assimp/code/AssetLib/X3D/X3DGeoHelper.cpp

531 lines
22 KiB
C++

#include "X3DGeoHelper.h"
#include "X3DImporter.hpp"
#include <assimp/vector3.h>
#include <assimp/Exceptional.h>
#include <vector>
namespace Assimp {
aiVector3D X3DGeoHelper::make_point2D(float angle, float radius) {
return aiVector3D(radius * std::cos(angle), radius * std::sin(angle), 0);
}
void X3DGeoHelper::make_arc2D(float pStartAngle, float pEndAngle, float pRadius, size_t numSegments, std::list<aiVector3D> &pVertices) {
// check argument values ranges.
if ((pStartAngle < -AI_MATH_TWO_PI_F) || (pStartAngle > AI_MATH_TWO_PI_F)) {
throw DeadlyImportError("GeometryHelper_Make_Arc2D.pStartAngle");
}
if ((pEndAngle < -AI_MATH_TWO_PI_F) || (pEndAngle > AI_MATH_TWO_PI_F)) {
throw DeadlyImportError("GeometryHelper_Make_Arc2D.pEndAngle");
}
if (pRadius <= 0) {
throw DeadlyImportError("GeometryHelper_Make_Arc2D.pRadius");
}
// calculate arc angle and check type of arc
float angle_full = std::fabs(pEndAngle - pStartAngle);
if ((angle_full > AI_MATH_TWO_PI_F) || (angle_full == 0.0f)) {
angle_full = AI_MATH_TWO_PI_F;
}
// calculate angle for one step - angle to next point of line.
float angle_step = angle_full / (float)numSegments;
// make points
for (size_t pi = 0; pi <= numSegments; pi++) {
float tangle = pStartAngle + pi * angle_step;
pVertices.emplace_back(make_point2D(tangle, pRadius));
} // for(size_t pi = 0; pi <= pNumSegments; pi++)
// if we making full circle then add last vertex equal to first vertex
if (angle_full == AI_MATH_TWO_PI_F) pVertices.push_back(*pVertices.begin());
}
void X3DGeoHelper::extend_point_to_line(const std::list<aiVector3D> &pPoint, std::list<aiVector3D> &pLine) {
std::list<aiVector3D>::const_iterator pit = pPoint.begin();
std::list<aiVector3D>::const_iterator pit_last = pPoint.end();
--pit_last;
if (pPoint.size() < 2) {
throw DeadlyImportError("GeometryHelper_Extend_PointToLine.pPoint.size() can not be less than 2.");
}
// add first point of first line.
pLine.push_back(*pit++);
// add internal points
while (pit != pit_last) {
pLine.push_back(*pit); // second point of previous line
pLine.push_back(*pit); // first point of next line
++pit;
}
// add last point of last line
pLine.push_back(*pit);
}
void X3DGeoHelper::polylineIdx_to_lineIdx(const std::list<int32_t> &pPolylineCoordIdx, std::list<int32_t> &pLineCoordIdx) {
std::list<int32_t>::const_iterator plit = pPolylineCoordIdx.begin();
while (plit != pPolylineCoordIdx.end()) {
// add first point of polyline
pLineCoordIdx.push_back(*plit++);
while ((*plit != (-1)) && (plit != pPolylineCoordIdx.end())) {
std::list<int32_t>::const_iterator plit_next;
plit_next = plit, ++plit_next;
pLineCoordIdx.push_back(*plit); // second point of previous line.
pLineCoordIdx.push_back(-1); // delimiter
if ((*plit_next == (-1)) || (plit_next == pPolylineCoordIdx.end())) break; // current polyline is finished
pLineCoordIdx.push_back(*plit); // first point of next line.
plit = plit_next;
} // while((*plit != (-1)) && (plit != pPolylineCoordIdx.end()))
} // while(plit != pPolylineCoordIdx.end())
}
#define MACRO_FACE_ADD_QUAD_FA(pCCW, pOut, pIn, pP1, pP2, pP3, pP4) \
do { \
if (pCCW) { \
pOut.push_back(pIn[pP1]); \
pOut.push_back(pIn[pP2]); \
pOut.push_back(pIn[pP3]); \
pOut.push_back(pIn[pP4]); \
} else { \
pOut.push_back(pIn[pP4]); \
pOut.push_back(pIn[pP3]); \
pOut.push_back(pIn[pP2]); \
pOut.push_back(pIn[pP1]); \
} \
} while (false)
#define MESH_RectParallelepiped_CREATE_VERT \
aiVector3D vert_set[8]; \
float x1, x2, y1, y2, z1, z2, hs; \
\
hs = pSize.x / 2, x1 = -hs, x2 = hs; \
hs = pSize.y / 2, y1 = -hs, y2 = hs; \
hs = pSize.z / 2, z1 = -hs, z2 = hs; \
vert_set[0].Set(x2, y1, z2); \
vert_set[1].Set(x2, y2, z2); \
vert_set[2].Set(x2, y2, z1); \
vert_set[3].Set(x2, y1, z1); \
vert_set[4].Set(x1, y1, z2); \
vert_set[5].Set(x1, y2, z2); \
vert_set[6].Set(x1, y2, z1); \
vert_set[7].Set(x1, y1, z1)
void X3DGeoHelper::rect_parallele_piped(const aiVector3D &pSize, std::list<aiVector3D> &pVertices) {
MESH_RectParallelepiped_CREATE_VERT;
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 3, 2, 1, 0); // front
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 6, 7, 4, 5); // back
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 7, 3, 0, 4); // left
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 2, 6, 5, 1); // right
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 0, 1, 5, 4); // top
MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 7, 6, 2, 3); // bottom
}
#undef MESH_RectParallelepiped_CREATE_VERT
void X3DGeoHelper::coordIdx_str2faces_arr(const std::vector<int32_t> &pCoordIdx, std::vector<aiFace> &pFaces, unsigned int &pPrimitiveTypes) {
std::vector<int32_t> f_data(pCoordIdx);
std::vector<unsigned int> inds;
unsigned int prim_type = 0;
if (f_data.back() != (-1)) {
f_data.push_back(-1);
}
// reserve average size.
pFaces.reserve(f_data.size() / 3);
inds.reserve(4);
//PrintVectorSet("build. ci", pCoordIdx);
for (std::vector<int32_t>::iterator it = f_data.begin(); it != f_data.end(); ++it) {
// when face is got count how many indices in it.
if (*it == (-1)) {
aiFace tface;
size_t ts;
ts = inds.size();
switch (ts) {
case 0:
goto mg_m_err;
case 1:
prim_type |= aiPrimitiveType_POINT;
break;
case 2:
prim_type |= aiPrimitiveType_LINE;
break;
case 3:
prim_type |= aiPrimitiveType_TRIANGLE;
break;
default:
prim_type |= aiPrimitiveType_POLYGON;
break;
}
tface.mNumIndices = static_cast<unsigned int>(ts);
tface.mIndices = new unsigned int[ts];
memcpy(tface.mIndices, inds.data(), ts * sizeof(unsigned int));
pFaces.push_back(tface);
inds.clear();
} // if(*it == (-1))
else {
inds.push_back(*it);
} // if(*it == (-1)) else
} // for(std::list<int32_t>::iterator it = f_data.begin(); it != f_data.end(); it++)
//PrintVectorSet("build. faces", pCoordIdx);
pPrimitiveTypes = prim_type;
return;
mg_m_err:
for (size_t i = 0, i_e = pFaces.size(); i < i_e; i++)
delete[] pFaces.at(i).mIndices;
pFaces.clear();
}
void X3DGeoHelper::add_color(aiMesh &pMesh, const std::list<aiColor3D> &pColors, const bool pColorPerVertex) {
std::list<aiColor4D> tcol;
// create RGBA array from RGB.
for (std::list<aiColor3D>::const_iterator it = pColors.begin(); it != pColors.end(); ++it)
tcol.push_back(aiColor4D((*it).r, (*it).g, (*it).b, 1));
// call existing function for adding RGBA colors
add_color(pMesh, tcol, pColorPerVertex);
}
void X3DGeoHelper::add_color(aiMesh &pMesh, const std::list<aiColor4D> &pColors, const bool pColorPerVertex) {
std::list<aiColor4D>::const_iterator col_it = pColors.begin();
if (pColorPerVertex) {
if (pColors.size() < pMesh.mNumVertices) {
throw DeadlyImportError("MeshGeometry_AddColor1. Colors count(" + to_string(pColors.size()) + ") can not be less than Vertices count(" +
to_string(pMesh.mNumVertices) + ").");
}
// copy colors to mesh
pMesh.mColors[0] = new aiColor4D[pMesh.mNumVertices];
for (size_t i = 0; i < pMesh.mNumVertices; i++)
pMesh.mColors[0][i] = *col_it++;
} // if(pColorPerVertex)
else {
if (pColors.size() < pMesh.mNumFaces) {
throw DeadlyImportError("MeshGeometry_AddColor1. Colors count(" + to_string(pColors.size()) + ") can not be less than Faces count(" +
to_string(pMesh.mNumFaces) + ").");
}
// copy colors to mesh
pMesh.mColors[0] = new aiColor4D[pMesh.mNumVertices];
for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) {
// apply color to all vertices of face
for (size_t vi = 0, vi_e = pMesh.mFaces[fi].mNumIndices; vi < vi_e; vi++) {
pMesh.mColors[0][pMesh.mFaces[fi].mIndices[vi]] = *col_it;
}
++col_it;
}
} // if(pColorPerVertex) else
}
void X3DGeoHelper::add_color(aiMesh &pMesh, const std::vector<int32_t> &pCoordIdx, const std::vector<int32_t> &pColorIdx,
const std::list<aiColor3D> &pColors, const bool pColorPerVertex) {
std::list<aiColor4D> tcol;
// create RGBA array from RGB.
for (std::list<aiColor3D>::const_iterator it = pColors.begin(); it != pColors.end(); ++it) {
tcol.push_back(aiColor4D((*it).r, (*it).g, (*it).b, 1));
}
// call existing function for adding RGBA colors
add_color(pMesh, pCoordIdx, pColorIdx, tcol, pColorPerVertex);
}
void X3DGeoHelper::add_color(aiMesh &pMesh, const std::vector<int32_t> &coordIdx, const std::vector<int32_t> &colorIdx,
const std::list<aiColor4D> &colors, bool pColorPerVertex) {
std::vector<aiColor4D> col_tgt_arr;
std::list<aiColor4D> col_tgt_list;
std::vector<aiColor4D> col_arr_copy;
if (coordIdx.size() == 0) {
throw DeadlyImportError("MeshGeometry_AddColor2. pCoordIdx can not be empty.");
}
// copy list to array because we are need indexed access to colors.
col_arr_copy.reserve(colors.size());
for (std::list<aiColor4D>::const_iterator it = colors.begin(); it != colors.end(); ++it) {
col_arr_copy.push_back(*it);
}
if (pColorPerVertex) {
if (colorIdx.size() > 0) {
// check indices array count.
if (colorIdx.size() < coordIdx.size()) {
throw DeadlyImportError("MeshGeometry_AddColor2. Colors indices count(" + to_string(colorIdx.size()) +
") can not be less than Coords inidces count(" + to_string(coordIdx.size()) + ").");
}
// create list with colors for every vertex.
col_tgt_arr.resize(pMesh.mNumVertices);
for (std::vector<int32_t>::const_iterator colidx_it = colorIdx.begin(), coordidx_it = coordIdx.begin(); colidx_it != colorIdx.end(); ++colidx_it, ++coordidx_it) {
if (*colidx_it == (-1)) {
continue; // skip faces delimiter
}
if ((unsigned int)(*coordidx_it) > pMesh.mNumVertices) {
throw DeadlyImportError("MeshGeometry_AddColor2. Coordinate idx is out of range.");
}
if ((unsigned int)*colidx_it > pMesh.mNumVertices) {
throw DeadlyImportError("MeshGeometry_AddColor2. Color idx is out of range.");
}
col_tgt_arr[*coordidx_it] = col_arr_copy[*colidx_it];
}
} // if(pColorIdx.size() > 0)
else {
// when color indices list is absent use CoordIdx.
// check indices array count.
if (colors.size() < pMesh.mNumVertices) {
throw DeadlyImportError("MeshGeometry_AddColor2. Colors count(" + to_string(colors.size()) + ") can not be less than Vertices count(" +
to_string(pMesh.mNumVertices) + ").");
}
// create list with colors for every vertex.
col_tgt_arr.resize(pMesh.mNumVertices);
for (size_t i = 0; i < pMesh.mNumVertices; i++) {
col_tgt_arr[i] = col_arr_copy[i];
}
} // if(pColorIdx.size() > 0) else
} // if(pColorPerVertex)
else {
if (colorIdx.size() > 0) {
// check indices array count.
if (colorIdx.size() < pMesh.mNumFaces) {
throw DeadlyImportError("MeshGeometry_AddColor2. Colors indices count(" + to_string(colorIdx.size()) +
") can not be less than Faces count(" + to_string(pMesh.mNumFaces) + ").");
}
// create list with colors for every vertex using faces indices.
col_tgt_arr.resize(pMesh.mNumFaces);
std::vector<int32_t>::const_iterator colidx_it = colorIdx.begin();
for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) {
if ((unsigned int)*colidx_it > pMesh.mNumFaces) throw DeadlyImportError("MeshGeometry_AddColor2. Face idx is out of range.");
col_tgt_arr[fi] = col_arr_copy[*colidx_it++];
}
} // if(pColorIdx.size() > 0)
else {
// when color indices list is absent use CoordIdx.
// check indices array count.
if (colors.size() < pMesh.mNumFaces) {
throw DeadlyImportError("MeshGeometry_AddColor2. Colors count(" + to_string(colors.size()) + ") can not be less than Faces count(" +
to_string(pMesh.mNumFaces) + ").");
}
// create list with colors for every vertex using faces indices.
col_tgt_arr.resize(pMesh.mNumFaces);
for (size_t fi = 0; fi < pMesh.mNumFaces; fi++)
col_tgt_arr[fi] = col_arr_copy[fi];
} // if(pColorIdx.size() > 0) else
} // if(pColorPerVertex) else
// copy array to list for calling function that add colors.
for (std::vector<aiColor4D>::const_iterator it = col_tgt_arr.begin(); it != col_tgt_arr.end(); ++it)
col_tgt_list.push_back(*it);
// add prepared colors list to mesh.
add_color(pMesh, col_tgt_list, pColorPerVertex);
}
void X3DGeoHelper::add_normal(aiMesh &pMesh, const std::vector<int32_t> &pCoordIdx, const std::vector<int32_t> &pNormalIdx,
const std::list<aiVector3D> &pNormals, const bool pNormalPerVertex) {
std::vector<size_t> tind;
std::vector<aiVector3D> norm_arr_copy;
// copy list to array because we are need indexed access to normals.
norm_arr_copy.reserve(pNormals.size());
for (std::list<aiVector3D>::const_iterator it = pNormals.begin(); it != pNormals.end(); ++it) {
norm_arr_copy.push_back(*it);
}
if (pNormalPerVertex) {
if (pNormalIdx.size() > 0) {
// check indices array count.
if (pNormalIdx.size() != pCoordIdx.size()) throw DeadlyImportError("Normals and Coords inidces count must be equal.");
tind.reserve(pNormalIdx.size());
for (std::vector<int32_t>::const_iterator it = pNormalIdx.begin(); it != pNormalIdx.end(); ++it) {
if (*it != (-1)) tind.push_back(*it);
}
// copy normals to mesh
pMesh.mNormals = new aiVector3D[pMesh.mNumVertices];
for (size_t i = 0; (i < pMesh.mNumVertices) && (i < tind.size()); i++) {
if (tind[i] >= norm_arr_copy.size())
throw DeadlyImportError("MeshGeometry_AddNormal. Normal index(" + to_string(tind[i]) +
") is out of range. Normals count: " + to_string(norm_arr_copy.size()) + ".");
pMesh.mNormals[i] = norm_arr_copy[tind[i]];
}
} else {
if (pNormals.size() != pMesh.mNumVertices) throw DeadlyImportError("MeshGeometry_AddNormal. Normals and vertices count must be equal.");
// copy normals to mesh
pMesh.mNormals = new aiVector3D[pMesh.mNumVertices];
std::list<aiVector3D>::const_iterator norm_it = pNormals.begin();
for (size_t i = 0; i < pMesh.mNumVertices; i++)
pMesh.mNormals[i] = *norm_it++;
}
} // if(pNormalPerVertex)
else {
if (pNormalIdx.size() > 0) {
if (pMesh.mNumFaces != pNormalIdx.size()) throw DeadlyImportError("Normals faces count must be equal to mesh faces count.");
std::vector<int32_t>::const_iterator normidx_it = pNormalIdx.begin();
tind.reserve(pNormalIdx.size());
for (size_t i = 0, i_e = pNormalIdx.size(); i < i_e; i++)
tind.push_back(*normidx_it++);
} else {
tind.reserve(pMesh.mNumFaces);
for (size_t i = 0; i < pMesh.mNumFaces; i++)
tind.push_back(i);
}
// copy normals to mesh
pMesh.mNormals = new aiVector3D[pMesh.mNumVertices];
for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) {
aiVector3D tnorm;
tnorm = norm_arr_copy[tind[fi]];
for (size_t vi = 0, vi_e = pMesh.mFaces[fi].mNumIndices; vi < vi_e; vi++)
pMesh.mNormals[pMesh.mFaces[fi].mIndices[vi]] = tnorm;
}
} // if(pNormalPerVertex) else
}
void X3DGeoHelper::add_normal(aiMesh &pMesh, const std::list<aiVector3D> &pNormals, const bool pNormalPerVertex) {
std::list<aiVector3D>::const_iterator norm_it = pNormals.begin();
if (pNormalPerVertex) {
if (pNormals.size() != pMesh.mNumVertices) throw DeadlyImportError("MeshGeometry_AddNormal. Normals and vertices count must be equal.");
// copy normals to mesh
pMesh.mNormals = new aiVector3D[pMesh.mNumVertices];
for (size_t i = 0; i < pMesh.mNumVertices; i++)
pMesh.mNormals[i] = *norm_it++;
} // if(pNormalPerVertex)
else {
if (pNormals.size() != pMesh.mNumFaces) throw DeadlyImportError("MeshGeometry_AddNormal. Normals and faces count must be equal.");
// copy normals to mesh
pMesh.mNormals = new aiVector3D[pMesh.mNumVertices];
for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) {
// apply color to all vertices of face
for (size_t vi = 0, vi_e = pMesh.mFaces[fi].mNumIndices; vi < vi_e; vi++)
pMesh.mNormals[pMesh.mFaces[fi].mIndices[vi]] = *norm_it;
++norm_it;
}
} // if(pNormalPerVertex) else
}
void X3DGeoHelper::add_tex_coord(aiMesh &pMesh, const std::vector<int32_t> &pCoordIdx, const std::vector<int32_t> &pTexCoordIdx,
const std::list<aiVector2D> &pTexCoords) {
std::vector<aiVector3D> texcoord_arr_copy;
std::vector<aiFace> faces;
unsigned int prim_type;
// copy list to array because we are need indexed access to normals.
texcoord_arr_copy.reserve(pTexCoords.size());
for (std::list<aiVector2D>::const_iterator it = pTexCoords.begin(); it != pTexCoords.end(); ++it) {
texcoord_arr_copy.push_back(aiVector3D((*it).x, (*it).y, 0));
}
if (pTexCoordIdx.size() > 0) {
coordIdx_str2faces_arr(pTexCoordIdx, faces, prim_type);
if (faces.empty()) {
throw DeadlyImportError("Failed to add texture coordinates to mesh, faces list is empty.");
}
if (faces.size() != pMesh.mNumFaces) {
throw DeadlyImportError("Texture coordinates faces count must be equal to mesh faces count.");
}
} else {
coordIdx_str2faces_arr(pCoordIdx, faces, prim_type);
}
pMesh.mTextureCoords[0] = new aiVector3D[pMesh.mNumVertices];
pMesh.mNumUVComponents[0] = 2;
for (size_t fi = 0, fi_e = faces.size(); fi < fi_e; fi++) {
if (pMesh.mFaces[fi].mNumIndices != faces.at(fi).mNumIndices)
throw DeadlyImportError("Number of indices in texture face and mesh face must be equal. Invalid face index: " + to_string(fi) + ".");
for (size_t ii = 0; ii < pMesh.mFaces[fi].mNumIndices; ii++) {
size_t vert_idx = pMesh.mFaces[fi].mIndices[ii];
size_t tc_idx = faces.at(fi).mIndices[ii];
pMesh.mTextureCoords[0][vert_idx] = texcoord_arr_copy.at(tc_idx);
}
} // for(size_t fi = 0, fi_e = faces.size(); fi < fi_e; fi++)
}
void X3DGeoHelper::add_tex_coord(aiMesh &pMesh, const std::list<aiVector2D> &pTexCoords) {
std::vector<aiVector3D> tc_arr_copy;
if (pTexCoords.size() != pMesh.mNumVertices) {
throw DeadlyImportError("MeshGeometry_AddTexCoord. Texture coordinates and vertices count must be equal.");
}
// copy list to array because we are need convert aiVector2D to aiVector3D and also get indexed access as a bonus.
tc_arr_copy.reserve(pTexCoords.size());
for (std::list<aiVector2D>::const_iterator it = pTexCoords.begin(); it != pTexCoords.end(); ++it) {
tc_arr_copy.push_back(aiVector3D((*it).x, (*it).y, 0));
}
// copy texture coordinates to mesh
pMesh.mTextureCoords[0] = new aiVector3D[pMesh.mNumVertices];
pMesh.mNumUVComponents[0] = 2;
for (size_t i = 0; i < pMesh.mNumVertices; i++) {
pMesh.mTextureCoords[0][i] = tc_arr_copy[i];
}
}
aiMesh *X3DGeoHelper::make_mesh(const std::vector<int32_t> &pCoordIdx, const std::list<aiVector3D> &pVertices) {
std::vector<aiFace> faces;
unsigned int prim_type = 0;
// create faces array from input string with vertices indices.
X3DGeoHelper::coordIdx_str2faces_arr(pCoordIdx, faces, prim_type);
if (!faces.size()) {
throw DeadlyImportError("Failed to create mesh, faces list is empty.");
}
//
// Create new mesh and copy geometry data.
//
aiMesh *tmesh = new aiMesh;
size_t ts = faces.size();
// faces
tmesh->mFaces = new aiFace[ts];
tmesh->mNumFaces = static_cast<unsigned int>(ts);
for (size_t i = 0; i < ts; i++)
tmesh->mFaces[i] = faces.at(i);
// vertices
std::list<aiVector3D>::const_iterator vit = pVertices.begin();
ts = pVertices.size();
tmesh->mVertices = new aiVector3D[ts];
tmesh->mNumVertices = static_cast<unsigned int>(ts);
for (size_t i = 0; i < ts; i++) {
tmesh->mVertices[i] = *vit++;
}
// set primitives type and return result.
tmesh->mPrimitiveTypes = prim_type;
return tmesh;
}
} // namespace Assimp