Fix X3DGeohelper.

pull/3892/head
Kim Kulling 2021-05-06 21:07:38 +02:00
parent ec08092dbf
commit 52228a93f8
10 changed files with 895 additions and 85 deletions

View File

@ -0,0 +1,530 @@
#include "X3DGeoHelper.h"
#include "X3DImporter.hpp"
#include <assimp/vector3.h>
#include <assimp/Exceptional.h>
#include <vector>
namespace Assimp {
aiVector3D X3DGeoHelper::make_point2D(float angle, float radius) {
return aiVector3D(radius * std::cos(angle), radius * std::sin(angle), 0);
}
void X3DGeoHelper::make_arc2D(float pStartAngle, float pEndAngle, float pRadius, size_t numSegments, std::list<aiVector3D> &pVertices) {
// check argument values ranges.
if ((pStartAngle < -AI_MATH_TWO_PI_F) || (pStartAngle > AI_MATH_TWO_PI_F)) {
throw DeadlyImportError("GeometryHelper_Make_Arc2D.pStartAngle");
}
if ((pEndAngle < -AI_MATH_TWO_PI_F) || (pEndAngle > AI_MATH_TWO_PI_F)) {
throw DeadlyImportError("GeometryHelper_Make_Arc2D.pEndAngle");
}
if (pRadius <= 0) {
throw DeadlyImportError("GeometryHelper_Make_Arc2D.pRadius");
}
// calculate arc angle and check type of arc
float angle_full = std::fabs(pEndAngle - pStartAngle);
if ((angle_full > AI_MATH_TWO_PI_F) || (angle_full == 0.0f)) {
angle_full = AI_MATH_TWO_PI_F;
}
// calculate angle for one step - angle to next point of line.
float angle_step = angle_full / (float)numSegments;
// make points
for (size_t pi = 0; pi <= numSegments; pi++) {
float tangle = pStartAngle + pi * angle_step;
pVertices.emplace_back(make_point2D(tangle, pRadius));
} // for(size_t pi = 0; pi <= pNumSegments; pi++)
// if we making full circle then add last vertex equal to first vertex
if (angle_full == AI_MATH_TWO_PI_F) pVertices.push_back(*pVertices.begin());
}
void X3DGeoHelper::extend_point_to_line(const std::list<aiVector3D> &pPoint, std::list<aiVector3D> &pLine) {
std::list<aiVector3D>::const_iterator pit = pPoint.begin();
std::list<aiVector3D>::const_iterator pit_last = pPoint.end();
--pit_last;
if (pPoint.size() < 2) {
throw DeadlyImportError("GeometryHelper_Extend_PointToLine.pPoint.size() can not be less than 2.");
}
// add first point of first line.
pLine.push_back(*pit++);
// add internal points
while (pit != pit_last) {
pLine.push_back(*pit); // second point of previous line
pLine.push_back(*pit); // first point of next line
++pit;
}
// add last point of last line
pLine.push_back(*pit);
}
void X3DGeoHelper::polylineIdx_to_lineIdx(const std::list<int32_t> &pPolylineCoordIdx, std::list<int32_t> &pLineCoordIdx) {
std::list<int32_t>::const_iterator plit = pPolylineCoordIdx.begin();
while (plit != pPolylineCoordIdx.end()) {
// add first point of polyline
pLineCoordIdx.push_back(*plit++);
while ((*plit != (-1)) && (plit != pPolylineCoordIdx.end())) {
std::list<int32_t>::const_iterator plit_next;
plit_next = plit, ++plit_next;
pLineCoordIdx.push_back(*plit); // second point of previous line.
pLineCoordIdx.push_back(-1); // delimiter
if ((*plit_next == (-1)) || (plit_next == pPolylineCoordIdx.end())) break; // current polyline is finished
pLineCoordIdx.push_back(*plit); // first point of next line.
plit = plit_next;
} // while((*plit != (-1)) && (plit != pPolylineCoordIdx.end()))
} // while(plit != pPolylineCoordIdx.end())
}
#define MACRO_FACE_ADD_QUAD_FA(pCCW, pOut, pIn, pP1, pP2, pP3, pP4) \
do { \
if (pCCW) { \
pOut.push_back(pIn[pP1]); \
pOut.push_back(pIn[pP2]); \
pOut.push_back(pIn[pP3]); \
pOut.push_back(pIn[pP4]); \
} else { \
pOut.push_back(pIn[pP4]); \
pOut.push_back(pIn[pP3]); \
pOut.push_back(pIn[pP2]); \
pOut.push_back(pIn[pP1]); \
} \
} while (false)
#define MESH_RectParallelepiped_CREATE_VERT \
aiVector3D vert_set[8]; \
float x1, x2, y1, y2, z1, z2, hs; \
\
hs = pSize.x / 2, x1 = -hs, x2 = hs; \
hs = pSize.y / 2, y1 = -hs, y2 = hs; \
hs = pSize.z / 2, z1 = -hs, z2 = hs; \
vert_set[0].Set(x2, y1, z2); \
vert_set[1].Set(x2, y2, z2); \
vert_set[2].Set(x2, y2, z1); \
vert_set[3].Set(x2, y1, z1); \
vert_set[4].Set(x1, y1, z2); \
vert_set[5].Set(x1, y2, z2); \
vert_set[6].Set(x1, y2, z1); \
vert_set[7].Set(x1, y1, z1)
void X3DGeoHelper::rect_parallele_piped(const aiVector3D &pSize, std::list<aiVector3D> &pVertices) {
MESH_RectParallelepiped_CREATE_VERT;
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 3, 2, 1, 0); // front
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 6, 7, 4, 5); // back
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 7, 3, 0, 4); // left
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 2, 6, 5, 1); // right
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 0, 1, 5, 4); // top
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 7, 6, 2, 3); // bottom
}
#undef MESH_RectParallelepiped_CREATE_VERT
void X3DGeoHelper::coordIdx_str2faces_arr(const std::vector<int32_t> &pCoordIdx, std::vector<aiFace> &pFaces, unsigned int &pPrimitiveTypes) {
std::vector<int32_t> f_data(pCoordIdx);
std::vector<unsigned int> inds;
unsigned int prim_type = 0;
if (f_data.back() != (-1)) {
f_data.push_back(-1);
}
// reserve average size.
pFaces.reserve(f_data.size() / 3);
inds.reserve(4);
//PrintVectorSet("build. ci", pCoordIdx);
for (std::vector<int32_t>::iterator it = f_data.begin(); it != f_data.end(); ++it) {
// when face is got count how many indices in it.
if (*it == (-1)) {
aiFace tface;
size_t ts;
ts = inds.size();
switch (ts) {
case 0:
goto mg_m_err;
case 1:
prim_type |= aiPrimitiveType_POINT;
break;
case 2:
prim_type |= aiPrimitiveType_LINE;
break;
case 3:
prim_type |= aiPrimitiveType_TRIANGLE;
break;
default:
prim_type |= aiPrimitiveType_POLYGON;
break;
}
tface.mNumIndices = static_cast<unsigned int>(ts);
tface.mIndices = new unsigned int[ts];
memcpy(tface.mIndices, inds.data(), ts * sizeof(unsigned int));
pFaces.push_back(tface);
inds.clear();
} // if(*it == (-1))
else {
inds.push_back(*it);
} // if(*it == (-1)) else
} // for(std::list<int32_t>::iterator it = f_data.begin(); it != f_data.end(); it++)
//PrintVectorSet("build. faces", pCoordIdx);
pPrimitiveTypes = prim_type;
return;
mg_m_err:
for (size_t i = 0, i_e = pFaces.size(); i < i_e; i++)
delete[] pFaces.at(i).mIndices;
pFaces.clear();
}
void X3DGeoHelper::add_color(aiMesh &pMesh, const std::list<aiColor3D> &pColors, const bool pColorPerVertex) {
std::list<aiColor4D> tcol;
// create RGBA array from RGB.
for (std::list<aiColor3D>::const_iterator it = pColors.begin(); it != pColors.end(); ++it)
tcol.push_back(aiColor4D((*it).r, (*it).g, (*it).b, 1));
// call existing function for adding RGBA colors
add_color(pMesh, tcol, pColorPerVertex);
}
void X3DGeoHelper::add_color(aiMesh &pMesh, const std::list<aiColor4D> &pColors, const bool pColorPerVertex) {
std::list<aiColor4D>::const_iterator col_it = pColors.begin();
if (pColorPerVertex) {
if (pColors.size() < pMesh.mNumVertices) {
throw DeadlyImportError("MeshGeometry_AddColor1. Colors count(" + to_string(pColors.size()) + ") can not be less than Vertices count(" +
to_string(pMesh.mNumVertices) + ").");
}
// copy colors to mesh
pMesh.mColors[0] = new aiColor4D[pMesh.mNumVertices];
for (size_t i = 0; i < pMesh.mNumVertices; i++)
pMesh.mColors[0][i] = *col_it++;
} // if(pColorPerVertex)
else {
if (pColors.size() < pMesh.mNumFaces) {
throw DeadlyImportError("MeshGeometry_AddColor1. Colors count(" + to_string(pColors.size()) + ") can not be less than Faces count(" +
to_string(pMesh.mNumFaces) + ").");
}
// copy colors to mesh
pMesh.mColors[0] = new aiColor4D[pMesh.mNumVertices];
for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) {
// apply color to all vertices of face
for (size_t vi = 0, vi_e = pMesh.mFaces[fi].mNumIndices; vi < vi_e; vi++) {
pMesh.mColors[0][pMesh.mFaces[fi].mIndices[vi]] = *col_it;
}
++col_it;
}
} // if(pColorPerVertex) else
}
void X3DGeoHelper::add_color(aiMesh &pMesh, const std::vector<int32_t> &pCoordIdx, const std::vector<int32_t> &pColorIdx,
const std::list<aiColor3D> &pColors, const bool pColorPerVertex) {
std::list<aiColor4D> tcol;
// create RGBA array from RGB.
for (std::list<aiColor3D>::const_iterator it = pColors.begin(); it != pColors.end(); ++it) {
tcol.push_back(aiColor4D((*it).r, (*it).g, (*it).b, 1));
}
// call existing function for adding RGBA colors
add_color(pMesh, pCoordIdx, pColorIdx, tcol, pColorPerVertex);
}
void X3DGeoHelper::add_color(aiMesh &pMesh, const std::vector<int32_t> &coordIdx, const std::vector<int32_t> &colorIdx,
const std::list<aiColor4D> &colors, bool pColorPerVertex) {
std::vector<aiColor4D> col_tgt_arr;
std::list<aiColor4D> col_tgt_list;
std::vector<aiColor4D> col_arr_copy;
if (coordIdx.size() == 0) {
throw DeadlyImportError("MeshGeometry_AddColor2. pCoordIdx can not be empty.");
}
// copy list to array because we are need indexed access to colors.
col_arr_copy.reserve(colors.size());
for (std::list<aiColor4D>::const_iterator it = colors.begin(); it != colors.end(); ++it) {
col_arr_copy.push_back(*it);
}
if (pColorPerVertex) {
if (colorIdx.size() > 0) {
// check indices array count.
if (colorIdx.size() < coordIdx.size()) {
throw DeadlyImportError("MeshGeometry_AddColor2. Colors indices count(" + to_string(colorIdx.size()) +
") can not be less than Coords inidces count(" + to_string(coordIdx.size()) + ").");
}
// create list with colors for every vertex.
col_tgt_arr.resize(pMesh.mNumVertices);
for (std::vector<int32_t>::const_iterator colidx_it = colorIdx.begin(), coordidx_it = coordIdx.begin(); colidx_it != colorIdx.end(); ++colidx_it, ++coordidx_it) {
if (*colidx_it == (-1)) {
continue; // skip faces delimiter
}
if ((unsigned int)(*coordidx_it) > pMesh.mNumVertices) {
throw DeadlyImportError("MeshGeometry_AddColor2. Coordinate idx is out of range.");
}
if ((unsigned int)*colidx_it > pMesh.mNumVertices) {
throw DeadlyImportError("MeshGeometry_AddColor2. Color idx is out of range.");
}
col_tgt_arr[*coordidx_it] = col_arr_copy[*colidx_it];
}
} // if(pColorIdx.size() > 0)
else {
// when color indices list is absent use CoordIdx.
// check indices array count.
if (colors.size() < pMesh.mNumVertices) {
throw DeadlyImportError("MeshGeometry_AddColor2. Colors count(" + to_string(colors.size()) + ") can not be less than Vertices count(" +
to_string(pMesh.mNumVertices) + ").");
}
// create list with colors for every vertex.
col_tgt_arr.resize(pMesh.mNumVertices);
for (size_t i = 0; i < pMesh.mNumVertices; i++) {
col_tgt_arr[i] = col_arr_copy[i];
}
} // if(pColorIdx.size() > 0) else
} // if(pColorPerVertex)
else {
if (colorIdx.size() > 0) {
// check indices array count.
if (colorIdx.size() < pMesh.mNumFaces) {
throw DeadlyImportError("MeshGeometry_AddColor2. Colors indices count(" + to_string(colorIdx.size()) +
") can not be less than Faces count(" + to_string(pMesh.mNumFaces) + ").");
}
// create list with colors for every vertex using faces indices.
col_tgt_arr.resize(pMesh.mNumFaces);
std::vector<int32_t>::const_iterator colidx_it = colorIdx.begin();
for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) {
if ((unsigned int)*colidx_it > pMesh.mNumFaces) throw DeadlyImportError("MeshGeometry_AddColor2. Face idx is out of range.");
col_tgt_arr[fi] = col_arr_copy[*colidx_it++];
}
} // if(pColorIdx.size() > 0)
else {
// when color indices list is absent use CoordIdx.
// check indices array count.
if (colors.size() < pMesh.mNumFaces) {
throw DeadlyImportError("MeshGeometry_AddColor2. Colors count(" + to_string(colors.size()) + ") can not be less than Faces count(" +
to_string(pMesh.mNumFaces) + ").");
}
// create list with colors for every vertex using faces indices.
col_tgt_arr.resize(pMesh.mNumFaces);
for (size_t fi = 0; fi < pMesh.mNumFaces; fi++)
col_tgt_arr[fi] = col_arr_copy[fi];
} // if(pColorIdx.size() > 0) else
} // if(pColorPerVertex) else
// copy array to list for calling function that add colors.
for (std::vector<aiColor4D>::const_iterator it = col_tgt_arr.begin(); it != col_tgt_arr.end(); ++it)
col_tgt_list.push_back(*it);
// add prepared colors list to mesh.
add_color(pMesh, col_tgt_list, pColorPerVertex);
}
void X3DGeoHelper::add_normal(aiMesh &pMesh, const std::vector<int32_t> &pCoordIdx, const std::vector<int32_t> &pNormalIdx,
const std::list<aiVector3D> &pNormals, const bool pNormalPerVertex) {
std::vector<size_t> tind;
std::vector<aiVector3D> norm_arr_copy;
// copy list to array because we are need indexed access to normals.
norm_arr_copy.reserve(pNormals.size());
for (std::list<aiVector3D>::const_iterator it = pNormals.begin(); it != pNormals.end(); ++it) {
norm_arr_copy.push_back(*it);
}
if (pNormalPerVertex) {
if (pNormalIdx.size() > 0) {
// check indices array count.
if (pNormalIdx.size() != pCoordIdx.size()) throw DeadlyImportError("Normals and Coords inidces count must be equal.");
tind.reserve(pNormalIdx.size());
for (std::vector<int32_t>::const_iterator it = pNormalIdx.begin(); it != pNormalIdx.end(); ++it) {
if (*it != (-1)) tind.push_back(*it);
}
// copy normals to mesh
pMesh.mNormals = new aiVector3D[pMesh.mNumVertices];
for (size_t i = 0; (i < pMesh.mNumVertices) && (i < tind.size()); i++) {
if (tind[i] >= norm_arr_copy.size())
throw DeadlyImportError("MeshGeometry_AddNormal. Normal index(" + to_string(tind[i]) +
") is out of range. Normals count: " + to_string(norm_arr_copy.size()) + ".");
pMesh.mNormals[i] = norm_arr_copy[tind[i]];
}
} else {
if (pNormals.size() != pMesh.mNumVertices) throw DeadlyImportError("MeshGeometry_AddNormal. Normals and vertices count must be equal.");
// copy normals to mesh
pMesh.mNormals = new aiVector3D[pMesh.mNumVertices];
std::list<aiVector3D>::const_iterator norm_it = pNormals.begin();
for (size_t i = 0; i < pMesh.mNumVertices; i++)
pMesh.mNormals[i] = *norm_it++;
}
} // if(pNormalPerVertex)
else {
if (pNormalIdx.size() > 0) {
if (pMesh.mNumFaces != pNormalIdx.size()) throw DeadlyImportError("Normals faces count must be equal to mesh faces count.");
std::vector<int32_t>::const_iterator normidx_it = pNormalIdx.begin();
tind.reserve(pNormalIdx.size());
for (size_t i = 0, i_e = pNormalIdx.size(); i < i_e; i++)
tind.push_back(*normidx_it++);
} else {
tind.reserve(pMesh.mNumFaces);
for (size_t i = 0; i < pMesh.mNumFaces; i++)
tind.push_back(i);
}
// copy normals to mesh
pMesh.mNormals = new aiVector3D[pMesh.mNumVertices];
for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) {
aiVector3D tnorm;
tnorm = norm_arr_copy[tind[fi]];
for (size_t vi = 0, vi_e = pMesh.mFaces[fi].mNumIndices; vi < vi_e; vi++)
pMesh.mNormals[pMesh.mFaces[fi].mIndices[vi]] = tnorm;
}
} // if(pNormalPerVertex) else
}
void X3DGeoHelper::add_normal(aiMesh &pMesh, const std::list<aiVector3D> &pNormals, const bool pNormalPerVertex) {
std::list<aiVector3D>::const_iterator norm_it = pNormals.begin();
if (pNormalPerVertex) {
if (pNormals.size() != pMesh.mNumVertices) throw DeadlyImportError("MeshGeometry_AddNormal. Normals and vertices count must be equal.");
// copy normals to mesh
pMesh.mNormals = new aiVector3D[pMesh.mNumVertices];
for (size_t i = 0; i < pMesh.mNumVertices; i++)
pMesh.mNormals[i] = *norm_it++;
} // if(pNormalPerVertex)
else {
if (pNormals.size() != pMesh.mNumFaces) throw DeadlyImportError("MeshGeometry_AddNormal. Normals and faces count must be equal.");
// copy normals to mesh
pMesh.mNormals = new aiVector3D[pMesh.mNumVertices];
for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) {
// apply color to all vertices of face
for (size_t vi = 0, vi_e = pMesh.mFaces[fi].mNumIndices; vi < vi_e; vi++)
pMesh.mNormals[pMesh.mFaces[fi].mIndices[vi]] = *norm_it;
++norm_it;
}
} // if(pNormalPerVertex) else
}
void X3DGeoHelper::add_tex_coord(aiMesh &pMesh, const std::vector<int32_t> &pCoordIdx, const std::vector<int32_t> &pTexCoordIdx,
const std::list<aiVector2D> &pTexCoords) {
std::vector<aiVector3D> texcoord_arr_copy;
std::vector<aiFace> faces;
unsigned int prim_type;
// copy list to array because we are need indexed access to normals.
texcoord_arr_copy.reserve(pTexCoords.size());
for (std::list<aiVector2D>::const_iterator it = pTexCoords.begin(); it != pTexCoords.end(); ++it) {
texcoord_arr_copy.push_back(aiVector3D((*it).x, (*it).y, 0));
}
if (pTexCoordIdx.size() > 0) {
coordIdx_str2faces_arr(pTexCoordIdx, faces, prim_type);
if (faces.empty()) {
throw DeadlyImportError("Failed to add texture coordinates to mesh, faces list is empty.");
}
if (faces.size() != pMesh.mNumFaces) {
throw DeadlyImportError("Texture coordinates faces count must be equal to mesh faces count.");
}
} else {
coordIdx_str2faces_arr(pCoordIdx, faces, prim_type);
}
pMesh.mTextureCoords[0] = new aiVector3D[pMesh.mNumVertices];
pMesh.mNumUVComponents[0] = 2;
for (size_t fi = 0, fi_e = faces.size(); fi < fi_e; fi++) {
if (pMesh.mFaces[fi].mNumIndices != faces.at(fi).mNumIndices)
throw DeadlyImportError("Number of indices in texture face and mesh face must be equal. Invalid face index: " + to_string(fi) + ".");
for (size_t ii = 0; ii < pMesh.mFaces[fi].mNumIndices; ii++) {
size_t vert_idx = pMesh.mFaces[fi].mIndices[ii];
size_t tc_idx = faces.at(fi).mIndices[ii];
pMesh.mTextureCoords[0][vert_idx] = texcoord_arr_copy.at(tc_idx);
}
} // for(size_t fi = 0, fi_e = faces.size(); fi < fi_e; fi++)
}
void X3DGeoHelper::add_tex_coord(aiMesh &pMesh, const std::list<aiVector2D> &pTexCoords) {
std::vector<aiVector3D> tc_arr_copy;
if (pTexCoords.size() != pMesh.mNumVertices) {
throw DeadlyImportError("MeshGeometry_AddTexCoord. Texture coordinates and vertices count must be equal.");
}
// copy list to array because we are need convert aiVector2D to aiVector3D and also get indexed access as a bonus.
tc_arr_copy.reserve(pTexCoords.size());
for (std::list<aiVector2D>::const_iterator it = pTexCoords.begin(); it != pTexCoords.end(); ++it) {
tc_arr_copy.push_back(aiVector3D((*it).x, (*it).y, 0));
}
// copy texture coordinates to mesh
pMesh.mTextureCoords[0] = new aiVector3D[pMesh.mNumVertices];
pMesh.mNumUVComponents[0] = 2;
for (size_t i = 0; i < pMesh.mNumVertices; i++) {
pMesh.mTextureCoords[0][i] = tc_arr_copy[i];
}
}
aiMesh *X3DGeoHelper::make_mesh(const std::vector<int32_t> &pCoordIdx, const std::list<aiVector3D> &pVertices) {
std::vector<aiFace> faces;
unsigned int prim_type = 0;
// create faces array from input string with vertices indices.
X3DGeoHelper::coordIdx_str2faces_arr(pCoordIdx, faces, prim_type);
if (!faces.size()) {
throw DeadlyImportError("Failed to create mesh, faces list is empty.");
}
//
// Create new mesh and copy geometry data.
//
aiMesh *tmesh = new aiMesh;
size_t ts = faces.size();
// faces
tmesh->mFaces = new aiFace[ts];
tmesh->mNumFaces = static_cast<unsigned int>(ts);
for (size_t i = 0; i < ts; i++)
tmesh->mFaces[i] = faces.at(i);
// vertices
std::list<aiVector3D>::const_iterator vit = pVertices.begin();
ts = pVertices.size();
tmesh->mVertices = new aiVector3D[ts];
tmesh->mNumVertices = static_cast<unsigned int>(ts);
for (size_t i = 0; i < ts; i++) {
tmesh->mVertices[i] = *vit++;
}
// set primitives type and return result.
tmesh->mPrimitiveTypes = prim_type;
return tmesh;
}
} // namespace Assimp

View File

@ -0,0 +1,38 @@
#pragma once
#include <assimp/vector2.h>
#include <assimp/vector3.h>
#include <assimp/color4.h>
#include <list>
#include <vector>
struct aiFace;
struct aiMesh;
namespace Assimp {
class X3DGeoHelper {
public:
static aiVector3D make_point2D(float angle, float radius);
static void make_arc2D(float pStartAngle, float pEndAngle, float pRadius, size_t numSegments, std::list<aiVector3D> &pVertices);
static void extend_point_to_line(const std::list<aiVector3D> &pPoint, std::list<aiVector3D> &pLine);
static void polylineIdx_to_lineIdx(const std::list<int32_t> &pPolylineCoordIdx, std::list<int32_t> &pLineCoordIdx);
static void rect_parallele_piped(const aiVector3D &pSize, std::list<aiVector3D> &pVertices);
static void coordIdx_str2faces_arr(const std::vector<int32_t> &pCoordIdx, std::vector<aiFace> &pFaces, unsigned int &pPrimitiveTypes);
static void add_color(aiMesh &pMesh, const std::list<aiColor3D> &pColors, const bool pColorPerVertex);
static void add_color(aiMesh &pMesh, const std::list<aiColor4D> &pColors, const bool pColorPerVertex);
static void add_color(aiMesh &pMesh, const std::vector<int32_t> &pCoordIdx, const std::vector<int32_t> &pColorIdx,
const std::list<aiColor3D> &pColors, const bool pColorPerVertex);
static void add_color(aiMesh &pMesh, const std::vector<int32_t> &pCoordIdx, const std::vector<int32_t> &pColorIdx,
const std::list<aiColor4D> &pColors, const bool pColorPerVertex);
static void add_normal(aiMesh &pMesh, const std::vector<int32_t> &pCoordIdx, const std::vector<int32_t> &pNormalIdx,
const std::list<aiVector3D> &pNormals, const bool pNormalPerVertex);
static void add_normal(aiMesh &pMesh, const std::list<aiVector3D> &pNormals, const bool pNormalPerVertex);
static void add_tex_coord(aiMesh &pMesh, const std::vector<int32_t> &pCoordIdx, const std::vector<int32_t> &pTexCoordIdx,
const std::list<aiVector2D> &pTexCoords);
static void add_tex_coord(aiMesh &pMesh, const std::list<aiVector2D> &pTexCoords);
static aiMesh *make_mesh(const std::vector<int32_t> &pCoordIdx, const std::list<aiVector3D> &pVertices);
};
} // namespace Assimp

View File

@ -46,16 +46,15 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef ASSIMP_BUILD_NO_X3D_IMPORTER
#include "X3DImporter.hpp"
#include <assimp/StringUtils.h>
// Header files, Assimp.
#include <assimp/StringUtils.h>
#include <assimp/ParsingUtils.h>
#include <assimp/DefaultIOSystem.h>
#include <assimp/fast_atof.h>
// Header files, stdlib.
#include <iterator>
#include <memory>
#include <string>
namespace Assimp {
@ -126,7 +125,8 @@ struct WordIterator {
const char *WordIterator::whitespace = ", \t\r\n";
X3DImporter::X3DImporter() :
mNodeElementCur(nullptr) {
mNodeElementCur(nullptr),
mScene(nullptr) {
// empty
}
@ -153,10 +153,29 @@ void X3DImporter::ParseFile(const std::string &file, IOSystem *pIOHandler) {
std::unique_ptr<IOStream> fileStream(pIOHandler->Open(file, mode));
if (!fileStream.get()) {
throw DeadlyImportError("Failed to open file " + file + ".");
}
}
XmlParser theParser;
if (!theParser.parse(fileStream.get())) {
return;
}
XmlNode *node = theParser.findNode("X3D");
if (nullptr == node) {
return;
}
for (auto &currentNode : node->children()) {
const std::string &currentName = currentNode.name();
if (currentName == "head") {
readMetadata(currentNode);
} else if (currentName == "Scene") {
readScene(currentNode);
}
}
}
bool X3DImporter::CanRead( const std::string &pFile, IOSystem * /*pIOHandler*/, bool checkSig ) const {
bool X3DImporter::CanRead(const std::string &pFile, IOSystem * /*pIOHandler*/, bool checkSig) const {
if (checkSig) {
std::string::size_type pos = pFile.find_last_of(".x3d");
if (pos != std::string::npos) {
@ -167,16 +186,17 @@ bool X3DImporter::CanRead( const std::string &pFile, IOSystem * /*pIOHandler*/,
return false;
}
void X3DImporter::GetExtensionList( std::set<std::string> &extensionList ) {
void X3DImporter::GetExtensionList(std::set<std::string> &extensionList) {
extensionList.insert("x3d");
}
void X3DImporter::InternReadFile( const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler ) {
void X3DImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
std::shared_ptr<IOStream> stream(pIOHandler->Open(pFile, "rb"));
if (!stream) {
throw DeadlyImportError("Could not open file for reading");
}
mScene = pScene;
pScene->mRootNode = new aiNode(pFile);
}
@ -184,6 +204,147 @@ const aiImporterDesc *X3DImporter::GetInfo() const {
return &Description;
}
}
struct meta_entry {
std::string name;
std::string value;
};
void X3DImporter::readMetadata(XmlNode &node) {
std::vector<meta_entry> metaArray;
for (auto currentNode : node.children()) {
const std::string &currentName = currentNode.name();
if (currentName == "meta") {
meta_entry entry;
if (XmlParser::getStdStrAttribute(currentNode, "name", entry.name)) {
XmlParser::getStdStrAttribute(currentNode, "content", entry.value);
metaArray.emplace_back(entry);
}
}
}
mScene->mMetaData = aiMetadata::Alloc(static_cast<unsigned int>(metaArray.size()));
unsigned int i = 0;
for (auto currentMeta : metaArray) {
mScene->mMetaData->Set(i, currentMeta.name, currentMeta.value);
++i;
}
}
void X3DImporter::readScene(XmlNode &node) {
for (auto currentNode : node.children()) {
const std::string &currentName = currentNode.name();
if (currentName == "Viewpoint") {
readViewpoint(currentNode);
}
}
}
void X3DImporter::readViewpoint(XmlNode &node) {
for (auto currentNode : node.children()) {
//const std::string &currentName = currentNode.name();
}
}
void readMetadataBoolean(XmlNode &node, X3DNodeElementBase *parent) {
std::string val;
X3DNodeElementMetaBoolean *boolean = nullptr;
if (XmlParser::getStdStrAttribute(node, "value", val)) {
std::vector<std::string> values;
tokenize<std::string>(val, values, " ");
boolean = new X3DNodeElementMetaBoolean(parent);
for (size_t i = 0; i < values.size(); ++i) {
bool current_boolean = false;
if (values[i] == "true") {
current_boolean = true;
}
boolean->Value.emplace_back(current_boolean);
}
}
}
void readMetadataDouble(XmlNode &node, X3DNodeElementBase *parent) {
std::string val;
X3DNodeElementMetaDouble *doubleNode = nullptr;
if (XmlParser::getStdStrAttribute(node, "value", val)) {
std::vector<std::string> values;
tokenize<std::string>(val, values, " ");
doubleNode = new X3DNodeElementMetaDouble(parent);
for (size_t i = 0; i < values.size(); ++i) {
double current_double = static_cast<double>(fast_atof(values[i].c_str()));
doubleNode->Value.emplace_back(current_double);
}
}
}
void readMetadataFloat(XmlNode &node, X3DNodeElementBase *parent) {
std::string val;
X3DNodeElementMetaFloat *floatNode = nullptr;
if (XmlParser::getStdStrAttribute(node, "value", val)) {
std::vector<std::string> values;
tokenize<std::string>(val, values, " ");
floatNode = new X3DNodeElementMetaFloat(parent);
for (size_t i = 0; i < values.size(); ++i) {
float current_float = static_cast<float>(fast_atof(values[i].c_str()));
floatNode->Value.emplace_back(current_float);
}
}
}
void readMetadataInteger(XmlNode &node, X3DNodeElementBase *parent) {
std::string val;
X3DNodeElementMetaInt *intNode = nullptr;
if (XmlParser::getStdStrAttribute(node, "value", val)) {
std::vector<std::string> values;
tokenize<std::string>(val, values, " ");
intNode = new X3DNodeElementMetaInt(parent);
for (size_t i = 0; i < values.size(); ++i) {
int current_int = static_cast<int>(std::atoi(values[i].c_str()));
intNode->Value.emplace_back(current_int);
}
}
}
void readMetadataSet(XmlNode &node, X3DNodeElementBase *parent) {
std::string val;
X3DNodeElementMetaSet *setNode = new X3DNodeElementMetaSet(parent);
if (XmlParser::getStdStrAttribute(node, "name", val)) {
setNode->Name = val;
}
if (XmlParser::getStdStrAttribute(node, "reference", val)) {
setNode->Reference = val;
}
}
void readMetadataString(XmlNode &node, X3DNodeElementBase *parent) {
std::string val;
X3DNodeElementMetaString *strNode = nullptr;
if (XmlParser::getStdStrAttribute(node, "value", val)) {
std::vector<std::string> values;
tokenize<std::string>(val, values, " ");
strNode = new X3DNodeElementMetaString(parent);
for (size_t i = 0; i < values.size(); ++i) {
strNode->Value.emplace_back(values[i]);
}
}
}
void X3DImporter::readMetadataObject(XmlNode &node) {
const std::string &name = node.name();
if (name == "MetadataBoolean") {
readMetadataBoolean(node, mNodeElementCur);
} else if (name == "MetadataDouble") {
readMetadataDouble(node, mNodeElementCur);
} else if (name == "MetadataFloat") {
readMetadataFloat(node, mNodeElementCur);
} else if (name == "MetadataInteger") {
readMetadataInteger(node, mNodeElementCur);
} else if (name == "MetadataSet") {
readMetadataSet(node, mNodeElementCur);
} else if (name == "MetadataString") {
readMetadataString(node, mNodeElementCur);
}
}
} // namespace Assimp
#endif // !ASSIMP_BUILD_NO_X3D_IMPORTER

View File

@ -38,16 +38,10 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/// \file X3DImporter.hpp
/// \brief X3D-format files importer for Assimp.
/// \date 2015-2016
/// \author smal.root@gmail.com
// Thanks to acorn89 for support.
#ifndef INCLUDED_AI_X3D_IMPORTER_H
#define INCLUDED_AI_X3D_IMPORTER_H
// Header files, Assimp.
#include <assimp/BaseImporter.h>
#include <assimp/XmlParser.h>
#include <assimp/importerdesc.h>
@ -56,7 +50,9 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <assimp/DefaultLogger.hpp>
#include <assimp/ProgressHandler.hpp>
#include <string>
#include <list>
#include <vector>
namespace Assimp {
@ -282,8 +278,90 @@ enum class X3DElemType {
struct X3DNodeElementBase {
X3DNodeElementBase *Parent;
std::string ID;
std::list<X3DNodeElementBase *> Child;
std::list<X3DNodeElementBase *> Children;
X3DElemType Type;
protected:
X3DNodeElementBase(X3DElemType type, X3DNodeElementBase *pParent) :
Type(type), Parent(pParent) {
// empty
}
};
struct CX3DNodeElementGroup : X3DNodeElementBase {
aiMatrix4x4 Transformation; ///< Transformation matrix.
bool Static;
bool UseChoice; ///< Flag: if true then use number from \ref Choice to choose what the child will be kept.
int32_t Choice; ///< Number of the child which will be kept.
};
struct X3DNodeElementMeta : X3DNodeElementBase {
std::string Name; ///< Name of metadata object.
std::string Reference;
virtual ~X3DNodeElementMeta() {
// empty
}
protected:
X3DNodeElementMeta(X3DElemType type, X3DNodeElementBase *parent) :
X3DNodeElementBase(type, parent) {
// empty
}
};
struct X3DNodeElementMetaBoolean : X3DNodeElementMeta {
std::vector<bool> Value; ///< Stored value.
X3DNodeElementMetaBoolean(X3DNodeElementBase *pParent) :
X3DNodeElementMeta(X3DElemType::ENET_MetaBoolean, pParent) {
// empty
}
};
struct X3DNodeElementMetaDouble : X3DNodeElementMeta {
std::vector<double> Value; ///< Stored value.
X3DNodeElementMetaDouble(X3DNodeElementBase *pParent) :
X3DNodeElementMeta(X3DElemType::ENET_MetaDouble, pParent) {
// empty
}
};
struct X3DNodeElementMetaFloat : public X3DNodeElementMeta {
std::vector<float> Value; ///< Stored value.
X3DNodeElementMetaFloat(X3DNodeElementBase *pParent) :
X3DNodeElementMeta(X3DElemType::ENET_MetaFloat, pParent) {
// empty
}
};
struct X3DNodeElementMetaInt : public X3DNodeElementMeta {
std::vector<int32_t> Value; ///< Stored value.
X3DNodeElementMetaInt(X3DNodeElementBase *pParent) :
X3DNodeElementMeta(X3DElemType::ENET_MetaInteger, pParent) {
// empty
}
};
struct X3DNodeElementMetaSet : public X3DNodeElementMeta {
std::list<X3DNodeElementMeta> Value; ///< Stored value.
X3DNodeElementMetaSet(X3DNodeElementBase *pParent) :
X3DNodeElementMeta(X3DElemType::ENET_MetaSet, pParent) {
// empty
}
};
struct X3DNodeElementMetaString : public X3DNodeElementMeta {
std::list<std::string> Value; ///< Stored value.
X3DNodeElementMetaString(X3DNodeElementBase *pParent) :
X3DNodeElementMeta(X3DElemType::ENET_MetaString, pParent) {
// empty
}
};
class X3DImporter : public BaseImporter {
@ -311,10 +389,15 @@ public:
void InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler);
const aiImporterDesc *GetInfo() const;
void Clear();
void readMetadata(XmlNode &node);
void readScene(XmlNode &node);
void readViewpoint(XmlNode &node);
void readMetadataObject(XmlNode &node);
private:
static const aiImporterDesc Description;
X3DNodeElementBase *mNodeElementCur; ///< Current element.
X3DNodeElementBase *mNodeElementCur;
aiScene *mScene;
}; // class X3DImporter
} // namespace Assimp

View File

@ -322,8 +322,8 @@ void glTFExporter::GetTexSampler(const aiMaterial* mat, glTF::TexProperty& prop)
prop.texture->sampler->minFilter = SamplerMinFilter_Linear;
}
void glTFExporter::GetMatColorOrTex(const aiMaterial* mat, glTF::TexProperty& prop, const char* propName, int type, int idx, aiTextureType tt)
{
void glTFExporter::GetMatColorOrTex(const aiMaterial* mat, glTF::TexProperty& prop,
const char* propName, int type, int idx, aiTextureType tt) {
aiString tex;
aiColor4D col;
if (mat->GetTextureCount(tt) > 0) {
@ -370,7 +370,10 @@ void glTFExporter::GetMatColorOrTex(const aiMaterial* mat, glTF::TexProperty& pr
}
if (mat->Get(propName, type, idx, col) == AI_SUCCESS) {
prop.color[0] = col.r; prop.color[1] = col.g; prop.color[2] = col.b; prop.color[3] = col.a;
prop.color[0] = col.r;
prop.color[1] = col.g;
prop.color[2] = col.b;
prop.color[3] = col.a;
}
}

View File

@ -1297,24 +1297,24 @@ void glTF2Exporter::ExportMetadata()
}
}
inline Ref<Accessor> GetSamplerInputRef(Asset& asset, std::string& animId, Ref<Buffer>& buffer, std::vector<float>& times)
{
inline Ref<Accessor> GetSamplerInputRef(Asset& asset, std::string& animId,
Ref<Buffer>& buffer, std::vector<float>& times) {
return ExportData(asset, animId, buffer, (unsigned int)times.size(), &times[0], AttribType::SCALAR, AttribType::SCALAR, ComponentType_FLOAT);
}
inline void ExtractTranslationSampler(Asset& asset, std::string& animId, Ref<Buffer>& buffer, const aiNodeAnim* nodeChannel, float ticksPerSecond, Animation::Sampler& sampler)
{
inline void ExtractTranslationSampler(Asset& asset, std::string& animId, Ref<Buffer>& buffer,
const aiNodeAnim* nodeChannel, float ticksPerSecond, Animation::Sampler& sampler) {
const unsigned int numKeyframes = nodeChannel->mNumPositionKeys;
std::vector<float> times(numKeyframes);
std::vector<float> values(numKeyframes * 3);
std::vector<ai_real> times(numKeyframes);
std::vector<ai_real> values(numKeyframes * 3);
for (unsigned int i = 0; i < numKeyframes; ++i) {
const aiVectorKey& key = nodeChannel->mPositionKeys[i];
// mTime is measured in ticks, but GLTF time is measured in seconds, so convert.
times[i] = static_cast<float>(key.mTime / ticksPerSecond);
values[(i * 3) + 0] = key.mValue.x;
values[(i * 3) + 1] = key.mValue.y;
values[(i * 3) + 2] = key.mValue.z;
values[(i * 3) + 0] = (ai_real) key.mValue.x;
values[(i * 3) + 1] = (ai_real) key.mValue.y;
values[(i * 3) + 2] = (ai_real) key.mValue.z;
}
sampler.input = GetSamplerInputRef(asset, animId, buffer, times);
@ -1322,19 +1322,19 @@ inline void ExtractTranslationSampler(Asset& asset, std::string& animId, Ref<Buf
sampler.interpolation = Interpolation_LINEAR;
}
inline void ExtractScaleSampler(Asset& asset, std::string& animId, Ref<Buffer>& buffer, const aiNodeAnim* nodeChannel, float ticksPerSecond, Animation::Sampler& sampler)
{
inline void ExtractScaleSampler(Asset& asset, std::string& animId, Ref<Buffer>& buffer,
const aiNodeAnim* nodeChannel, float ticksPerSecond, Animation::Sampler& sampler) {
const unsigned int numKeyframes = nodeChannel->mNumScalingKeys;
std::vector<float> times(numKeyframes);
std::vector<float> values(numKeyframes * 3);
std::vector<ai_real> times(numKeyframes);
std::vector<ai_real> values(numKeyframes * 3);
for (unsigned int i = 0; i < numKeyframes; ++i) {
const aiVectorKey& key = nodeChannel->mScalingKeys[i];
// mTime is measured in ticks, but GLTF time is measured in seconds, so convert.
times[i] = static_cast<float>(key.mTime / ticksPerSecond);
values[(i * 3) + 0] = key.mValue.x;
values[(i * 3) + 1] = key.mValue.y;
values[(i * 3) + 2] = key.mValue.z;
values[(i * 3) + 0] = (ai_real) key.mValue.x;
values[(i * 3) + 1] = (ai_real) key.mValue.y;
values[(i * 3) + 2] = (ai_real) key.mValue.z;
}
sampler.input = GetSamplerInputRef(asset, animId, buffer, times);
@ -1342,20 +1342,20 @@ inline void ExtractScaleSampler(Asset& asset, std::string& animId, Ref<Buffer>&
sampler.interpolation = Interpolation_LINEAR;
}
inline void ExtractRotationSampler(Asset& asset, std::string& animId, Ref<Buffer>& buffer, const aiNodeAnim* nodeChannel, float ticksPerSecond, Animation::Sampler& sampler)
{
inline void ExtractRotationSampler(Asset& asset, std::string& animId, Ref<Buffer>& buffer,
const aiNodeAnim* nodeChannel, float ticksPerSecond, Animation::Sampler& sampler) {
const unsigned int numKeyframes = nodeChannel->mNumRotationKeys;
std::vector<float> times(numKeyframes);
std::vector<float> values(numKeyframes * 4);
std::vector<ai_real> times(numKeyframes);
std::vector<ai_real> values(numKeyframes * 4);
for (unsigned int i = 0; i < numKeyframes; ++i) {
const aiQuatKey& key = nodeChannel->mRotationKeys[i];
// mTime is measured in ticks, but GLTF time is measured in seconds, so convert.
times[i] = static_cast<float>(key.mTime / ticksPerSecond);
values[(i * 4) + 0] = key.mValue.x;
values[(i * 4) + 1] = key.mValue.y;
values[(i * 4) + 2] = key.mValue.z;
values[(i * 4) + 3] = key.mValue.w;
values[(i * 4) + 0] = (ai_real) key.mValue.x;
values[(i * 4) + 1] = (ai_real) key.mValue.y;
values[(i * 4) + 2] = (ai_real) key.mValue.z;
values[(i * 4) + 3] = (ai_real) key.mValue.w;
}
sampler.input = GetSamplerInputRef(asset, animId, buffer, times);
@ -1417,7 +1417,7 @@ void glTF2Exporter::ExportAnimations()
}
}
// Assimp documentation staes this is not used (not implemented)
// Assimp documentation states this is not used (not implemented)
// for (unsigned int channelIndex = 0; channelIndex < anim->mNumMeshChannels; ++channelIndex) {
// const aiMeshAnim* meshChannel = anim->mMeshChannels[channelIndex];
// }

View File

@ -798,6 +798,8 @@ ADD_ASSIMP_IMPORTER( X
ADD_ASSIMP_IMPORTER( X3D
AssetLib/X3D/X3DImporter.cpp
AssetLib/X3D/X3DImporter.hpp
AssetLib/X3D/X3DGeoHelper.cpp
AssetLib/X3D/X3DGeoHelper.h
)
ADD_ASSIMP_IMPORTER( GLTF

View File

@ -5,8 +5,6 @@ Open Asset Import Library (assimp)
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
@ -42,25 +40,25 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assimp/scene.h>
aiNode::aiNode()
: mName("")
, mParent(nullptr)
, mNumChildren(0)
, mChildren(nullptr)
, mNumMeshes(0)
, mMeshes(nullptr)
, mMetaData(nullptr) {
aiNode::aiNode() :
mName(""),
mParent(nullptr),
mNumChildren(0),
mChildren(nullptr),
mNumMeshes(0),
mMeshes(nullptr),
mMetaData(nullptr) {
// empty
}
aiNode::aiNode(const std::string& name)
: mName(name)
, mParent(nullptr)
, mNumChildren(0)
, mChildren(nullptr)
, mNumMeshes(0)
, mMeshes(nullptr)
, mMetaData(nullptr) {
aiNode::aiNode(const std::string &name) :
mName(name),
mParent(nullptr),
mNumChildren(0),
mChildren(nullptr),
mNumMeshes(0),
mMeshes(nullptr),
mMetaData(nullptr) {
// empty
}
@ -68,8 +66,7 @@ aiNode::aiNode(const std::string& name)
aiNode::~aiNode() {
// delete all children recursively
// to make sure we won't crash if the data is invalid ...
if (mNumChildren && mChildren)
{
if (mNumChildren && mChildren) {
for (unsigned int a = 0; a < mNumChildren; a++)
delete mChildren[a];
}
@ -78,7 +75,7 @@ aiNode::~aiNode() {
delete mMetaData;
}
const aiNode *aiNode::FindNode(const char* name) const {
const aiNode *aiNode::FindNode(const char *name) const {
if (nullptr == name) {
return nullptr;
}
@ -86,7 +83,7 @@ const aiNode *aiNode::FindNode(const char* name) const {
return this;
}
for (unsigned int i = 0; i < mNumChildren; ++i) {
const aiNode* const p = mChildren[i]->FindNode(name);
const aiNode *const p = mChildren[i]->FindNode(name);
if (p) {
return p;
}
@ -95,11 +92,10 @@ const aiNode *aiNode::FindNode(const char* name) const {
return nullptr;
}
aiNode *aiNode::FindNode(const char* name) {
if (!::strcmp(mName.data, name))return this;
for (unsigned int i = 0; i < mNumChildren; ++i)
{
aiNode* const p = mChildren[i]->FindNode(name);
aiNode *aiNode::FindNode(const char *name) {
if (!::strcmp(mName.data, name)) return this;
for (unsigned int i = 0; i < mNumChildren; ++i) {
aiNode *const p = mChildren[i]->FindNode(name);
if (p) {
return p;
}
@ -121,17 +117,16 @@ void aiNode::addChildren(unsigned int numChildren, aiNode **children) {
}
if (mNumChildren > 0) {
aiNode **tmp = new aiNode*[mNumChildren];
::memcpy(tmp, mChildren, sizeof(aiNode*) * mNumChildren);
aiNode **tmp = new aiNode *[mNumChildren];
::memcpy(tmp, mChildren, sizeof(aiNode *) * mNumChildren);
delete[] mChildren;
mChildren = new aiNode*[mNumChildren + numChildren];
::memcpy(mChildren, tmp, sizeof(aiNode*) * mNumChildren);
::memcpy(&mChildren[mNumChildren], children, sizeof(aiNode*)* numChildren);
mChildren = new aiNode *[mNumChildren + numChildren];
::memcpy(mChildren, tmp, sizeof(aiNode *) * mNumChildren);
::memcpy(&mChildren[mNumChildren], children, sizeof(aiNode *) * numChildren);
mNumChildren += numChildren;
delete[] tmp;
}
else {
mChildren = new aiNode*[numChildren];
} else {
mChildren = new aiNode *[numChildren];
for (unsigned int i = 0; i < numChildren; i++) {
mChildren[i] = children[i];
}

View File

@ -133,12 +133,12 @@ inline ::aiQuatKey max(const ::aiQuatKey &a, const ::aiQuatKey &b) {
// std::min for aiVertexWeight
inline ::aiVertexWeight min(const ::aiVertexWeight &a, const ::aiVertexWeight &b) {
return ::aiVertexWeight(min(a.mVertexId, b.mVertexId), min(a.mWeight, b.mWeight));
return ::aiVertexWeight(min(a.mVertexId, b.mVertexId),static_cast<ai_real>(min(a.mWeight, b.mWeight)));
}
// std::max for aiVertexWeight
inline ::aiVertexWeight max(const ::aiVertexWeight &a, const ::aiVertexWeight &b) {
return ::aiVertexWeight(max(a.mVertexId, b.mVertexId), max(a.mWeight, b.mWeight));
return ::aiVertexWeight(static_cast<ai_real>(max(a.mVertexId, b.mVertexId)), static_cast<ai_real>(max(a.mWeight, b.mWeight)));
}
} // end namespace std

View File

@ -5,8 +5,6 @@ Open Asset Import Library (assimp)
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,