "zoffs", db);
ReadField<ErrorPolicy_Igno>(dest.add, "add", db);
ReadField<ErrorPolicy_Igno>(dest.fresnel_mir, "fresnel_mir", db);
ReadField<ErrorPolicy_Igno>(dest.fresnel_mir_i, "fresnel_mir_i", db);
ReadField<ErrorPolicy_Igno>(dest.fresnel_tra, "fresnel_tra", db);
ReadField<ErrorPolicy_Igno>(dest.fresnel_tra_i, "fresnel_tra_i", db);
ReadField<ErrorPolicy_Igno>(dest.filter, "filter", db);
ReadField<ErrorPolicy_Igno>(dest.tx_limit, "tx_limit", db);
ReadField<ErrorPolicy_Igno>(dest.tx_falloff, "tx_falloff", db);
ReadField<ErrorPolicy_Igno>(dest.gloss_mir, "gloss_mir", db);
ReadField<ErrorPolicy_Igno>(dest.gloss_tra, "gloss_tra", db);
ReadField<ErrorPolicy_Igno>(dest.adapt_thresh_mir, "adapt_thresh_mir", db);
ReadField<ErrorPolicy_Igno>(dest.adapt_thresh_tra, "adapt_thresh_tra", db);
ReadField<ErrorPolicy_Igno>(dest.aniso_gloss_mir, "aniso_gloss_mir", db);
ReadField<ErrorPolicy_Igno>(dest.dist_mir, "dist_mir", db);
ReadField<ErrorPolicy_Igno>(dest.hasize, "hasize", db);
ReadField<ErrorPolicy_Igno>(dest.flaresize, "flaresize", db);
ReadField<ErrorPolicy_Igno>(dest.subsize, "subsize", db);
ReadField<ErrorPolicy_Igno>(dest.flareboost, "flareboost", db);
ReadField<ErrorPolicy_Igno>(dest.strand_sta, "strand_sta", db);
ReadField<ErrorPolicy_Igno>(dest.strand_end, "strand_end", db);
ReadField<ErrorPolicy_Igno>(dest.strand_ease, "strand_ease", db);
ReadField<ErrorPolicy_Igno>(dest.strand_surfnor, "strand_surfnor", db);
ReadField<ErrorPolicy_Igno>(dest.strand_min, "strand_min", db);
ReadField<ErrorPolicy_Igno>(dest.strand_widthfade, "strand_widthfade", db);
ReadField<ErrorPolicy_Igno>(dest.sbias, "sbias", db);
ReadField<ErrorPolicy_Igno>(dest.lbias, "lbias", db);
ReadField<ErrorPolicy_Igno>(dest.shad_alpha, "shad_alpha", db);
ReadField<ErrorPolicy_Igno>(dest.param, "param", db);
ReadField<ErrorPolicy_Igno>(dest.rms, "rms", db);
ReadField<ErrorPolicy_Igno>(dest.rampfac_col, "rampfac_col", db);
ReadField<ErrorPolicy_Igno>(dest.rampfac_spec, "rampfac_spec", db);
ReadField<ErrorPolicy_Igno>(dest.friction, "friction", db);
ReadField<ErrorPolicy_Igno>(dest.fh, "fh", db);
ReadField<ErrorPolicy_Igno>(dest.reflect, "reflect", db);
ReadField<ErrorPolicy_Igno>(dest.fhdist, "fhdist", db);
ReadField<ErrorPolicy_Igno>(dest.xyfrict, "xyfrict", db);
ReadField<ErrorPolicy_Igno>(dest.sss_radius, "sss_radius", db);
ReadField<ErrorPolicy_Igno>(dest.sss_col, "sss_col", db);
ReadField<ErrorPolicy_Igno>(dest.sss_error, "sss_error", db);
ReadField<ErrorPolicy_Igno>(dest.sss_scale, "sss_scale", db);
ReadField<ErrorPolicy_Igno>(dest.sss_ior, "sss_ior", db);
ReadField<ErrorPolicy_Igno>(dest.sss_colfac, "sss_colfac", db);
ReadField<ErrorPolicy_Igno>(dest.sss_texfac, "sss_texfac", db);
ReadField<ErrorPolicy_Igno>(dest.sss_front, "sss_front", db);
ReadField<ErrorPolicy_Igno>(dest.sss_back, "sss_back", db);
ReadField<ErrorPolicy_Igno>(dest.material_type, "material_type", db);
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
ReadField<ErrorPolicy_Igno>(dest.ray_depth, "ray_depth", db);
ReadField<ErrorPolicy_Igno>(dest.ray_depth_tra, "ray_depth_tra", db);
ReadField<ErrorPolicy_Igno>(dest.samp_gloss_mir, "samp_gloss_mir", db);
ReadField<ErrorPolicy_Igno>(dest.samp_gloss_tra, "samp_gloss_tra", db);
ReadField<ErrorPolicy_Igno>(dest.fadeto_mir, "fadeto_mir", db);
ReadField<ErrorPolicy_Igno>(dest.shade_flag, "shade_flag", db);
ReadField<ErrorPolicy_Igno>(dest.flarec, "flarec", db);
ReadField<ErrorPolicy_Igno>(dest.starc, "starc", db);
ReadField<ErrorPolicy_Igno>(dest.linec, "linec", db);
ReadField<ErrorPolicy_Igno>(dest.ringc, "ringc", db);
ReadField<ErrorPolicy_Igno>(dest.pr_lamp, "pr_lamp", db);
ReadField<ErrorPolicy_Igno>(dest.pr_texture, "pr_texture", db);
ReadField<ErrorPolicy_Igno>(dest.ml_flag, "ml_flag", db);
ReadField<ErrorPolicy_Igno>(dest.diff_shader, "diff_shader", db);
ReadField<ErrorPolicy_Igno>(dest.spec_shader, "spec_shader", db);
ReadField<ErrorPolicy_Igno>(dest.texco, "texco", db);
ReadField<ErrorPolicy_Igno>(dest.mapto, "mapto", db);
ReadField<ErrorPolicy_Igno>(dest.ramp_show, "ramp_show", db);
ReadField<ErrorPolicy_Igno>(dest.pad3, "pad3", db);
ReadField<ErrorPolicy_Igno>(dest.dynamode, "dynamode", db);
ReadField<ErrorPolicy_Igno>(dest.pad2, "pad2", db);
ReadField<ErrorPolicy_Igno>(dest.sss_flag, "sss_flag", db);
ReadField<ErrorPolicy_Igno>(dest.sss_preset, "sss_preset", db);
ReadField<ErrorPolicy_Igno>(dest.shadowonly_flag, "shadowonly_flag", db);
ReadField<ErrorPolicy_Igno>(dest.index, "index", db);
ReadField<ErrorPolicy_Igno>(dest.vcol_alpha, "vcol_alpha", db);
ReadField<ErrorPolicy_Igno>(dest.pad4, "pad4", db);
ReadField<ErrorPolicy_Igno>(dest.seed1, "seed1", db);
ReadField<ErrorPolicy_Igno>(dest.seed2, "seed2", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MTexPoly>(
MTexPoly &dest,
const FileDatabase &db) const {
{
std::shared_ptr<Image> tpage;
ReadFieldPtr<ErrorPolicy_Igno>(tpage, "*tpage", db);
dest.tpage = tpage.get();
}
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
ReadField<ErrorPolicy_Igno>(dest.transp, "transp", db);
ReadField<ErrorPolicy_Igno>(dest.mode, "mode", db);
ReadField<ErrorPolicy_Igno>(dest.tile, "tile", db);
ReadField<ErrorPolicy_Igno>(dest.pad, "pad", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<Mesh>(
Mesh &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.id, "id", db);
ReadField<ErrorPolicy_Fail>(dest.totface, "totface", db);
ReadField<ErrorPolicy_Fail>(dest.totedge, "totedge", db);
ReadField<ErrorPolicy_Fail>(dest.totvert, "totvert", db);
ReadField<ErrorPolicy_Igno>(dest.totloop, "totloop", db);
ReadField<ErrorPolicy_Igno>(dest.totpoly, "totpoly", db);
ReadField<ErrorPolicy_Igno>(dest.subdiv, "subdiv", db);
ReadField<ErrorPolicy_Igno>(dest.subdivr, "subdivr", db);
ReadField<ErrorPolicy_Igno>(dest.subsurftype, "subsurftype", db);
ReadField<ErrorPolicy_Igno>(dest.smoothresh, "smoothresh", db);
ReadFieldPtr<ErrorPolicy_Fail>(dest.mface, "*mface", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.mtface, "*mtface", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.tface, "*tface", db);
ReadFieldPtr<ErrorPolicy_Fail>(dest.mvert, "*mvert", db);
ReadFieldPtr<ErrorPolicy_Warn>(dest.medge, "*medge", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.mloop, "*mloop", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.mloopuv, "*mloopuv", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.mloopcol, "*mloopcol", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.mpoly, "*mpoly", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.mtpoly, "*mtpoly", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.dvert, "*dvert", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.mcol, "*mcol", db);
ReadFieldPtr<ErrorPolicy_Fail>(dest.mat, "**mat", db);
ReadField<ErrorPolicy_Igno>(dest.vdata, "vdata", db);
ReadField<ErrorPolicy_Igno>(dest.edata, "edata", db);
ReadField<ErrorPolicy_Igno>(dest.fdata, "fdata", db);
ReadField<ErrorPolicy_Igno>(dest.pdata, "pdata", db);
ReadField<ErrorPolicy_Warn>(dest.ldata, "ldata", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MDeformVert>(
MDeformVert &dest,
const FileDatabase &db) const {
ReadFieldPtr<ErrorPolicy_Warn>(dest.dw, "*dw", db);
ReadField<ErrorPolicy_Igno>(dest.totweight, "totweight", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<World>(
World &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.id, "id", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MLoopCol>(
MLoopCol &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Igno>(dest.r, "r", db);
ReadField<ErrorPolicy_Igno>(dest.g, "g", db);
ReadField<ErrorPolicy_Igno>(dest.b, "b", db);
ReadField<ErrorPolicy_Igno>(dest.a, "a", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MVert>(
MVert &dest,
const FileDatabase &db) const {
ReadFieldArray<ErrorPolicy_Fail>(dest.co, "co", db);
ReadFieldArray<ErrorPolicy_Fail>(dest.no, "no", db);
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
//ReadField<ErrorPolicy_Warn>(dest.mat_nr,"mat_nr",db);
ReadField<ErrorPolicy_Igno>(dest.bweight, "bweight", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MEdge>(
MEdge &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.v1, "v1", db);
ReadField<ErrorPolicy_Fail>(dest.v2, "v2", db);
ReadField<ErrorPolicy_Igno>(dest.crease, "crease", db);
ReadField<ErrorPolicy_Igno>(dest.bweight, "bweight", db);
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MLoopUV>(
MLoopUV &dest,
const FileDatabase &db) const {
ReadFieldArray<ErrorPolicy_Igno>(dest.uv, "uv", db);
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<GroupObject>(
GroupObject &dest,
const FileDatabase &db) const {
ReadFieldPtr<ErrorPolicy_Fail>(dest.prev, "*prev", db);
ReadFieldPtr<ErrorPolicy_Fail>(dest.next, "*next", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.ob, "*ob", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<ListBase>(
ListBase &dest,
const FileDatabase &db) const {
ReadFieldPtr<ErrorPolicy_Igno>(dest.first, "*first", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.last, "*last", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MLoop>(
MLoop &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Igno>(dest.v, "v", db);
ReadField<ErrorPolicy_Igno>(dest.e, "e", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<ModifierData>(
ModifierData &dest,
const FileDatabase &db) const {
ReadFieldPtr<ErrorPolicy_Warn>(dest.next, "*next", db);
ReadFieldPtr<ErrorPolicy_Warn>(dest.prev, "*prev", db);
ReadField<ErrorPolicy_Igno>(dest.type, "type", db);
ReadField<ErrorPolicy_Igno>(dest.mode, "mode", db);
ReadFieldArray<ErrorPolicy_Igno>(dest.name, "name", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<ID>(
ID &dest,
const FileDatabase &db) const {
ReadFieldArray<ErrorPolicy_Warn>(dest.name, "name", db);
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MCol>(
MCol &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.r, "r", db);
ReadField<ErrorPolicy_Fail>(dest.g, "g", db);
ReadField<ErrorPolicy_Fail>(dest.b, "b", db);
ReadField<ErrorPolicy_Fail>(dest.a, "a", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MPoly>(
MPoly &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Igno>(dest.loopstart, "loopstart", db);
ReadField<ErrorPolicy_Igno>(dest.totloop, "totloop", db);
ReadField<ErrorPolicy_Igno>(dest.mat_nr, "mat_nr", db);
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<Scene>(
Scene &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.id, "id", db);
ReadFieldPtr<ErrorPolicy_Warn>(dest.camera, "*camera", db);
ReadFieldPtr<ErrorPolicy_Warn>(dest.world, "*world", db);
ReadFieldPtr<ErrorPolicy_Warn>(dest.basact, "*basact", db);
ReadField<ErrorPolicy_Igno>(dest.base, "base", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<Library>(
Library &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.id, "id", db);
ReadFieldArray<ErrorPolicy_Warn>(dest.name, "name", db);
ReadFieldArray<ErrorPolicy_Fail>(dest.filename, "filename", db);
ReadFieldPtr<ErrorPolicy_Warn>(dest.parent, "*parent", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<Tex>(
Tex &dest,
const FileDatabase &db) const {
short temp_short = 0;
ReadField<ErrorPolicy_Igno>(temp_short, "imaflag", db);
dest.imaflag = static_cast<Assimp::Blender::Tex::ImageFlags>(temp_short);
int temp = 0;
ReadField<ErrorPolicy_Fail>(temp, "type", db);
dest.type = static_cast<Assimp::Blender::Tex::Type>(temp);
ReadFieldPtr<ErrorPolicy_Warn>(dest.ima, "*ima", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<Camera>(
Camera &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.id, "id", db);
int temp = 0;
ReadField<ErrorPolicy_Warn>(temp, "type", db);
dest.type = static_cast<Assimp::Blender::Camera::Type>(temp);
ReadField<ErrorPolicy_Warn>(temp, "flag", db);
dest.flag = static_cast<Assimp::Blender::Camera::Type>(temp);
ReadField<ErrorPolicy_Warn>(dest.lens, "lens", db);
ReadField<ErrorPolicy_Warn>(dest.sensor_x, "sensor_x", db);
ReadField<ErrorPolicy_Igno>(dest.clipsta, "clipsta", db);
ReadField<ErrorPolicy_Igno>(dest.clipend, "clipend", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<MirrorModifierData>(
MirrorModifierData &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.modifier, "modifier", db);
ReadField<ErrorPolicy_Igno>(dest.axis, "axis", db);
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
ReadField<ErrorPolicy_Igno>(dest.tolerance, "tolerance", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.mirror_ob, "*mirror_ob", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure ::Convert<Image>(
Image &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.id, "id", db);
ReadFieldArray<ErrorPolicy_Warn>(dest.name, "name", db);
ReadField<ErrorPolicy_Igno>(dest.ok, "ok", db);
ReadField<ErrorPolicy_Igno>(dest.flag, "flag", db);
ReadField<ErrorPolicy_Igno>(dest.source, "source", db);
ReadField<ErrorPolicy_Igno>(dest.type, "type", db);
ReadField<ErrorPolicy_Igno>(dest.pad, "pad", db);
ReadField<ErrorPolicy_Igno>(dest.pad1, "pad1", db);
ReadField<ErrorPolicy_Igno>(dest.lastframe, "lastframe", db);
ReadField<ErrorPolicy_Igno>(dest.tpageflag, "tpageflag", db);
ReadField<ErrorPolicy_Igno>(dest.totbind, "totbind", db);
ReadField<ErrorPolicy_Igno>(dest.xrep, "xrep", db);
ReadField<ErrorPolicy_Igno>(dest.yrep, "yrep", db);
ReadField<ErrorPolicy_Igno>(dest.twsta, "twsta", db);
ReadField<ErrorPolicy_Igno>(dest.twend, "twend", db);
ReadFieldPtr<ErrorPolicy_Igno>(dest.packedfile, "*packedfile", db);
ReadField<ErrorPolicy_Igno>(dest.lastupdate, "lastupdate", db);
ReadField<ErrorPolicy_Igno>(dest.lastused, "lastused", db);
ReadField<ErrorPolicy_Igno>(dest.animspeed, "animspeed", db);
ReadField<ErrorPolicy_Igno>(dest.gen_x, "gen_x", db);
ReadField<ErrorPolicy_Igno>(dest.gen_y, "gen_y", db);
ReadField<ErrorPolicy_Igno>(dest.gen_type, "gen_type", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure::Convert<CustomData>(
CustomData &dest,
const FileDatabase &db) const {
ReadFieldArray<ErrorPolicy_Warn>(dest.typemap, "typemap", db);
ReadField<ErrorPolicy_Warn>(dest.totlayer, "totlayer", db);
ReadField<ErrorPolicy_Warn>(dest.maxlayer, "maxlayer", db);
ReadField<ErrorPolicy_Warn>(dest.totsize, "totsize", db);
ReadFieldPtrVector<ErrorPolicy_Warn>(dest.layers, "*layers", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
template <>
void Structure::Convert<CustomDataLayer>(
CustomDataLayer &dest,
const FileDatabase &db) const {
ReadField<ErrorPolicy_Fail>(dest.type, "type", db);
ReadField<ErrorPolicy_Fail>(dest.offset, "offset", db);
ReadField<ErrorPolicy_Fail>(dest.flag, "flag", db);
ReadField<ErrorPolicy_Fail>(dest.active, "active", db);
ReadField<ErrorPolicy_Fail>(dest.active_rnd, "active_rnd", db);
ReadField<ErrorPolicy_Fail>(dest.active_clone, "active_clone", db);
ReadField<ErrorPolicy_Fail>(dest.active_mask, "active_mask", db);
ReadField<ErrorPolicy_Fail>(dest.uid, "uid", db);
ReadFieldArray<ErrorPolicy_Warn>(dest.name, "name", db);
ReadCustomDataPtr<ErrorPolicy_Fail>(dest.data, dest.type, "*data", db);
db.reader->IncPtr(size);
}
//--------------------------------------------------------------------------------
void DNA::RegisterConverters() {
converters["Object"] = DNA::FactoryPair(&Structure::Allocate<Object>, &Structure::Convert<Object>);
converters["Group"] = DNA::FactoryPair(&Structure::Allocate<Group>, &Structure::Convert<Group>);
converters["MTex"] = DNA::FactoryPair(&Structure::Allocate<MTex>, &Structure::Convert<MTex>);
converters["TFace"] = DNA::FactoryPair(&Structure::Allocate<TFace>, &Structure::Convert<TFace>);
converters["SubsurfModifierData"] = DNA::FactoryPair(&Structure::Allocate<SubsurfModifierData>, &Structure::Convert<SubsurfModifierData>);
converters["MFace"] = DNA::FactoryPair(&Structure::Allocate<MFace>, &Structure::Convert<MFace>);
converters["Lamp"] = DNA::FactoryPair(&Structure::Allocate<Lamp>, &Structure::Convert<Lamp>);
converters["MDeformWeight"] = DNA::FactoryPair(&Structure::Allocate<MDeformWeight>, &Structure::Convert<MDeformWeight>);
converters["PackedFile"] = DNA::FactoryPair(&Structure::Allocate<PackedFile>, &Structure::Convert<PackedFile>);
converters["Base"] = DNA::FactoryPair(&Structure::Allocate<Base>, &Structure::Convert<Base>);
converters["MTFace"] = DNA::FactoryPair(&Structure::Allocate<MTFace>, &Structure::Convert<MTFace>);
converters["Material"] = DNA::FactoryPair(&Structure::Allocate<Material>, &Structure::Convert<Material>);
converters["MTexPoly"] = DNA::FactoryPair(&Structure::Allocate<MTexPoly>, &Structure::Convert<MTexPoly>);
converters["Mesh"] = DNA::FactoryPair(&Structure::Allocate<Mesh>, &Structure::Convert<Mesh>);
converters["MDeformVert"] = DNA::FactoryPair(&Structure::Allocate<MDeformVert>, &Structure::Convert<MDeformVert>);
converters["World"] = DNA::FactoryPair(&Structure::Allocate<World>, &Structure::Convert<World>);
converters["MLoopCol"] = DNA::FactoryPair(&Structure::Allocate<MLoopCol>, &Structure::Convert<MLoopCol>);
converters["MVert"] = DNA::FactoryPair(&Structure::Allocate<MVert>, &Structure::Convert<MVert>);
converters["MEdge"] = DNA::FactoryPair(&Structure::Allocate<MEdge>, &Structure::Convert<MEdge>);
converters["MLoopUV"] = DNA::FactoryPair(&Structure::Allocate<MLoopUV>, &Structure::Convert<MLoopUV>);
converters["GroupObject"] = DNA::FactoryPair(&Structure::Allocate<GroupObject>, &Structure::Convert<GroupObject>);
converters["ListBase"] = DNA::FactoryPair(&Structure::Allocate<ListBase>, &Structure::Convert<ListBase>);
converters["MLoop"] = DNA::FactoryPair(&Structure::Allocate<MLoop>, &Structure::Convert<MLoop>);
converters["ModifierData"] = DNA::FactoryPair(&Structure::Allocate<ModifierData>, &Structure::Convert<ModifierData>);
converters["ID"] = DNA::FactoryPair(&Structure::Allocate<ID>, &Structure::Convert<ID>);
converters["MCol"] = DNA::FactoryPair(&Structure::Allocate<MCol>, &Structure::Convert<MCol>);
converters["MPoly"] = DNA::FactoryPair(&Structure::Allocate<MPoly>, &Structure::Convert<MPoly>);
converters["Scene"] = DNA::FactoryPair(&Structure::Allocate<Scene>, &Structure::Convert<Scene>);
converters["Library"] = DNA::FactoryPair(&Structure::Allocate<Library>, &Structure::Convert<Library>);
converters["Tex"] = DNA::FactoryPair(&Structure::Allocate<Tex>, &Structure::Convert<Tex>);
converters["Camera"] = DNA::FactoryPair(&Structure::Allocate<Camera>, &Structure::Convert<Camera>);
converters["MirrorModifierData"] = DNA::FactoryPair(&Structure::Allocate<MirrorModifierData>, &Structure::Convert<MirrorModifierData>);
converters["Image"] = DNA::FactoryPair(&Structure::Allocate<Image>, &Structure::Convert<Image>);
converters["CustomData"] = DNA::FactoryPair(&Structure::Allocate<CustomData>, &Structure::Convert<CustomData>);
converters["CustomDataLayer"] = DNA::FactoryPair(&Structure::Allocate<CustomDataLayer>, &Structure::Convert<CustomDataLayer>);
}
#endif // ASSIMP_BUILD_NO_BLEND_IMPORTER

View File

@ -55,7 +55,6 @@ namespace Blender {
// declared in the ./source/blender/makesdna directory.
// Stuff that is not used by Assimp is commented.
// NOTE
// this file serves as input data to the `./scripts/genblenddna.py`
// script. This script generates the actual binding code to read a
@ -127,7 +126,6 @@ struct ListBase : ElemBase {
std::shared_ptr<ElemBase> last;
};
// -------------------------------------------------------------------------------
struct PackedFile : ElemBase {
int size WARN;
@ -162,11 +160,8 @@ struct MVert : ElemBase {
int mat_nr WARN;
int bweight;
MVert() : ElemBase()
, flag(0)
, mat_nr(0)
, bweight(0)
{}
MVert() :
ElemBase(), flag(0), mat_nr(0), bweight(0) {}
};
// -------------------------------------------------------------------------------
@ -232,12 +227,8 @@ struct TFace : ElemBase {
// -------------------------------------------------------------------------------
struct MTFace : ElemBase {
MTFace()
: flag(0)
, mode(0)
, tile(0)
, unwrap(0)
{
MTFace() :
flag(0), mode(0), tile(0), unwrap(0) {
}
float uv[4][2] FAIL;
@ -401,18 +392,17 @@ struct CustomDataLayer : ElemBase {
char name[64];
std::shared_ptr<ElemBase> data; // must be converted to real type according type member
CustomDataLayer()
: ElemBase()
, type(0)
, offset(0)
, flag(0)
, active(0)
, active_rnd(0)
, active_clone(0)
, active_mask(0)
, uid(0)
, data(nullptr)
{
CustomDataLayer() :
ElemBase(),
type(0),
offset(0),
flag(0),
active(0),
active_rnd(0),
active_clone(0),
active_mask(0),
uid(0),
data(nullptr) {
memset(name, 0, sizeof name);
}
};
@ -490,8 +480,8 @@ struct Library : ElemBase {
// -------------------------------------------------------------------------------
struct Camera : ElemBase {
enum Type {
Type_PERSP = 0
,Type_ORTHO = 1
Type_PERSP = 0,
Type_ORTHO = 1
};
ID id FAIL;
@ -502,24 +492,23 @@ struct Camera : ElemBase {
float clipsta, clipend;
};
// -------------------------------------------------------------------------------
struct Lamp : ElemBase {
enum FalloffType {
FalloffType_Constant = 0x0
,FalloffType_InvLinear = 0x1
,FalloffType_InvSquare = 0x2
FalloffType_Constant = 0x0,
FalloffType_InvLinear = 0x1,
FalloffType_InvSquare = 0x2
//,FalloffType_Curve = 0x3
//,FalloffType_Sliders = 0x4
};
enum Type {
Type_Local = 0x0
,Type_Sun = 0x1
,Type_Spot = 0x2
,Type_Hemi = 0x3
,Type_Area = 0x4
Type_Local = 0x0,
Type_Sun = 0x1,
Type_Spot = 0x2,
Type_Hemi = 0x3,
Type_Area = 0x4
//,Type_YFPhoton = 0x5
};
@ -681,18 +670,20 @@ struct Object : ElemBase {
ID id FAIL;
enum Type {
Type_EMPTY = 0
,Type_MESH = 1
,Type_CURVE = 2
,Type_SURF = 3
,Type_FONT = 4
,Type_MBALL = 5
Type_EMPTY = 0,
Type_MESH = 1,
Type_CURVE = 2,
Type_SURF = 3,
Type_FONT = 4,
Type_MBALL = 5
,Type_LAMP = 10
,Type_CAMERA = 11
,
Type_LAMP = 10,
Type_CAMERA = 11
,Type_WAVE = 21
,Type_LATTICE = 22
,
Type_WAVE = 21,
Type_LATTICE = 22
};
Type type FAIL;
@ -709,30 +700,20 @@ struct Object : ElemBase {
ListBase modifiers;
Object()
: ElemBase()
, type( Type_EMPTY )
, parent( nullptr )
, track()
, proxy()
, proxy_from()
, data() {
Object() :
ElemBase(), type(Type_EMPTY), parent(nullptr), track(), proxy(), proxy_from(), data() {
// empty
}
};
// -------------------------------------------------------------------------------
struct Base : ElemBase {
Base *prev WARN;
std::shared_ptr<Base> next WARN;
std::shared_ptr<Object> object WARN;
Base()
: ElemBase()
, prev( nullptr )
, next()
, object() {
Base() :
ElemBase(), prev(nullptr), next(), object() {
// empty
// empty
}
@ -748,11 +729,8 @@ struct Scene : ElemBase {
ListBase base;
Scene()
: ElemBase()
, camera()
, world()
, basact() {
Scene() :
ElemBase(), camera(), world(), basact() {
// empty
}
};
@ -784,8 +762,8 @@ struct Image : ElemBase {
short gen_x, gen_y, gen_type;
Image()
: ElemBase() {
Image() :
ElemBase() {
// empty
}
};
@ -795,33 +773,33 @@ struct Tex : ElemBase {
// actually, the only texture type we support is Type_IMAGE
enum Type {
Type_CLOUDS = 1
,Type_WOOD = 2
,Type_MARBLE = 3
,Type_MAGIC = 4
,Type_BLEND = 5
,Type_STUCCI = 6
,Type_NOISE = 7
,Type_IMAGE = 8
,Type_PLUGIN = 9
,Type_ENVMAP = 10
,Type_MUSGRAVE = 11
,Type_VORONOI = 12
,Type_DISTNOISE = 13
,Type_POINTDENSITY = 14
,Type_VOXELDATA = 15
Type_CLOUDS = 1,
Type_WOOD = 2,
Type_MARBLE = 3,
Type_MAGIC = 4,
Type_BLEND = 5,
Type_STUCCI = 6,
Type_NOISE = 7,
Type_IMAGE = 8,
Type_PLUGIN = 9,
Type_ENVMAP = 10,
Type_MUSGRAVE = 11,
Type_VORONOI = 12,
Type_DISTNOISE = 13,
Type_POINTDENSITY = 14,
Type_VOXELDATA = 15
};
enum ImageFlags {
ImageFlags_INTERPOL = 1
,ImageFlags_USEALPHA = 2
,ImageFlags_MIPMAP = 4
,ImageFlags_IMAROT = 16
,ImageFlags_CALCALPHA = 32
,ImageFlags_NORMALMAP = 2048
,ImageFlags_GAUSS_MIP = 4096
,ImageFlags_FILTER_MIN = 8192
,ImageFlags_DERIVATIVEMAP = 16384
ImageFlags_INTERPOL = 1,
ImageFlags_USEALPHA = 2,
ImageFlags_MIPMAP = 4,
ImageFlags_IMAROT = 16,
ImageFlags_CALCALPHA = 32,
ImageFlags_NORMALMAP = 2048,
ImageFlags_GAUSS_MIP = 4096,
ImageFlags_FILTER_MIN = 8192,
ImageFlags_DERIVATIVEMAP = 16384
};
ID id FAIL;
@ -876,11 +854,8 @@ struct Tex : ElemBase {
//char use_nodes;
Tex()
: ElemBase()
, imaflag( ImageFlags_INTERPOL )
, type( Type_CLOUDS )
, ima() {
Tex() :
ElemBase(), imaflag(ImageFlags_INTERPOL), type(Type_CLOUDS), ima() {
// empty
}
};
@ -889,52 +864,52 @@ struct Tex : ElemBase {
struct MTex : ElemBase {
enum Projection {
Proj_N = 0
,Proj_X = 1
,Proj_Y = 2
,Proj_Z = 3
Proj_N = 0,
Proj_X = 1,
Proj_Y = 2,
Proj_Z = 3
};
enum Flag {
Flag_RGBTOINT = 0x1
,Flag_STENCIL = 0x2
,Flag_NEGATIVE = 0x4
,Flag_ALPHAMIX = 0x8
,Flag_VIEWSPACE = 0x10
Flag_RGBTOINT = 0x1,
Flag_STENCIL = 0x2,
Flag_NEGATIVE = 0x4,
Flag_ALPHAMIX = 0x8,
Flag_VIEWSPACE = 0x10
};
enum BlendType {
BlendType_BLEND = 0
,BlendType_MUL = 1
,BlendType_ADD = 2
,BlendType_SUB = 3
,BlendType_DIV = 4
,BlendType_DARK = 5
,BlendType_DIFF = 6
,BlendType_LIGHT = 7
,BlendType_SCREEN = 8
,BlendType_OVERLAY = 9
,BlendType_BLEND_HUE = 10
,BlendType_BLEND_SAT = 11
,BlendType_BLEND_VAL = 12
,BlendType_BLEND_COLOR = 13
BlendType_BLEND = 0,
BlendType_MUL = 1,
BlendType_ADD = 2,
BlendType_SUB = 3,
BlendType_DIV = 4,
BlendType_DARK = 5,
BlendType_DIFF = 6,
BlendType_LIGHT = 7,
BlendType_SCREEN = 8,
BlendType_OVERLAY = 9,
BlendType_BLEND_HUE = 10,
BlendType_BLEND_SAT = 11,
BlendType_BLEND_VAL = 12,
BlendType_BLEND_COLOR = 13
};
enum MapType {
MapType_COL = 1
,MapType_NORM = 2
,MapType_COLSPEC = 4
,MapType_COLMIR = 8
,MapType_REF = 16
,MapType_SPEC = 32
,MapType_EMIT = 64
,MapType_ALPHA = 128
,MapType_HAR = 256
,MapType_RAYMIRR = 512
,MapType_TRANSLU = 1024
,MapType_AMB = 2048
,MapType_DISPLACE = 4096
,MapType_WARP = 8192
MapType_COL = 1,
MapType_NORM = 2,
MapType_COLSPEC = 4,
MapType_COLMIR = 8,
MapType_REF = 16,
MapType_SPEC = 32,
MapType_EMIT = 64,
MapType_ALPHA = 128,
MapType_HAR = 256,
MapType_RAYMIRR = 512,
MapType_TRANSLU = 1024,
MapType_AMB = 2048,
MapType_DISPLACE = 4096,
MapType_WARP = 8192
};
// short texco, maptoneg;
@ -972,12 +947,12 @@ struct MTex : ElemBase {
//float shadowfac;
//float zenupfac, zendownfac, blendfac;
MTex()
: ElemBase() {
MTex() :
ElemBase() {
// empty
}
};
}
}
} // namespace Blender
} // namespace Assimp
#endif

View File

@ -43,21 +43,20 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* @brief Implementation of the TrueSpace COB/SCN importer class.
*/
#ifndef ASSIMP_BUILD_NO_COB_IMPORTER
#include "COB/COBLoader.h"
#include "COB/COBScene.h"
#include "AssetLib/COB/COBLoader.h"
#include "AssetLib/COB/COBScene.h"
#include "PostProcessing/ConvertToLHProcess.h"
#include <assimp/StreamReader.h>
#include <assimp/ParsingUtils.h>
#include <assimp/fast_atof.h>
#include <assimp/LineSplitter.h>
#include <assimp/ParsingUtils.h>
#include <assimp/StreamReader.h>
#include <assimp/TinyFormatter.h>
#include <assimp/IOSystem.hpp>
#include <assimp/DefaultLogger.hpp>
#include <assimp/scene.h>
#include <assimp/fast_atof.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/IOSystem.hpp>
#include <memory>
@ -65,7 +64,6 @@ using namespace Assimp;
using namespace Assimp::COB;
using namespace Assimp::Formatter;
static const float units[] = {
1000.f,
100.f,
@ -90,21 +88,17 @@ static const aiImporterDesc desc = {
"cob scn"
};
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
COBImporter::COBImporter()
{}
COBImporter::COBImporter() {}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
COBImporter::~COBImporter()
{}
COBImporter::~COBImporter() {}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool COBImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const
{
bool COBImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool checkSig) const {
const std::string &extension = GetExtension(pFile);
if (extension == "cob" || extension == "scn" || extension == "COB" || extension == "SCN") {
return true;
@ -119,21 +113,18 @@ bool COBImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool
// ------------------------------------------------------------------------------------------------
// Loader meta information
const aiImporterDesc* COBImporter::GetInfo () const
{
const aiImporterDesc *COBImporter::GetInfo() const {
return &desc;
}
// ------------------------------------------------------------------------------------------------
// Setup configuration properties for the loader
void COBImporter::SetupProperties(const Importer* /*pImp*/)
{
void COBImporter::SetupProperties(const Importer * /*pImp*/) {
// nothing to be done for the moment
}
// ------------------------------------------------------------------------------------------------
/*static*/ AI_WONT_RETURN void COBImporter::ThrowException(const std::string& msg)
{
/*static*/ AI_WONT_RETURN void COBImporter::ThrowException(const std::string &msg) {
throw DeadlyImportError("COB: " + msg);
}
@ -158,8 +149,7 @@ void COBImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOS
// load data into intermediate structures
if (head[15] == 'A') {
ReadAsciiFile(scene, stream.get());
}
else {
} else {
ReadBinaryFile(scene, stream.get());
}
if (scene.nodes.empty()) {
@ -193,8 +183,7 @@ void COBImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOS
for (std::shared_ptr<Node> &n : scene.nodes) {
if (n->type == Node::TYPE_LIGHT) {
++pScene->mNumLights;
}
else if (n->type == Node::TYPE_CAMERA) {
} else if (n->type == Node::TYPE_CAMERA) {
++pScene->mNumCameras;
}
}
@ -230,16 +219,14 @@ void COBImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOS
}
// ------------------------------------------------------------------------------------------------
void ConvertTexture(std::shared_ptr< Texture > tex, aiMaterial* out, aiTextureType type)
{
void ConvertTexture(std::shared_ptr<Texture> tex, aiMaterial *out, aiTextureType type) {
const aiString path(tex->path);
out->AddProperty(&path, AI_MATKEY_TEXTURE(type, 0));
out->AddProperty(&tex->transform, 1, AI_MATKEY_UVTRANSFORM(type, 0));
}
// ------------------------------------------------------------------------------------------------
aiNode* COBImporter::BuildNodes(const Node& root,const Scene& scin,aiScene* fill)
{
aiNode *COBImporter::BuildNodes(const Node &root, const Scene &scin, aiScene *fill) {
aiNode *nd = new aiNode();
nd->mName.Set(root.name);
nd->mTransformation = root.transform;
@ -286,15 +273,15 @@ aiNode* COBImporter::BuildNodes(const Node& root,const Scene& scin,aiScene* fill
outmesh->mTextureCoords[0][outmesh->mNumVertices] = aiVector3D(
ndmesh.texture_coords[v.uv_idx].x,
ndmesh.texture_coords[v.uv_idx].y,
0.f
);
0.f);
fout.mIndices[fout.mNumIndices++] = outmesh->mNumVertices++;
}
}
outmesh->mMaterialIndex = fill->mNumMaterials;
}{ // create material
const Material* min = NULL;
}
{ // create material
const Material *min = nullptr;
for (const Material &m : scin.materials) {
if (m.parent_id == ndmesh.id && m.matnum == reflist.first) {
min = &m;
@ -319,9 +306,9 @@ aiNode* COBImporter::BuildNodes(const Node& root,const Scene& scin,aiScene* fill
mat->AddProperty(&tmp, 1, AI_MATKEY_ENABLE_WIREFRAME);
}
{ int shader;
switch(min->shader)
{
int shader;
switch (min->shader) {
case Material::FLAT:
shader = aiShadingMode_Gouraud;
break;
@ -365,8 +352,7 @@ aiNode* COBImporter::BuildNodes(const Node& root,const Scene& scin,aiScene* fill
}
}
}
}
else if (Node::TYPE_LIGHT == root.type) {
} else if (Node::TYPE_LIGHT == root.type) {
const Light &ndlight = (const Light &)(root);
aiLight *outlight = fill->mLights[fill->mNumLights++] = new aiLight();
@ -378,8 +364,7 @@ aiNode* COBImporter::BuildNodes(const Node& root,const Scene& scin,aiScene* fill
// XXX
outlight->mType = ndlight.ltype == Light::SPOT ? aiLightSource_SPOT : aiLightSource_DIRECTIONAL;
}
else if (Node::TYPE_CAMERA == root.type) {
} else if (Node::TYPE_CAMERA == root.type) {
const Camera &ndcam = (const Camera &)(root);
aiCamera *outcam = fill->mCameras[fill->mNumCameras++] = new aiCamera();
@ -387,7 +372,7 @@ aiNode* COBImporter::BuildNodes(const Node& root,const Scene& scin,aiScene* fill
}
// add meshes
if (nd->mNumMeshes) { // mMeshes must be NULL if count is 0
if (nd->mNumMeshes) { // mMeshes must be nullptr if count is 0
nd->mMeshes = new unsigned int[nd->mNumMeshes];
for (unsigned int i = 0; i < nd->mNumMeshes; ++i) {
nd->mMeshes[i] = fill->mNumMeshes - i - 1;
@ -405,8 +390,7 @@ aiNode* COBImporter::BuildNodes(const Node& root,const Scene& scin,aiScene* fill
// ------------------------------------------------------------------------------------------------
// Read an ASCII file into the given scene data structure
void COBImporter::ReadAsciiFile(Scene& out, StreamReaderLE* stream)
{
void COBImporter::ReadAsciiFile(Scene &out, StreamReaderLE *stream) {
ChunkInfo ci;
for (LineSplitter splitter(*stream); splitter; ++splitter) {
@ -456,8 +440,7 @@ void COBImporter::ReadAsciiFile(Scene& out, StreamReaderLE* stream)
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadChunkInfo_Ascii(ChunkInfo& out, const LineSplitter& splitter)
{
void COBImporter::ReadChunkInfo_Ascii(ChunkInfo &out, const LineSplitter &splitter) {
const char *all_tokens[8];
splitter.get_tokens(all_tokens);
@ -468,10 +451,8 @@ void COBImporter::ReadChunkInfo_Ascii(ChunkInfo& out, const LineSplitter& splitt
}
// ------------------------------------------------------------------------------------------------
void COBImporter::UnsupportedChunk_Ascii(LineSplitter& splitter, const ChunkInfo& nfo, const char* name)
{
const std::string error = format("Encountered unsupported chunk: ") << name <<
" [version: "<<nfo.version<<", size: "<<nfo.size<<"]";
void COBImporter::UnsupportedChunk_Ascii(LineSplitter &splitter, const ChunkInfo &nfo, const char *name) {
const std::string error = format("Encountered unsupported chunk: ") << name << " [version: " << nfo.version << ", size: " << nfo.size << "]";
// we can recover if the chunk size was specified.
if (nfo.size != static_cast<unsigned int>(-1)) {
@ -483,13 +464,12 @@ void COBImporter::UnsupportedChunk_Ascii(LineSplitter& splitter, const ChunkInfo
// missing the next line.
splitter.get_stream().IncPtr(nfo.size);
splitter.swallow_next_increment();
}
else ThrowException(error);
} else
ThrowException(error);
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadBasicNodeInfo_Ascii(Node& msh, LineSplitter& splitter, const ChunkInfo& /*nfo*/)
{
void COBImporter::ReadBasicNodeInfo_Ascii(Node &msh, LineSplitter &splitter, const ChunkInfo & /*nfo*/) {
for (; splitter; ++splitter) {
if (splitter.match_start("Name")) {
msh.name = std::string(splitter[1]);
@ -497,8 +477,7 @@ void COBImporter::ReadBasicNodeInfo_Ascii(Node& msh, LineSplitter& splitter, con
// make nice names by merging the dupe count
std::replace(msh.name.begin(), msh.name.end(),
',', '_');
}
else if (splitter.match_start("Transform")) {
} else if (splitter.match_start("Transform")) {
for (unsigned int y = 0; y < 4 && ++splitter; ++y) {
const char *s = splitter->c_str();
for (unsigned int x = 0; x < 4; ++x) {
@ -514,8 +493,7 @@ void COBImporter::ReadBasicNodeInfo_Ascii(Node& msh, LineSplitter& splitter, con
// ------------------------------------------------------------------------------------------------
template <typename T>
void COBImporter::ReadFloat3Tuple_Ascii(T& fill, const char** in)
{
void COBImporter::ReadFloat3Tuple_Ascii(T &fill, const char **in) {
const char *rgb = *in;
for (unsigned int i = 0; i < 3; ++i) {
SkipSpaces(&rgb);
@ -528,8 +506,7 @@ void COBImporter::ReadFloat3Tuple_Ascii(T& fill, const char** in)
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadMat1_Ascii(Scene& out, LineSplitter& splitter, const ChunkInfo& nfo)
{
void COBImporter::ReadMat1_Ascii(Scene &out, LineSplitter &splitter, const ChunkInfo &nfo) {
if (nfo.version > 8) {
return UnsupportedChunk_Ascii(splitter, nfo, "Mat1");
}
@ -556,11 +533,9 @@ void COBImporter::ReadMat1_Ascii(Scene& out, LineSplitter& splitter, const Chunk
if (shader == "metal") {
mat.shader = Material::METAL;
}
else if (shader == "phong") {
} else if (shader == "phong") {
mat.shader = Material::PHONG;
}
else if (shader != "flat") {
} else if (shader != "flat") {
ASSIMP_LOG_WARN_F("Unknown value for `shader` in `Mat1` chunk ", nfo.id);
}
@ -588,8 +563,7 @@ void COBImporter::ReadMat1_Ascii(Scene& out, LineSplitter& splitter, const Chunk
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadUnit_Ascii(Scene& out, LineSplitter& splitter, const ChunkInfo& nfo)
{
void COBImporter::ReadUnit_Ascii(Scene &out, LineSplitter &splitter, const ChunkInfo &nfo) {
if (nfo.version > 1) {
return UnsupportedChunk_Ascii(splitter, nfo, "Unit");
}
@ -606,8 +580,8 @@ void COBImporter::ReadUnit_Ascii(Scene& out, LineSplitter& splitter, const Chunk
const unsigned int t = strtoul10(splitter[1]);
nd->unit_scale = t >= sizeof(units) / sizeof(units[0]) ? (
ASSIMP_LOG_WARN_F(t, " is not a valid value for `Units` attribute in `Unit chunk` ", nfo.id)
,1.f):units[t];
ASSIMP_LOG_WARN_F(t, " is not a valid value for `Units` attribute in `Unit chunk` ", nfo.id), 1.f) :
units[t];
return;
}
}
@ -615,16 +589,14 @@ void COBImporter::ReadUnit_Ascii(Scene& out, LineSplitter& splitter, const Chunk
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadChan_Ascii(Scene& /*out*/, LineSplitter& splitter, const ChunkInfo& nfo)
{
void COBImporter::ReadChan_Ascii(Scene & /*out*/, LineSplitter &splitter, const ChunkInfo &nfo) {
if (nfo.version > 8) {
return UnsupportedChunk_Ascii(splitter, nfo, "Chan");
}
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadLght_Ascii(Scene& out, LineSplitter& splitter, const ChunkInfo& nfo)
{
void COBImporter::ReadLght_Ascii(Scene &out, LineSplitter &splitter, const ChunkInfo &nfo) {
if (nfo.version > 8) {
return UnsupportedChunk_Ascii(splitter, nfo, "Lght");
}
@ -637,14 +609,11 @@ void COBImporter::ReadLght_Ascii(Scene& out, LineSplitter& splitter, const Chunk
if (splitter.match_start("Infinite ")) {
msh.ltype = Light::INFINITE;
}
else if (splitter.match_start("Local ")) {
} else if (splitter.match_start("Local ")) {
msh.ltype = Light::LOCAL;
}
else if (splitter.match_start("Spot ")) {
} else if (splitter.match_start("Spot ")) {
msh.ltype = Light::SPOT;
}
else {
} else {
ASSIMP_LOG_WARN_F("Unknown kind of light source in `Lght` chunk ", nfo.id, " : ", *splitter);
msh.ltype = Light::SPOT;
}
@ -675,8 +644,7 @@ void COBImporter::ReadLght_Ascii(Scene& out, LineSplitter& splitter, const Chunk
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadCame_Ascii(Scene& out, LineSplitter& splitter, const ChunkInfo& nfo)
{
void COBImporter::ReadCame_Ascii(Scene &out, LineSplitter &splitter, const ChunkInfo &nfo) {
if (nfo.version > 2) {
return UnsupportedChunk_Ascii(splitter, nfo, "Came");
}
@ -693,8 +661,7 @@ void COBImporter::ReadCame_Ascii(Scene& out, LineSplitter& splitter, const Chunk
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadBone_Ascii(Scene& out, LineSplitter& splitter, const ChunkInfo& nfo)
{
void COBImporter::ReadBone_Ascii(Scene &out, LineSplitter &splitter, const ChunkInfo &nfo) {
if (nfo.version > 5) {
return UnsupportedChunk_Ascii(splitter, nfo, "Bone");
}
@ -709,8 +676,7 @@ void COBImporter::ReadBone_Ascii(Scene& out, LineSplitter& splitter, const Chunk
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadGrou_Ascii(Scene& out, LineSplitter& splitter, const ChunkInfo& nfo)
{
void COBImporter::ReadGrou_Ascii(Scene &out, LineSplitter &splitter, const ChunkInfo &nfo) {
if (nfo.version > 1) {
return UnsupportedChunk_Ascii(splitter, nfo, "Grou");
}
@ -723,8 +689,7 @@ void COBImporter::ReadGrou_Ascii(Scene& out, LineSplitter& splitter, const Chunk
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadPolH_Ascii(Scene& out, LineSplitter& splitter, const ChunkInfo& nfo)
{
void COBImporter::ReadPolH_Ascii(Scene &out, LineSplitter &splitter, const ChunkInfo &nfo) {
if (nfo.version > 8) {
return UnsupportedChunk_Ascii(splitter, nfo, "PolH");
}
@ -755,8 +720,7 @@ void COBImporter::ReadPolH_Ascii(Scene& out, LineSplitter& splitter, const Chunk
SkipSpaces(&s);
v.z = fast_atof(&s);
}
}
else if (splitter.match_start("Texture Vertices")) {
} else if (splitter.match_start("Texture Vertices")) {
const unsigned int cnt = strtoul10(splitter[2]);
msh.texture_coords.resize(cnt);
@ -770,8 +734,7 @@ void COBImporter::ReadPolH_Ascii(Scene& out, LineSplitter& splitter, const Chunk
SkipSpaces(&s);
v.y = fast_atof(&s);
}
}
else if (splitter.match_start("Faces")) {
} else if (splitter.match_start("Faces")) {
const unsigned int cnt = strtoul10(splitter[1]);
msh.faces.reserve(cnt);
@ -813,8 +776,7 @@ void COBImporter::ReadPolH_Ascii(Scene& out, LineSplitter& splitter, const Chunk
if (nfo.version <= 4) {
break;
}
}
else if (splitter.match_start("DrawFlags")) {
} else if (splitter.match_start("DrawFlags")) {
msh.draw_flags = strtoul10(splitter[1]);
break;
}
@ -822,8 +784,7 @@ void COBImporter::ReadPolH_Ascii(Scene& out, LineSplitter& splitter, const Chunk
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadBitM_Ascii(Scene& /*out*/, LineSplitter& splitter, const ChunkInfo& nfo)
{
void COBImporter::ReadBitM_Ascii(Scene & /*out*/, LineSplitter &splitter, const ChunkInfo &nfo) {
if (nfo.version > 1) {
return UnsupportedChunk_Ascii(splitter, nfo, "BitM");
}
@ -849,8 +810,7 @@ void COBImporter::ReadBitM_Ascii(Scene& /*out*/, LineSplitter& splitter, const C
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadString_Binary(std::string& out, StreamReaderLE& reader)
{
void COBImporter::ReadString_Binary(std::string &out, StreamReaderLE &reader) {
out.resize(reader.GetI2());
for (char &c : out) {
c = reader.GetI1();
@ -858,8 +818,7 @@ void COBImporter::ReadString_Binary(std::string& out, StreamReaderLE& reader)
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadBasicNodeInfo_Binary(Node& msh, StreamReaderLE& reader, const ChunkInfo& /*nfo*/)
{
void COBImporter::ReadBasicNodeInfo_Binary(Node &msh, StreamReaderLE &reader, const ChunkInfo & /*nfo*/) {
const unsigned int dupes = reader.GetI2();
ReadString_Binary(msh.name, reader);
@ -877,27 +836,23 @@ void COBImporter::ReadBasicNodeInfo_Binary(Node& msh, StreamReaderLE& reader, co
}
// ------------------------------------------------------------------------------------------------
void COBImporter::UnsupportedChunk_Binary( StreamReaderLE& reader, const ChunkInfo& nfo, const char* name)
{
const std::string error = format("Encountered unsupported chunk: ") << name <<
" [version: "<<nfo.version<<", size: "<<nfo.size<<"]";
void COBImporter::UnsupportedChunk_Binary(StreamReaderLE &reader, const ChunkInfo &nfo, const char *name) {
const std::string error = format("Encountered unsupported chunk: ") << name << " [version: " << nfo.version << ", size: " << nfo.size << "]";
// we can recover if the chunk size was specified.
if (nfo.size != static_cast<unsigned int>(-1)) {
ASSIMP_LOG_ERROR(error);
reader.IncPtr(nfo.size);
}
else ThrowException(error);
} else
ThrowException(error);
}
// ------------------------------------------------------------------------------------------------
// tiny utility guard to aid me at staying within chunk boundaries.
class chunk_guard {
public:
chunk_guard(const COB::ChunkInfo& nfo, StreamReaderLE& reader)
: nfo(nfo)
, reader(reader)
, cur(reader.GetCurrentPos()) {
chunk_guard(const COB::ChunkInfo &nfo, StreamReaderLE &reader) :
nfo(nfo), reader(reader), cur(reader.GetCurrentPos()) {
// empty
}
@ -927,11 +882,7 @@ void COBImporter::ReadBinaryFile(Scene& out, StreamReaderLE* reader) {
while (1) {
std::string type;
type += reader -> GetI1()
,type += reader -> GetI1()
,type += reader -> GetI1()
,type += reader -> GetI1()
;
type += reader->GetI1(), type += reader->GetI1(), type += reader->GetI1(), type += reader->GetI1();
ChunkInfo nfo;
nfo.version = reader->GetI2() * 10;
@ -943,20 +894,15 @@ void COBImporter::ReadBinaryFile(Scene& out, StreamReaderLE* reader) {
if (type == "PolH") {
ReadPolH_Binary(out, *reader, nfo);
}
else if (type == "BitM") {
} else if (type == "BitM") {
ReadBitM_Binary(out, *reader, nfo);
}
else if (type == "Grou") {
} else if (type == "Grou") {
ReadGrou_Binary(out, *reader, nfo);
}
else if (type == "Lght") {
} else if (type == "Lght") {
ReadLght_Binary(out, *reader, nfo);
}
else if (type == "Came") {
} else if (type == "Came") {
ReadCame_Binary(out, *reader, nfo);
}
else if (type == "Mat1") {
} else if (type == "Mat1") {
ReadMat1_Binary(out, *reader, nfo);
}
/* else if (type == "Bone") {
@ -967,24 +913,21 @@ void COBImporter::ReadBinaryFile(Scene& out, StreamReaderLE* reader) {
}*/
else if (type == "Unit") {
ReadUnit_Binary(out, *reader, nfo);
}
else if (type == "OLay") {
} else if (type == "OLay") {
// ignore layer index silently.
if (nfo.size != static_cast<unsigned int>(-1)) {
reader->IncPtr(nfo.size);
}
else return UnsupportedChunk_Binary(*reader,nfo,type.c_str());
}
else if (type == "END ") {
} else
return UnsupportedChunk_Binary(*reader, nfo, type.c_str());
} else if (type == "END ") {
return;
}
else UnsupportedChunk_Binary(*reader,nfo,type.c_str());
} else
UnsupportedChunk_Binary(*reader, nfo, type.c_str());
}
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadPolH_Binary(COB::Scene& out, StreamReaderLE& reader, const ChunkInfo& nfo)
{
void COBImporter::ReadPolH_Binary(COB::Scene &out, StreamReaderLE &reader, const ChunkInfo &nfo) {
if (nfo.version > 8) {
return UnsupportedChunk_Binary(reader, nfo, "PolH");
}
@ -1023,8 +966,8 @@ void COBImporter::ReadPolH_Binary(COB::Scene& out, StreamReaderLE& reader, const
if (msh.faces.empty()) {
ThrowException(format("A hole is the first entity in the `PolH` chunk with id ") << nfo.id);
}
}
else msh.faces.push_back(Face());
} else
msh.faces.push_back(Face());
Face &f = msh.faces.back();
const size_t num = reader.GetI2();
@ -1054,8 +997,7 @@ void COBImporter::ReadPolH_Binary(COB::Scene& out, StreamReaderLE& reader, const
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadBitM_Binary(COB::Scene& /*out*/, StreamReaderLE& reader, const ChunkInfo& nfo)
{
void COBImporter::ReadBitM_Binary(COB::Scene & /*out*/, StreamReaderLE &reader, const ChunkInfo &nfo) {
if (nfo.version > 1) {
return UnsupportedChunk_Binary(reader, nfo, "BitM");
}
@ -1070,8 +1012,7 @@ void COBImporter::ReadBitM_Binary(COB::Scene& /*out*/, StreamReaderLE& reader, c
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadMat1_Binary(COB::Scene& out, StreamReaderLE& reader, const ChunkInfo& nfo)
{
void COBImporter::ReadMat1_Binary(COB::Scene &out, StreamReaderLE &reader, const ChunkInfo &nfo) {
if (nfo.version > 8) {
return UnsupportedChunk_Binary(reader, nfo, "Mat1");
}
@ -1172,8 +1113,7 @@ void COBImporter::ReadMat1_Binary(COB::Scene& out, StreamReaderLE& reader, const
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadCame_Binary(COB::Scene& out, StreamReaderLE& reader, const ChunkInfo& nfo)
{
void COBImporter::ReadCame_Binary(COB::Scene &out, StreamReaderLE &reader, const ChunkInfo &nfo) {
if (nfo.version > 2) {
return UnsupportedChunk_Binary(reader, nfo, "Came");
}
@ -1195,8 +1135,7 @@ void COBImporter::ReadCame_Binary(COB::Scene& out, StreamReaderLE& reader, const
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadLght_Binary(COB::Scene& out, StreamReaderLE& reader, const ChunkInfo& nfo)
{
void COBImporter::ReadLght_Binary(COB::Scene &out, StreamReaderLE &reader, const ChunkInfo &nfo) {
if (nfo.version > 2) {
return UnsupportedChunk_Binary(reader, nfo, "Lght");
}
@ -1211,8 +1150,7 @@ void COBImporter::ReadLght_Binary(COB::Scene& out, StreamReaderLE& reader, const
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadGrou_Binary(COB::Scene& out, StreamReaderLE& reader, const ChunkInfo& nfo)
{
void COBImporter::ReadGrou_Binary(COB::Scene &out, StreamReaderLE &reader, const ChunkInfo &nfo) {
if (nfo.version > 2) {
return UnsupportedChunk_Binary(reader, nfo, "Grou");
}
@ -1227,8 +1165,7 @@ void COBImporter::ReadGrou_Binary(COB::Scene& out, StreamReaderLE& reader, const
}
// ------------------------------------------------------------------------------------------------
void COBImporter::ReadUnit_Binary(COB::Scene& out, StreamReaderLE& reader, const ChunkInfo& nfo)
{
void COBImporter::ReadUnit_Binary(COB::Scene &out, StreamReaderLE &reader, const ChunkInfo &nfo) {
if (nfo.version > 1) {
return UnsupportedChunk_Binary(reader, nfo, "Unit");
}
@ -1241,8 +1178,8 @@ void COBImporter::ReadUnit_Binary(COB::Scene& out, StreamReaderLE& reader, const
if (nd->id == nfo.parent_id) {
const unsigned int t = reader.GetI2();
nd->unit_scale = t >= sizeof(units) / sizeof(units[0]) ? (
ASSIMP_LOG_WARN_F(t," is not a valid value for `Units` attribute in `Unit chunk` ", nfo.id)
,1.f):units[t];
ASSIMP_LOG_WARN_F(t, " is not a valid value for `Units` attribute in `Unit chunk` ", nfo.id), 1.f) :
units[t];
return;
}

File diff suppressed because it is too large Load Diff

View File

@ -48,8 +48,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef ASSIMP_BUILD_NO_DXF_IMPORTER
#include "DXF/DXFLoader.h"
#include "DXF/DXFHelper.h"
#include "AssetLib/DXF/DXFLoader.h"
#include "AssetLib/DXF/DXFHelper.h"
#include "PostProcessing/ConvertToLHProcess.h"
#include <assimp/ParsingUtils.h>

Some files were not shown because too many files have changed in this diff Show More