use cmath and C++ (std::) versions of functions
parent
ccf32aaf57
commit
25cda401c5
|
@ -299,7 +299,7 @@ void WriteDump(const aiScene* scene, IOStream* io, bool shortened) {
|
|||
else if (!shortened){
|
||||
ioprintf(io,"\t\t<Data length=\"%i\"> \n",tex->mWidth*tex->mHeight*4);
|
||||
|
||||
// const unsigned int width = (unsigned int)log10((double)std::max(tex->mHeight,tex->mWidth))+1;
|
||||
// const unsigned int width = (unsigned int)std::log10((double)std::max(tex->mHeight,tex->mWidth))+1;
|
||||
for (unsigned int y = 0; y < tex->mHeight;++y) {
|
||||
for (unsigned int x = 0; x < tex->mWidth;++x) {
|
||||
aiTexel* tx = tex->pcData + y*tex->mWidth+x;
|
||||
|
@ -457,7 +457,7 @@ void WriteDump(const aiScene* scene, IOStream* io, bool shortened) {
|
|||
ioprintf(io,"<MeshList num=\"%i\">\n",scene->mNumMeshes);
|
||||
for (unsigned int i = 0; i < scene->mNumMeshes;++i) {
|
||||
aiMesh* mesh = scene->mMeshes[i];
|
||||
// const unsigned int width = (unsigned int)log10((double)mesh->mNumVertices)+1;
|
||||
// const unsigned int width = (unsigned int)std::log10((double)mesh->mNumVertices)+1;
|
||||
|
||||
// mesh header
|
||||
ioprintf(io,"\t<Mesh types=\"%s %s %s %s\" material_index=\"%i\">\n",
|
||||
|
|
|
@ -1143,7 +1143,7 @@ aiCamera* BlenderImporter::ConvertCamera(const Scene& /*in*/, const Object* obj,
|
|||
out->mUp = aiVector3D(0.f, 1.f, 0.f);
|
||||
out->mLookAt = aiVector3D(0.f, 0.f, -1.f);
|
||||
if (cam->sensor_x && cam->lens) {
|
||||
out->mHorizontalFOV = atan2(cam->sensor_x, 2.f * cam->lens);
|
||||
out->mHorizontalFOV = std::atan2(cam->sensor_x, 2.f * cam->lens);
|
||||
}
|
||||
out->mClipPlaneNear = cam->clipsta;
|
||||
out->mClipPlaneFar = cam->clipend;
|
||||
|
|
|
@ -420,13 +420,13 @@ void ColladaLoader::BuildCamerasForNode( const ColladaParser& pParser, const Col
|
|||
out->mHorizontalFOV = srcCamera->mHorFov;
|
||||
|
||||
if (srcCamera->mVerFov != 10e10f && srcCamera->mAspect == 10e10f) {
|
||||
out->mAspect = tan(AI_DEG_TO_RAD(srcCamera->mHorFov)) /
|
||||
tan(AI_DEG_TO_RAD(srcCamera->mVerFov));
|
||||
out->mAspect = std::tan(AI_DEG_TO_RAD(srcCamera->mHorFov)) /
|
||||
std::tan(AI_DEG_TO_RAD(srcCamera->mVerFov));
|
||||
}
|
||||
}
|
||||
else if (srcCamera->mAspect != 10e10f && srcCamera->mVerFov != 10e10f) {
|
||||
out->mHorizontalFOV = 2.0f * AI_RAD_TO_DEG(atan(srcCamera->mAspect *
|
||||
tan(AI_DEG_TO_RAD(srcCamera->mVerFov) * 0.5f)));
|
||||
out->mHorizontalFOV = 2.0f * AI_RAD_TO_DEG(std::atan(srcCamera->mAspect *
|
||||
std::tan(AI_DEG_TO_RAD(srcCamera->mVerFov) * 0.5f)));
|
||||
}
|
||||
|
||||
// Collada uses degrees, we use radians
|
||||
|
|
|
@ -148,9 +148,9 @@ bool FixInfacingNormalsProcess::ProcessMesh( aiMesh* pcMesh, unsigned int index)
|
|||
// Check whether this is a planar surface
|
||||
const float fDelta1_yz = fDelta1_y * fDelta1_z;
|
||||
|
||||
if (fDelta1_x < 0.05f * sqrtf( fDelta1_yz ))return false;
|
||||
if (fDelta1_y < 0.05f * sqrtf( fDelta1_z * fDelta1_x ))return false;
|
||||
if (fDelta1_z < 0.05f * sqrtf( fDelta1_y * fDelta1_x ))return false;
|
||||
if (fDelta1_x < 0.05f * std::sqrt( fDelta1_yz ))return false;
|
||||
if (fDelta1_y < 0.05f * std::sqrt( fDelta1_z * fDelta1_x ))return false;
|
||||
if (fDelta1_z < 0.05f * std::sqrt( fDelta1_y * fDelta1_x ))return false;
|
||||
|
||||
// now compare the volumes of the bounding boxes
|
||||
if (std::fabs(fDelta0_x * fDelta0_y * fDelta0_z) <
|
||||
|
|
|
@ -160,7 +160,7 @@ void AnimResolver::UpdateAnimRangeSetup()
|
|||
case LWO::PrePostBehaviour_Repeat:
|
||||
case LWO::PrePostBehaviour_Oscillate:
|
||||
{
|
||||
const double start_time = delta - fmod(my_first-first,delta);
|
||||
const double start_time = delta - std::fmod(my_first-first,delta);
|
||||
std::vector<LWO::Key>::iterator n = std::find_if((*it).keys.begin(),(*it).keys.end(),
|
||||
std::bind1st(std::greater<double>(),start_time)),m;
|
||||
|
||||
|
|
|
@ -851,7 +851,7 @@ void LWOImporter::LoadLWO2Surface(unsigned int size)
|
|||
case AI_LWO_SMAN:
|
||||
{
|
||||
AI_LWO_VALIDATE_CHUNK_LENGTH(head.length,SMAN,4);
|
||||
surf.mMaximumSmoothAngle = fabs( GetF4() );
|
||||
surf.mMaximumSmoothAngle = std::fabs( GetF4() );
|
||||
break;
|
||||
}
|
||||
// vertex color channel to be applied to the surface
|
||||
|
|
|
@ -710,8 +710,8 @@ static void ReadLightInfo(aiLight* light, StreamReaderLE* stream)
|
|||
// OpenGL: I = cos(angle)^E
|
||||
// Solving: angle = acos(I^(1/E))
|
||||
ai_real E = 1.0 / std::max(spotExponent, (ai_real)0.00001);
|
||||
ai_real inner = acos(pow((ai_real)0.99, E));
|
||||
ai_real outer = acos(pow((ai_real)0.01, E));
|
||||
ai_real inner = std::acos(std::pow((ai_real)0.99, E));
|
||||
ai_real outer = std::acos(std::pow((ai_real)0.01, E));
|
||||
|
||||
// Apply the cutoff.
|
||||
outer = std::min(outer, AI_DEG_TO_RAD(spotCutoff));
|
||||
|
|
|
@ -796,7 +796,7 @@ void X3DImporter::GeometryHelper_Make_Arc2D(const float pStartAngle, const float
|
|||
}
|
||||
|
||||
// calculate arc angle and check type of arc
|
||||
float angle_full = fabs(pEndAngle - pStartAngle);
|
||||
float angle_full = std::fabs(pEndAngle - pStartAngle);
|
||||
if ( ( angle_full > AI_MATH_TWO_PI_F ) || ( angle_full == 0.0f ) )
|
||||
{
|
||||
angle_full = AI_MATH_TWO_PI_F;
|
||||
|
|
|
@ -157,7 +157,7 @@ void X3DImporter::ParseNode_Geometry2D_ArcClose2D()
|
|||
// create point list of geometry object.
|
||||
GeometryHelper_Make_Arc2D(startAngle, endAngle, radius, 10, ((CX3DImporter_NodeElement_Geometry2D*)ne)->Vertices);///TODO: IME - AI_CONFIG for NumSeg
|
||||
// add chord or two radiuses only if not a circle was defined
|
||||
if(!((fabs(endAngle - startAngle) >= AI_MATH_TWO_PI_F) || (endAngle == startAngle)))
|
||||
if(!((std::fabs(endAngle - startAngle) >= AI_MATH_TWO_PI_F) || (endAngle == startAngle)))
|
||||
{
|
||||
std::list<aiVector3D>& vlist = ((CX3DImporter_NodeElement_Geometry2D*)ne)->Vertices;// just short alias.
|
||||
|
||||
|
|
|
@ -501,7 +501,7 @@ aiMatrix4x4 XGLImporter::ReadTrafo()
|
|||
up.Normalize();
|
||||
|
||||
right = forward ^ up;
|
||||
if (fabs(up * forward) > 1e-4) {
|
||||
if (std::fabs(up * forward) > 1e-4) {
|
||||
// this is definitely wrong - a degenerate coordinate space ruins everything
|
||||
// so subtitute identity transform.
|
||||
LogError("<forward> and <up> vectors in <transform> are skewing, ignoring trafo");
|
||||
|
|
|
@ -367,21 +367,21 @@ inline void aiMatrix4x4t<TReal>::Decompose(aiVector3t<TReal>& pScaling, aiVector
|
|||
// Use a small epsilon to solve floating-point inaccuracies
|
||||
const TReal epsilon = 10e-3f;
|
||||
|
||||
pRotation.y = asin(vCols[2].x);// D. Angle around oY.
|
||||
pRotation.y = std::asin(vCols[2].x);// D. Angle around oY.
|
||||
|
||||
TReal C = cos(pRotation.y);
|
||||
TReal C = std::cos(pRotation.y);
|
||||
|
||||
if(fabs(C) > epsilon)
|
||||
if(std::fabs(C) > epsilon)
|
||||
{
|
||||
// Finding angle around oX.
|
||||
TReal tan_x = vCols[2].z / C;// A
|
||||
TReal tan_y = -vCols[2].y / C;// B
|
||||
|
||||
pRotation.x = atan2(tan_y, tan_x);
|
||||
pRotation.x = std::atan2(tan_y, tan_x);
|
||||
// Finding angle around oZ.
|
||||
tan_x = vCols[0].x / C;// E
|
||||
tan_y = -vCols[1].x / C;// F
|
||||
pRotation.z = atan2(tan_y, tan_x);
|
||||
pRotation.z = std::atan2(tan_y, tan_x);
|
||||
}
|
||||
else
|
||||
{// oY is fixed.
|
||||
|
@ -391,7 +391,7 @@ inline void aiMatrix4x4t<TReal>::Decompose(aiVector3t<TReal>& pScaling, aiVector
|
|||
TReal tan_x = vCols[1].y;// -BDF+AE => E
|
||||
TReal tan_y = vCols[0].y;// BDE+AF => F
|
||||
|
||||
pRotation.z = atan2(tan_y, tan_x);
|
||||
pRotation.z = std::atan2(tan_y, tan_x);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -407,14 +407,14 @@ aiQuaterniont<TReal> pRotation;
|
|||
pRotation.Normalize();
|
||||
|
||||
TReal angle_cos = pRotation.w;
|
||||
TReal angle_sin = sqrt(1.0f - angle_cos * angle_cos);
|
||||
TReal angle_sin = std::sqrt(1.0f - angle_cos * angle_cos);
|
||||
|
||||
pRotationAngle = acos(angle_cos) * 2;
|
||||
pRotationAngle = std::acos(angle_cos) * 2;
|
||||
|
||||
// Use a small epsilon to solve floating-point inaccuracies
|
||||
const TReal epsilon = 10e-3f;
|
||||
|
||||
if(fabs(angle_sin) < epsilon) angle_sin = 1;
|
||||
if(std::fabs(angle_sin) < epsilon) angle_sin = 1;
|
||||
|
||||
pRotationAxis.x = pRotation.x / angle_sin;
|
||||
pRotationAxis.y = pRotation.y / angle_sin;
|
||||
|
|
|
@ -48,7 +48,6 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|||
|
||||
// Some runtime headers
|
||||
#include <sys/types.h>
|
||||
#include <math.h>
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
#include <limits.h>
|
||||
|
|
Loading…
Reference in New Issue