Merge branch 'master' into collada_modeller_metadata

pull/2820/head
Kim Kulling 2019-12-13 08:28:50 +01:00 committed by GitHub
commit 9ef2d7fb7d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 1004 additions and 827 deletions

View File

@ -2089,6 +2089,13 @@ namespace Assimp {
TrySetTextureProperties(out_mat, textures, "Maya|TEX_metallic_map|file", aiTextureType_METALNESS, mesh);
TrySetTextureProperties(out_mat, textures, "Maya|TEX_roughness_map|file", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
TrySetTextureProperties(out_mat, textures, "Maya|TEX_ao_map|file", aiTextureType_AMBIENT_OCCLUSION, mesh);
// 3DSMax PBR
TrySetTextureProperties(out_mat, textures, "3dsMax|Parameters|base_color_map", aiTextureType_BASE_COLOR, mesh);
TrySetTextureProperties(out_mat, textures, "3dsMax|Parameters|bump_map", aiTextureType_NORMAL_CAMERA, mesh);
TrySetTextureProperties(out_mat, textures, "3dsMax|Parameters|emission_map", aiTextureType_EMISSION_COLOR, mesh);
TrySetTextureProperties(out_mat, textures, "3dsMax|Parameters|metalness_map", aiTextureType_METALNESS, mesh);
TrySetTextureProperties(out_mat, textures, "3dsMax|Parameters|roughness_map", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
}
void FBXConverter::SetTextureProperties(aiMaterial* out_mat, const LayeredTextureMap& layeredTextures, const MeshGeometry* const mesh)

View File

@ -137,8 +137,9 @@ public:
// -------------------------------------------------------------------
void Execute( aiScene* pScene);
protected:
void ProcessMesh( aiMesh* pMesh);
public:
/** Some other types of post-processing require winding order flips */
static void ProcessMesh( aiMesh* pMesh);
};
// ---------------------------------------------------------------------------

View File

@ -43,13 +43,13 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* @brief Implementation of the aiProcess_OptimizGraph step
*/
#ifndef ASSIMP_BUILD_NO_OPTIMIZEGRAPH_PROCESS
#include "OptimizeGraph.h"
#include "ProcessHelper.h"
#include <assimp/SceneCombiner.h>
#include "ConvertToLHProcess.h"
#include <assimp/Exceptional.h>
#include <assimp/SceneCombiner.h>
#include <stdio.h>
using namespace Assimp;
@ -60,292 +60,299 @@ using namespace Assimp;
* The unhashed variant should be faster, except for *very* large data sets
*/
#ifdef AI_OG_USE_HASHING
// Use our standard hashing function to compute the hash
# define AI_OG_GETKEY(str) SuperFastHash(str.data,str.length)
// Use our standard hashing function to compute the hash
#define AI_OG_GETKEY(str) SuperFastHash(str.data, str.length)
#else
// Otherwise hope that std::string will utilize a static buffer
// for shorter node names. This would avoid endless heap copying.
# define AI_OG_GETKEY(str) std::string(str.data)
// Otherwise hope that std::string will utilize a static buffer
// for shorter node names. This would avoid endless heap copying.
#define AI_OG_GETKEY(str) std::string(str.data)
#endif
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
OptimizeGraphProcess::OptimizeGraphProcess()
: mScene()
, nodes_in()
, nodes_out()
, count_merged() {
// empty
OptimizeGraphProcess::OptimizeGraphProcess() :
mScene(),
nodes_in(),
nodes_out(),
count_merged() {
// empty
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
OptimizeGraphProcess::~OptimizeGraphProcess() {
// empty
// empty
}
// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool OptimizeGraphProcess::IsActive( unsigned int pFlags) const {
return (0 != (pFlags & aiProcess_OptimizeGraph));
bool OptimizeGraphProcess::IsActive(unsigned int pFlags) const {
return (0 != (pFlags & aiProcess_OptimizeGraph));
}
// ------------------------------------------------------------------------------------------------
// Setup properties for the post-processing step
void OptimizeGraphProcess::SetupProperties(const Importer* pImp) {
// Get value of AI_CONFIG_PP_OG_EXCLUDE_LIST
std::string tmp = pImp->GetPropertyString(AI_CONFIG_PP_OG_EXCLUDE_LIST,"");
AddLockedNodeList(tmp);
void OptimizeGraphProcess::SetupProperties(const Importer *pImp) {
// Get value of AI_CONFIG_PP_OG_EXCLUDE_LIST
std::string tmp = pImp->GetPropertyString(AI_CONFIG_PP_OG_EXCLUDE_LIST, "");
AddLockedNodeList(tmp);
}
// ------------------------------------------------------------------------------------------------
// Collect new children
void OptimizeGraphProcess::CollectNewChildren(aiNode* nd, std::list<aiNode*>& nodes) {
nodes_in += nd->mNumChildren;
void OptimizeGraphProcess::CollectNewChildren(aiNode *nd, std::list<aiNode *> &nodes) {
nodes_in += nd->mNumChildren;
// Process children
std::list<aiNode*> child_nodes;
for (unsigned int i = 0; i < nd->mNumChildren; ++i) {
CollectNewChildren(nd->mChildren[i],child_nodes);
nd->mChildren[i] = nullptr;
}
// Process children
std::list<aiNode *> child_nodes;
for (unsigned int i = 0; i < nd->mNumChildren; ++i) {
CollectNewChildren(nd->mChildren[i], child_nodes);
nd->mChildren[i] = nullptr;
}
// Check whether we need this node; if not we can replace it by our own children (warn, danger of incest).
if (locked.find(AI_OG_GETKEY(nd->mName)) == locked.end() ) {
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
// Check whether we need this node; if not we can replace it by our own children (warn, danger of incest).
if (locked.find(AI_OG_GETKEY(nd->mName)) == locked.end()) {
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
if (locked.find(AI_OG_GETKEY((*it)->mName)) == locked.end()) {
(*it)->mTransformation = nd->mTransformation * (*it)->mTransformation;
nodes.push_back(*it);
if (locked.find(AI_OG_GETKEY((*it)->mName)) == locked.end()) {
(*it)->mTransformation = nd->mTransformation * (*it)->mTransformation;
nodes.push_back(*it);
it = child_nodes.erase(it);
continue;
}
++it;
}
it = child_nodes.erase(it);
continue;
}
++it;
}
if (nd->mNumMeshes || !child_nodes.empty()) {
nodes.push_back(nd);
} else {
delete nd; /* bye, node */
return;
}
} else {
if (nd->mNumMeshes || !child_nodes.empty()) {
nodes.push_back(nd);
} else {
delete nd; /* bye, node */
return;
}
} else {
// Retain our current position in the hierarchy
nodes.push_back(nd);
// Retain our current position in the hierarchy
nodes.push_back(nd);
// Now check for possible optimizations in our list of child nodes. join as many as possible
aiNode* join_master = NULL;
aiMatrix4x4 inv;
// Now check for possible optimizations in our list of child nodes. join as many as possible
aiNode *join_master = nullptr;
aiMatrix4x4 inv;
const LockedSetType::const_iterator end = locked.end();
const LockedSetType::const_iterator end = locked.end();
std::list<aiNode*> join;
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
aiNode* child = *it;
if (child->mNumChildren == 0 && locked.find(AI_OG_GETKEY(child->mName)) == end) {
std::list<aiNode *> join;
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
aiNode *child = *it;
if (child->mNumChildren == 0 && locked.find(AI_OG_GETKEY(child->mName)) == end) {
// There may be no instanced meshes
unsigned int n = 0;
for (; n < child->mNumMeshes;++n) {
if (meshes[child->mMeshes[n]] > 1) {
break;
}
}
if (n == child->mNumMeshes) {
if (!join_master) {
join_master = child;
inv = join_master->mTransformation;
inv.Inverse();
} else {
child->mTransformation = inv * child->mTransformation ;
// There may be no instanced meshes
unsigned int n = 0;
for (; n < child->mNumMeshes; ++n) {
if (meshes[child->mMeshes[n]] > 1) {
break;
}
}
if (n == child->mNumMeshes) {
if (!join_master) {
join_master = child;
inv = join_master->mTransformation;
inv.Inverse();
} else {
child->mTransformation = inv * child->mTransformation;
join.push_back(child);
it = child_nodes.erase(it);
continue;
}
}
}
++it;
}
if (join_master && !join.empty()) {
join_master->mName.length = ::ai_snprintf(join_master->mName.data, MAXLEN, "$MergedNode_%i",count_merged++);
join.push_back(child);
it = child_nodes.erase(it);
continue;
}
}
}
++it;
}
if (join_master && !join.empty()) {
join_master->mName.length = ::ai_snprintf(join_master->mName.data, MAXLEN, "$MergedNode_%i", count_merged++);
unsigned int out_meshes = 0;
for (std::list<aiNode*>::iterator it = join.begin(); it != join.end(); ++it) {
out_meshes += (*it)->mNumMeshes;
}
unsigned int out_meshes = 0;
for (std::list<aiNode *>::const_iterator it = join.cbegin(); it != join.cend(); ++it) {
out_meshes += (*it)->mNumMeshes;
}
// copy all mesh references in one array
if (out_meshes) {
unsigned int* meshes = new unsigned int[out_meshes+join_master->mNumMeshes], *tmp = meshes;
for (unsigned int n = 0; n < join_master->mNumMeshes;++n) {
*tmp++ = join_master->mMeshes[n];
}
// copy all mesh references in one array
if (out_meshes) {
unsigned int *meshes = new unsigned int[out_meshes + join_master->mNumMeshes], *tmp = meshes;
for (unsigned int n = 0; n < join_master->mNumMeshes; ++n) {
*tmp++ = join_master->mMeshes[n];
}
for (std::list<aiNode*>::iterator it = join.begin(); it != join.end(); ++it) {
for (unsigned int n = 0; n < (*it)->mNumMeshes; ++n) {
for (const aiNode *join_node : join) {
for (unsigned int n = 0; n < join_node->mNumMeshes; ++n) {
*tmp = (*it)->mMeshes[n];
aiMesh* mesh = mScene->mMeshes[*tmp++];
*tmp = join_node->mMeshes[n];
aiMesh *mesh = mScene->mMeshes[*tmp++];
// manually move the mesh into the right coordinate system
const aiMatrix3x3 IT = aiMatrix3x3( (*it)->mTransformation ).Inverse().Transpose();
for (unsigned int a = 0; a < mesh->mNumVertices; ++a) {
// Assume the transformation is affine
// manually move the mesh into the right coordinate system
mesh->mVertices[a] *= (*it)->mTransformation;
// Check for odd negative scale (mirror)
if (join_node->mTransformation.Determinant() < 0) {
// Reverse the mesh face winding order
FlipWindingOrderProcess::ProcessMesh(mesh);
}
if (mesh->HasNormals())
mesh->mNormals[a] *= IT;
// Update positions, normals and tangents
const aiMatrix3x3 IT = aiMatrix3x3(join_node->mTransformation).Inverse().Transpose();
for (unsigned int a = 0; a < mesh->mNumVertices; ++a) {
if (mesh->HasTangentsAndBitangents()) {
mesh->mTangents[a] *= IT;
mesh->mBitangents[a] *= IT;
}
}
}
delete *it; // bye, node
}
delete[] join_master->mMeshes;
join_master->mMeshes = meshes;
join_master->mNumMeshes += out_meshes;
}
}
}
// reassign children if something changed
if (child_nodes.empty() || child_nodes.size() > nd->mNumChildren) {
mesh->mVertices[a] *= join_node->mTransformation;
delete[] nd->mChildren;
if (mesh->HasNormals())
mesh->mNormals[a] *= IT;
if (!child_nodes.empty()) {
nd->mChildren = new aiNode*[child_nodes.size()];
}
else nd->mChildren = nullptr;
}
if (mesh->HasTangentsAndBitangents()) {
mesh->mTangents[a] *= IT;
mesh->mBitangents[a] *= IT;
}
}
}
delete join_node; // bye, node
}
delete[] join_master->mMeshes;
join_master->mMeshes = meshes;
join_master->mNumMeshes += out_meshes;
}
}
}
// reassign children if something changed
if (child_nodes.empty() || child_nodes.size() > nd->mNumChildren) {
nd->mNumChildren = static_cast<unsigned int>(child_nodes.size());
delete[] nd->mChildren;
if (nd->mChildren) {
aiNode** tmp = nd->mChildren;
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end(); ++it) {
aiNode* node = *tmp++ = *it;
node->mParent = nd;
}
}
if (!child_nodes.empty()) {
nd->mChildren = new aiNode *[child_nodes.size()];
} else
nd->mChildren = nullptr;
}
nodes_out += static_cast<unsigned int>(child_nodes.size());
nd->mNumChildren = static_cast<unsigned int>(child_nodes.size());
if (nd->mChildren) {
aiNode **tmp = nd->mChildren;
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end(); ++it) {
aiNode *node = *tmp++ = *it;
node->mParent = nd;
}
}
nodes_out += static_cast<unsigned int>(child_nodes.size());
}
// ------------------------------------------------------------------------------------------------
// Execute the post-processing step on the given scene
void OptimizeGraphProcess::Execute( aiScene* pScene) {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess begin");
nodes_in = nodes_out = count_merged = 0;
mScene = pScene;
void OptimizeGraphProcess::Execute(aiScene *pScene) {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess begin");
nodes_in = nodes_out = count_merged = 0;
mScene = pScene;
meshes.resize(pScene->mNumMeshes,0);
FindInstancedMeshes(pScene->mRootNode);
meshes.resize(pScene->mNumMeshes, 0);
FindInstancedMeshes(pScene->mRootNode);
// build a blacklist of identifiers. If the name of a node matches one of these, we won't touch it
locked.clear();
for (std::list<std::string>::const_iterator it = locked_nodes.begin(); it != locked_nodes.end(); ++it) {
// build a blacklist of identifiers. If the name of a node matches one of these, we won't touch it
locked.clear();
for (std::list<std::string>::const_iterator it = locked_nodes.begin(); it != locked_nodes.end(); ++it) {
#ifdef AI_OG_USE_HASHING
locked.insert(SuperFastHash((*it).c_str()));
locked.insert(SuperFastHash((*it).c_str()));
#else
locked.insert(*it);
locked.insert(*it);
#endif
}
}
for (unsigned int i = 0; i < pScene->mNumAnimations; ++i) {
for (unsigned int a = 0; a < pScene->mAnimations[i]->mNumChannels; ++a) {
aiNodeAnim* anim = pScene->mAnimations[i]->mChannels[a];
locked.insert(AI_OG_GETKEY(anim->mNodeName));
}
}
for (unsigned int i = 0; i < pScene->mNumAnimations; ++i) {
for (unsigned int a = 0; a < pScene->mAnimations[i]->mNumChannels; ++a) {
aiNodeAnim *anim = pScene->mAnimations[i]->mChannels[a];
locked.insert(AI_OG_GETKEY(anim->mNodeName));
}
}
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
for (unsigned int a = 0; a < pScene->mMeshes[i]->mNumBones; ++a) {
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
for (unsigned int a = 0; a < pScene->mMeshes[i]->mNumBones; ++a) {
aiBone* bone = pScene->mMeshes[i]->mBones[a];
locked.insert(AI_OG_GETKEY(bone->mName));
aiBone *bone = pScene->mMeshes[i]->mBones[a];
locked.insert(AI_OG_GETKEY(bone->mName));
// HACK: Meshes referencing bones may not be transformed; we need to look them.
// The easiest way to do this is to increase their reference counters ...
meshes[i] += 2;
}
}
// HACK: Meshes referencing bones may not be transformed; we need to look them.
// The easiest way to do this is to increase their reference counters ...
meshes[i] += 2;
}
}
for (unsigned int i = 0; i < pScene->mNumCameras; ++i) {
aiCamera* cam = pScene->mCameras[i];
locked.insert(AI_OG_GETKEY(cam->mName));
}
for (unsigned int i = 0; i < pScene->mNumCameras; ++i) {
aiCamera *cam = pScene->mCameras[i];
locked.insert(AI_OG_GETKEY(cam->mName));
}
for (unsigned int i = 0; i < pScene->mNumLights; ++i) {
aiLight* lgh = pScene->mLights[i];
locked.insert(AI_OG_GETKEY(lgh->mName));
}
for (unsigned int i = 0; i < pScene->mNumLights; ++i) {
aiLight *lgh = pScene->mLights[i];
locked.insert(AI_OG_GETKEY(lgh->mName));
}
// Insert a dummy master node and make it read-only
aiNode* dummy_root = new aiNode(AI_RESERVED_NODE_NAME);
locked.insert(AI_OG_GETKEY(dummy_root->mName));
// Insert a dummy master node and make it read-only
aiNode *dummy_root = new aiNode(AI_RESERVED_NODE_NAME);
locked.insert(AI_OG_GETKEY(dummy_root->mName));
const aiString prev = pScene->mRootNode->mName;
pScene->mRootNode->mParent = dummy_root;
const aiString prev = pScene->mRootNode->mName;
pScene->mRootNode->mParent = dummy_root;
dummy_root->mChildren = new aiNode*[dummy_root->mNumChildren = 1];
dummy_root->mChildren[0] = pScene->mRootNode;
dummy_root->mChildren = new aiNode *[dummy_root->mNumChildren = 1];
dummy_root->mChildren[0] = pScene->mRootNode;
// Do our recursive processing of scenegraph nodes. For each node collect
// a fully new list of children and allow their children to place themselves
// on the same hierarchy layer as their parents.
std::list<aiNode*> nodes;
CollectNewChildren (dummy_root,nodes);
// Do our recursive processing of scenegraph nodes. For each node collect
// a fully new list of children and allow their children to place themselves
// on the same hierarchy layer as their parents.
std::list<aiNode *> nodes;
CollectNewChildren(dummy_root, nodes);
ai_assert(nodes.size() == 1);
ai_assert(nodes.size() == 1);
if (dummy_root->mNumChildren == 0) {
pScene->mRootNode = NULL;
throw DeadlyImportError("After optimizing the scene graph, no data remains");
}
if (dummy_root->mNumChildren == 0) {
pScene->mRootNode = nullptr;
throw DeadlyImportError("After optimizing the scene graph, no data remains");
}
if (dummy_root->mNumChildren > 1) {
pScene->mRootNode = dummy_root;
if (dummy_root->mNumChildren > 1) {
pScene->mRootNode = dummy_root;
// Keep the dummy node but assign the name of the old root node to it
pScene->mRootNode->mName = prev;
}
else {
// Keep the dummy node but assign the name of the old root node to it
pScene->mRootNode->mName = prev;
} else {
// Remove the dummy root node again.
pScene->mRootNode = dummy_root->mChildren[0];
// Remove the dummy root node again.
pScene->mRootNode = dummy_root->mChildren[0];
dummy_root->mChildren[0] = NULL;
delete dummy_root;
}
dummy_root->mChildren[0] = nullptr;
delete dummy_root;
}
pScene->mRootNode->mParent = NULL;
if (!DefaultLogger::isNullLogger()) {
if ( nodes_in != nodes_out) {
ASSIMP_LOG_INFO_F("OptimizeGraphProcess finished; Input nodes: ", nodes_in, ", Output nodes: ", nodes_out);
} else {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess finished");
}
}
meshes.clear();
locked.clear();
pScene->mRootNode->mParent = nullptr;
if (!DefaultLogger::isNullLogger()) {
if (nodes_in != nodes_out) {
ASSIMP_LOG_INFO_F("OptimizeGraphProcess finished; Input nodes: ", nodes_in, ", Output nodes: ", nodes_out);
} else {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess finished");
}
}
meshes.clear();
locked.clear();
}
// ------------------------------------------------------------------------------------------------
// Build a LUT of all instanced meshes
void OptimizeGraphProcess::FindInstancedMeshes (aiNode* pNode)
{
for (unsigned int i = 0; i < pNode->mNumMeshes;++i) {
++meshes[pNode->mMeshes[i]];
}
void OptimizeGraphProcess::FindInstancedMeshes(aiNode *pNode) {
for (unsigned int i = 0; i < pNode->mNumMeshes; ++i) {
++meshes[pNode->mMeshes[i]];
}
for (unsigned int i = 0; i < pNode->mNumChildren; ++i)
FindInstancedMeshes(pNode->mChildren[i]);
for (unsigned int i = 0; i < pNode->mNumChildren; ++i)
FindInstancedMeshes(pNode->mChildren[i]);
}
#endif // !! ASSIMP_BUILD_NO_OPTIMIZEGRAPH_PROCESS

View File

@ -75,13 +75,13 @@ public:
~OptimizeGraphProcess();
// -------------------------------------------------------------------
bool IsActive( unsigned int pFlags) const;
bool IsActive( unsigned int pFlags) const override;
// -------------------------------------------------------------------
void Execute( aiScene* pScene);
void Execute( aiScene* pScene) override;
// -------------------------------------------------------------------
void SetupProperties(const Importer* pImp);
void SetupProperties(const Importer* pImp) override;
// -------------------------------------------------------------------
/** @brief Add a list of node names to be locked and not modified.

File diff suppressed because it is too large Load Diff

View File

@ -59,7 +59,7 @@ struct aiNode;
class PretransformVerticesTest;
namespace Assimp {
namespace Assimp {
// ---------------------------------------------------------------------------
/** The PretransformVertices pre-transforms all vertices in the node tree
@ -68,97 +68,97 @@ namespace Assimp {
*/
class ASSIMP_API PretransformVertices : public BaseProcess {
public:
PretransformVertices ();
~PretransformVertices ();
PretransformVertices();
~PretransformVertices();
// -------------------------------------------------------------------
// Check whether step is active
bool IsActive( unsigned int pFlags) const;
// -------------------------------------------------------------------
// Check whether step is active
bool IsActive(unsigned int pFlags) const override;
// -------------------------------------------------------------------
// Execute step on a given scene
void Execute( aiScene* pScene);
// -------------------------------------------------------------------
// Execute step on a given scene
void Execute(aiScene *pScene) override;
// -------------------------------------------------------------------
// Setup import settings
void SetupProperties(const Importer* pImp);
// -------------------------------------------------------------------
// Setup import settings
void SetupProperties(const Importer *pImp) override;
// -------------------------------------------------------------------
/** @brief Toggle the 'keep hierarchy' option
// -------------------------------------------------------------------
/** @brief Toggle the 'keep hierarchy' option
* @param keep true for keep configuration.
*/
void KeepHierarchy(bool keep) {
configKeepHierarchy = keep;
}
void KeepHierarchy(bool keep) {
configKeepHierarchy = keep;
}
// -------------------------------------------------------------------
/** @brief Check whether 'keep hierarchy' is currently enabled.
// -------------------------------------------------------------------
/** @brief Check whether 'keep hierarchy' is currently enabled.
* @return ...
*/
bool IsHierarchyKept() const {
return configKeepHierarchy;
}
bool IsHierarchyKept() const {
return configKeepHierarchy;
}
private:
// -------------------------------------------------------------------
// Count the number of nodes
unsigned int CountNodes( aiNode* pcNode );
// -------------------------------------------------------------------
// Count the number of nodes
unsigned int CountNodes(const aiNode *pcNode) const;
// -------------------------------------------------------------------
// Get a bitwise combination identifying the vertex format of a mesh
unsigned int GetMeshVFormat(aiMesh* pcMesh);
// -------------------------------------------------------------------
// Get a bitwise combination identifying the vertex format of a mesh
unsigned int GetMeshVFormat(aiMesh *pcMesh) const;
// -------------------------------------------------------------------
// Count the number of vertices in the whole scene and a given
// material index
void CountVerticesAndFaces( aiScene* pcScene, aiNode* pcNode,
unsigned int iMat,
unsigned int iVFormat,
unsigned int* piFaces,
unsigned int* piVertices);
// -------------------------------------------------------------------
// Count the number of vertices in the whole scene and a given
// material index
void CountVerticesAndFaces(const aiScene *pcScene, const aiNode *pcNode,
unsigned int iMat,
unsigned int iVFormat,
unsigned int *piFaces,
unsigned int *piVertices) const;
// -------------------------------------------------------------------
// Collect vertex/face data
void CollectData( aiScene* pcScene, aiNode* pcNode,
unsigned int iMat,
unsigned int iVFormat,
aiMesh* pcMeshOut,
unsigned int aiCurrent[2],
unsigned int* num_refs);
// -------------------------------------------------------------------
// Collect vertex/face data
void CollectData(const aiScene *pcScene, const aiNode *pcNode,
unsigned int iMat,
unsigned int iVFormat,
aiMesh *pcMeshOut,
unsigned int aiCurrent[2],
unsigned int *num_refs) const;
// -------------------------------------------------------------------
// Get a list of all vertex formats that occur for a given material
// The output list contains duplicate elements
void GetVFormatList( aiScene* pcScene, unsigned int iMat,
std::list<unsigned int>& aiOut);
// -------------------------------------------------------------------
// Get a list of all vertex formats that occur for a given material
// The output list contains duplicate elements
void GetVFormatList(const aiScene *pcScene, unsigned int iMat,
std::list<unsigned int> &aiOut) const;
// -------------------------------------------------------------------
// Compute the absolute transformation matrices of each node
void ComputeAbsoluteTransform( aiNode* pcNode );
// -------------------------------------------------------------------
// Compute the absolute transformation matrices of each node
void ComputeAbsoluteTransform(aiNode *pcNode);
// -------------------------------------------------------------------
// Simple routine to build meshes in worldspace, no further optimization
void BuildWCSMeshes(std::vector<aiMesh*>& out, aiMesh** in,
unsigned int numIn, aiNode* node);
// -------------------------------------------------------------------
// Simple routine to build meshes in worldspace, no further optimization
void BuildWCSMeshes(std::vector<aiMesh *> &out, aiMesh **in,
unsigned int numIn, aiNode *node) const;
// -------------------------------------------------------------------
// Apply the node transformation to a mesh
void ApplyTransform(aiMesh* mesh, const aiMatrix4x4& mat);
// -------------------------------------------------------------------
// Apply the node transformation to a mesh
void ApplyTransform(aiMesh *mesh, const aiMatrix4x4 &mat) const;
// -------------------------------------------------------------------
// Reset transformation matrices to identity
void MakeIdentityTransform(aiNode* nd);
// -------------------------------------------------------------------
// Reset transformation matrices to identity
void MakeIdentityTransform(aiNode *nd) const;
// -------------------------------------------------------------------
// Build reference counters for all meshes
void BuildMeshRefCountArray(aiNode* nd, unsigned int * refs);
// -------------------------------------------------------------------
// Build reference counters for all meshes
void BuildMeshRefCountArray(const aiNode *nd, unsigned int *refs) const;
//! Configuration option: keep scene hierarchy as long as possible
bool configKeepHierarchy;
bool configNormalize;
bool configTransform;
aiMatrix4x4 configTransformation;
bool mConfigPointCloud;
//! Configuration option: keep scene hierarchy as long as possible
bool configKeepHierarchy;
bool configNormalize;
bool configTransform;
aiMatrix4x4 configTransformation;
bool mConfigPointCloud;
};
} // end of namespace Assimp

View File

@ -202,6 +202,7 @@ inline void SetMaterialTextureProperty(std::vector<int> &embeddedTexIdxs, Asset
}
mat->AddProperty(&uri, AI_MATKEY_TEXTURE(texType, texSlot));
mat->AddProperty(&prop.texCoord, 1, AI_MATKEY_GLTF_TEXTURE_TEXCOORD(texType, texSlot));
if (prop.textureTransformSupported) {
aiUVTransform transform;

View File

@ -0,0 +1,172 @@
{
"asset" : {
"generator" : "Khronos glTF Blender I/O v1.0.5",
"version" : "2.0"
},
"scene" : 0,
"scenes" : [
{
"name" : "Scene",
"nodes" : [
0,
1,
2
]
}
],
"nodes" : [
{
"mesh" : 0,
"name" : "Cube"
},
{
"name" : "Light",
"rotation" : [
0.16907575726509094,
0.7558803558349609,
-0.27217137813568115,
0.570947527885437
],
"translation" : [
4.076245307922363,
5.903861999511719,
-1.0054539442062378
]
},
{
"name" : "Camera",
"rotation" : [
0.483536034822464,
0.33687159419059753,
-0.20870360732078552,
0.7804827094078064
],
"translation" : [
7.358891487121582,
4.958309173583984,
6.925790786743164
]
}
],
"materials" : [
{
"doubleSided" : true,
"name" : "Material",
"pbrMetallicRoughness" : {
"baseColorTexture" : {
"index" : 0,
"texCoord" : 0
},
"metallicFactor" : 0,
"metallicRoughnessTexture" : {
"index" : 0,
"texCoord" : 1
}
}
}
],
"meshes" : [
{
"name" : "Cube",
"primitives" : [
{
"attributes" : {
"POSITION" : 0,
"NORMAL" : 1,
"TEXCOORD_0" : 2,
"TEXCOORD_1" : 3
},
"indices" : 4,
"material" : 0
}
]
}
],
"textures" : [
{
"source" : 0
}
],
"images" : [
{
"mimeType" : "image/png",
"name" : "Material Base Color",
"uri" : "texture.png"
}
],
"accessors" : [
{
"bufferView" : 0,
"componentType" : 5126,
"count" : 24,
"max" : [
1,
1,
1
],
"min" : [
-1,
-1,
-1
],
"type" : "VEC3"
},
{
"bufferView" : 1,
"componentType" : 5126,
"count" : 24,
"type" : "VEC3"
},
{
"bufferView" : 2,
"componentType" : 5126,
"count" : 24,
"type" : "VEC2"
},
{
"bufferView" : 3,
"componentType" : 5126,
"count" : 24,
"type" : "VEC2"
},
{
"bufferView" : 4,
"componentType" : 5123,
"count" : 36,
"type" : "SCALAR"
}
],
"bufferViews" : [
{
"buffer" : 0,
"byteLength" : 288,
"byteOffset" : 0
},
{
"buffer" : 0,
"byteLength" : 288,
"byteOffset" : 288
},
{
"buffer" : 0,
"byteLength" : 192,
"byteOffset" : 576
},
{
"buffer" : 0,
"byteLength" : 192,
"byteOffset" : 768
},
{
"buffer" : 0,
"byteLength" : 72,
"byteOffset" : 960
}
],
"buffers" : [
{
"byteLength" : 1032,
"uri" : "boxTexcoords.bin"
}
]
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

View File

@ -49,6 +49,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <array>
#include <assimp/pbrmaterial.h>
using namespace Assimp;
class utglTF2ImportExport : public AbstractImportExportBase {
@ -464,3 +466,30 @@ TEST_F(utglTF2ImportExport, sceneMetadata) {
ASSERT_EQ(strcmp(generator.C_Str(), "COLLADA2GLTF"), 0);
}
}
TEST_F(utglTF2ImportExport, texcoords) {
Assimp::Importer importer;
const aiScene *scene = importer.ReadFile(ASSIMP_TEST_MODELS_DIR "/glTF2/BoxTexcoords-glTF/boxTexcoords.gltf",
aiProcess_ValidateDataStructure);
ASSERT_NE(scene, nullptr);
ASSERT_TRUE(scene->HasMaterials());
const aiMaterial *material = scene->mMaterials[0];
aiString path;
aiTextureMapMode modes[2];
EXPECT_EQ(aiReturn_SUCCESS, material->GetTexture(aiTextureType_DIFFUSE, 0, &path, nullptr, nullptr,
nullptr, nullptr, modes));
EXPECT_STREQ(path.C_Str(), "texture.png");
int uvIndex = -1;
EXPECT_EQ(aiGetMaterialInteger(material, AI_MATKEY_GLTF_TEXTURE_TEXCOORD(aiTextureType_DIFFUSE, 0), &uvIndex), aiReturn_SUCCESS);
EXPECT_EQ(uvIndex, 0);
// Using manual macro expansion of AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE here.
// The following works with some but not all compilers:
// #define APPLY(X, Y) X(Y)
// ..., APPLY(AI_MATKEY_GLTF_TEXTURE_TEXCOORD, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE), ...
EXPECT_EQ(aiGetMaterialInteger(material, AI_MATKEY_GLTF_TEXTURE_TEXCOORD(aiTextureType_UNKNOWN, 0), &uvIndex), aiReturn_SUCCESS);
EXPECT_EQ(uvIndex, 1);
}