Merge pull request #947 from r-chris/optional-double-precision

Optional double precision
pull/951/head
Kim Kulling 2016-07-16 11:15:16 +02:00 committed by GitHub
commit 23baecaff3
86 changed files with 896 additions and 799 deletions

1
.gitignore vendored
View File

@ -18,6 +18,7 @@ assimp.pc
revision.h
contrib/zlib/zconf.h
contrib/zlib/zlib.pc
include/assimp/config.h
# CMake
CMakeCache.txt

View File

@ -80,15 +80,30 @@ IF(NOT GIT_COMMIT_HASH)
SET(GIT_COMMIT_HASH 0)
ENDIF(NOT GIT_COMMIT_HASH)
OPTION(ASSIMP_DOUBLE_PRECISION
"Set to ON to enable double precision processing"
OFF
)
IF(ASSIMP_DOUBLE_PRECISION)
ADD_DEFINITIONS(-DAI_DOUBLE_PRECISION)
ENDIF(ASSIMP_DOUBLE_PRECISION)
configure_file(
${CMAKE_CURRENT_LIST_DIR}/revision.h.in
# ${CMAKE_CURRENT_SOURCE_DIR}/revision.h.in
${CMAKE_CURRENT_BINARY_DIR}/revision.h
)
configure_file(
${CMAKE_CURRENT_LIST_DIR}/include/assimp/config.h.in
${CMAKE_CURRENT_LIST_DIR}/include/assimp/config.h
)
include_directories(
./
${CMAKE_CURRENT_BINARY_DIR}
${CMAKE_CURRENT_BINARY_DIR}/include
)
OPTION(ASSIMP_OPT_BUILD_PACKAGES "Set to ON to generate CPack configuration files and packaging targets" OFF)

View File

@ -197,7 +197,7 @@ void CopyTexture(aiMaterial& mat, D3DS::Texture& texture, aiTextureType type)
// Setup the texture blend factor
if (is_not_qnan(texture.mTextureBlend))
mat.AddProperty<float>( &texture.mTextureBlend, 1, AI_MATKEY_TEXBLEND(type,0));
mat.AddProperty<ai_real>( &texture.mTextureBlend, 1, AI_MATKEY_TEXBLEND(type,0));
// Setup the texture mapping mode
mat.AddProperty<int>((int*)&texture.mMapMode,1,AI_MATKEY_MAPPINGMODE_U(type,0));
@ -207,14 +207,14 @@ void CopyTexture(aiMaterial& mat, D3DS::Texture& texture, aiTextureType type)
// FIXME: this is not really correct ...
if (texture.mMapMode == aiTextureMapMode_Mirror)
{
texture.mScaleU *= 2.f;
texture.mScaleV *= 2.f;
texture.mOffsetU /= 2.f;
texture.mOffsetV /= 2.f;
texture.mScaleU *= 2.0;
texture.mScaleV *= 2.0;
texture.mOffsetU /= 2.0;
texture.mOffsetV /= 2.0;
}
// Setup texture UV transformations
mat.AddProperty<float>(&texture.mOffsetU,5,AI_MATKEY_UVTRANSFORM(type,0));
mat.AddProperty<ai_real>(&texture.mOffsetU,5,AI_MATKEY_UVTRANSFORM(type,0));
}
// ------------------------------------------------------------------------------------------------
@ -265,10 +265,10 @@ void Discreet3DSImporter::ConvertMaterial(D3DS::Material& oldMat,
}
// Opacity
mat.AddProperty<float>( &oldMat.mTransparency,1,AI_MATKEY_OPACITY);
mat.AddProperty<ai_real>( &oldMat.mTransparency,1,AI_MATKEY_OPACITY);
// Bump height scaling
mat.AddProperty<float>( &oldMat.mBumpHeight,1,AI_MATKEY_BUMPSCALING);
mat.AddProperty<ai_real>( &oldMat.mBumpHeight,1,AI_MATKEY_BUMPSCALING);
// Two sided rendering?
if (oldMat.mTwoSided)

View File

@ -327,11 +327,11 @@ struct Texture
{
//! Default constructor
Texture()
: mOffsetU (0.0f)
, mOffsetV (0.0f)
, mScaleU (1.0f)
, mScaleV (1.0f)
, mRotation (0.0f)
: mOffsetU (0.0)
, mOffsetV (0.0)
, mScaleU (1.0)
, mScaleV (1.0)
, mRotation (0.0)
, mMapMode (aiTextureMapMode_Wrap)
, bPrivate()
, iUVSrc (0)
@ -340,17 +340,17 @@ struct Texture
}
//! Specifies the blend factor for the texture
float mTextureBlend;
ai_real mTextureBlend;
//! Specifies the filename of the texture
std::string mMapName;
//! Specifies texture coordinate offsets/scaling/rotations
float mOffsetU;
float mOffsetV;
float mScaleU;
float mScaleV;
float mRotation;
ai_real mOffsetU;
ai_real mOffsetV;
ai_real mScaleU;
ai_real mScaleV;
ai_real mRotation;
//! Specifies the mapping mode to be used for the texture
aiTextureMapMode mMapMode;
@ -369,12 +369,12 @@ struct Material
//! Default constructor. Builds a default name for the material
Material()
:
mDiffuse (0.6f,0.6f,0.6f), // FIX ... we won't want object to be black
mSpecularExponent (0.0f),
mShininessStrength (1.0f),
mDiffuse (0.6,0.6,0.6), // FIX ... we won't want object to be black
mSpecularExponent (0.0),
mShininessStrength (1.0),
mShading(Discreet3DS::Gouraud),
mTransparency (1.0f),
mBumpHeight (1.0f),
mTransparency (1.0),
mBumpHeight (1.0),
mTwoSided (false)
{
static int iCnt = 0;
@ -389,9 +389,9 @@ struct Material
//! Diffuse color of the material
aiColor3D mDiffuse;
//! Specular exponent
float mSpecularExponent;
ai_real mSpecularExponent;
//! Shininess strength, in percent
float mShininessStrength;
ai_real mShininessStrength;
//! Specular color of the material
aiColor3D mSpecular;
//! Ambient color of the material
@ -399,7 +399,7 @@ struct Material
//! Shading type to be used
Discreet3DS::shadetype3ds mShading;
//! Opacity of the material
float mTransparency;
ai_real mTransparency;
//! Diffuse texture channel
Texture sTexDiffuse;
//! Opacity texture channel
@ -415,7 +415,7 @@ struct Material
//! Shininess texture channel
Texture sTexShininess;
//! Scaling factor for the bump values
float mBumpHeight;
ai_real mBumpHeight;
//! Emissive color
aiColor3D mEmissive;
//! Ambient texture channel
@ -459,7 +459,7 @@ struct Mesh : public MeshWithSmoothingGroups<D3DS::Face>
struct aiFloatKey
{
double mTime; ///< The time of this key
float mValue; ///< The value of this key
ai_real mValue; ///< The value of this key
#ifdef __cplusplus

View File

@ -458,20 +458,20 @@ void Discreet3DSImporter::ParseChunk(const char* name, unsigned int num)
camera->mLookAt.x = stream->GetF4() - camera->mPosition.x;
camera->mLookAt.y = stream->GetF4() - camera->mPosition.y;
camera->mLookAt.z = stream->GetF4() - camera->mPosition.z;
float len = camera->mLookAt.Length();
if (len < 1e-5f) {
ai_real len = camera->mLookAt.Length();
if (len < 1e-5) {
// There are some files with lookat == position. Don't know why or whether it's ok or not.
DefaultLogger::get()->error("3DS: Unable to read proper camera look-at vector");
camera->mLookAt = aiVector3D(0.f,1.f,0.f);
camera->mLookAt = aiVector3D(0.0,1.0,0.0);
}
else camera->mLookAt /= len;
// And finally - the camera rotation angle, in counter clockwise direction
const float angle = AI_DEG_TO_RAD( stream->GetF4() );
const ai_real angle = AI_DEG_TO_RAD( stream->GetF4() );
aiQuaternion quat(camera->mLookAt,angle);
camera->mUp = quat.GetMatrix() * aiVector3D(0.f,1.f,0.f);
camera->mUp = quat.GetMatrix() * aiVector3D(0.0,1.0,0.0);
// Read the lense angle
camera->mHorizontalFOV = AI_DEG_TO_RAD ( stream->GetF4() );
@ -1167,13 +1167,13 @@ void Discreet3DSImporter::ParseMaterialChunk()
case Discreet3DS::CHUNK_MAT_TRANSPARENCY:
{
// This is the material's transparency
float* pcf = &mScene->mMaterials.back().mTransparency;
ai_real* pcf = &mScene->mMaterials.back().mTransparency;
*pcf = ParsePercentageChunk();
// NOTE: transparency, not opacity
if (is_qnan(*pcf))
*pcf = 1.0f;
else *pcf = 1.0f - *pcf * (float)0xFFFF / 100.0f;
*pcf = 1.0;
else *pcf = 1.0 - *pcf * (ai_real)0xFFFF / 100.0;
}
break;
@ -1189,30 +1189,30 @@ void Discreet3DSImporter::ParseMaterialChunk()
case Discreet3DS::CHUNK_MAT_SHININESS:
{ // This is the shininess of the material
float* pcf = &mScene->mMaterials.back().mSpecularExponent;
ai_real* pcf = &mScene->mMaterials.back().mSpecularExponent;
*pcf = ParsePercentageChunk();
if (is_qnan(*pcf))
*pcf = 0.0f;
else *pcf *= (float)0xFFFF;
*pcf = 0.0;
else *pcf *= (ai_real)0xFFFF;
}
break;
case Discreet3DS::CHUNK_MAT_SHININESS_PERCENT:
{ // This is the shininess strength of the material
float* pcf = &mScene->mMaterials.back().mShininessStrength;
ai_real* pcf = &mScene->mMaterials.back().mShininessStrength;
*pcf = ParsePercentageChunk();
if (is_qnan(*pcf))
*pcf = 0.0f;
else *pcf *= (float)0xffff / 100.0f;
*pcf = 0.0;
else *pcf *= (ai_real)0xffff / 100.0;
}
break;
case Discreet3DS::CHUNK_MAT_SELF_ILPCT:
{ // This is the self illumination strength of the material
float f = ParsePercentageChunk();
ai_real f = ParsePercentageChunk();
if (is_qnan(f))
f = 0.0f;
else f *= (float)0xFFFF / 100.0f;
f = 0.0;
else f *= (ai_real)0xFFFF / 100.0;
mScene->mMaterials.back().mEmissive = aiColor3D(f,f,f);
}
break;
@ -1277,7 +1277,7 @@ void Discreet3DSImporter::ParseTextureChunk(D3DS::Texture* pcOut)
case Discreet3DS::CHUNK_PERCENTW:
// Manually parse the blend factor
pcOut->mTextureBlend = (float)((uint16_t)stream->GetI2()) / 100.0f;
pcOut->mTextureBlend = (ai_real)((uint16_t)stream->GetI2()) / 100.0;
break;
case Discreet3DS::CHUNK_MAT_MAP_USCALE:
@ -1336,7 +1336,7 @@ void Discreet3DSImporter::ParseTextureChunk(D3DS::Texture* pcOut)
// ------------------------------------------------------------------------------------------------
// Read a percentage chunk
float Discreet3DSImporter::ParsePercentageChunk()
ai_real Discreet3DSImporter::ParsePercentageChunk()
{
Discreet3DS::Chunk chunk;
ReadChunk(&chunk);
@ -1344,7 +1344,7 @@ float Discreet3DSImporter::ParsePercentageChunk()
if (Discreet3DS::CHUNK_PERCENTF == chunk.Flag)
return stream->GetF4();
else if (Discreet3DS::CHUNK_PERCENTW == chunk.Flag)
return (float)((uint16_t)stream->GetI2()) / (float)0xFFFF;
return (ai_real)((uint16_t)stream->GetI2()) / (ai_real)0xFFFF;
return get_qnan();
}
@ -1356,7 +1356,7 @@ void Discreet3DSImporter::ParseColorChunk(aiColor3D* out,
ai_assert(out != NULL);
// error return value
const float qnan = get_qnan();
const ai_real qnan = get_qnan();
static const aiColor3D clrError = aiColor3D(qnan,qnan,qnan);
Discreet3DS::Chunk chunk;
@ -1372,7 +1372,7 @@ void Discreet3DSImporter::ParseColorChunk(aiColor3D* out,
bGamma = true;
case Discreet3DS::CHUNK_RGBF:
if (sizeof(float) * 3 > diff) {
if (sizeof(ai_real) * 3 > diff) {
*out = clrError;
return;
}
@ -1388,9 +1388,9 @@ void Discreet3DSImporter::ParseColorChunk(aiColor3D* out,
*out = clrError;
return;
}
out->r = (float)(uint8_t)stream->GetI1() / 255.0f;
out->g = (float)(uint8_t)stream->GetI1() / 255.0f;
out->b = (float)(uint8_t)stream->GetI1() / 255.0f;
out->r = (ai_real)(uint8_t)stream->GetI1() / 255.0;
out->g = (ai_real)(uint8_t)stream->GetI1() / 255.0;
out->b = (ai_real)(uint8_t)stream->GetI1() / 255.0;
break;
// Percentage chunks are accepted, too.
@ -1404,7 +1404,7 @@ void Discreet3DSImporter::ParseColorChunk(aiColor3D* out,
case Discreet3DS::CHUNK_PERCENTW:
if (acceptPercent && 1 <= diff) {
out->g = out->b = out->r = (float)(uint8_t)stream->GetI1() / 255.0f;
out->g = out->b = out->r = (ai_real)(uint8_t)stream->GetI1() / 255.0;
break;
}
*out = clrError;

View File

@ -119,7 +119,7 @@ protected:
* chunk behind afterwards. If no percentage chunk is found
* QNAN is returned.
*/
float ParsePercentageChunk();
ai_real ParsePercentageChunk();
// -------------------------------------------------------------------
/** Parse a color chunk. mCurrent will point to the next
@ -265,7 +265,7 @@ protected:
aiColor3D mClrAmbient;
/** Master scaling factor of the scene */
float mMasterScale;
ai_real mMasterScale;
/** Path to the background image of the scene */
std::string mBackgroundImage;

View File

@ -819,10 +819,10 @@ void CopyASETexture(aiMaterial& mat, ASE::Texture& texture, aiTextureType type)
// Setup the texture blend factor
if (is_not_qnan(texture.mTextureBlend))
mat.AddProperty<float>( &texture.mTextureBlend, 1, AI_MATKEY_TEXBLEND(type,0));
mat.AddProperty<ai_real>( &texture.mTextureBlend, 1, AI_MATKEY_TEXBLEND(type,0));
// Setup texture UV transformations
mat.AddProperty<float>(&texture.mOffsetU,5,AI_MATKEY_UVTRANSFORM(type,0));
mat.AddProperty<ai_real>(&texture.mOffsetU,5,AI_MATKEY_UVTRANSFORM(type,0));
}
// ------------------------------------------------------------------------------------------------
@ -865,7 +865,7 @@ void ASEImporter::ConvertMaterial(ASE::Material& mat)
}
// opacity
mat.pcInstance->AddProperty<float>( &mat.mTransparency,1,AI_MATKEY_OPACITY);
mat.pcInstance->AddProperty<ai_real>( &mat.mTransparency,1,AI_MATKEY_OPACITY);
// Two sided rendering?
if (mat.mTwoSided)

View File

@ -431,7 +431,7 @@ void Parser::ParseLV1SoftSkinBlock()
ParseString(bone,"*MESH_SOFTSKINVERTS.Bone");
// Find the bone in the mesh's list
std::pair<int,float> me;
std::pair<int,ai_real> me;
me.first = -1;
for (unsigned int n = 0; n < curMesh->mBones.size();++n)
@ -618,12 +618,12 @@ void Parser::ParseLV2MaterialBlock(ASE::Material& mat)
if (TokenMatch(filePtr,"MATERIAL_TRANSPARENCY",21))
{
ParseLV4MeshFloat(mat.mTransparency);
mat.mTransparency = 1.0f - mat.mTransparency;continue;
mat.mTransparency = 1.0 - mat.mTransparency;continue;
}
// material self illumination
if (TokenMatch(filePtr,"MATERIAL_SELFILLUM",18))
{
float f = 0.0f;
ai_real f = 0.0;
ParseLV4MeshFloat(f);
mat.mEmissive.r = f;
@ -1251,7 +1251,7 @@ void Parser::ParseLV3RotAnimationBlock(ASE::Animation& anim)
{
anim.akeyRotations.push_back(aiQuatKey());
aiQuatKey& key = anim.akeyRotations.back();
aiVector3D v;float f;
aiVector3D v;ai_real f;
ParseLV4MeshFloatTriple(&v.x,iIndex);
ParseLV4MeshFloat(f);
key.mTime = (double)iIndex;
@ -1604,7 +1604,7 @@ void Parser::ParseLV4MeshBonesVertices(unsigned int iNumVertices,ASE::Mesh& mesh
}
// --- ignored
float afVert[3];
ai_real afVert[3];
ParseLV4MeshFloatTriple(afVert);
std::pair<int,float> pairOut;
@ -2102,7 +2102,7 @@ void Parser::ParseLV4MeshLongTriple(unsigned int* apOut, unsigned int& rIndexOut
ParseLV4MeshLongTriple(apOut);
}
// ------------------------------------------------------------------------------------------------
void Parser::ParseLV4MeshFloatTriple(float* apOut, unsigned int& rIndexOut)
void Parser::ParseLV4MeshFloatTriple(ai_real* apOut, unsigned int& rIndexOut)
{
ai_assert(NULL != apOut);
@ -2113,7 +2113,7 @@ void Parser::ParseLV4MeshFloatTriple(float* apOut, unsigned int& rIndexOut)
ParseLV4MeshFloatTriple(apOut);
}
// ------------------------------------------------------------------------------------------------
void Parser::ParseLV4MeshFloatTriple(float* apOut)
void Parser::ParseLV4MeshFloatTriple(ai_real* apOut)
{
ai_assert(NULL != apOut);
@ -2121,19 +2121,19 @@ void Parser::ParseLV4MeshFloatTriple(float* apOut)
ParseLV4MeshFloat(apOut[i]);
}
// ------------------------------------------------------------------------------------------------
void Parser::ParseLV4MeshFloat(float& fOut)
void Parser::ParseLV4MeshFloat(ai_real& fOut)
{
// skip spaces and tabs
if(!SkipSpaces(&filePtr))
{
// LOG
LogWarning("Unable to parse float: unexpected EOL [#1]");
fOut = 0.0f;
fOut = 0.0;
++iLineNumber;
return;
}
// parse the first float
filePtr = fast_atoreal_move<float>(filePtr,fOut);
filePtr = fast_atoreal_move<ai_real>(filePtr,fOut);
}
// ------------------------------------------------------------------------------------------------
void Parser::ParseLV4MeshLong(unsigned int& iOut)

View File

@ -222,7 +222,7 @@ struct BaseNode
mName = szTemp;
// Set mTargetPosition to qnan
const float qnan = get_qnan();
const ai_real qnan = get_qnan();
mTargetPosition.x = qnan;
}
@ -317,9 +317,9 @@ struct Light : public BaseNode
LightType mLightType;
aiColor3D mColor;
float mIntensity;
float mAngle; // in degrees
float mFalloff;
ai_real mIntensity;
ai_real mAngle; // in degrees
ai_real mFalloff;
};
// ---------------------------------------------------------------------------
@ -342,7 +342,7 @@ struct Camera : public BaseNode
{
}
float mFOV, mNear, mFar;
ai_real mFOV, mNear, mFar;
CameraType mCameraType;
};
@ -544,13 +544,13 @@ private:
//! (also works for MESH_TVERT, MESH_CFACE, MESH_VERTCOL ...)
//! \param apOut Output buffer (3 floats)
//! \param rIndexOut Output index
void ParseLV4MeshFloatTriple(float* apOut, unsigned int& rIndexOut);
void ParseLV4MeshFloatTriple(ai_real* apOut, unsigned int& rIndexOut);
// -------------------------------------------------------------------
//! Parse a *MESH_VERT block in a file
//! (also works for MESH_TVERT, MESH_CFACE, MESH_VERTCOL ...)
//! \param apOut Output buffer (3 floats)
void ParseLV4MeshFloatTriple(float* apOut);
void ParseLV4MeshFloatTriple(ai_real* apOut);
// -------------------------------------------------------------------
//! Parse a *MESH_TFACE block in a file
@ -568,7 +568,7 @@ private:
// -------------------------------------------------------------------
//! Parse a single float element
//! \param fOut Output float
void ParseLV4MeshFloat(float& fOut);
void ParseLV4MeshFloat(ai_real& fOut);
// -------------------------------------------------------------------
//! Parse a single int element

View File

@ -546,11 +546,11 @@ ASSIMP_API void aiSetImportPropertyInteger(aiPropertyStore* p, const char* szNam
// ------------------------------------------------------------------------------------------------
// Importer::SetPropertyFloat
ASSIMP_API void aiSetImportPropertyFloat(aiPropertyStore* p, const char* szName, float value)
ASSIMP_API void aiSetImportPropertyFloat(aiPropertyStore* p, const char* szName, ai_real value)
{
ASSIMP_BEGIN_EXCEPTION_REGION();
PropertyMap* pp = reinterpret_cast<PropertyMap*>(p);
SetGenericProperty<float>(pp->floats,szName,value);
SetGenericProperty<ai_real>(pp->floats,szName,value);
ASSIMP_END_EXCEPTION_REGION(void);
}

View File

@ -470,19 +470,19 @@ PlaneP2T BlenderTessellatorP2T::FindLLSQPlane( const std::vector< PointP2T >& po
{
PlaneP2T result;
aiVector3D sum( 0.0f );
aiVector3D sum( 0.0 );
for ( size_t i = 0; i < points.size( ); ++i )
{
sum += points[ i ].point3D;
}
result.centre = sum * ( 1.0f / points.size( ) );
result.centre = sum * (ai_real)( 1.0 / points.size( ) );
float sumXX = 0.0f;
float sumXY = 0.0f;
float sumXZ = 0.0f;
float sumYY = 0.0f;
float sumYZ = 0.0f;
float sumZZ = 0.0f;
ai_real sumXX = 0.0;
ai_real sumXY = 0.0;
ai_real sumXZ = 0.0;
ai_real sumYY = 0.0;
ai_real sumYZ = 0.0;
ai_real sumZZ = 0.0;
for ( size_t i = 0; i < points.size( ); ++i )
{
aiVector3D offset = points[ i ].point3D - result.centre;
@ -496,7 +496,7 @@ PlaneP2T BlenderTessellatorP2T::FindLLSQPlane( const std::vector< PointP2T >& po
aiMatrix3x3 mtx( sumXX, sumXY, sumXZ, sumXY, sumYY, sumYZ, sumXZ, sumYZ, sumZZ );
const float det = mtx.Determinant( );
const ai_real det = mtx.Determinant( );
if ( det == 0.0f )
{
result.normal = aiVector3D( 0.0f );

View File

@ -149,7 +149,7 @@ void ColladaExporter::WriteFile()
// Writes the asset header
void ColladaExporter::WriteHeader()
{
static const float epsilon = 0.00001f;
static const ai_real epsilon = 0.00001;
static const aiQuaternion x_rot(aiMatrix3x3(
0, -1, 0,
1, 0, 0,
@ -176,9 +176,9 @@ void ColladaExporter::WriteHeader()
bool add_root_node = false;
float scale = 1.0;
ai_real scale = 1.0;
if(std::abs(scaling.x - scaling.y) <= epsilon && std::abs(scaling.x - scaling.z) <= epsilon && std::abs(scaling.y - scaling.z) <= epsilon) {
scale = (float) ((((double) scaling.x) + ((double) scaling.y) + ((double) scaling.z)) / 3.0);
scale = (ai_real) ((((double) scaling.x) + ((double) scaling.y) + ((double) scaling.z)) / 3.0);
} else {
add_root_node = true;
}
@ -450,7 +450,7 @@ void ColladaExporter::WriteSpotLight(const aiLight *const light){
srcLight->mFalloffAngle);
*/
const float fallOffAngle = AI_RAD_TO_DEG(light->mAngleInnerCone);
const ai_real fallOffAngle = AI_RAD_TO_DEG(light->mAngleInnerCone);
mOutput << startstr <<"<falloff_angle sid=\"fall_off_angle\">"
<< fallOffAngle
<<"</falloff_angle>" << endstr;
@ -803,10 +803,10 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
PushTag();
// Positions
WriteFloatArray( idstr + "-positions", FloatType_Vector, (float*) mesh->mVertices, mesh->mNumVertices);
WriteFloatArray( idstr + "-positions", FloatType_Vector, (ai_real*) mesh->mVertices, mesh->mNumVertices);
// Normals, if any
if( mesh->HasNormals() )
WriteFloatArray( idstr + "-normals", FloatType_Vector, (float*) mesh->mNormals, mesh->mNumVertices);
WriteFloatArray( idstr + "-normals", FloatType_Vector, (ai_real*) mesh->mNormals, mesh->mNumVertices);
// texture coords
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a)
@ -814,7 +814,7 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
if( mesh->HasTextureCoords( a) )
{
WriteFloatArray( idstr + "-tex" + std::to_string(a), mesh->mNumUVComponents[a] == 3 ? FloatType_TexCoord3 : FloatType_TexCoord2,
(float*) mesh->mTextureCoords[a], mesh->mNumVertices);
(ai_real*) mesh->mTextureCoords[a], mesh->mNumVertices);
}
}
@ -822,7 +822,7 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a)
{
if( mesh->HasVertexColors( a) )
WriteFloatArray( idstr + "-color" + std::to_string(a), FloatType_Color, (float*) mesh->mColors[a], mesh->mNumVertices);
WriteFloatArray( idstr + "-color" + std::to_string(a), FloatType_Color, (ai_real*) mesh->mColors[a], mesh->mNumVertices);
}
// assemble vertex structure
@ -917,7 +917,7 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
// ------------------------------------------------------------------------------------------------
// Writes a float array of the given type
void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataType pType, const float* pData, size_t pElementCount)
void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataType pType, const ai_real* pData, size_t pElementCount)
{
size_t floatsPerElement = 0;
switch( pType )

View File

@ -108,7 +108,7 @@ protected:
enum FloatDataType { FloatType_Vector, FloatType_TexCoord2, FloatType_TexCoord3, FloatType_Color };
/// Writes a float array of the given type
void WriteFloatArray( const std::string& pIdString, FloatDataType pType, const float* pData, size_t pElementCount);
void WriteFloatArray( const std::string& pIdString, FloatDataType pType, const ai_real* pData, size_t pElementCount);
/// Writes the scene library
void WriteSceneLibrary();
@ -160,10 +160,10 @@ protected:
struct Property
{
bool exist;
float value;
ai_real value;
Property()
: exist(false)
, value(0.0f)
, value(0.0)
{}
};

View File

@ -94,7 +94,7 @@ struct Transform
{
std::string mID; ///< SID of the transform step, by which anim channels address their target node
TransformType mType;
float f[16]; ///< Interpretation of data depends on the type of the transformation
ai_real f[16]; ///< Interpretation of data depends on the type of the transformation
};
/** A collada camera. */
@ -116,16 +116,16 @@ struct Camera
bool mOrtho;
//! Horizontal field of view in degrees
float mHorFov;
ai_real mHorFov;
//! Vertical field of view in degrees
float mVerFov;
ai_real mVerFov;
//! Screen aspect
float mAspect;
ai_real mAspect;
//! Near& far z
float mZNear, mZFar;
ai_real mZNear, mZFar;
};
#define ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET 1e9f
@ -152,21 +152,21 @@ struct Light
aiColor3D mColor;
//! Light attenuation
float mAttConstant,mAttLinear,mAttQuadratic;
ai_real mAttConstant,mAttLinear,mAttQuadratic;
//! Spot light falloff
float mFalloffAngle;
float mFalloffExponent;
ai_real mFalloffAngle;
ai_real mFalloffExponent;
// -----------------------------------------------------
// FCOLLADA extension from here
//! ... related stuff from maja and max extensions
float mPenumbraAngle;
float mOuterAngle;
ai_real mPenumbraAngle;
ai_real mOuterAngle;
//! Common light intensity
float mIntensity;
ai_real mIntensity;
};
/** Short vertex index description */
@ -275,7 +275,7 @@ struct Node
struct Data
{
bool mIsStringArray;
std::vector<float> mValues;
std::vector<ai_real> mValues;
std::vector<std::string> mStrings;
};
@ -387,7 +387,7 @@ struct Controller
std::string mJointNameSource;
///< The bind shape matrix, as array of floats. I'm not sure what this matrix actually describes, but it can't be ignored in all cases
float mBindShapeMatrix[16];
ai_real mBindShapeMatrix[16];
// accessor URL of the joint inverse bind matrices
std::string mJointOffsetMatrixSource;
@ -490,11 +490,11 @@ struct Sampler
/** Weighting factor
*/
float mWeighting;
ai_real mWeighting;
/** Mixing factor from OKINO
*/
float mMixWithPrevious;
ai_real mMixWithPrevious;
};
/** A collada effect. Can contain about anything according to the Collada spec,
@ -513,8 +513,8 @@ struct Effect
mTexTransparent, mTexBump, mTexReflective;
// Scalar factory
float mShininess, mRefractIndex, mReflectivity;
float mTransparency;
ai_real mShininess, mRefractIndex, mReflectivity;
ai_real mTransparency;
bool mHasTransparency;
bool mRGBTransparency;
bool mInvertTransparency;

View File

@ -704,7 +704,7 @@ aiMesh* ColladaLoader::CreateMesh( const ColladaParser& pParser, const Collada::
size_t jointIndex = iit->first;
size_t vertexIndex = iit->second;
float weight = ReadFloat( weightsAcc, weights, vertexIndex, 0);
ai_real weight = ReadFloat( weightsAcc, weights, vertexIndex, 0);
// one day I gonna kill that XSI Collada exporter
if( weight > 0.0f)
@ -1071,7 +1071,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
continue;
// resolve the data pointers for all anim channels. Find the minimum time while we're at it
float startTime = 1e20f, endTime = -1e20f;
ai_real startTime = 1e20, endTime = -1e20;
for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
{
Collada::ChannelEntry& e = *it;
@ -1100,7 +1100,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
// now for every unique point in time, find or interpolate the key values for that time
// and apply them to the transform chain. Then the node's present transformation can be calculated.
float time = startTime;
ai_real time = startTime;
while( 1)
{
for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
@ -1109,7 +1109,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
// find the keyframe behind the current point in time
size_t pos = 0;
float postTime = 0.f;
ai_real postTime = 0.0;
while( 1)
{
if( pos >= e.mTimeAccessor->mCount)
@ -1123,19 +1123,19 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
pos = std::min( pos, e.mTimeAccessor->mCount-1);
// read values from there
float temp[16];
ai_real temp[16];
for( size_t c = 0; c < e.mValueAccessor->mSize; ++c)
temp[c] = ReadFloat( *e.mValueAccessor, *e.mValueData, pos, c);
// if not exactly at the key time, interpolate with previous value set
if( postTime > time && pos > 0)
{
float preTime = ReadFloat( *e.mTimeAccessor, *e.mTimeData, pos-1, 0);
float factor = (time - postTime) / (preTime - postTime);
ai_real preTime = ReadFloat( *e.mTimeAccessor, *e.mTimeData, pos-1, 0);
ai_real factor = (time - postTime) / (preTime - postTime);
for( size_t c = 0; c < e.mValueAccessor->mSize; ++c)
{
float v = ReadFloat( *e.mValueAccessor, *e.mValueData, pos-1, c);
ai_real v = ReadFloat( *e.mValueAccessor, *e.mValueData, pos-1, c);
temp[c] += (v - temp[c]) * factor;
}
}
@ -1152,7 +1152,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
resultTrafos.push_back( mat);
// find next point in time to evaluate. That's the closest frame larger than the current in any channel
float nextTime = 1e20f;
ai_real nextTime = 1e20;
for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
{
Collada::ChannelEntry& channelElement = *it;
@ -1161,7 +1161,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
size_t pos = 0;
while( pos < channelElement.mTimeAccessor->mCount)
{
const float t = ReadFloat( *channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
const ai_real t = ReadFloat( *channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
if( t > time)
{
nextTime = std::min( nextTime, t);
@ -1174,16 +1174,16 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
// Sub-sample axis-angle channels if the delta between two consecutive
// key-frame angles is >= 180 degrees.
if (transforms[channelElement.mTransformIndex].mType == Collada::TF_ROTATE && channelElement.mSubElement == 3 && pos > 0 && pos < channelElement.mTimeAccessor->mCount) {
const float cur_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos, 0);
const float last_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos - 1, 0);
const float cur_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
const float last_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos - 1, 0);
const float last_eval_angle = last_key_angle + (cur_key_angle - last_key_angle) * (time - last_key_time) / (cur_key_time - last_key_time);
const float delta = std::fabs(cur_key_angle - last_eval_angle);
if (delta >= 180.0f) {
const int subSampleCount = static_cast<int>(floorf(delta / 90.0f));
const ai_real cur_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos, 0);
const ai_real last_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos - 1, 0);
const ai_real cur_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
const ai_real last_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos - 1, 0);
const ai_real last_eval_angle = last_key_angle + (cur_key_angle - last_key_angle) * (time - last_key_time) / (cur_key_time - last_key_time);
const ai_real delta = std::abs(cur_key_angle - last_eval_angle);
if (delta >= 180.0) {
const int subSampleCount = static_cast<int>(floorf(delta / 90.0));
if (cur_key_time != time) {
const float nextSampleTime = time + (cur_key_time - time) / subSampleCount;
const ai_real nextSampleTime = time + (cur_key_time - time) / subSampleCount;
nextTime = std::min(nextTime, nextSampleTime);
}
}
@ -1289,7 +1289,7 @@ void ColladaLoader::AddTexture ( aiMaterial& mat, const ColladaParser& pParser,
_AI_MATKEY_TEXBLEND_BASE, type, idx);
// Blend factor
mat.AddProperty((float*)&sampler.mWeighting , 1,
mat.AddProperty((ai_real*)&sampler.mWeighting , 1,
_AI_MATKEY_TEXBLEND_BASE, type, idx);
// UV source index ... if we didn't resolve the mapping, it is actually just
@ -1464,11 +1464,11 @@ void ColladaLoader::BuildMaterials( ColladaParser& pParser, aiScene* /*pScene*/)
const int shadeMode = aiShadingMode_Phong;
mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
aiColor4D colAmbient( 0.2f, 0.2f, 0.2f, 1.0f), colDiffuse( 0.8f, 0.8f, 0.8f, 1.0f), colSpecular( 0.5f, 0.5f, 0.5f, 0.5f);
aiColor4D colAmbient( 0.2, 0.2, 0.2, 1.0), colDiffuse( 0.8, 0.8, 0.8, 1.0), colSpecular( 0.5, 0.5, 0.5, 0.5);
mat->AddProperty( &colAmbient, 1, AI_MATKEY_COLOR_AMBIENT);
mat->AddProperty( &colDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
mat->AddProperty( &colSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
const float specExp = 5.0f;
const ai_real specExp = 5.0;
mat->AddProperty( &specExp, 1, AI_MATKEY_SHININESS);
}
#endif
@ -1587,7 +1587,7 @@ void ColladaLoader::ConvertPath (aiString& ss)
// ------------------------------------------------------------------------------------------------
// Reads a float value from an accessor and its data array.
float ColladaLoader::ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const
ai_real ColladaLoader::ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const
{
// FIXME: (thom) Test for data type here in every access? For the moment, I leave this to the caller
size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset + pOffset;

View File

@ -190,7 +190,7 @@ protected:
* @param pOffset Offset into the element, for multipart elements such as vectors or matrices
* @return the specified value
*/
float ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const;
ai_real ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const;
/** Reads a string value from an accessor and its data array.
* @param pAccessor The accessor to use for reading

View File

@ -128,7 +128,7 @@ bool ColladaParser::ReadBoolFromTextContent()
// ------------------------------------------------------------------------------------------------
// Read float from text contents of current element
float ColladaParser::ReadFloatFromTextContent()
ai_real ColladaParser::ReadFloatFromTextContent()
{
const char* cur = GetTextContent();
return fast_atof(cur);
@ -674,7 +674,7 @@ void ColladaParser::ReadController( Collada::Controller& pController)
for( unsigned int a = 0; a < 16; a++)
{
// read a number
content = fast_atoreal_move<float>( content, pController.mBindShapeMatrix[a]);
content = fast_atoreal_move<ai_real>( content, pController.mBindShapeMatrix[a]);
// skip whitespace after it
SkipSpacesAndLineEnd( &content);
}
@ -1179,13 +1179,13 @@ void ColladaParser::ReadLight( Collada::Light& pLight)
// text content contains 3 floats
const char* content = GetTextContent();
content = fast_atoreal_move<float>( content, (float&)pLight.mColor.r);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pLight.mColor.r);
SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pLight.mColor.g);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pLight.mColor.g);
SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pLight.mColor.b);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pLight.mColor.b);
SkipSpacesAndLineEnd( &content);
TestClosing( "color");
@ -1578,16 +1578,16 @@ void ColladaParser::ReadEffectColor( aiColor4D& pColor, Sampler& pSampler)
// text content contains 4 floats
const char* content = GetTextContent();
content = fast_atoreal_move<float>( content, (float&)pColor.r);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.r);
SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pColor.g);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.g);
SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pColor.b);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.b);
SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pColor.a);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.a);
SkipSpacesAndLineEnd( &content);
TestClosing( "color");
}
@ -1636,7 +1636,7 @@ void ColladaParser::ReadEffectColor( aiColor4D& pColor, Sampler& pSampler)
// ------------------------------------------------------------------------------------------------
// Reads an effect entry containing a float
void ColladaParser::ReadEffectFloat( float& pFloat)
void ColladaParser::ReadEffectFloat( ai_real& pFloat)
{
while( mReader->read())
{
@ -1645,7 +1645,7 @@ void ColladaParser::ReadEffectFloat( float& pFloat)
{
// text content contains a single floats
const char* content = GetTextContent();
content = fast_atoreal_move<float>( content, pFloat);
content = fast_atoreal_move<ai_real>( content, pFloat);
SkipSpacesAndLineEnd( &content);
TestClosing( "float");
@ -1943,9 +1943,9 @@ void ColladaParser::ReadDataArray()
if( *content == 0)
ThrowException( "Expected more values while reading float_array contents.");
float value;
ai_real value;
// read a number
content = fast_atoreal_move<float>( content, value);
content = fast_atoreal_move<ai_real>( content, value);
data.mValues.push_back( value);
// skip whitespace after it
SkipSpacesAndLineEnd( &content);
@ -2456,11 +2456,11 @@ void ColladaParser::ExtractDataObjectFromChannel( const InputChannel& pInput, si
ThrowException( format() << "Invalid data index (" << pLocalIndex << "/" << acc.mCount << ") in primitive specification" );
// get a pointer to the start of the data object referred to by the accessor and the local index
const float* dataObject = &(acc.mData->mValues[0]) + acc.mOffset + pLocalIndex* acc.mStride;
const ai_real* dataObject = &(acc.mData->mValues[0]) + acc.mOffset + pLocalIndex* acc.mStride;
// assemble according to the accessors component sub-offset list. We don't care, yet,
// what kind of object exactly we're extracting here
float obj[4];
ai_real obj[4];
for( size_t c = 0; c < 4; ++c)
obj[c] = dataObject[acc.mSubOffset[c]];
@ -2764,7 +2764,7 @@ void ColladaParser::ReadNodeTransformation( Node* pNode, TransformType pType)
for( unsigned int a = 0; a < sNumParameters[pType]; a++)
{
// read a number
content = fast_atoreal_move<float>( content, tf.f[a]);
content = fast_atoreal_move<ai_real>( content, tf.f[a]);
// skip whitespace after it
SkipSpacesAndLineEnd( &content);
}
@ -3075,7 +3075,7 @@ aiMatrix4x4 ColladaParser::CalculateResultTransform( const std::vector<Transform
case TF_ROTATE:
{
aiMatrix4x4 rot;
float angle = tf.f[3] * float( AI_MATH_PI) / 180.0f;
ai_real angle = tf.f[3] * ai_real( AI_MATH_PI) / 180.0;
aiVector3D axis( tf.f[0], tf.f[1], tf.f[2]);
aiMatrix4x4::Rotation( angle, axis, rot);
res *= rot;

View File

@ -147,7 +147,7 @@ namespace Assimp
void ReadEffectColor( aiColor4D& pColor, Collada::Sampler& pSampler);
/** Reads an effect entry containing a float */
void ReadEffectFloat( float& pFloat);
void ReadEffectFloat( ai_real& pFloat);
/** Reads an effect parameter specification of any kind */
void ReadEffectParam( Collada::EffectParam& pParam);
@ -259,7 +259,7 @@ namespace Assimp
bool ReadBoolFromTextContent();
/** Reads a single float from current text content */
float ReadFloatFromTextContent();
ai_real ReadFloatFromTextContent();
/** Calculates the resulting transformation from all the given transform steps */
aiMatrix4x4 CalculateResultTransform( const std::vector<Collada::Transform>& pTransforms) const;
@ -335,7 +335,7 @@ namespace Assimp
Collada::Animation mAnims;
/** Size unit: how large compared to a meter */
float mUnitSize;
ai_real mUnitSize;
/** Which is the up vector */
enum { UP_X, UP_Y, UP_Z } mUpDirection;

View File

@ -49,10 +49,10 @@ using namespace Assimp;
namespace {
const static aiVector3D base_axis_y(0.f,1.f,0.f);
const static aiVector3D base_axis_x(1.f,0.f,0.f);
const static aiVector3D base_axis_z(0.f,0.f,1.f);
const static float angle_epsilon = 0.95f;
const static aiVector3D base_axis_y(0.0,1.0,0.0);
const static aiVector3D base_axis_x(1.0,0.0,0.0);
const static aiVector3D base_axis_z(0.0,0.0,1.0);
const static ai_real angle_epsilon = 0.95;
}
// ------------------------------------------------------------------------------------------------
@ -81,9 +81,9 @@ bool ComputeUVMappingProcess::IsActive( unsigned int pFlags) const
inline bool PlaneIntersect(const aiRay& ray, const aiVector3D& planePos,
const aiVector3D& planeNormal, aiVector3D& pos)
{
const float b = planeNormal * (planePos - ray.pos);
float h = ray.dir * planeNormal;
if ((h < 10e-5f && h > -10e-5f) || (h = b/h) < 0)
const ai_real b = planeNormal * (planePos - ray.pos);
ai_real h = ray.dir * planeNormal;
if ((h < 10e-5 && h > -10e-5) || (h = b/h) < 0)
return false;
pos = ray.pos + (ray.dir * h);
@ -109,11 +109,11 @@ void RemoveUVSeams (aiMesh* mesh, aiVector3D* out)
// much easier, but I don't know how and am currently too tired to
// to think about a better solution.
const static float LOWER_LIMIT = 0.1f;
const static float UPPER_LIMIT = 0.9f;
const static ai_real LOWER_LIMIT = 0.1;
const static ai_real UPPER_LIMIT = 0.9;
const static float LOWER_EPSILON = 10e-3f;
const static float UPPER_EPSILON = 1.f-10e-3f;
const static ai_real LOWER_EPSILON = 10e-3;
const static ai_real UPPER_EPSILON = 1.0-10e-3;
for (unsigned int fidx = 0; fidx < mesh->mNumFaces;++fidx)
{
@ -156,12 +156,12 @@ void RemoveUVSeams (aiMesh* mesh, aiVector3D* out)
// If the u value is over the upper limit and no other u
// value of that face is 0, round it to 0
if (out[face.mIndices[n]].x > UPPER_LIMIT && !zero)
out[face.mIndices[n]].x = 0.f;
out[face.mIndices[n]].x = 0.0;
// If the u value is below the lower limit and no other u
// value of that face is 1, round it to 1
else if (out[face.mIndices[n]].x < LOWER_LIMIT && !one)
out[face.mIndices[n]].x = 1.f;
out[face.mIndices[n]].x = 1.0;
// The face contains both 0 and 1 as UV coords. This can occur
// for faces which have an edge that lies directly on the seam.
@ -171,9 +171,9 @@ void RemoveUVSeams (aiMesh* mesh, aiVector3D* out)
else if (one && zero)
{
if (round_to_zero && out[face.mIndices[n]].x >= UPPER_EPSILON)
out[face.mIndices[n]].x = 0.f;
out[face.mIndices[n]].x = 0.0;
else if (!round_to_zero && out[face.mIndices[n]].x <= LOWER_EPSILON)
out[face.mIndices[n]].x = 1.f;
out[face.mIndices[n]].x = 1.0;
}
}
}
@ -207,7 +207,7 @@ void ComputeUVMappingProcess::ComputeSphereMapping(aiMesh* mesh,const aiVector3D
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
out[pnt] = aiVector3D((atan2 (diff.z, diff.y) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
(std::asin (diff.x) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
(std::asin (diff.x) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.0);
}
}
else if (axis * base_axis_y >= angle_epsilon) {
@ -215,7 +215,7 @@ void ComputeUVMappingProcess::ComputeSphereMapping(aiMesh* mesh,const aiVector3D
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
out[pnt] = aiVector3D((atan2 (diff.x, diff.z) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
(std::asin (diff.y) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
(std::asin (diff.y) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.0);
}
}
else if (axis * base_axis_z >= angle_epsilon) {
@ -223,7 +223,7 @@ void ComputeUVMappingProcess::ComputeSphereMapping(aiMesh* mesh,const aiVector3D
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
out[pnt] = aiVector3D((atan2 (diff.y, diff.x) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
(std::asin (diff.z) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
(std::asin (diff.z) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.0);
}
}
// slower code path in case the mapping axis is not one of the coordinate system axes
@ -235,7 +235,7 @@ void ComputeUVMappingProcess::ComputeSphereMapping(aiMesh* mesh,const aiVector3D
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
const aiVector3D diff = ((mTrafo*mesh->mVertices[pnt])-center).Normalize();
out[pnt] = aiVector3D((atan2 (diff.y, diff.x) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
(asin (diff.z) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.f);
(asin (diff.z) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.0);
}
}
@ -257,7 +257,7 @@ void ComputeUVMappingProcess::ComputeCylinderMapping(aiMesh* mesh,const aiVector
// thus changing the mapping axis)
if (axis * base_axis_x >= angle_epsilon) {
FindMeshCenter(mesh, center, min, max);
const float diff = max.x - min.x;
const ai_real diff = max.x - min.x;
// If the main axis is 'z', the z coordinate of a point 'p' is mapped
// directly to the texture V axis. The other axis is derived from
@ -268,12 +268,12 @@ void ComputeUVMappingProcess::ComputeCylinderMapping(aiMesh* mesh,const aiVector
aiVector3D& uv = out[pnt];
uv.y = (pos.x - min.x) / diff;
uv.x = (atan2 ( pos.z - center.z, pos.y - center.y) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
uv.x = (atan2 ( pos.z - center.z, pos.y - center.y) +(ai_real)AI_MATH_PI ) / (ai_real)AI_MATH_TWO_PI;
}
}
else if (axis * base_axis_y >= angle_epsilon) {
FindMeshCenter(mesh, center, min, max);
const float diff = max.y - min.y;
const ai_real diff = max.y - min.y;
// just the same ...
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
@ -281,12 +281,12 @@ void ComputeUVMappingProcess::ComputeCylinderMapping(aiMesh* mesh,const aiVector
aiVector3D& uv = out[pnt];
uv.y = (pos.y - min.y) / diff;
uv.x = (atan2 ( pos.x - center.x, pos.z - center.z) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
uv.x = (atan2 ( pos.x - center.x, pos.z - center.z) +(ai_real)AI_MATH_PI ) / (ai_real)AI_MATH_TWO_PI;
}
}
else if (axis * base_axis_z >= angle_epsilon) {
FindMeshCenter(mesh, center, min, max);
const float diff = max.z - min.z;
const ai_real diff = max.z - min.z;
// just the same ...
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
@ -294,7 +294,7 @@ void ComputeUVMappingProcess::ComputeCylinderMapping(aiMesh* mesh,const aiVector
aiVector3D& uv = out[pnt];
uv.y = (pos.z - min.z) / diff;
uv.x = (atan2 ( pos.y - center.y, pos.x - center.x) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
uv.x = (atan2 ( pos.y - center.y, pos.x - center.x) +(ai_real)AI_MATH_PI ) / (ai_real)AI_MATH_TWO_PI;
}
}
// slower code path in case the mapping axis is not one of the coordinate system axes
@ -302,7 +302,7 @@ void ComputeUVMappingProcess::ComputeCylinderMapping(aiMesh* mesh,const aiVector
aiMatrix4x4 mTrafo;
aiMatrix4x4::FromToMatrix(axis,base_axis_y,mTrafo);
FindMeshCenterTransformed(mesh, center, min, max,mTrafo);
const float diff = max.y - min.y;
const ai_real diff = max.y - min.y;
// again the same, except we're applying a transformation now
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt){
@ -310,7 +310,7 @@ void ComputeUVMappingProcess::ComputeCylinderMapping(aiMesh* mesh,const aiVector
aiVector3D& uv = out[pnt];
uv.y = (pos.y - min.y) / diff;
uv.x = (atan2 ( pos.x - center.x, pos.z - center.z) +(float)AI_MATH_PI ) / (float)AI_MATH_TWO_PI;
uv.x = (atan2 ( pos.x - center.x, pos.z - center.z) +(ai_real)AI_MATH_PI ) / (ai_real)AI_MATH_TWO_PI;
}
}
@ -323,7 +323,7 @@ void ComputeUVMappingProcess::ComputeCylinderMapping(aiMesh* mesh,const aiVector
// ------------------------------------------------------------------------------------------------
void ComputeUVMappingProcess::ComputePlaneMapping(aiMesh* mesh,const aiVector3D& axis, aiVector3D* out)
{
float diffu,diffv;
ai_real diffu,diffv;
aiVector3D center, min, max;
// If the axis is one of x,y,z run a faster code path. It's worth the extra effort ...
@ -337,7 +337,7 @@ void ComputeUVMappingProcess::ComputePlaneMapping(aiMesh* mesh,const aiVector3D&
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
const aiVector3D& pos = mesh->mVertices[pnt];
out[pnt].Set((pos.z - min.z) / diffu,(pos.y - min.y) / diffv,0.f);
out[pnt].Set((pos.z - min.z) / diffu,(pos.y - min.y) / diffv,0.0);
}
}
else if (axis * base_axis_y >= angle_epsilon) {
@ -347,7 +347,7 @@ void ComputeUVMappingProcess::ComputePlaneMapping(aiMesh* mesh,const aiVector3D&
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
const aiVector3D& pos = mesh->mVertices[pnt];
out[pnt].Set((pos.x - min.x) / diffu,(pos.z - min.z) / diffv,0.f);
out[pnt].Set((pos.x - min.x) / diffu,(pos.z - min.z) / diffv,0.0);
}
}
else if (axis * base_axis_z >= angle_epsilon) {
@ -357,7 +357,7 @@ void ComputeUVMappingProcess::ComputePlaneMapping(aiMesh* mesh,const aiVector3D&
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
const aiVector3D& pos = mesh->mVertices[pnt];
out[pnt].Set((pos.y - min.y) / diffu,(pos.x - min.x) / diffv,0.f);
out[pnt].Set((pos.y - min.y) / diffu,(pos.x - min.x) / diffv,0.0);
}
}
// slower code path in case the mapping axis is not one of the coordinate system axes
@ -372,7 +372,7 @@ void ComputeUVMappingProcess::ComputePlaneMapping(aiMesh* mesh,const aiVector3D&
// again the same, except we're applying a transformation now
for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt) {
const aiVector3D pos = mTrafo * mesh->mVertices[pnt];
out[pnt].Set((pos.x - min.x) / diffu,(pos.z - min.z) / diffv,0.f);
out[pnt].Set((pos.x - min.x) / diffu,(pos.z - min.z) / diffv,0.0);
}
}

View File

@ -534,9 +534,9 @@ bool ExportProperties :: SetPropertyInteger(const char* szName, int iValue)
// ------------------------------------------------------------------------------------------------
// Set a configuration property
bool ExportProperties :: SetPropertyFloat(const char* szName, float iValue)
bool ExportProperties :: SetPropertyFloat(const char* szName, ai_real iValue)
{
return SetGenericProperty<float>(mFloatProperties, szName,iValue);
return SetGenericProperty<ai_real>(mFloatProperties, szName,iValue);
}
// ------------------------------------------------------------------------------------------------
@ -563,10 +563,10 @@ int ExportProperties :: GetPropertyInteger(const char* szName,
// ------------------------------------------------------------------------------------------------
// Get a configuration property
float ExportProperties :: GetPropertyFloat(const char* szName,
float iErrorReturn /*= 10e10*/) const
ai_real ExportProperties :: GetPropertyFloat(const char* szName,
ai_real iErrorReturn /*= 10e10*/) const
{
return GetGenericProperty<float>(mFloatProperties,szName,iErrorReturn);
return GetGenericProperty<ai_real>(mFloatProperties,szName,iErrorReturn);
}
// ------------------------------------------------------------------------------------------------
@ -603,7 +603,7 @@ bool ExportProperties :: HasPropertyBool(const char* szName) const
// Has a configuration property
bool ExportProperties :: HasPropertyFloat(const char* szName) const
{
return HasGenericProperty<float>(mFloatProperties, szName);
return HasGenericProperty<ai_real>(mFloatProperties, szName);
};
// ------------------------------------------------------------------------------------------------

View File

@ -3037,7 +3037,7 @@ void Converter::InterpolateKeys( aiVectorKey* valOut, const KeyTimeList& keys, c
next_pos.resize( inputs.size(), 0 );
for( KeyTimeList::value_type time : keys ) {
float result[ 3 ] = { def_value.x, def_value.y, def_value.z };
ai_real result[ 3 ] = { def_value.x, def_value.y, def_value.z };
for ( size_t i = 0; i < count; ++i ) {
const KeyFrameList& kfl = inputs[ i ];
@ -3060,7 +3060,7 @@ void Converter::InterpolateKeys( aiVectorKey* valOut, const KeyTimeList& keys, c
// do the actual interpolation in double-precision arithmetics
// because it is a bit sensitive to rounding errors.
const double factor = timeB == timeA ? 0. : static_cast<double>( ( time - timeA ) / ( timeB - timeA ) );
const float interpValue = static_cast<float>( valueA + ( valueB - valueA ) * factor );
const ai_real interpValue = static_cast<ai_real>( valueA + ( valueB - valueA ) * factor );
result[ std::get<2>(kfl) ] = interpValue;
}

View File

@ -58,7 +58,7 @@ using namespace Assimp;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
FindInvalidDataProcess::FindInvalidDataProcess()
: configEpsilon(0.0f)
: configEpsilon(0.0)
{
// nothing to do here
}
@ -221,16 +221,16 @@ inline bool ProcessArray(T*& in, unsigned int num,const char* name,
// ------------------------------------------------------------------------------------------------
template <typename T>
AI_FORCE_INLINE bool EpsilonCompare(const T& n, const T& s, float epsilon);
AI_FORCE_INLINE bool EpsilonCompare(const T& n, const T& s, ai_real epsilon);
// ------------------------------------------------------------------------------------------------
AI_FORCE_INLINE bool EpsilonCompare(float n, float s, float epsilon) {
AI_FORCE_INLINE bool EpsilonCompare(ai_real n, ai_real s, ai_real epsilon) {
return std::fabs(n-s)>epsilon;
}
// ------------------------------------------------------------------------------------------------
template <>
bool EpsilonCompare<aiVectorKey>(const aiVectorKey& n, const aiVectorKey& s, float epsilon) {
bool EpsilonCompare<aiVectorKey>(const aiVectorKey& n, const aiVectorKey& s, ai_real epsilon) {
return
EpsilonCompare(n.mValue.x,s.mValue.x,epsilon) &&
EpsilonCompare(n.mValue.y,s.mValue.y,epsilon) &&
@ -239,7 +239,7 @@ bool EpsilonCompare<aiVectorKey>(const aiVectorKey& n, const aiVectorKey& s, flo
// ------------------------------------------------------------------------------------------------
template <>
bool EpsilonCompare<aiQuatKey>(const aiQuatKey& n, const aiQuatKey& s, float epsilon) {
bool EpsilonCompare<aiQuatKey>(const aiQuatKey& n, const aiQuatKey& s, ai_real epsilon) {
return
EpsilonCompare(n.mValue.x,s.mValue.x,epsilon) &&
EpsilonCompare(n.mValue.y,s.mValue.y,epsilon) &&
@ -249,7 +249,7 @@ bool EpsilonCompare<aiQuatKey>(const aiQuatKey& n, const aiQuatKey& s, float eps
// ------------------------------------------------------------------------------------------------
template <typename T>
inline bool AllIdentical(T* in, unsigned int num, float epsilon)
inline bool AllIdentical(T* in, unsigned int num, ai_real epsilon)
{
if (num <= 1) {
return true;

View File

@ -97,7 +97,7 @@ public:
void ProcessAnimationChannel (aiNodeAnim* anim);
private:
float configEpsilon;
ai_real configEpsilon;
};
} // end of namespace Assimp

View File

@ -78,8 +78,8 @@ bool GenVertexNormalsProcess::IsActive( unsigned int pFlags) const
void GenVertexNormalsProcess::SetupProperties(const Importer* pImp)
{
// Get the current value of the AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE property
configMaxAngle = pImp->GetPropertyFloat(AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE,175.f);
configMaxAngle = AI_DEG_TO_RAD(std::max(std::min(configMaxAngle,175.0f),0.0f));
configMaxAngle = pImp->GetPropertyFloat(AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE,(ai_real)175.0);
configMaxAngle = AI_DEG_TO_RAD(std::max(std::min(configMaxAngle,(ai_real)175.0),(ai_real)0.0));
}
// ------------------------------------------------------------------------------------------------
@ -123,7 +123,7 @@ bool GenVertexNormalsProcess::GenMeshVertexNormals (aiMesh* pMesh, unsigned int
}
// Allocate the array to hold the output normals
const float qnan = std::numeric_limits<float>::quiet_NaN();
const float qnan = std::numeric_limits<ai_real>::quiet_NaN();
pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];
// Compute per-face normals but store them per-vertex
@ -154,13 +154,13 @@ bool GenVertexNormalsProcess::GenMeshVertexNormals (aiMesh* pMesh, unsigned int
// check whether we can reuse the SpatialSort of a previous step.
SpatialSort* vertexFinder = NULL;
SpatialSort _vertexFinder;
float posEpsilon = 1e-5f;
ai_real posEpsilon = 1e-5;
if (shared) {
std::vector<std::pair<SpatialSort,float> >* avf;
std::vector<std::pair<SpatialSort,ai_real> >* avf;
shared->GetProperty(AI_SPP_SPATIAL_SORT,avf);
if (avf)
{
std::pair<SpatialSort,float>& blubb = avf->operator [] (meshIndex);
std::pair<SpatialSort,ai_real>& blubb = avf->operator [] (meshIndex);
vertexFinder = &blubb.first;
posEpsilon = blubb.second;
}
@ -205,13 +205,13 @@ bool GenVertexNormalsProcess::GenMeshVertexNormals (aiMesh* pMesh, unsigned int
// Slower code path if a smooth angle is set. There are many ways to achieve
// the effect, this one is the most straightforward one.
else {
const float fLimit = std::cos(configMaxAngle);
const ai_real fLimit = std::cos(configMaxAngle);
for (unsigned int i = 0; i < pMesh->mNumVertices;++i) {
// Get all vertices that share this one ...
vertexFinder->FindPositions( pMesh->mVertices[i] , posEpsilon, verticesFound);
aiVector3D vr = pMesh->mNormals[i];
float vrlen = vr.Length();
ai_real vrlen = vr.Length();
aiVector3D pcNor;
for (unsigned int a = 0; a < verticesFound.size(); ++a) {

View File

@ -86,7 +86,7 @@ public:
// setter for configMaxAngle
inline void SetMaxSmoothAngle(float f)
inline void SetMaxSmoothAngle(ai_real f)
{
configMaxAngle =f;
}
@ -104,10 +104,9 @@ public:
private:
/** Configuration option: maximum smoothing angle, in radians*/
float configMaxAngle;
ai_real configMaxAngle;
};
} // end of namespace Assimp
#endif // !!AI_GENVERTEXNORMALPROCESS_H_INC

View File

@ -207,54 +207,54 @@ void IRRImporter::BuildSkybox(std::vector<aiMesh*>& meshes, std::vector<aiMateri
// by six single planes with different textures, so we'll
// need to build six meshes.
const float l = 10.f; // the size used by Irrlicht
const ai_real l = 10.0; // the size used by Irrlicht
// FRONT SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex(-l,-l,-l, 0, 0, 1, 1.f,1.f),
SkyboxVertex( l,-l,-l, 0, 0, 1, 0.f,1.f),
SkyboxVertex( l, l,-l, 0, 0, 1, 0.f,0.f),
SkyboxVertex(-l, l,-l, 0, 0, 1, 1.f,0.f)) );
SkyboxVertex(-l,-l,-l, 0, 0, 1, 1.0,1.0),
SkyboxVertex( l,-l,-l, 0, 0, 1, 0.0,1.0),
SkyboxVertex( l, l,-l, 0, 0, 1, 0.0,0.0),
SkyboxVertex(-l, l,-l, 0, 0, 1, 1.0,0.0)) );
meshes.back()->mMaterialIndex = materials.size()-6u;
// LEFT SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex( l,-l,-l, -1, 0, 0, 1.f,1.f),
SkyboxVertex( l,-l, l, -1, 0, 0, 0.f,1.f),
SkyboxVertex( l, l, l, -1, 0, 0, 0.f,0.f),
SkyboxVertex( l, l,-l, -1, 0, 0, 1.f,0.f)) );
SkyboxVertex( l,-l,-l, -1, 0, 0, 1.0,1.0),
SkyboxVertex( l,-l, l, -1, 0, 0, 0.0,1.0),
SkyboxVertex( l, l, l, -1, 0, 0, 0.0,0.0),
SkyboxVertex( l, l,-l, -1, 0, 0, 1.0,0.0)) );
meshes.back()->mMaterialIndex = materials.size()-5u;
// BACK SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex( l,-l, l, 0, 0, -1, 1.f,1.f),
SkyboxVertex(-l,-l, l, 0, 0, -1, 0.f,1.f),
SkyboxVertex(-l, l, l, 0, 0, -1, 0.f,0.f),
SkyboxVertex( l, l, l, 0, 0, -1, 1.f,0.f)) );
SkyboxVertex( l,-l, l, 0, 0, -1, 1.0,1.0),
SkyboxVertex(-l,-l, l, 0, 0, -1, 0.0,1.0),
SkyboxVertex(-l, l, l, 0, 0, -1, 0.0,0.0),
SkyboxVertex( l, l, l, 0, 0, -1, 1.0,0.0)) );
meshes.back()->mMaterialIndex = materials.size()-4u;
// RIGHT SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex(-l,-l, l, 1, 0, 0, 1.f,1.f),
SkyboxVertex(-l,-l,-l, 1, 0, 0, 0.f,1.f),
SkyboxVertex(-l, l,-l, 1, 0, 0, 0.f,0.f),
SkyboxVertex(-l, l, l, 1, 0, 0, 1.f,0.f)) );
SkyboxVertex(-l,-l, l, 1, 0, 0, 1.0,1.0),
SkyboxVertex(-l,-l,-l, 1, 0, 0, 0.0,1.0),
SkyboxVertex(-l, l,-l, 1, 0, 0, 0.0,0.0),
SkyboxVertex(-l, l, l, 1, 0, 0, 1.0,0.0)) );
meshes.back()->mMaterialIndex = materials.size()-3u;
// TOP SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex( l, l,-l, 0, -1, 0, 1.f,1.f),
SkyboxVertex( l, l, l, 0, -1, 0, 0.f,1.f),
SkyboxVertex(-l, l, l, 0, -1, 0, 0.f,0.f),
SkyboxVertex(-l, l,-l, 0, -1, 0, 1.f,0.f)) );
SkyboxVertex( l, l,-l, 0, -1, 0, 1.0,1.0),
SkyboxVertex( l, l, l, 0, -1, 0, 0.0,1.0),
SkyboxVertex(-l, l, l, 0, -1, 0, 0.0,0.0),
SkyboxVertex(-l, l,-l, 0, -1, 0, 1.0,0.0)) );
meshes.back()->mMaterialIndex = materials.size()-2u;
// BOTTOM SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex( l,-l, l, 0, 1, 0, 0.f,0.f),
SkyboxVertex( l,-l,-l, 0, 1, 0, 1.f,0.f),
SkyboxVertex(-l,-l,-l, 0, 1, 0, 1.f,1.f),
SkyboxVertex(-l,-l, l, 0, 1, 0, 0.f,1.f)) );
SkyboxVertex( l,-l, l, 0, 1, 0, 0.0,0.0),
SkyboxVertex( l,-l,-l, 0, 1, 0, 1.0,0.0),
SkyboxVertex(-l,-l,-l, 0, 1, 0, 1.0,1.0),
SkyboxVertex(-l,-l, l, 0, 1, 0, 0.0,1.0)) );
meshes.back()->mMaterialIndex = materials.size()-1u;
}
@ -479,7 +479,7 @@ void IRRImporter::ComputeAnimations(Node* root, aiNode* real, std::vector<aiNode
aiVectorKey& key = anim->mPositionKeys[i];
key.mTime = i * tdelta;
const float t = (float) ( in.speed * key.mTime );
const ai_real t = (ai_real) ( in.speed * key.mTime );
key.mValue = in.circleCenter + in.circleRadius * ((vecU * std::cos(t)) + (vecV * std::sin(t)));
}
@ -498,7 +498,7 @@ void IRRImporter::ComputeAnimations(Node* root, aiNode* real, std::vector<aiNode
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
aiVector3D diff = in.direction - in.circleCenter;
const float lengthOfWay = diff.Length();
const ai_real lengthOfWay = diff.Length();
diff.Normalize();
const double timeFactor = lengthOfWay / in.timeForWay;
@ -507,7 +507,7 @@ void IRRImporter::ComputeAnimations(Node* root, aiNode* real, std::vector<aiNode
for (unsigned int i = 0; i < anim->mNumPositionKeys;++i) {
aiVectorKey& key = anim->mPositionKeys[i];
key.mTime = i * tdelta;
key.mValue = in.circleCenter + diff * float(timeFactor * key.mTime);
key.mValue = in.circleCenter + diff * ai_real(timeFactor * key.mTime);
}
}
break;
@ -542,8 +542,8 @@ void IRRImporter::ComputeAnimations(Node* root, aiNode* real, std::vector<aiNode
{
aiVectorKey& key = anim->mPositionKeys[i];
const float dt = (i * in.speed * 0.001f );
const float u = dt - std::floor(dt);
const ai_real dt = (i * in.speed * 0.001 );
const ai_real u = dt - std::floor(dt);
const int idx = (int)std::floor(dt) % size;
// get the 4 current points to evaluate the spline
@ -553,13 +553,13 @@ void IRRImporter::ComputeAnimations(Node* root, aiNode* real, std::vector<aiNode
const aiVector3D& p3 = in.splineKeys[ ClampSpline( idx + 2, size ) ].mValue;
// compute polynomials
const float u2 = u*u;
const float u3 = u2*2;
const ai_real u2 = u*u;
const ai_real u3 = u2*2;
const float h1 = 2.0f * u3 - 3.0f * u2 + 1.0f;
const float h2 = -2.0f * u3 + 3.0f * u3;
const float h3 = u3 - 2.0f * u3;
const float h4 = u3 - u2;
const ai_real h1 = 2.0 * u3 - 3.0 * u2 + 1.0;
const ai_real h2 = -2.0 * u3 + 3.0 * u3;
const ai_real h3 = u3 - 2.0 * u3;
const ai_real h4 = u3 - u2;
// compute the spline tangents
const aiVector3D t1 = ( p2 - p0 ) * in.tightness;

View File

@ -116,9 +116,9 @@ private:
explicit Animator(AT t = UNKNOWN)
: type (t)
, speed (0.001f)
, direction (0.f,1.f,0.f)
, circleRadius (1.f)
, speed (0.001)
, direction (0.0,1.0,0.0)
, circleRadius (1.0)
, tightness (0.5f)
, loop (true)
, timeForWay (100)
@ -127,15 +127,15 @@ private:
// common parameters
float speed;
ai_real speed;
aiVector3D direction;
// FLY_CIRCLE
aiVector3D circleCenter;
float circleRadius;
ai_real circleRadius;
// FOLLOW_SPLINE
float tightness;
ai_real tightness;
std::vector<aiVectorKey> splineKeys;
// ROTATION (angles given in direction)
@ -166,11 +166,11 @@ private:
explicit Node(ET t)
: type (t)
, scaling (1.f,1.f,1.f) // assume uniform scaling by default
, scaling (1.0,1.0,1.0) // assume uniform scaling by default
, parent()
, framesPerSecond (0.f)
, framesPerSecond (0.0)
, id()
, sphereRadius (1.f)
, sphereRadius (1.0)
, spherePolyCountX (100)
, spherePolyCountY (100)
{
@ -202,7 +202,7 @@ private:
// Animated meshes: frames per second
// 0.f if not specified
float framesPerSecond;
ai_real framesPerSecond;
// Meshes: path to the mesh to be loaded
std::string meshPath;
@ -213,7 +213,7 @@ private:
std::vector< std::pair<aiMaterial*, unsigned int> > materials;
// Spheres: radius of the sphere to be generates
float sphereRadius;
ai_real sphereRadius;
// Spheres: Number of polygons in the x,y direction
unsigned int spherePolyCountX,spherePolyCountY;
@ -230,13 +230,13 @@ private:
{}
//! Construction from single vertex components
SkyboxVertex(float px, float py, float pz,
float nx, float ny, float nz,
float uvx, float uvy)
SkyboxVertex(ai_real px, ai_real py, ai_real pz,
ai_real nx, ai_real ny, ai_real nz,
ai_real uvx, ai_real uvy)
: position (px,py,pz)
, normal (nx,ny,nz)
, uv (uvx,uvy,0.f)
, uv (uvx,uvy,0.0)
{}
aiVector3D position, normal, uv;

View File

@ -1017,11 +1017,11 @@ bool Importer::SetPropertyInteger(const char* szName, int iValue)
// ------------------------------------------------------------------------------------------------
// Set a configuration property
bool Importer::SetPropertyFloat(const char* szName, float iValue)
bool Importer::SetPropertyFloat(const char* szName, ai_real iValue)
{
bool exising;
ASSIMP_BEGIN_EXCEPTION_REGION();
exising = SetGenericProperty<float>(pimpl->mFloatProperties, szName,iValue);
exising = SetGenericProperty<ai_real>(pimpl->mFloatProperties, szName,iValue);
ASSIMP_END_EXCEPTION_REGION(bool);
return exising;
}
@ -1058,10 +1058,10 @@ int Importer::GetPropertyInteger(const char* szName,
// ------------------------------------------------------------------------------------------------
// Get a configuration property
float Importer::GetPropertyFloat(const char* szName,
float iErrorReturn /*= 10e10*/) const
ai_real Importer::GetPropertyFloat(const char* szName,
ai_real iErrorReturn /*= 10e10*/) const
{
return GetGenericProperty<float>(pimpl->mFloatProperties,szName,iErrorReturn);
return GetGenericProperty<ai_real>(pimpl->mFloatProperties,szName,iErrorReturn);
}
// ------------------------------------------------------------------------------------------------

View File

@ -75,7 +75,7 @@ public:
// typedefs for our four configuration maps.
// We don't need more, so there is no need for a generic solution
typedef std::map<KeyType, int> IntPropertyMap;
typedef std::map<KeyType, float> FloatPropertyMap;
typedef std::map<KeyType, ai_real> FloatPropertyMap;
typedef std::map<KeyType, std::string> StringPropertyMap;
typedef std::map<KeyType, aiMatrix4x4> MatrixPropertyMap;

View File

@ -141,13 +141,13 @@ bool LWOImporter::HandleTextures(aiMaterial* pcMat, const TextureList& in, aiTex
aiVector3D v;
switch (texture.majorAxis) {
case Texture::AXIS_X:
v = aiVector3D(1.f,0.f,0.f);
v = aiVector3D(1.0,0.0,0.0);
break;
case Texture::AXIS_Y:
v = aiVector3D(0.f,1.f,0.f);
v = aiVector3D(0.0,1.0,0.0);
break;
default: // case Texture::AXIS_Z:
v = aiVector3D(0.f,0.f,1.f);
v = aiVector3D(0.0,0.0,1.0);
break;
}
@ -159,7 +159,7 @@ bool LWOImporter::HandleTextures(aiMaterial* pcMat, const TextureList& in, aiTex
trafo.mScaling.x = texture.wrapAmountW;
trafo.mScaling.y = texture.wrapAmountH;
static_assert(sizeof(aiUVTransform)/sizeof(float) == 5, "sizeof(aiUVTransform)/sizeof(float) == 5");
static_assert(sizeof(aiUVTransform)/sizeof(ai_real) == 5, "sizeof(aiUVTransform)/sizeof(ai_real) == 5");
pcMat->AddProperty(&trafo,1,AI_MATKEY_UVTRANSFORM(type,cur));
}
DefaultLogger::get()->debug("LWO2: Setting up non-UV mapping");
@ -286,17 +286,17 @@ void LWOImporter::ConvertMaterial(const LWO::Surface& surf,aiMaterial* pcMat)
{
float fGloss;
if (mIsLWO2) {
fGloss = std::pow( surf.mGlossiness*10.0f+2.0f, 2.0f);
fGloss = std::pow( surf.mGlossiness*10.0+2.0, 2.0);
}
else
{
if (16.0f >= surf.mGlossiness)
fGloss = 6.0f;
else if (64.0f >= surf.mGlossiness)
fGloss = 20.0f;
else if (256.0f >= surf.mGlossiness)
fGloss = 50.0f;
else fGloss = 80.0f;
if (16.0 >= surf.mGlossiness)
fGloss = 6.0;
else if (64.0 >= surf.mGlossiness)
fGloss = 20.0;
else if (256.0 >= surf.mGlossiness)
fGloss = 50.0;
else fGloss = 80.0;
}
pcMat->AddProperty(&surf.mSpecularValue,1,AI_MATKEY_SHININESS_STRENGTH);
@ -306,17 +306,17 @@ void LWOImporter::ConvertMaterial(const LWO::Surface& surf,aiMaterial* pcMat)
else m = aiShadingMode_Gouraud;
// specular color
aiColor3D clr = lerp( aiColor3D(1.f,1.f,1.f), surf.mColor, surf.mColorHighlights );
aiColor3D clr = lerp( aiColor3D(1.0,1.0,1.0), surf.mColor, surf.mColorHighlights );
pcMat->AddProperty(&clr,1,AI_MATKEY_COLOR_SPECULAR);
pcMat->AddProperty(&surf.mSpecularValue,1,AI_MATKEY_SHININESS_STRENGTH);
// emissive color
// luminosity is not really the same but it affects the surface in a similar way. Some scaling looks good.
clr.g = clr.b = clr.r = surf.mLuminosity*0.8f;
clr.g = clr.b = clr.r = surf.mLuminosity*0.8;
pcMat->AddProperty<aiColor3D>(&clr,1,AI_MATKEY_COLOR_EMISSIVE);
// opacity ... either additive or default-blended, please
if (0.f != surf.mAdditiveTransparency) {
if (0.0 != surf.mAdditiveTransparency) {
const int add = aiBlendMode_Additive;
pcMat->AddProperty(&surf.mAdditiveTransparency,1,AI_MATKEY_OPACITY);
@ -361,13 +361,13 @@ void LWOImporter::ConvertMaterial(const LWO::Surface& surf,aiMaterial* pcMat)
DefaultLogger::get()->warn("LWO2: Unknown surface shader: " + shader.functionName);
}
}
if (surf.mMaximumSmoothAngle <= 0.0f)
if (surf.mMaximumSmoothAngle <= 0.0)
m = aiShadingMode_Flat;
pcMat->AddProperty((int*)&m,1,AI_MATKEY_SHADING_MODEL);
// (the diffuse value is just a scaling factor)
// If a diffuse texture is set, we set this value to 1.0
clr = (b && false ? aiColor3D(1.f,1.f,1.f) : surf.mColor);
clr = (b && false ? aiColor3D(1.0,1.0,1.0) : surf.mColor);
clr.r *= surf.mDiffuseValue;
clr.g *= surf.mDiffuseValue;
clr.b *= surf.mDiffuseValue;
@ -497,7 +497,7 @@ void LWOImporter::FindVCChannels(const LWO::Surface& surf, LWO::SortedRep& sorte
for (unsigned int n = 0; n < face.mNumIndices; ++n) {
unsigned int idx = face.mIndices[n];
if (vc.abAssigned[idx] && ((aiColor4D*)&vc.rawData[0])[idx] != aiColor4D(0.f,0.f,0.f,1.f)) {
if (vc.abAssigned[idx] && ((aiColor4D*)&vc.rawData[0])[idx] != aiColor4D(0.0,0.0,0.0,1.0)) {
if (next >= AI_MAX_NUMBER_OF_COLOR_SETS) {
DefaultLogger::get()->error("LWO: Maximum number of vertex color channels for "

View File

@ -136,7 +136,7 @@ struct Frame
aiVector3D origin;
//! radius of bounding sphere
float radius;
ai_real radius;
//! name of frame
char name[ AI_MD3_MAXFRAME ];
@ -154,7 +154,7 @@ struct Tag
//! Local tag origin and orientation
aiVector3D origin;
float orientation[3][3];
ai_real orientation[3][3];
} PACK_STRUCT;
@ -231,7 +231,7 @@ struct Triangle
struct TexCoord
{
//! UV coordinates
float U,V;
ai_real U,V;
} PACK_STRUCT;
@ -257,12 +257,12 @@ struct Vertex
*
* @note This has been taken from q3 source (misc_model.c)
*/
inline void LatLngNormalToVec3(uint16_t p_iNormal, float* p_afOut)
inline void LatLngNormalToVec3(uint16_t p_iNormal, ai_real* p_afOut)
{
float lat = (float)(( p_iNormal >> 8u ) & 0xff);
float lng = (float)(( p_iNormal & 0xff ));
lat *= 3.141926f/128.0f;
lng *= 3.141926f/128.0f;
ai_real lat = (ai_real)(( p_iNormal >> 8u ) & 0xff);
ai_real lng = (ai_real)(( p_iNormal & 0xff ));
lat *= 3.141926/128.0;
lng *= 3.141926/128.0;
p_afOut[0] = std::cos(lat) * std::sin(lng);
p_afOut[1] = std::sin(lat) * std::sin(lng);
@ -313,4 +313,3 @@ inline void Vec3NormalToLatLng( const aiVector3D& p_vIn, uint16_t& p_iOut )
}
#endif // !! AI_MD3FILEHELPER_H_INC

View File

@ -1018,7 +1018,7 @@ void MD3Importer::InternReadFile( const std::string& pFile,
// Convert the normal vector to uncompressed float3 format
aiVector3D& nor = pcMesh->mNormals[iCurrent];
LatLngNormalToVec3(pcVertices[pcTriangles->INDEXES[c]].NORMAL,(float*)&nor);
LatLngNormalToVec3(pcVertices[pcTriangles->INDEXES[c]].NORMAL,(ai_real*)&nor);
// Read texture coordinates
pcMesh->mTextureCoords[0][iCurrent].x = pcUVs[ pcTriangles->INDEXES[c]].U;

View File

@ -475,7 +475,7 @@ void MD5Importer::LoadMD5MeshFile ()
*pv = aiVector3D();
// there are models which have weights which don't sum to 1 ...
float fSum = 0.0f;
ai_real fSum = 0.0;
for (unsigned int jub = (*iter).mFirstWeight, w = jub; w < jub + (*iter).mNumWeights;++w)
fSum += meshSrc.mWeights[w].mWeight;
if (!fSum) {
@ -493,7 +493,7 @@ void MD5Importer::LoadMD5MeshFile ()
continue;
}
const float fNewWeight = desc.mWeight / fSum;
const ai_real fNewWeight = desc.mWeight / fSum;
// transform the local position into worldspace
MD5::BoneDesc& boneSrc = meshParser.mJoints[desc.mBone];
@ -501,7 +501,7 @@ void MD5Importer::LoadMD5MeshFile ()
// use the original weight to compute the vertex position
// (some MD5s seem to depend on the invalid weight values ...)
*pv += ((boneSrc.mPositionXYZ+v)* desc.mWeight);
*pv += ((boneSrc.mPositionXYZ+v)* (ai_real)desc.mWeight);
aiBone* bone = mesh->mBones[boneSrc.mMap];
*bone->mWeights++ = aiVertexWeight((unsigned int)(pv-mesh->mVertices),fNewWeight);

View File

@ -408,7 +408,7 @@ void MDCImporter::InternReadFile(
// copy texture coordinates
pcUVCur->x = pcUVs[quak].u;
pcUVCur->y = 1.0f-pcUVs[quak].v; // DX to OGL
pcUVCur->y = 1.0-pcUVs[quak].v; // DX to OGL
}
pcVertCur->x += pcFrame->localOrigin[0] ;
pcVertCur->y += pcFrame->localOrigin[1] ;

View File

@ -657,7 +657,7 @@ void MDLImporter::ParseSkinLump_3DGS_MDL7(
if (is_not_qnan(clrTexture.r)) {
clrTemp.r *= clrTexture.a;
}
pcMatOut->AddProperty<float>(&clrTemp.r,1,AI_MATKEY_OPACITY);
pcMatOut->AddProperty<ai_real>(&clrTemp.r,1,AI_MATKEY_OPACITY);
// read phong power
int iShadingMode = (int)aiShadingMode_Gouraud;

View File

@ -965,7 +965,7 @@ void NFFImporter::InternReadFile( const std::string& pFile,
// compute the center point of the cone/cylinder -
// it is its local transformation origin
currentMesh.dir = center2-center1;
currentMesh.center = center1+currentMesh.dir/2.f;
currentMesh.center = center1+currentMesh.dir/(ai_real)2.0;
float f;
if (( f = currentMesh.dir.Length()) < 10e-3f )

View File

@ -161,9 +161,9 @@ void OFFImporter::InternReadFile( const std::string& pFile,
aiVector3D& v = tempPositions[i];
sz = line; SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz,(float&)v.x); SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz,(float&)v.y); SkipSpaces(&sz);
fast_atoreal_move<float>(sz,(float&)v.z);
sz = fast_atoreal_move<ai_real>(sz,(ai_real&)v.x); SkipSpaces(&sz);
sz = fast_atoreal_move<ai_real>(sz,(ai_real&)v.y); SkipSpaces(&sz);
fast_atoreal_move<ai_real>(sz,(ai_real&)v.z);
}
@ -242,7 +242,7 @@ void OFFImporter::InternReadFile( const std::string& pFile,
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials];
aiMaterial* pcMat = new aiMaterial();
aiColor4D clr(0.6f,0.6f,0.6f,1.0f);
aiColor4D clr(0.6,0.6,0.6,1.0);
pcMat->AddProperty(&clr,1,AI_MATKEY_COLOR_DIFFUSE);
pScene->mMaterials[0] = pcMat;

View File

@ -167,7 +167,7 @@ void ObjExporter::WriteMaterialFile()
mOutputMat << "Ke " << c.r << " " << c.g << " " << c.b << endl;
}
float o;
ai_real o;
if(AI_SUCCESS == mat->Get(AI_MATKEY_OPACITY,o)) {
mOutputMat << "d " << o << endl;
}

View File

@ -191,21 +191,21 @@ struct Material
//! Emissive color
aiColor3D emissive;
//! Alpha value
float alpha;
ai_real alpha;
//! Shineness factor
float shineness;
ai_real shineness;
//! Illumination model
int illumination_model;
//! Index of refraction
float ior;
ai_real ior;
//! Constructor
Material()
: diffuse (0.6f,0.6f,0.6f)
, alpha (1.f)
, shineness (0.0f)
: diffuse (0.6,0.6,0.6)
, alpha (1.0)
, shineness (0.0)
, illumination_model (1)
, ior (1.f)
, ior (1.0)
{
// empty
for (size_t i = 0; i < TextureTypeCount; ++i)

View File

@ -232,7 +232,7 @@ void ObjFileMtlImporter::getColorRGBA( aiColor3D *pColor )
{
ai_assert( NULL != pColor );
float r( 0.0f ), g( 0.0f ), b( 0.0f );
ai_real r( 0.0 ), g( 0.0 ), b( 0.0 );
m_DataIt = getFloat<DataArrayIt>( m_DataIt, m_DataItEnd, r );
pColor->r = r;
@ -255,10 +255,10 @@ void ObjFileMtlImporter::getIlluminationModel( int &illum_model )
// -------------------------------------------------------------------
// Loads a single float value.
void ObjFileMtlImporter::getFloatValue( float &value )
void ObjFileMtlImporter::getFloatValue( ai_real &value )
{
m_DataIt = CopyNextWord<DataArrayIt>( m_DataIt, m_DataItEnd, m_buffer, BUFFERSIZE );
value = (float) fast_atof(m_buffer);
value = (ai_real) fast_atof(m_buffer);
}
// -------------------------------------------------------------------

View File

@ -41,6 +41,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <vector>
#include <string>
#include <assimp/defs.h>
struct aiColor3D;
struct aiString;
@ -85,7 +86,7 @@ private:
/// Get illumination model from loaded data
void getIlluminationModel( int &illum_model );
/// Gets a float value from data.
void getFloatValue( float &value );
void getFloatValue( ai_real &value );
/// Creates a new material from loaded data.
void createMaterial();
/// Get texture name from loaded data.

View File

@ -279,23 +279,23 @@ size_t ObjFileParser::getNumComponentsInLine() {
// -------------------------------------------------------------------
void ObjFileParser::getVector( std::vector<aiVector3D> &point3d_array ) {
size_t numComponents = getNumComponentsInLine();
float x, y, z;
ai_real x, y, z;
if( 2 == numComponents ) {
copyNextWord( m_buffer, Buffersize );
x = ( float ) fast_atof( m_buffer );
x = ( ai_real ) fast_atof( m_buffer );
copyNextWord( m_buffer, Buffersize );
y = ( float ) fast_atof( m_buffer );
y = ( ai_real ) fast_atof( m_buffer );
z = 0.0;
} else if( 3 == numComponents ) {
copyNextWord( m_buffer, Buffersize );
x = ( float ) fast_atof( m_buffer );
x = ( ai_real ) fast_atof( m_buffer );
copyNextWord( m_buffer, Buffersize );
y = ( float ) fast_atof( m_buffer );
y = ( ai_real ) fast_atof( m_buffer );
copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer );
z = ( ai_real ) fast_atof( m_buffer );
} else {
throw DeadlyImportError( "OBJ: Invalid number of components" );
}
@ -306,15 +306,15 @@ void ObjFileParser::getVector( std::vector<aiVector3D> &point3d_array ) {
// -------------------------------------------------------------------
// Get values for a new 3D vector instance
void ObjFileParser::getVector3( std::vector<aiVector3D> &point3d_array ) {
float x, y, z;
ai_real x, y, z;
copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer);
x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer);
y = (ai_real) fast_atof(m_buffer);
copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer );
z = ( ai_real ) fast_atof( m_buffer );
point3d_array.push_back( aiVector3D( x, y, z ) );
m_DataIt = skipLine<DataArrayIt>( m_DataIt, m_DataItEnd, m_uiLine );
@ -323,26 +323,26 @@ void ObjFileParser::getVector3( std::vector<aiVector3D> &point3d_array ) {
// -------------------------------------------------------------------
// Get values for two 3D vectors on the same line
void ObjFileParser::getTwoVectors3( std::vector<aiVector3D> &point3d_array_a, std::vector<aiVector3D> &point3d_array_b ) {
float x, y, z;
ai_real x, y, z;
copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer);
x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer);
y = (ai_real) fast_atof(m_buffer);
copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer );
z = ( ai_real ) fast_atof( m_buffer );
point3d_array_a.push_back( aiVector3D( x, y, z ) );
copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer);
x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer);
y = (ai_real) fast_atof(m_buffer);
copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer );
z = ( ai_real ) fast_atof( m_buffer );
point3d_array_b.push_back( aiVector3D( x, y, z ) );
@ -352,12 +352,12 @@ void ObjFileParser::getTwoVectors3( std::vector<aiVector3D> &point3d_array_a, st
// -------------------------------------------------------------------
// Get values for a new 2D vector instance
void ObjFileParser::getVector2( std::vector<aiVector2D> &point2d_array ) {
float x, y;
ai_real x, y;
copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer);
x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer);
y = (ai_real) fast_atof(m_buffer);
point2d_array.push_back(aiVector2D(x, y));

View File

@ -196,12 +196,12 @@ inline char_t CopyNextWord( char_t it, char_t end, char *pBuffer, size_t length
* @return Current-iterator with new position
*/
template<class char_t>
inline char_t getFloat( char_t it, char_t end, float &value )
inline char_t getFloat( char_t it, char_t end, ai_real &value )
{
static const size_t BUFFERSIZE = 1024;
char buffer[ BUFFERSIZE ];
it = CopyNextWord<char_t>( it, end, buffer, BUFFERSIZE );
value = (float) fast_atof( buffer );
value = (ai_real) fast_atof( buffer );
return it;
}

View File

@ -56,6 +56,12 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//using namespace Assimp;
namespace Assimp {
// make sure typeof returns consistent output across different platforms
// also consider using: typeid(VAR).name()
template <typename T> const char* typeof(T&) { return "unknown"; }
template<> const char* typeof(float&) { return "float"; }
template<> const char* typeof(double&) { return "double"; }
// ------------------------------------------------------------------------------------------------
// Worker function for exporting a scene to PLY. Prototyped and registered in Exporter.cpp
void ExportScenePly(const char* pFile,IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties)
@ -136,15 +142,21 @@ PlyExporter::PlyExporter(const char* _filename, const aiScene* pScene, bool bina
<< aiGetVersionMajor() << '.' << aiGetVersionMinor() << '.'
<< aiGetVersionRevision() << ")" << endl;
// TODO: probably want to check here rather than just assume something
// definitely not good to always write float even if we might have double precision
ai_real tmp = 0.0;
const char * typeName = typeof(tmp);
mOutput << "element vertex " << vertices << endl;
mOutput << "property float x" << endl;
mOutput << "property float y" << endl;
mOutput << "property float z" << endl;
mOutput << "property " << typeName << " x" << endl;
mOutput << "property " << typeName << " y" << endl;
mOutput << "property " << typeName << " z" << endl;
if(components & PLY_EXPORT_HAS_NORMALS) {
mOutput << "property float nx" << endl;
mOutput << "property float ny" << endl;
mOutput << "property float nz" << endl;
mOutput << "property " << typeName << " nx" << endl;
mOutput << "property " << typeName << " ny" << endl;
mOutput << "property " << typeName << " nz" << endl;
}
// write texcoords first, just in case an importer does not support tangents
@ -154,37 +166,37 @@ PlyExporter::PlyExporter(const char* _filename, const aiScene* pScene, bool bina
// and texture coordinates).
for (unsigned int n = PLY_EXPORT_HAS_TEXCOORDS, c = 0; (components & n) && c != AI_MAX_NUMBER_OF_TEXTURECOORDS; n <<= 1, ++c) {
if (!c) {
mOutput << "property float s" << endl;
mOutput << "property float t" << endl;
mOutput << "property " << typeName << " s" << endl;
mOutput << "property " << typeName << " t" << endl;
}
else {
mOutput << "property float s" << c << endl;
mOutput << "property float t" << c << endl;
mOutput << "property " << typeName << " s" << c << endl;
mOutput << "property " << typeName << " t" << c << endl;
}
}
for (unsigned int n = PLY_EXPORT_HAS_COLORS, c = 0; (components & n) && c != AI_MAX_NUMBER_OF_COLOR_SETS; n <<= 1, ++c) {
if (!c) {
mOutput << "property float r" << endl;
mOutput << "property float g" << endl;
mOutput << "property float b" << endl;
mOutput << "property float a" << endl;
mOutput << "property " << typeName << " r" << endl;
mOutput << "property " << typeName << " g" << endl;
mOutput << "property " << typeName << " b" << endl;
mOutput << "property " << typeName << " a" << endl;
}
else {
mOutput << "property float r" << c << endl;
mOutput << "property float g" << c << endl;
mOutput << "property float b" << c << endl;
mOutput << "property float a" << c << endl;
mOutput << "property " << typeName << " r" << c << endl;
mOutput << "property " << typeName << " g" << c << endl;
mOutput << "property " << typeName << " b" << c << endl;
mOutput << "property " << typeName << " a" << c << endl;
}
}
if(components & PLY_EXPORT_HAS_TANGENTS_BITANGENTS) {
mOutput << "property float tx" << endl;
mOutput << "property float ty" << endl;
mOutput << "property float tz" << endl;
mOutput << "property float bx" << endl;
mOutput << "property float by" << endl;
mOutput << "property float bz" << endl;
mOutput << "property " << typeName << " tx" << endl;
mOutput << "property " << typeName << " ty" << endl;
mOutput << "property " << typeName << " tz" << endl;
mOutput << "property " << typeName << " bx" << endl;
mOutput << "property " << typeName << " by" << endl;
mOutput << "property " << typeName << " bz" << endl;
}
mOutput << "element face " << faces << endl;
@ -223,7 +235,7 @@ PlyExporter::~PlyExporter() {
// ------------------------------------------------------------------------------------------------
void PlyExporter::WriteMeshVerts(const aiMesh* m, unsigned int components)
{
static const float inf = std::numeric_limits<float>::infinity();
static const ai_real inf = std::numeric_limits<ai_real>::infinity();
// If a component (for instance normal vectors) is present in at least one mesh in the scene,
// then default values are written for meshes that do not contain this component.

View File

@ -481,13 +481,13 @@ void PLYImporter::LoadTextureCoordinates(std::vector<aiVector2D>* pvOut)
if (0xFFFFFFFF != aiPositions[0])
{
vOut.x = PLY::PropertyInstance::ConvertTo<float>(
vOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[0]).avList.front(),aiTypes[0]);
}
if (0xFFFFFFFF != aiPositions[1])
{
vOut.y = PLY::PropertyInstance::ConvertTo<float>(
vOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[1]).avList.front(),aiTypes[1]);
}
// and add them to our nice list
@ -502,7 +502,7 @@ void PLYImporter::LoadVertices(std::vector<aiVector3D>* pvOut, bool p_bNormals)
{
ai_assert(NULL != pvOut);
unsigned int aiPositions[3] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF};
ai_uint aiPositions[3] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF};
PLY::EDataType aiTypes[3] = {EDT_Char,EDT_Char,EDT_Char};
PLY::ElementInstanceList* pcList = NULL;
unsigned int cnt = 0;
@ -591,19 +591,19 @@ void PLYImporter::LoadVertices(std::vector<aiVector3D>* pvOut, bool p_bNormals)
if (0xFFFFFFFF != aiPositions[0])
{
vOut.x = PLY::PropertyInstance::ConvertTo<float>(
vOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[0]).avList.front(),aiTypes[0]);
}
if (0xFFFFFFFF != aiPositions[1])
{
vOut.y = PLY::PropertyInstance::ConvertTo<float>(
vOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[1]).avList.front(),aiTypes[1]);
}
if (0xFFFFFFFF != aiPositions[2])
{
vOut.z = PLY::PropertyInstance::ConvertTo<float>(
vOut.z = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[2]).avList.front(),aiTypes[2]);
}
@ -615,7 +615,7 @@ void PLYImporter::LoadVertices(std::vector<aiVector3D>* pvOut, bool p_bNormals)
// ------------------------------------------------------------------------------------------------
// Convert a color component to [0...1]
float PLYImporter::NormalizeColorValue (PLY::PropertyInstance::ValueUnion val,
ai_real PLYImporter::NormalizeColorValue (PLY::PropertyInstance::ValueUnion val,
PLY::EDataType eType)
{
switch (eType)
@ -623,20 +623,20 @@ float PLYImporter::NormalizeColorValue (PLY::PropertyInstance::ValueUnion val,
case EDT_Float:
return val.fFloat;
case EDT_Double:
return (float)val.fDouble;
return (ai_real)val.fDouble;
case EDT_UChar:
return (float)val.iUInt / (float)0xFF;
return (ai_real)val.iUInt / (ai_real)0xFF;
case EDT_Char:
return (float)(val.iInt+(0xFF/2)) / (float)0xFF;
return (ai_real)(val.iInt+(0xFF/2)) / (ai_real)0xFF;
case EDT_UShort:
return (float)val.iUInt / (float)0xFFFF;
return (ai_real)val.iUInt / (ai_real)0xFFFF;
case EDT_Short:
return (float)(val.iInt+(0xFFFF/2)) / (float)0xFFFF;
return (ai_real)(val.iInt+(0xFFFF/2)) / (ai_real)0xFFFF;
case EDT_UInt:
return (float)val.iUInt / (float)0xFFFF;
return (ai_real)val.iUInt / (ai_real)0xFFFF;
case EDT_Int:
return ((float)val.iInt / (float)0xFF) + 0.5f;
return ((ai_real)val.iInt / (ai_real)0xFF) + 0.5f;
default: ;
};
return 0.0f;
@ -727,7 +727,7 @@ void PLYImporter::LoadVertexColor(std::vector<aiColor4D>* pvOut)
}
// assume 1.0 for the alpha channel ifit is not set
if (0xFFFFFFFF == aiPositions[3])vOut.a = 1.0f;
if (0xFFFFFFFF == aiPositions[3])vOut.a = 1.0;
else
{
vOut.a = NormalizeColorValue(GetProperty((*i).alProperties,
@ -1076,14 +1076,14 @@ void PLYImporter::LoadMaterial(std::vector<aiMaterial*>* pvOut)
// handle phong power and shading mode
int iMode;
if (0xFFFFFFFF != iPhong) {
float fSpec = PLY::PropertyInstance::ConvertTo<float>(GetProperty((*i).alProperties, iPhong).avList.front(),ePhong);
ai_real fSpec = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(),ePhong);
// if shininess is 0 (and the pow() calculation would therefore always
// become 1, not depending on the angle), use gouraud lighting
if (fSpec) {
// scale this with 15 ... hopefully this is correct
fSpec *= 15;
pcHelper->AddProperty<float>(&fSpec, 1, AI_MATKEY_SHININESS);
pcHelper->AddProperty<ai_real>(&fSpec, 1, AI_MATKEY_SHININESS);
iMode = (int)aiShadingMode_Phong;
}
@ -1094,8 +1094,8 @@ void PLYImporter::LoadMaterial(std::vector<aiMaterial*>* pvOut)
// handle opacity
if (0xFFFFFFFF != iOpacity) {
float fOpacity = PLY::PropertyInstance::ConvertTo<float>(GetProperty((*i).alProperties, iPhong).avList.front(),eOpacity);
pcHelper->AddProperty<float>(&fOpacity, 1, AI_MATKEY_OPACITY);
ai_real fOpacity = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(),eOpacity);
pcHelper->AddProperty<ai_real>(&fOpacity, 1, AI_MATKEY_OPACITY);
}
// The face order is absolutely undefined for PLY, so we have to

View File

@ -155,7 +155,7 @@ protected:
/** Static helper to parse a color channel value. The input value
* is normalized to 0-1.
*/
static float NormalizeColorValue (
static ai_real NormalizeColorValue (
PLY::PropertyInstance::ValueUnion val,
PLY::EDataType eType);

View File

@ -819,15 +819,18 @@ bool PLY::PropertyInstance::ParseValue(
break;
case EDT_Float:
pCur = fast_atoreal_move<float>(pCur,out->fFloat);
// technically this should cast to float, but people tend to use float descriptors for double data
// this is the best way to not risk loosing precision on import and it doesn't hurt to do this
ai_real f;
pCur = fast_atoreal_move<ai_real>(pCur,f);
out->fFloat = (ai_real)f;
break;
case EDT_Double:
float f;
pCur = fast_atoreal_move<float>(pCur,f);
out->fDouble = (double)f;
double d;
pCur = fast_atoreal_move<double>(pCur,d);
out->fDouble = (double)d;
break;
default:

View File

@ -690,9 +690,9 @@ void PretransformVertices::Execute( aiScene* pScene)
// find the dominant axis
aiVector3D d = max-min;
const float div = std::max(d.x,std::max(d.y,d.z))*0.5f;
const ai_real div = std::max(d.x,std::max(d.y,d.z))*0.5;
d = min+d*0.5f;
d = min + d * (ai_real)0.5;
for (unsigned int a = 0; a < pScene->mNumMeshes; ++a) {
aiMesh* m = pScene->mMeshes[a];
for (unsigned int i = 0; i < m->mNumVertices;++i) {
@ -721,4 +721,3 @@ void PretransformVertices::Execute( aiScene* pScene)
DefaultLogger::get()->info(buffer);
}
}

View File

@ -77,8 +77,8 @@ void ConvertListToStrings(const std::string& in, std::list<std::string>& out)
void FindAABBTransformed (const aiMesh* mesh, aiVector3D& min, aiVector3D& max,
const aiMatrix4x4& m)
{
min = aiVector3D (10e10f, 10e10f, 10e10f);
max = aiVector3D (-10e10f,-10e10f,-10e10f);
min = aiVector3D (10e10, 10e10, 10e10);
max = aiVector3D (-10e10,-10e10,-10e10);
for (unsigned int i = 0;i < mesh->mNumVertices;++i)
{
const aiVector3D v = m * mesh->mVertices[i];
@ -91,7 +91,7 @@ void FindAABBTransformed (const aiMesh* mesh, aiVector3D& min, aiVector3D& max,
void FindMeshCenter (aiMesh* mesh, aiVector3D& out, aiVector3D& min, aiVector3D& max)
{
ArrayBounds(mesh->mVertices,mesh->mNumVertices, min,max);
out = min + (max-min)*0.5f;
out = min + (max-min)*(ai_real)0.5;
}
// -------------------------------------------------------------------------------
@ -114,7 +114,7 @@ void FindSceneCenter (aiScene* scene, aiVector3D& out, aiVector3D& min, aiVector
if (max[1] < tmax[1]) max[1] = tmax[1];
if (max[2] < tmax[2]) max[2] = tmax[2];
}
out = min + (max-min)*0.5f;
out = min + (max-min)*(ai_real)0.5;
}
@ -123,7 +123,7 @@ void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out, aiVector3D& min,
aiVector3D& max, const aiMatrix4x4& m)
{
FindAABBTransformed(mesh,min,max,m);
out = min + (max-min)*0.5f;
out = min + (max-min)*(ai_real)0.5;
}
// -------------------------------------------------------------------------------
@ -142,9 +142,9 @@ void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out,
}
// -------------------------------------------------------------------------------
float ComputePositionEpsilon(const aiMesh* pMesh)
ai_real ComputePositionEpsilon(const aiMesh* pMesh)
{
const float epsilon = 1e-4f;
const ai_real epsilon = 1e-4;
// calculate the position bounds so we have a reliable epsilon to check position differences against
aiVector3D minVec, maxVec;
@ -153,11 +153,11 @@ float ComputePositionEpsilon(const aiMesh* pMesh)
}
// -------------------------------------------------------------------------------
float ComputePositionEpsilon(const aiMesh* const* pMeshes, size_t num)
ai_real ComputePositionEpsilon(const aiMesh* const* pMeshes, size_t num)
{
ai_assert( NULL != pMeshes );
const float epsilon = 1e-4f;
const ai_real epsilon = 1e-4;
// calculate the position bounds so we have a reliable epsilon to check position differences against
aiVector3D minVec, maxVec, mi, ma;

View File

@ -231,7 +231,7 @@ inline void ArrayBounds(const T* in, unsigned int size, T& min, T& max)
* @param pColor1 First color
* @param pColor2 second color
* @return Quadratic color difference */
inline float GetColorDifference( const aiColor4D& pColor1, const aiColor4D& pColor2)
inline ai_real GetColorDifference( const aiColor4D& pColor1, const aiColor4D& pColor2)
{
const aiColor4D c (pColor1.r - pColor2.r, pColor1.g - pColor2.g, pColor1.b - pColor2.b, pColor1.a - pColor2.a);
return c.r*c.r + c.g*c.g + c.b*c.b + c.a*c.a;
@ -293,12 +293,12 @@ void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out,const aiMatrix4x4&
// -------------------------------------------------------------------------------
// Compute a good epsilon value for position comparisons on a mesh
float ComputePositionEpsilon(const aiMesh* pMesh);
ai_real ComputePositionEpsilon(const aiMesh* pMesh);
// -------------------------------------------------------------------------------
// Compute a good epsilon value for position comparisons on a array of meshes
float ComputePositionEpsilon(const aiMesh* const* pMeshes, size_t num);
ai_real ComputePositionEpsilon(const aiMesh* const* pMeshes, size_t num);
// -------------------------------------------------------------------------------
@ -345,7 +345,7 @@ class ComputeSpatialSortProcess : public BaseProcess
void Execute( aiScene* pScene)
{
typedef std::pair<SpatialSort, float> _Type;
typedef std::pair<SpatialSort, ai_real> _Type;
DefaultLogger::get()->debug("Generate spatially-sorted vertex cache");
std::vector<_Type>* p = new std::vector<_Type>(pScene->mNumMeshes);

View File

@ -697,8 +697,8 @@ static void ReadLightInfo(aiLight* light, StreamReaderLE* stream)
light->mColorDiffuse = ReadColor(stream);
light->mColorAmbient = ReadColor(stream);
light->mColorSpecular = ReadColor(stream);
float spotExponent = stream->GetF4();
float spotCutoff = stream->GetF4();
ai_real spotExponent = stream->GetF4();
ai_real spotCutoff = stream->GetF4();
light->mAttenuationConstant = stream->GetF4();
light->mAttenuationLinear = stream->GetF4();
light->mAttenuationQuadratic = stream->GetF4();
@ -709,9 +709,9 @@ static void ReadLightInfo(aiLight* light, StreamReaderLE* stream)
// 99% and 1% percentiles.
// OpenGL: I = cos(angle)^E
// Solving: angle = acos(I^(1/E))
float E = 1.0f / std::max(spotExponent, 0.00001f);
float inner = acosf(powf(0.99f, E));
float outer = acosf(powf(0.01f, E));
ai_real E = 1.0 / std::max(spotExponent, (ai_real)0.00001);
ai_real inner = acos(pow((ai_real)0.99, E));
ai_real outer = acos(pow((ai_real)0.01, E));
// Apply the cutoff.
outer = std::min(outer, AI_DEG_TO_RAD(spotCutoff));

View File

@ -162,12 +162,12 @@ void STLExporter :: WriteMeshBinary(const aiMesh* m)
}
nor.Normalize();
}
float nx = nor.x, ny = nor.y, nz = nor.z;
ai_real nx = nor.x, ny = nor.y, nz = nor.z;
AI_SWAP4(nx); AI_SWAP4(ny); AI_SWAP4(nz);
mOutput.write((char *)&nx, 4); mOutput.write((char *)&ny, 4); mOutput.write((char *)&nz, 4);
for(unsigned int a = 0; a < f.mNumIndices; ++a) {
const aiVector3D& v = m->mVertices[f.mIndices[a]];
float vx = v.x, vy = v.y, vz = v.z;
ai_real vx = v.x, vy = v.y, vz = v.z;
AI_SWAP4(vx); AI_SWAP4(vy); AI_SWAP4(vz);
mOutput.write((char *)&vx, 4); mOutput.write((char *)&vy, 4); mOutput.write((char *)&vz, 4);
}

View File

@ -189,7 +189,7 @@ void STLImporter::InternReadFile( const std::string& pFile,
this->mBuffer = &mBuffer2[0];
// the default vertex color is light gray.
clrColorDefault.r = clrColorDefault.g = clrColorDefault.b = clrColorDefault.a = 0.6f;
clrColorDefault.r = clrColorDefault.g = clrColorDefault.b = clrColorDefault.a = 0.6;
// allocate a single node
pScene->mRootNode = new aiNode();
@ -217,13 +217,13 @@ void STLImporter::InternReadFile( const std::string& pFile,
s.Set(AI_DEFAULT_MATERIAL_NAME);
pcMat->AddProperty(&s, AI_MATKEY_NAME);
aiColor4D clrDiffuse(0.6f,0.6f,0.6f,1.0f);
aiColor4D clrDiffuse(0.6,0.6,0.6,1.0);
if (bMatClr) {
clrDiffuse = clrColorDefault;
}
pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_DIFFUSE);
pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_SPECULAR);
clrDiffuse = aiColor4D(0.05f,0.05f,0.05f,1.0f);
clrDiffuse = aiColor4D(0.05,0.05,0.05,1.0);
pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_AMBIENT);
pScene->mNumMaterials = 1;
@ -307,11 +307,11 @@ void STLImporter::LoadASCIIFile()
}
sz += 7;
SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->x );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->x );
SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->y );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->y );
SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->z );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->z );
normalBuffer.push_back(*vn);
normalBuffer.push_back(*vn);
}
@ -332,11 +332,11 @@ void STLImporter::LoadASCIIFile()
SkipSpaces(&sz);
positionBuffer.push_back(aiVector3D());
aiVector3D* vn = &positionBuffer.back();
sz = fast_atoreal_move<float>(sz, (float&)vn->x );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->x );
SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->y );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->y );
SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->z );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->z );
faceVertexCounter++;
}
}
@ -416,10 +416,10 @@ bool STLImporter::LoadBinaryFile()
// read the default vertex color for facets
bIsMaterialise = true;
DefaultLogger::get()->info("STL: Taking code path for Materialise files");
clrColorDefault.r = (*sz2++) / 255.0f;
clrColorDefault.g = (*sz2++) / 255.0f;
clrColorDefault.b = (*sz2++) / 255.0f;
clrColorDefault.a = (*sz2++) / 255.0f;
clrColorDefault.r = (*sz2++) / 255.0;
clrColorDefault.g = (*sz2++) / 255.0;
clrColorDefault.b = (*sz2++) / 255.0;
clrColorDefault.a = (*sz2++) / 255.0;
break;
}
}
@ -480,18 +480,18 @@ bool STLImporter::LoadBinaryFile()
DefaultLogger::get()->info("STL: Mesh has vertex colors");
}
aiColor4D* clr = &pMesh->mColors[0][i*3];
clr->a = 1.0f;
clr->a = 1.0;
if (bIsMaterialise) // this is reversed
{
clr->r = (color & 0x31u) / 31.0f;
clr->g = ((color & (0x31u<<5))>>5u) / 31.0f;
clr->b = ((color & (0x31u<<10))>>10u) / 31.0f;
clr->r = (color & 0x31u) / 31.0;
clr->g = ((color & (0x31u<<5))>>5u) / 31.0;
clr->b = ((color & (0x31u<<10))>>10u) / 31.0;
}
else
{
clr->b = (color & 0x31u) / 31.0f;
clr->g = ((color & (0x31u<<5))>>5u) / 31.0f;
clr->r = ((color & (0x31u<<10))>>10u) / 31.0f;
clr->b = (color & 0x31u) / 31.0;
clr->g = ((color & (0x31u<<5))>>5u) / 31.0;
clr->r = ((color & (0x31u<<10))>>10u) / 31.0;
}
// assign the color to all vertices of the face
*(clr+1) = *clr;

View File

@ -1246,6 +1246,9 @@ void SceneCombiner::Copy (aiMetadata** _dest, const aiMetadata* src)
case AI_FLOAT:
out.mData = new float(*static_cast<float*>(in.mData));
break;
case AI_DOUBLE:
out.mData = new double(*static_cast<double*>(in.mData));
break;
case AI_AISTRING:
out.mData = new aiString(*static_cast<aiString*>(in.mData));
break;

View File

@ -96,31 +96,31 @@ void SkeletonMeshBuilder::CreateGeometry( const aiNode* pNode)
// find a suitable coordinate system
const aiMatrix4x4& childTransform = pNode->mChildren[a]->mTransformation;
aiVector3D childpos( childTransform.a4, childTransform.b4, childTransform.c4);
float distanceToChild = childpos.Length();
if( distanceToChild < 0.0001f)
ai_real distanceToChild = childpos.Length();
if( distanceToChild < 0.0001)
continue;
aiVector3D up = aiVector3D( childpos).Normalize();
aiVector3D orth( 1.0f, 0.0f, 0.0f);
if( std::fabs( orth * up) > 0.99f)
orth.Set( 0.0f, 1.0f, 0.0f);
aiVector3D orth( 1.0, 0.0, 0.0);
if( std::fabs( orth * up) > 0.99)
orth.Set( 0.0, 1.0, 0.0);
aiVector3D front = (up ^ orth).Normalize();
aiVector3D side = (front ^ up).Normalize();
unsigned int localVertexStart = mVertices.size();
mVertices.push_back( -front * distanceToChild * 0.1f);
mVertices.push_back( -front * distanceToChild * (ai_real)0.1);
mVertices.push_back( childpos);
mVertices.push_back( -side * distanceToChild * 0.1f);
mVertices.push_back( -side * distanceToChild * 0.1f);
mVertices.push_back( -side * distanceToChild * (ai_real)0.1);
mVertices.push_back( -side * distanceToChild * (ai_real)0.1);
mVertices.push_back( childpos);
mVertices.push_back( front * distanceToChild * 0.1f);
mVertices.push_back( front * distanceToChild * 0.1f);
mVertices.push_back( front * distanceToChild * (ai_real)0.1);
mVertices.push_back( front * distanceToChild * (ai_real)0.1);
mVertices.push_back( childpos);
mVertices.push_back( side * distanceToChild * 0.1f);
mVertices.push_back( side * distanceToChild * 0.1f);
mVertices.push_back( side * distanceToChild * (ai_real)0.1);
mVertices.push_back( side * distanceToChild * (ai_real)0.1);
mVertices.push_back( childpos);
mVertices.push_back( -front * distanceToChild * 0.1f);
mVertices.push_back( -front * distanceToChild * (ai_real)0.1);
mFaces.push_back( Face( localVertexStart + 0, localVertexStart + 1, localVertexStart + 2));
mFaces.push_back( Face( localVertexStart + 3, localVertexStart + 4, localVertexStart + 5));
@ -132,33 +132,33 @@ void SkeletonMeshBuilder::CreateGeometry( const aiNode* pNode)
{
// if the node has no children, it's an end node. Put a little knob there instead
aiVector3D ownpos( pNode->mTransformation.a4, pNode->mTransformation.b4, pNode->mTransformation.c4);
float sizeEstimate = ownpos.Length() * 0.18f;
ai_real sizeEstimate = ownpos.Length() * 0.18;
mVertices.push_back( aiVector3D( -sizeEstimate, 0.0f, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, sizeEstimate, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, 0.0f, -sizeEstimate));
mVertices.push_back( aiVector3D( 0.0f, sizeEstimate, 0.0f));
mVertices.push_back( aiVector3D( sizeEstimate, 0.0f, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, 0.0f, -sizeEstimate));
mVertices.push_back( aiVector3D( sizeEstimate, 0.0f, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, -sizeEstimate, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, 0.0f, -sizeEstimate));
mVertices.push_back( aiVector3D( 0.0f, -sizeEstimate, 0.0f));
mVertices.push_back( aiVector3D( -sizeEstimate, 0.0f, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, 0.0f, -sizeEstimate));
mVertices.push_back( aiVector3D( -sizeEstimate, 0.0, 0.0));
mVertices.push_back( aiVector3D( 0.0, sizeEstimate, 0.0));
mVertices.push_back( aiVector3D( 0.0, 0.0, -sizeEstimate));
mVertices.push_back( aiVector3D( 0.0, sizeEstimate, 0.0));
mVertices.push_back( aiVector3D( sizeEstimate, 0.0, 0.0));
mVertices.push_back( aiVector3D( 0.0, 0.0, -sizeEstimate));
mVertices.push_back( aiVector3D( sizeEstimate, 0.0, 0.0));
mVertices.push_back( aiVector3D( 0.0, -sizeEstimate, 0.0));
mVertices.push_back( aiVector3D( 0.0, 0.0, -sizeEstimate));
mVertices.push_back( aiVector3D( 0.0, -sizeEstimate, 0.0));
mVertices.push_back( aiVector3D( -sizeEstimate, 0.0, 0.0));
mVertices.push_back( aiVector3D( 0.0, 0.0, -sizeEstimate));
mVertices.push_back( aiVector3D( -sizeEstimate, 0.0f, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, 0.0f, sizeEstimate));
mVertices.push_back( aiVector3D( 0.0f, sizeEstimate, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, sizeEstimate, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, 0.0f, sizeEstimate));
mVertices.push_back( aiVector3D( sizeEstimate, 0.0f, 0.0f));
mVertices.push_back( aiVector3D( sizeEstimate, 0.0f, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, 0.0f, sizeEstimate));
mVertices.push_back( aiVector3D( 0.0f, -sizeEstimate, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, -sizeEstimate, 0.0f));
mVertices.push_back( aiVector3D( 0.0f, 0.0f, sizeEstimate));
mVertices.push_back( aiVector3D( -sizeEstimate, 0.0f, 0.0f));
mVertices.push_back( aiVector3D( -sizeEstimate, 0.0, 0.0));
mVertices.push_back( aiVector3D( 0.0, 0.0, sizeEstimate));
mVertices.push_back( aiVector3D( 0.0, sizeEstimate, 0.0));
mVertices.push_back( aiVector3D( 0.0, sizeEstimate, 0.0));
mVertices.push_back( aiVector3D( 0.0, 0.0, sizeEstimate));
mVertices.push_back( aiVector3D( sizeEstimate, 0.0, 0.0));
mVertices.push_back( aiVector3D( sizeEstimate, 0.0, 0.0));
mVertices.push_back( aiVector3D( 0.0, 0.0, sizeEstimate));
mVertices.push_back( aiVector3D( 0.0, -sizeEstimate, 0.0));
mVertices.push_back( aiVector3D( 0.0, -sizeEstimate, 0.0));
mVertices.push_back( aiVector3D( 0.0, 0.0, sizeEstimate));
mVertices.push_back( aiVector3D( -sizeEstimate, 0.0, 0.0));
mFaces.push_back( Face( vertexStartIndex + 0, vertexStartIndex + 1, vertexStartIndex + 2));
mFaces.push_back( Face( vertexStartIndex + 3, vertexStartIndex + 4, vertexStartIndex + 5));
@ -187,7 +187,7 @@ void SkeletonMeshBuilder::CreateGeometry( const aiNode* pNode)
bone->mNumWeights = numVertices;
bone->mWeights = new aiVertexWeight[numVertices];
for( unsigned int a = 0; a < numVertices; a++)
bone->mWeights[a] = aiVertexWeight( vertexStartIndex + a, 1.0f);
bone->mWeights[a] = aiVertexWeight( vertexStartIndex + a, 1.0);
// HACK: (thom) transform all vertices to the bone's local space. Should be done before adding
// them to the array, but I'm tired now and I'm annoyed.
@ -232,8 +232,8 @@ aiMesh* SkeletonMeshBuilder::CreateMesh()
aiVector3D nor = ((mVertices[inface.mIndices[2]] - mVertices[inface.mIndices[0]]) ^
(mVertices[inface.mIndices[1]] - mVertices[inface.mIndices[0]]));
if (nor.Length() < 1e-5f) /* ensure that FindInvalidData won't remove us ...*/
nor = aiVector3D(1.f,0.f,0.f);
if (nor.Length() < 1e-5) /* ensure that FindInvalidData won't remove us ...*/
nor = aiVector3D(1.0,0.0,0.0);
for (unsigned int n = 0; n < 3; ++n)
mesh->mNormals[inface.mIndices[n]] = nor;

View File

@ -107,7 +107,7 @@ void SpatialSort::Append( const aiVector3D* pPositions, unsigned int pNumPositio
const aiVector3D* vec = reinterpret_cast<const aiVector3D*> (tempPointer + a * pElementOffset);
// store position by index and distance
float distance = *vec * mPlaneNormal;
ai_real distance = *vec * mPlaneNormal;
mPositions.push_back( Entry( a+initial, *vec, distance));
}
@ -120,10 +120,10 @@ void SpatialSort::Append( const aiVector3D* pPositions, unsigned int pNumPositio
// ------------------------------------------------------------------------------------------------
// Returns an iterator for all positions close to the given position.
void SpatialSort::FindPositions( const aiVector3D& pPosition,
float pRadius, std::vector<unsigned int>& poResults) const
ai_real pRadius, std::vector<unsigned int>& poResults) const
{
const float dist = pPosition * mPlaneNormal;
const float minDist = dist - pRadius, maxDist = dist + pRadius;
const ai_real dist = pPosition * mPlaneNormal;
const ai_real minDist = dist - pRadius, maxDist = dist + pRadius;
// clear the array in this strange fashion because a simple clear() would also deallocate
// the array which we want to avoid
@ -160,7 +160,7 @@ void SpatialSort::FindPositions( const aiVector3D& pPosition,
// Mow start iterating from there until the first position lays outside of the distance range.
// Add all positions inside the distance range within the given radius to the result aray
std::vector<Entry>::const_iterator it = mPositions.begin() + index;
const float pSquared = pRadius*pRadius;
const ai_real pSquared = pRadius*pRadius;
while( it->mDistance < maxDist)
{
if( (it->mPosition - pPosition).SquareLength() < pSquared)
@ -182,23 +182,23 @@ namespace {
// and then use them to work with ULPs (Units in the Last Place, for high-precision
// computations) or to compare them (integer comparisons are faster than floating-point
// comparisons on many platforms).
typedef signed int BinFloat;
typedef ai_int BinFloat;
// --------------------------------------------------------------------------------------------
// Converts the bit pattern of a floating-point number to its signed integer representation.
BinFloat ToBinary( const float & pValue) {
BinFloat ToBinary( const ai_real & pValue) {
// If this assertion fails, signed int is not big enough to store a float on your platform.
// Please correct the declaration of BinFloat a few lines above - but do it in a portable,
// #ifdef'd manner!
static_assert( sizeof(BinFloat) >= sizeof(float), "sizeof(BinFloat) >= sizeof(float)");
static_assert( sizeof(BinFloat) >= sizeof(ai_real), "sizeof(BinFloat) >= sizeof(ai_real)");
#if defined( _MSC_VER)
// If this assertion fails, Visual C++ has finally moved to ILP64. This means that this
// code has just become legacy code! Find out the current value of _MSC_VER and modify
// the #if above so it evaluates false on the current and all upcoming VC versions (or
// on the current platform, if LP64 or LLP64 are still used on other platforms).
static_assert( sizeof(BinFloat) == sizeof(float), "sizeof(BinFloat) == sizeof(float)");
static_assert( sizeof(BinFloat) == sizeof(ai_real), "sizeof(BinFloat) == sizeof(ai_real)");
// This works best on Visual C++, but other compilers have their problems with it.
const BinFloat binValue = reinterpret_cast<BinFloat const &>(pValue);
@ -206,7 +206,7 @@ namespace {
// On many compilers, reinterpreting a float address as an integer causes aliasing
// problems. This is an ugly but more or less safe way of doing it.
union {
float asFloat;
ai_real asFloat;
BinFloat asBin;
} conversion;
conversion.asBin = 0; // zero empty space in case sizeof(BinFloat) > sizeof(float)
@ -308,13 +308,13 @@ void SpatialSort::FindIdenticalPositions( const aiVector3D& pPosition,
}
// ------------------------------------------------------------------------------------------------
unsigned int SpatialSort::GenerateMappingTable(std::vector<unsigned int>& fill,float pRadius) const
unsigned int SpatialSort::GenerateMappingTable(std::vector<unsigned int>& fill, ai_real pRadius) const
{
fill.resize(mPositions.size(),UINT_MAX);
float dist, maxDist;
ai_real dist, maxDist;
unsigned int t=0;
const float pSquared = pRadius*pRadius;
const ai_real pSquared = pRadius*pRadius;
for (size_t i = 0; i < mPositions.size();) {
dist = mPositions[i].mPosition * mPlaneNormal;
maxDist = dist + pRadius;
@ -339,4 +339,3 @@ unsigned int SpatialSort::GenerateMappingTable(std::vector<unsigned int>& fill,f
#endif
return t;
}

View File

@ -117,7 +117,7 @@ public:
* @param poResults The container to store the indices of the found positions.
* Will be emptied by the call so it may contain anything.
* @return An iterator to iterate over all vertices in the given area.*/
void FindPositions( const aiVector3D& pPosition, float pRadius,
void FindPositions( const aiVector3D& pPosition, ai_real pRadius,
std::vector<unsigned int>& poResults) const;
// ------------------------------------------------------------------------------------
@ -139,7 +139,7 @@ public:
* be counted in.
* @return Number of unique vertices (n). */
unsigned int GenerateMappingTable(std::vector<unsigned int>& fill,
float pRadius) const;
ai_real pRadius) const;
protected:
/** Normal of the sorting plane, normalized. The center is always at (0, 0, 0) */
@ -151,10 +151,10 @@ protected:
{
unsigned int mIndex; ///< The vertex referred by this entry
aiVector3D mPosition; ///< Position
float mDistance; ///< Distance of this vertex to the sorting plane
ai_real mDistance; ///< Distance of this vertex to the sorting plane
Entry() { /** intentionally not initialized.*/ }
Entry( unsigned int pIndex, const aiVector3D& pPosition, float pDistance)
Entry( unsigned int pIndex, const aiVector3D& pPosition, ai_real pDistance)
: mIndex( pIndex), mPosition( pPosition), mDistance( pDistance)
{ }

View File

@ -95,7 +95,7 @@ namespace Assimp {
void Subdivide(std::vector<aiVector3D>& positions)
{
// assume this to be constant - (fixme: must be 1.0? I think so)
const float fl1 = positions[0].Length();
const ai_real fl1 = positions[0].Length();
unsigned int origSize = (unsigned int)positions.size();
for (unsigned int i = 0 ; i < origSize ; i+=3)
@ -194,21 +194,21 @@ unsigned int StandardShapes::MakeIcosahedron(std::vector<aiVector3D>& positions)
{
positions.reserve(positions.size()+60);
const float t = (1.f + 2.236067977f)/2.f;
const float s = std::sqrt(1.f + t*t);
const ai_real t = (1.0 + 2.236067977)/2.0;
const ai_real s = std::sqrt(1.0 + t*t);
const aiVector3D v0 = aiVector3D(t,1.f, 0.f)/s;
const aiVector3D v1 = aiVector3D(-t,1.f, 0.f)/s;
const aiVector3D v2 = aiVector3D(t,-1.f, 0.f)/s;
const aiVector3D v3 = aiVector3D(-t,-1.f, 0.f)/s;
const aiVector3D v4 = aiVector3D(1.f, 0.f, t)/s;
const aiVector3D v5 = aiVector3D(1.f, 0.f,-t)/s;
const aiVector3D v6 = aiVector3D(-1.f, 0.f,t)/s;
const aiVector3D v7 = aiVector3D(-1.f, 0.f,-t)/s;
const aiVector3D v8 = aiVector3D(0.f, t, 1.f)/s;
const aiVector3D v9 = aiVector3D(0.f,-t, 1.f)/s;
const aiVector3D v10 = aiVector3D(0.f, t,-1.f)/s;
const aiVector3D v11 = aiVector3D(0.f,-t,-1.f)/s;
const aiVector3D v0 = aiVector3D(t,1.0, 0.0)/s;
const aiVector3D v1 = aiVector3D(-t,1.0, 0.0)/s;
const aiVector3D v2 = aiVector3D(t,-1.0, 0.0)/s;
const aiVector3D v3 = aiVector3D(-t,-1.0, 0.0)/s;
const aiVector3D v4 = aiVector3D(1.0, 0.0, t)/s;
const aiVector3D v5 = aiVector3D(1.0, 0.0,-t)/s;
const aiVector3D v6 = aiVector3D(-1.0, 0.0,t)/s;
const aiVector3D v7 = aiVector3D(-1.0, 0.0,-t)/s;
const aiVector3D v8 = aiVector3D(0.0, t, 1.0)/s;
const aiVector3D v9 = aiVector3D(0.0,-t, 1.0)/s;
const aiVector3D v10 = aiVector3D(0.0, t,-1.0)/s;
const aiVector3D v11 = aiVector3D(0.0,-t,-1.0)/s;
ADD_TRIANGLE(v0,v8,v4);
ADD_TRIANGLE(v0,v5,v10);
@ -244,9 +244,9 @@ unsigned int StandardShapes::MakeDodecahedron(std::vector<aiVector3D>& positions
{
positions.reserve(positions.size()+108);
const float a = 1.f / 1.7320508f;
const float b = std::sqrt((3.f-2.23606797f)/6.f);
const float c = std::sqrt((3.f+2.23606797f)/6.f);
const ai_real a = 1.0 / 1.7320508;
const ai_real b = std::sqrt((3.0-2.23606797f)/6.0);
const ai_real c = std::sqrt((3.0+2.23606797f)/6.0);
const aiVector3D v0 = aiVector3D(a,a,a);
const aiVector3D v1 = aiVector3D(a,a,-a);
@ -256,18 +256,18 @@ unsigned int StandardShapes::MakeDodecahedron(std::vector<aiVector3D>& positions
const aiVector3D v5 = aiVector3D(-a,a,-a);
const aiVector3D v6 = aiVector3D(-a,-a,a);
const aiVector3D v7 = aiVector3D(-a,-a,-a);
const aiVector3D v8 = aiVector3D(b,c,0.f);
const aiVector3D v9 = aiVector3D(-b,c,0.f);
const aiVector3D v10 = aiVector3D(b,-c,0.f);
const aiVector3D v11 = aiVector3D(-b,-c,0.f);
const aiVector3D v12 = aiVector3D(c, 0.f, b);
const aiVector3D v13 = aiVector3D(c, 0.f, -b);
const aiVector3D v14 = aiVector3D(-c, 0.f, b);
const aiVector3D v15 = aiVector3D(-c, 0.f, -b);
const aiVector3D v16 = aiVector3D(0.f, b, c);
const aiVector3D v17 = aiVector3D(0.f, -b, c);
const aiVector3D v18 = aiVector3D(0.f, b, -c);
const aiVector3D v19 = aiVector3D(0.f, -b, -c);
const aiVector3D v8 = aiVector3D(b,c,0.0);
const aiVector3D v9 = aiVector3D(-b,c,0.0);
const aiVector3D v10 = aiVector3D(b,-c,0.0);
const aiVector3D v11 = aiVector3D(-b,-c,0.0);
const aiVector3D v12 = aiVector3D(c, 0.0, b);
const aiVector3D v13 = aiVector3D(c, 0.0, -b);
const aiVector3D v14 = aiVector3D(-c, 0.0, b);
const aiVector3D v15 = aiVector3D(-c, 0.0, -b);
const aiVector3D v16 = aiVector3D(0.0, b, c);
const aiVector3D v17 = aiVector3D(0.0, -b, c);
const aiVector3D v18 = aiVector3D(0.0, b, -c);
const aiVector3D v19 = aiVector3D(0.0, -b, -c);
ADD_PENTAGON(v0, v8, v9, v4, v16);
ADD_PENTAGON(v0, v12, v13, v1, v8);
@ -291,12 +291,12 @@ unsigned int StandardShapes::MakeOctahedron(std::vector<aiVector3D>& positions)
{
positions.reserve(positions.size()+24);
const aiVector3D v0 = aiVector3D(1.0f, 0.f, 0.f) ;
const aiVector3D v1 = aiVector3D(-1.0f, 0.f, 0.f);
const aiVector3D v2 = aiVector3D(0.f, 1.0f, 0.f);
const aiVector3D v3 = aiVector3D(0.f, -1.0f, 0.f);
const aiVector3D v4 = aiVector3D(0.f, 0.f, 1.0f);
const aiVector3D v5 = aiVector3D(0.f, 0.f, -1.0f);
const aiVector3D v0 = aiVector3D(1.0, 0.0, 0.0) ;
const aiVector3D v1 = aiVector3D(-1.0, 0.0, 0.0);
const aiVector3D v2 = aiVector3D(0.0, 1.0, 0.0);
const aiVector3D v3 = aiVector3D(0.0, -1.0, 0.0);
const aiVector3D v4 = aiVector3D(0.0, 0.0, 1.0);
const aiVector3D v5 = aiVector3D(0.0, 0.0, -1.0);
ADD_TRIANGLE(v4,v0,v2);
ADD_TRIANGLE(v4,v2,v1);
@ -316,13 +316,13 @@ unsigned int StandardShapes::MakeTetrahedron(std::vector<aiVector3D>& positions)
{
positions.reserve(positions.size()+9);
const float a = 1.41421f/3.f;
const float b = 2.4494f/3.f;
const ai_real a = 1.41421/3.0;
const ai_real b = 2.4494/3.0;
const aiVector3D v0 = aiVector3D(0.f,0.f,1.f);
const aiVector3D v1 = aiVector3D(2*a,0,-1.f/3.f);
const aiVector3D v2 = aiVector3D(-a,b,-1.f/3.f);
const aiVector3D v3 = aiVector3D(-a,-b,-1.f/3.f);
const aiVector3D v0 = aiVector3D(0.0,0.0,1.0);
const aiVector3D v1 = aiVector3D(2*a,0,-1.0/3.0);
const aiVector3D v2 = aiVector3D(-a,b,-1.0/3.0);
const aiVector3D v3 = aiVector3D(-a,-b,-1.0/3.0);
ADD_TRIANGLE(v0,v1,v2);
ADD_TRIANGLE(v0,v2,v3);
@ -337,16 +337,16 @@ unsigned int StandardShapes::MakeHexahedron(std::vector<aiVector3D>& positions,
bool polygons /*= false*/)
{
positions.reserve(positions.size()+36);
const float length = 1.f/1.73205080f;
const ai_real length = 1.0/1.73205080;
const aiVector3D v0 = aiVector3D(-1.f,-1.f,-1.f)*length;
const aiVector3D v1 = aiVector3D(1.f,-1.f,-1.f)*length;
const aiVector3D v2 = aiVector3D(1.f,1.f,-1.f)*length;
const aiVector3D v3 = aiVector3D(-1.f,1.f,-1.f)*length;
const aiVector3D v4 = aiVector3D(-1.f,-1.f,1.f)*length;
const aiVector3D v5 = aiVector3D(1.f,-1.f,1.f)*length;
const aiVector3D v6 = aiVector3D(1.f,1.f,1.f)*length;
const aiVector3D v7 = aiVector3D(-1.f,1.f,1.f)*length;
const aiVector3D v0 = aiVector3D(-1.0,-1.0,-1.0)*length;
const aiVector3D v1 = aiVector3D(1.0,-1.0,-1.0)*length;
const aiVector3D v2 = aiVector3D(1.0,1.0,-1.0)*length;
const aiVector3D v3 = aiVector3D(-1.0,1.0,-1.0)*length;
const aiVector3D v4 = aiVector3D(-1.0,-1.0,1.0)*length;
const aiVector3D v5 = aiVector3D(1.0,-1.0,1.0)*length;
const aiVector3D v6 = aiVector3D(1.0,1.0,1.0)*length;
const aiVector3D v7 = aiVector3D(-1.0,1.0,1.0)*length;
ADD_QUAD(v0,v3,v2,v1);
ADD_QUAD(v0,v1,v5,v4);
@ -382,8 +382,8 @@ void StandardShapes::MakeSphere(unsigned int tess,
// ------------------------------------------------------------------------------------------------
// Build a cone
void StandardShapes::MakeCone(float height,float radius1,
float radius2,unsigned int tess,
void StandardShapes::MakeCone(ai_real height,ai_real radius1,
ai_real radius2,unsigned int tess,
std::vector<aiVector3D>& positions,bool bOpen /*= false */)
{
// Sorry, a cone with less than 3 segments makes ABSOLUTELY NO SENSE
@ -396,7 +396,7 @@ void StandardShapes::MakeCone(float height,float radius1,
radius1 = std::fabs(radius1);
radius2 = std::fabs(radius2);
float halfHeight = height / 2;
ai_real halfHeight = height / 2.0;
// radius1 is always the smaller one
if (radius2 > radius1)
@ -407,7 +407,7 @@ void StandardShapes::MakeCone(float height,float radius1,
else old = SIZE_MAX;
// Use a large epsilon to check whether the cone is pointy
if (radius1 < (radius2-radius1)*10e-3f)radius1 = 0.f;
if (radius1 < (radius2-radius1)*10e-3)radius1 = 0.0;
// We will need 3*2 verts per segment + 3*2 verts per segment
// if the cone is closed
@ -415,20 +415,20 @@ void StandardShapes::MakeCone(float height,float radius1,
positions.reserve(positions.size () + mem);
// Now construct all segments
const float angle_delta = (float)AI_MATH_TWO_PI / tess;
const float angle_max = (float)AI_MATH_TWO_PI;
const ai_real angle_delta = (ai_real)AI_MATH_TWO_PI / tess;
const ai_real angle_max = (ai_real)AI_MATH_TWO_PI;
float s = 1.f; // std::cos(angle == 0);
float t = 0.f; // std::sin(angle == 0);
ai_real s = 1.0; // std::cos(angle == 0);
ai_real t = 0.0; // std::sin(angle == 0);
for (float angle = 0.f; angle < angle_max; )
for (ai_real angle = 0.0; angle < angle_max; )
{
const aiVector3D v1 = aiVector3D (s * radius1, -halfHeight, t * radius1 );
const aiVector3D v2 = aiVector3D (s * radius2, halfHeight, t * radius2 );
const float next = angle + angle_delta;
float s2 = std::cos(next);
float t2 = std::sin(next);
const ai_real next = angle + angle_delta;
ai_real s2 = std::cos(next);
ai_real t2 = std::sin(next);
const aiVector3D v3 = aiVector3D (s2 * radius2, halfHeight, t2 * radius2 );
const aiVector3D v4 = aiVector3D (s2 * radius1, -halfHeight, t2 * radius1 );
@ -445,7 +445,7 @@ void StandardShapes::MakeCone(float height,float radius1,
// generate the end 'cap'
positions.push_back(aiVector3D(s * radius2, halfHeight, t * radius2 ));
positions.push_back(aiVector3D(s2 * radius2, halfHeight, t2 * radius2 ));
positions.push_back(aiVector3D(0.f, halfHeight, 0.f));
positions.push_back(aiVector3D(0.0, halfHeight, 0.0));
if (radius1)
@ -453,7 +453,7 @@ void StandardShapes::MakeCone(float height,float radius1,
// generate the other end 'cap'
positions.push_back(aiVector3D(s * radius1, -halfHeight, t * radius1 ));
positions.push_back(aiVector3D(s2 * radius1, -halfHeight, t2 * radius1 ));
positions.push_back(aiVector3D(0.f, -halfHeight, 0.f));
positions.push_back(aiVector3D(0.0, -halfHeight, 0.0));
}
}
@ -472,7 +472,7 @@ void StandardShapes::MakeCone(float height,float radius1,
// ------------------------------------------------------------------------------------------------
// Build a circle
void StandardShapes::MakeCircle(float radius, unsigned int tess,
void StandardShapes::MakeCircle(ai_real radius, unsigned int tess,
std::vector<aiVector3D>& positions)
{
// Sorry, a circle with less than 3 segments makes ABSOLUTELY NO SENSE
@ -484,21 +484,21 @@ void StandardShapes::MakeCircle(float radius, unsigned int tess,
// We will need 3 vertices per segment
positions.reserve(positions.size()+tess*3);
const float angle_delta = (float)AI_MATH_TWO_PI / tess;
const float angle_max = (float)AI_MATH_TWO_PI;
const ai_real angle_delta = (ai_real)AI_MATH_TWO_PI / tess;
const ai_real angle_max = (ai_real)AI_MATH_TWO_PI;
float s = 1.f; // std::cos(angle == 0);
float t = 0.f; // std::sin(angle == 0);
ai_real s = 1.0; // std::cos(angle == 0);
ai_real t = 0.0; // std::sin(angle == 0);
for (float angle = 0.f; angle < angle_max; )
for (ai_real angle = 0.0; angle < angle_max; )
{
positions.push_back(aiVector3D(s * radius,0.f,t * radius));
positions.push_back(aiVector3D(s * radius,0.0,t * radius));
angle += angle_delta;
s = std::cos(angle);
t = std::sin(angle);
positions.push_back(aiVector3D(s * radius,0.f,t * radius));
positions.push_back(aiVector3D(s * radius,0.0,t * radius));
positions.push_back(aiVector3D(0.f,0.f,0.f));
positions.push_back(aiVector3D(0.0,0.0,0.0));
}
}

View File

@ -174,8 +174,8 @@ public:
* no 'end caps'
* @param positions Receives output triangles
*/
static void MakeCone(float height,float radius1,
float radius2,unsigned int tess,
static void MakeCone(ai_real height,ai_real radius1,
ai_real radius2,unsigned int tess,
std::vector<aiVector3D>& positions,bool bOpen= false);
@ -189,7 +189,7 @@ public:
* @param tess Number of segments.
* @param positions Receives output triangles.
*/
static void MakeCircle(float radius, unsigned int tess,
static void MakeCircle(ai_real radius, unsigned int tess,
std::vector<aiVector3D>& positions);
};

View File

@ -83,7 +83,7 @@ KeyIterator::KeyIterator(const std::vector<aiVectorKey>* _objPos,
// ------------------------------------------------------------------------------------------------
template <class T>
inline T Interpolate(const T& one, const T& two, float val)
inline T Interpolate(const T& one, const T& two, ai_real val)
{
return one + (two-one)*val;
}
@ -134,7 +134,7 @@ void KeyIterator::operator ++()
const aiVectorKey& last = targetObjPos->at(nextTargetObjPos);
const aiVectorKey& first = targetObjPos->at(nextTargetObjPos-1);
curTargetPosition = Interpolate(first.mValue, last.mValue, (float) (
curTargetPosition = Interpolate(first.mValue, last.mValue, (ai_real) (
(curTime-first.mTime) / (last.mTime-first.mTime) ));
}
@ -155,7 +155,7 @@ void KeyIterator::operator ++()
const aiVectorKey& last = objPos->at(nextObjPos);
const aiVectorKey& first = objPos->at(nextObjPos-1);
curPosition = Interpolate(first.mValue, last.mValue, (float) (
curPosition = Interpolate(first.mValue, last.mValue, (ai_real) (
(curTime-first.mTime) / (last.mTime-first.mTime)));
}
@ -220,7 +220,7 @@ void TargetAnimationHelper::Process(std::vector<aiVectorKey>* distanceTrack)
// diff vector
aiVector3D diff = tposition - position;
float f = diff.Length();
ai_real f = diff.Length();
// output distance vector
if (f)

View File

@ -94,15 +94,15 @@ class Vertex
friend Vertex operator + (const Vertex&,const Vertex&);
friend Vertex operator - (const Vertex&,const Vertex&);
// friend Vertex operator + (const Vertex&,float);
// friend Vertex operator - (const Vertex&,float);
friend Vertex operator * (const Vertex&,float);
friend Vertex operator / (const Vertex&,float);
// friend Vertex operator + (const Vertex&,ai_real);
// friend Vertex operator - (const Vertex&,ai_real);
friend Vertex operator * (const Vertex&,ai_real);
friend Vertex operator / (const Vertex&,ai_real);
// friend Vertex operator + (float, const Vertex&);
// friend Vertex operator - (float, const Vertex&);
friend Vertex operator * (float, const Vertex&);
// friend Vertex operator / (float, const Vertex&);
// friend Vertex operator + (ai_real, const Vertex&);
// friend Vertex operator - (ai_real, const Vertex&);
friend Vertex operator * (ai_real, const Vertex&);
// friend Vertex operator / (ai_real, const Vertex&);
public:
@ -146,22 +146,22 @@ public:
/*
Vertex& operator += (float v) {
Vertex& operator += (ai_real v) {
*this = *this+v;
return *this;
}
Vertex& operator -= (float v) {
Vertex& operator -= (ai_real v) {
*this = *this-v;
return *this;
}
*/
Vertex& operator *= (float v) {
Vertex& operator *= (ai_real v) {
*this = *this*v;
return *this;
}
Vertex& operator /= (float v) {
Vertex& operator /= (ai_real v) {
*this = *this/v;
return *this;
}
@ -217,40 +217,40 @@ private:
// ----------------------------------------------------------------------------
/** This time binary arithmetics of v0 with a floating-point number */
template <template <typename, typename, typename> class op> static Vertex BinaryOp(const Vertex& v0, float f) {
template <template <typename, typename, typename> class op> static Vertex BinaryOp(const Vertex& v0, ai_real f) {
// this is a heavy task for the compiler to optimize ... *pray*
Vertex res;
res.position = op<aiVector3D,float,aiVector3D>()(v0.position,f);
res.normal = op<aiVector3D,float,aiVector3D>()(v0.normal,f);
res.tangent = op<aiVector3D,float,aiVector3D>()(v0.tangent,f);
res.bitangent = op<aiVector3D,float,aiVector3D>()(v0.bitangent,f);
res.position = op<aiVector3D,ai_real,aiVector3D>()(v0.position,f);
res.normal = op<aiVector3D,ai_real,aiVector3D>()(v0.normal,f);
res.tangent = op<aiVector3D,ai_real,aiVector3D>()(v0.tangent,f);
res.bitangent = op<aiVector3D,ai_real,aiVector3D>()(v0.bitangent,f);
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
res.texcoords[i] = op<aiVector3D,float,aiVector3D>()(v0.texcoords[i],f);
res.texcoords[i] = op<aiVector3D,ai_real,aiVector3D>()(v0.texcoords[i],f);
}
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) {
res.colors[i] = op<aiColor4D,float,aiColor4D>()(v0.colors[i],f);
res.colors[i] = op<aiColor4D,ai_real,aiColor4D>()(v0.colors[i],f);
}
return res;
}
// ----------------------------------------------------------------------------
/** This time binary arithmetics of v0 with a floating-point number */
template <template <typename, typename, typename> class op> static Vertex BinaryOp(float f, const Vertex& v0) {
template <template <typename, typename, typename> class op> static Vertex BinaryOp(ai_real f, const Vertex& v0) {
// this is a heavy task for the compiler to optimize ... *pray*
Vertex res;
res.position = op<float,aiVector3D,aiVector3D>()(f,v0.position);
res.normal = op<float,aiVector3D,aiVector3D>()(f,v0.normal);
res.tangent = op<float,aiVector3D,aiVector3D>()(f,v0.tangent);
res.bitangent = op<float,aiVector3D,aiVector3D>()(f,v0.bitangent);
res.position = op<ai_real,aiVector3D,aiVector3D>()(f,v0.position);
res.normal = op<ai_real,aiVector3D,aiVector3D>()(f,v0.normal);
res.tangent = op<ai_real,aiVector3D,aiVector3D>()(f,v0.tangent);
res.bitangent = op<ai_real,aiVector3D,aiVector3D>()(f,v0.bitangent);
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
res.texcoords[i] = op<float,aiVector3D,aiVector3D>()(f,v0.texcoords[i]);
res.texcoords[i] = op<ai_real,aiVector3D,aiVector3D>()(f,v0.texcoords[i]);
}
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) {
res.colors[i] = op<float,aiColor4D,aiColor4D>()(f,v0.colors[i]);
res.colors[i] = op<ai_real,aiColor4D,aiColor4D>()(f,v0.colors[i]);
}
return res;
}
@ -279,41 +279,41 @@ AI_FORCE_INLINE Vertex operator - (const Vertex& v0,const Vertex& v1) {
// ------------------------------------------------------------------------------------------------
/*
AI_FORCE_INLINE Vertex operator + (const Vertex& v0,float f) {
AI_FORCE_INLINE Vertex operator + (const Vertex& v0,ai_real f) {
return Vertex::BinaryOp<Intern::plus>(v0,f);
}
AI_FORCE_INLINE Vertex operator - (const Vertex& v0,float f) {
AI_FORCE_INLINE Vertex operator - (const Vertex& v0,ai_real f) {
return Vertex::BinaryOp<Intern::minus>(v0,f);
}
*/
AI_FORCE_INLINE Vertex operator * (const Vertex& v0,float f) {
AI_FORCE_INLINE Vertex operator * (const Vertex& v0,ai_real f) {
return Vertex::BinaryOp<Intern::multiplies>(v0,f);
}
AI_FORCE_INLINE Vertex operator / (const Vertex& v0,float f) {
AI_FORCE_INLINE Vertex operator / (const Vertex& v0,ai_real f) {
return Vertex::BinaryOp<Intern::multiplies>(v0,1.f/f);
}
// ------------------------------------------------------------------------------------------------
/*
AI_FORCE_INLINE Vertex operator + (float f,const Vertex& v0) {
AI_FORCE_INLINE Vertex operator + (ai_real f,const Vertex& v0) {
return Vertex::BinaryOp<Intern::plus>(f,v0);
}
AI_FORCE_INLINE Vertex operator - (float f,const Vertex& v0) {
AI_FORCE_INLINE Vertex operator - (ai_real f,const Vertex& v0) {
return Vertex::BinaryOp<Intern::minus>(f,v0);
}
*/
AI_FORCE_INLINE Vertex operator * (float f,const Vertex& v0) {
AI_FORCE_INLINE Vertex operator * (ai_real f,const Vertex& v0) {
return Vertex::BinaryOp<Intern::multiplies>(f,v0);
}
/*
AI_FORCE_INLINE Vertex operator / (float f,const Vertex& v0) {
AI_FORCE_INLINE Vertex operator / (ai_real f,const Vertex& v0) {
return Vertex::BinaryOp<Intern::divides>(f,v0);
}
*/

View File

@ -82,7 +82,7 @@ struct Material
std::string mName;
bool mIsReference; // if true, mName holds a name by which the actual material can be found in the material list
aiColor4D mDiffuse;
float mSpecularExponent;
ai_real mSpecularExponent;
aiColor3D mSpecular;
aiColor3D mEmissive;
std::vector<TexEntry> mTextures;
@ -100,7 +100,7 @@ struct Material
struct BoneWeight
{
unsigned int mVertex;
float mWeight;
ai_real mWeight;
};
/** Helper structure to represent a bone in a mesh */

View File

@ -373,7 +373,7 @@ void XFileImporter::CreateMeshes( aiScene* pScene, aiNode* pNode, const std::vec
{
const XFile::Bone& obone = bones[c];
// set up a vertex-linear array of the weights for quick searching if a bone influences a vertex
std::vector<float> oldWeights( sourceMesh->mPositions.size(), 0.0f);
std::vector<ai_real> oldWeights( sourceMesh->mPositions.size(), 0.0);
for( unsigned int d = 0; d < obone.mWeights.size(); d++)
oldWeights[obone.mWeights[d].mVertex] = obone.mWeights[d].mWeight;
@ -383,8 +383,8 @@ void XFileImporter::CreateMeshes( aiScene* pScene, aiNode* pNode, const std::vec
for( unsigned int d = 0; d < orgPoints.size(); d++)
{
// does the new vertex stem from an old vertex which was influenced by this bone?
float w = oldWeights[orgPoints[d]];
if( w > 0.0f)
ai_real w = oldWeights[orgPoints[d]];
if( w > 0.0)
newWeights.push_back( aiVertexWeight( d, w));
}
@ -713,4 +713,3 @@ void XFileImporter::ConvertMaterials( aiScene* pScene, std::vector<XFile::Materi
}
#endif // !! ASSIMP_BUILD_NO_X_IMPORTER

View File

@ -1326,7 +1326,7 @@ unsigned int XFileParser::ReadInt()
}
// ------------------------------------------------------------------------------------------------
float XFileParser::ReadFloat()
ai_real XFileParser::ReadFloat()
{
if( mIsBinaryFormat)
{
@ -1343,7 +1343,7 @@ float XFileParser::ReadFloat()
if( mBinaryFloatSize == 8)
{
if( End - P >= 8) {
float result = (float) (*(double*) P);
ai_real result = (ai_real) (*(double*) P);
P += 8;
return result;
} else {
@ -1353,7 +1353,7 @@ float XFileParser::ReadFloat()
} else
{
if( End - P >= 4) {
float result = *(float*) P;
ai_real result = *(ai_real*) P;
P += 4;
return result;
} else {
@ -1372,17 +1372,17 @@ float XFileParser::ReadFloat()
{
P += 9;
CheckForSeparator();
return 0.0f;
return 0.0;
} else
if( strncmp( P, "1.#QNAN0", 8) == 0)
{
P += 8;
CheckForSeparator();
return 0.0f;
return 0.0;
}
float result = 0.0f;
P = fast_atoreal_move<float>( P, result);
ai_real result = 0.0;
P = fast_atoreal_move<ai_real>( P, result);
CheckForSeparator();

View File

@ -127,7 +127,7 @@ protected:
unsigned short ReadBinWord();
unsigned int ReadBinDWord();
unsigned int ReadInt();
float ReadFloat();
ai_real ReadFloat();
aiVector2D ReadVector2();
aiVector3D ReadVector3();
aiColor3D ReadRGB();

View File

@ -19,6 +19,7 @@
#include <limits>
#include <stdint.h>
#include <stdexcept>
#include <assimp/defs.h>
#include "StringComparison.h"
@ -350,51 +351,26 @@ inline const char* fast_atoreal_move(const char* c, Real& out, bool check_comma
// ------------------------------------------------------------------------------------
// The same but more human.
inline float fast_atof(const char* c)
inline ai_real fast_atof(const char* c)
{
float ret;
fast_atoreal_move<float>(c, ret);
ai_real ret;
fast_atoreal_move<ai_real>(c, ret);
return ret;
}
inline float fast_atof( const char* c, const char** cout)
inline ai_real fast_atof( const char* c, const char** cout)
{
float ret;
*cout = fast_atoreal_move<float>(c, ret);
ai_real ret;
*cout = fast_atoreal_move<ai_real>(c, ret);
return ret;
}
inline float fast_atof( const char** inout)
inline ai_real fast_atof( const char** inout)
{
float ret;
*inout = fast_atoreal_move<float>(*inout, ret);
return ret;
}
inline double fast_atod(const char* c)
{
double ret;
fast_atoreal_move<double>(c, ret);
return ret;
}
inline double fast_atod( const char* c, const char** cout)
{
double ret;
*cout = fast_atoreal_move<double>(c, ret);
return ret;
}
inline double fast_atod( const char** inout)
{
double ret;
*inout = fast_atoreal_move<double>(*inout, ret);
ai_real ret;
*inout = fast_atoreal_move<ai_real>(*inout, ret);
return ret;
}
@ -402,4 +378,3 @@ inline double fast_atod( const char** inout)
} // end of namespace Assimp
#endif

View File

@ -68,7 +68,21 @@ union _IEEESingle
uint32_t Exp : 8;
uint32_t Sign : 1;
} IEEE;
} ;
};
// ---------------------------------------------------------------------------
/** Data structure to represent the bit pattern of a 64 Bit
* IEEE 754 floating-point number. */
union _IEEEDouble
{
double Double;
struct
{
uint64_t Frac : 52;
uint64_t Exp : 11;
uint64_t Sign : 1;
} IEEE;
};
// ---------------------------------------------------------------------------
/** Check whether a given float is qNaN.
@ -87,11 +101,19 @@ AI_FORCE_INLINE bool is_qnan(float in)
}
// ---------------------------------------------------------------------------
/** Check whether a float is NOT qNaN.
/** Check whether a given double is qNaN.
* @param in Input value */
AI_FORCE_INLINE bool is_not_qnan(float in)
AI_FORCE_INLINE bool is_qnan(double in)
{
return !is_qnan(in);
// the straightforward solution does not work:
// return (in != in);
// compiler generates code like this
// load <in> to <register-with-different-width>
// compare <register-with-different-width> against <in>
// FIXME: Use <float> stuff instead? I think fpclassify needs C99
return (reinterpret_cast<_IEEEDouble*>(&in)->IEEE.Exp == (1u << 11)-1 &&
reinterpret_cast<_IEEEDouble*>(&in)->IEEE.Frac);
}
// ---------------------------------------------------------------------------
@ -105,10 +127,29 @@ AI_FORCE_INLINE bool is_special_float(float in)
}
// ---------------------------------------------------------------------------
/** @brief Get a fresh qnan. */
AI_FORCE_INLINE float get_qnan()
/** @brief check whether a double is either NaN or (+/-) INF.
*
* Denorms return false, they're treated like normal values.
* @param in Input value */
AI_FORCE_INLINE bool is_special_float(double in)
{
return std::numeric_limits<float>::quiet_NaN();
return (reinterpret_cast<_IEEEDouble*>(&in)->IEEE.Exp == (1u << 11)-1);
}
// ---------------------------------------------------------------------------
/** Check whether a float is NOT qNaN.
* @param in Input value */
template<class TReal>
AI_FORCE_INLINE bool is_not_qnan(TReal in)
{
return !is_qnan(in);
}
// ---------------------------------------------------------------------------
/** @brief Get a fresh qnan. */
AI_FORCE_INLINE ai_real get_qnan()
{
return std::numeric_limits<ai_real>::quiet_NaN();
}
#endif // !! AI_QNAN_H_INCLUDED

View File

@ -330,7 +330,7 @@ public:
// typedefs for our four configuration maps.
// We don't need more, so there is no need for a generic solution
typedef std::map<KeyType, int> IntPropertyMap;
typedef std::map<KeyType, float> FloatPropertyMap;
typedef std::map<KeyType, ai_real> FloatPropertyMap;
typedef std::map<KeyType, std::string> StringPropertyMap;
typedef std::map<KeyType, aiMatrix4x4> MatrixPropertyMap;
@ -380,7 +380,7 @@ public:
/** Set a floating-point configuration property.
* @see SetPropertyInteger()
*/
bool SetPropertyFloat(const char* szName, float fValue);
bool SetPropertyFloat(const char* szName, ai_real fValue);
// -------------------------------------------------------------------
/** Set a string configuration property.
@ -425,8 +425,8 @@ public:
/** Get a floating-point configuration property
* @see GetPropertyInteger()
*/
float GetPropertyFloat(const char* szName,
float fErrorReturn = 10e10f) const;
ai_real GetPropertyFloat(const char* szName,
ai_real fErrorReturn = 10e10f) const;
// -------------------------------------------------------------------
/** Get a string configuration property

View File

@ -51,8 +51,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif // __cplusplus
// Public ASSIMP data structures
#include "types.h"
#include "config.h"
#include <assimp/types.h>
#include <assimp/config.h>
namespace Assimp {
// =======================================================================
@ -224,7 +224,7 @@ public:
/** Set a floating-point configuration property.
* @see SetPropertyInteger()
*/
bool SetPropertyFloat(const char* szName, float fValue);
bool SetPropertyFloat(const char* szName, ai_real fValue);
// -------------------------------------------------------------------
/** Set a string configuration property.
@ -269,8 +269,8 @@ public:
/** Get a floating-point configuration property
* @see GetPropertyInteger()
*/
float GetPropertyFloat(const char* szName,
float fErrorReturn = 10e10f) const;
ai_real GetPropertyFloat(const char* szName,
ai_real fErrorReturn = 10e10) const;
// -------------------------------------------------------------------
/** Get a string configuration property

View File

@ -421,7 +421,7 @@ struct Interpolator
* The interpolation algorithm depends on the type of the operands.
* aiQuaternion's and aiQuatKey's SLERP, the rest does a simple
* linear interpolation. */
void operator () (T& out,const T& a, const T& b, float d) const {
void operator () (T& out,const T& a, const T& b, ai_real d) const {
out = a + (b-a)*d;
}
}; // ! Interpolator <T>
@ -431,7 +431,7 @@ struct Interpolator
template <>
struct Interpolator <aiQuaternion> {
void operator () (aiQuaternion& out,const aiQuaternion& a,
const aiQuaternion& b, float d) const
const aiQuaternion& b, ai_real d) const
{
aiQuaternion::Interpolate(out,a,b,d);
}
@ -440,7 +440,7 @@ struct Interpolator <aiQuaternion> {
template <>
struct Interpolator <unsigned int> {
void operator () (unsigned int& out,unsigned int a,
unsigned int b, float d) const
unsigned int b, ai_real d) const
{
out = d>0.5f ? b : a;
}
@ -449,7 +449,7 @@ struct Interpolator <unsigned int> {
template <>
struct Interpolator <aiVectorKey> {
void operator () (aiVector3D& out,const aiVectorKey& a,
const aiVectorKey& b, float d) const
const aiVectorKey& b, ai_real d) const
{
Interpolator<aiVector3D> ipl;
ipl(out,a.mValue,b.mValue,d);
@ -459,7 +459,7 @@ struct Interpolator <aiVectorKey> {
template <>
struct Interpolator <aiQuatKey> {
void operator () (aiQuaternion& out, const aiQuatKey& a,
const aiQuatKey& b, float d) const
const aiQuatKey& b, ai_real d) const
{
Interpolator<aiQuaternion> ipl;
ipl(out,a.mValue,b.mValue,d);
@ -469,7 +469,7 @@ struct Interpolator <aiQuatKey> {
template <>
struct Interpolator <aiMeshKey> {
void operator () (unsigned int& out, const aiMeshKey& a,
const aiMeshKey& b, float d) const
const aiMeshKey& b, ai_real d) const
{
Interpolator<unsigned int> ipl;
ipl(out,a.mValue,b.mValue,d);

View File

@ -46,6 +46,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define AI_COLOR4D_H_INC
#include "./Compiler/pushpack1.h"
#include "defs.h"
#ifdef __cplusplus
@ -90,12 +91,12 @@ public:
TReal r, g, b, a;
} PACK_STRUCT; // !struct aiColor4D
typedef aiColor4t<float> aiColor4D;
typedef aiColor4t<ai_real> aiColor4D;
#else
struct aiColor4D {
float r, g, b, a;
ai_real r, g, b, a;
} PACK_STRUCT;
#endif // __cplusplus

View File

@ -905,4 +905,14 @@ enum aiComponent
#define AI_CONFIG_EXPORT_XFILE_64BIT "EXPORT_XFILE_64BIT"
// ---------- All the Build/Compile-time defines ------------
/** @brief Specifies if double precision is supported inside assimp
*
* Property type: Bool. Default value: undefined.
*/
#cmakedefine AI_DOUBLE_PRECISION 1
#endif // !! AI_CONFIG_H_INC

View File

@ -228,6 +228,21 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# define ASSIMP_BUILD_DEBUG
#endif
//////////////////////////////////////////////////////////////////////////
/* Define AI_DOUBLE_PRECISION to compile assimp
* with double precision support (64-bit). */
//////////////////////////////////////////////////////////////////////////
#ifdef AI_DOUBLE_PRECISION
typedef double ai_real;
typedef signed long long int ai_int;
typedef unsigned long long int ai_uint;
#else // AI_DOUBLE_PRECISION
typedef float ai_real;
typedef signed int ai_int;
typedef unsigned int ai_uint;
#endif // AI_DOUBLE_PRECISION
//////////////////////////////////////////////////////////////////////////
/* Useful constants */
//////////////////////////////////////////////////////////////////////////
@ -243,8 +258,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define AI_MATH_HALF_PI_F (AI_MATH_PI_F * 0.5f)
/* Tiny macro to convert from radians to degrees and back */
#define AI_DEG_TO_RAD(x) ((x)*0.0174532925f)
#define AI_RAD_TO_DEG(x) ((x)*57.2957795f)
#define AI_DEG_TO_RAD(x) ((x)*(ai_real)0.0174532925)
#define AI_RAD_TO_DEG(x) ((x)*(ai_real)57.2957795)
/* Support for big-endian builds */
#if defined(__BYTE_ORDER__)
@ -269,5 +284,4 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define AI_MAX_ALLOC(type) ((256U * 1024 * 1024) / sizeof(type))
#endif // !! AI_DEFINES_H_INC

View File

@ -477,13 +477,14 @@ struct aiUVTransform
* rotation center is 0.5f|0.5f. The default value
* 0.f.
*/
float mRotation;
ai_real mRotation;
#ifdef __cplusplus
aiUVTransform()
: mScaling (1.f,1.f)
, mRotation (0.f)
: mTranslation (0.0,0.0)
, mScaling (1.0,1.0)
, mRotation (0.0)
{
// nothing to be done here ...
}
@ -508,6 +509,14 @@ enum aiPropertyTypeInfo
*/
aiPTI_Float = 0x1,
/** Array of double-precision (64 Bit) floats
*
* It is possible to use aiGetMaterialInteger[Array]() (or the C++-API
* aiMaterial::Get()) to query properties stored in floating-point format.
* The material system performs the type conversion automatically.
*/
aiPTI_Double = 0x2,
/** The material property is an aiString.
*
* Arrays of strings aren't possible, aiGetMaterialString() (or the
@ -817,6 +826,12 @@ public:
unsigned int type = 0,
unsigned int index = 0);
aiReturn AddProperty (const double* pInput,
unsigned int pNumValues,
const char* pKey,
unsigned int type = 0,
unsigned int index = 0);
aiReturn AddProperty (const aiUVTransform* pInput,
unsigned int pNumValues,
const char* pKey,

View File

@ -201,6 +201,18 @@ inline aiReturn aiMaterial::AddProperty(const float* pInput,
pKey,type,index,aiPTI_Float);
}
// ---------------------------------------------------------------------------
inline aiReturn aiMaterial::AddProperty(const double* pInput,
const unsigned int pNumValues,
const char* pKey,
unsigned int type,
unsigned int index)
{
return AddBinaryProperty((const void*)pInput,
pNumValues * sizeof(float),
pKey,type,index,aiPTI_Double);
}
// ---------------------------------------------------------------------------
inline aiReturn aiMaterial::AddProperty(const aiUVTransform* pInput,
const unsigned int pNumValues,

View File

@ -47,6 +47,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define AI_MATRIX3X3_H_INC
#include "./Compiler/pushpack1.h"
#include "defs.h"
#ifdef __cplusplus
@ -166,14 +167,14 @@ public:
TReal c1, c2, c3;
} PACK_STRUCT;
typedef aiMatrix3x3t<float> aiMatrix3x3;
typedef aiMatrix3x3t<ai_real> aiMatrix3x3;
#else
struct aiMatrix3x3 {
float a1, a2, a3;
float b1, b2, b3;
float c1, c2, c3;
ai_real a1, a2, a3;
ai_real b1, b2, b3;
ai_real c1, c2, c3;
} PACK_STRUCT;
#endif // __cplusplus

View File

@ -47,6 +47,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "vector3.h"
#include "./Compiler/pushpack1.h"
#include "defs.h"
#ifdef __cplusplus
@ -229,15 +230,15 @@ public:
TReal d1, d2, d3, d4;
} PACK_STRUCT;
typedef aiMatrix4x4t<float> aiMatrix4x4;
typedef aiMatrix4x4t<ai_real> aiMatrix4x4;
#else
struct aiMatrix4x4 {
float a1, a2, a3, a4;
float b1, b2, b3, b4;
float c1, c2, c3, c4;
float d1, d2, d3, d4;
ai_real a1, a2, a3, a4;
ai_real b1, b2, b3, b4;
ai_real c1, c2, c3, c4;
ai_real d1, d2, d3, d4;
} PACK_STRUCT;

View File

@ -68,8 +68,9 @@ typedef enum aiMetadataType
AI_INT = 1,
AI_UINT64 = 2,
AI_FLOAT = 3,
AI_AISTRING = 4,
AI_AIVECTOR3D = 5,
AI_DOUBLE = 4,
AI_AISTRING = 5,
AI_AIVECTOR3D = 6,
#ifndef SWIG
FORCE_32BIT = INT_MAX
@ -108,6 +109,7 @@ inline aiMetadataType GetAiType( bool ) { return AI_BOOL; }
inline aiMetadataType GetAiType( int ) { return AI_INT; }
inline aiMetadataType GetAiType( uint64_t ) { return AI_UINT64; }
inline aiMetadataType GetAiType( float ) { return AI_FLOAT; }
inline aiMetadataType GetAiType( double ) { return AI_DOUBLE; }
inline aiMetadataType GetAiType( aiString ) { return AI_AISTRING; }
inline aiMetadataType GetAiType( aiVector3D ) { return AI_AIVECTOR3D; }
@ -172,6 +174,9 @@ struct aiMetadata
case AI_FLOAT:
delete static_cast<float*>(data);
break;
case AI_DOUBLE:
delete static_cast<double*>(data);
break;
case AI_AISTRING:
delete static_cast<aiString*>(data);
break;
@ -248,5 +253,3 @@ struct aiMetadata
};
#endif // AI_METADATA_H_INC

View File

@ -47,6 +47,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef __cplusplus
#include "defs.h"
template <typename TReal> class aiVector3t;
template <typename TReal> class aiMatrix3x3t;
@ -113,12 +115,12 @@ public:
TReal w, x, y, z;
} ;
typedef aiQuaterniont<float> aiQuaternion;
typedef aiQuaterniont<ai_real> aiQuaternion;
#else
struct aiQuaternion {
float w, x, y, z;
ai_real w, x, y, z;
};
#endif

View File

@ -124,7 +124,7 @@ struct aiPlane
{
#ifdef __cplusplus
aiPlane () : a(0.f), b(0.f), c(0.f), d(0.f) {}
aiPlane (float _a, float _b, float _c, float _d)
aiPlane (ai_real _a, ai_real _b, ai_real _c, ai_real _d)
: a(_a), b(_b), c(_c), d(_d) {}
aiPlane (const aiPlane& o) : a(o.a), b(o.b), c(o.c), d(o.d) {}
@ -132,7 +132,7 @@ struct aiPlane
#endif // !__cplusplus
//! Plane equation
float a,b,c,d;
ai_real a,b,c,d;
} PACK_STRUCT; // !struct aiPlane
// ----------------------------------------------------------------------------------
@ -160,8 +160,8 @@ struct aiColor3D
{
#ifdef __cplusplus
aiColor3D () : r(0.0f), g(0.0f), b(0.0f) {}
aiColor3D (float _r, float _g, float _b) : r(_r), g(_g), b(_b) {}
explicit aiColor3D (float _r) : r(_r), g(_r), b(_r) {}
aiColor3D (ai_real _r, ai_real _g, ai_real _b) : r(_r), g(_g), b(_b) {}
explicit aiColor3D (ai_real _r) : r(_r), g(_r), b(_r) {}
aiColor3D (const aiColor3D& o) : r(o.r), g(o.g), b(o.b) {}
/** Component-wise comparison */
@ -200,30 +200,30 @@ struct aiColor3D
}
/** Multiply with a scalar */
aiColor3D operator*(float f) const {
aiColor3D operator*(ai_real f) const {
return aiColor3D(r*f,g*f,b*f);
}
/** Access a specific color component */
float operator[](unsigned int i) const {
ai_real operator[](unsigned int i) const {
return *(&r + i);
}
/** Access a specific color component */
float& operator[](unsigned int i) {
ai_real& operator[](unsigned int i) {
return *(&r + i);
}
/** Check whether a color is black */
bool IsBlack() const {
static const float epsilon = 10e-3f;
static const ai_real epsilon = 10e-3;
return std::fabs( r ) < epsilon && std::fabs( g ) < epsilon && std::fabs( b ) < epsilon;
}
#endif // !__cplusplus
//! Red, green and blue color values
float r, g, b;
ai_real r, g, b;
} PACK_STRUCT; // !struct aiColor3D
#include "./Compiler/poppack1.h"

View File

@ -52,6 +52,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
#include "./Compiler/pushpack1.h"
#include "defs.h"
// ----------------------------------------------------------------------------------
/** Represents a two-dimensional vector.
@ -99,12 +100,12 @@ public:
TReal x, y;
} PACK_STRUCT;
typedef aiVector2t<float> aiVector2D;
typedef aiVector2t<ai_real> aiVector2D;
#else
struct aiVector2D {
float x, y;
ai_real x, y;
};
#endif // __cplusplus

View File

@ -52,6 +52,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endif
#include "./Compiler/pushpack1.h"
#include "defs.h"
#ifdef __cplusplus
@ -130,12 +131,12 @@ public:
} PACK_STRUCT;
typedef aiVector3t<float> aiVector3D;
typedef aiVector3t<ai_real> aiVector3D;
#else
struct aiVector3D {
float x, y, z;
ai_real x, y, z;
} PACK_STRUCT;
#endif // __cplusplus

View File

@ -179,19 +179,10 @@ protected:
};
struct FastAtofWrapper {
float operator()(const char* str) { return Assimp::fast_atof(str); }
};
struct FastAtodWrapper {
double operator()(const char* str) { return Assimp::fast_atod(str); }
ai_real operator()(const char* str) { return Assimp::fast_atof(str); }
};
TEST_F(FastAtofTest, FastAtof)
{
RunTest<float>(FastAtofWrapper());
}
TEST_F(FastAtofTest, FastAtod)
{
RunTest<double>(FastAtodWrapper());
RunTest<ai_real>(FastAtofWrapper());
}

View File

@ -49,45 +49,45 @@ class utMatrix4x4Test : public ::testing::Test {
TEST_F( utMatrix4x4Test, badIndexOperatorTest ) {
aiMatrix4x4 m;
float *a0 = m[ 4 ];
ai_real *a0 = m[ 4 ];
EXPECT_EQ( NULL, a0 );
}
TEST_F( utMatrix4x4Test, indexOperatorTest ) {
aiMatrix4x4 m;
float *a0 = m[ 0 ];
EXPECT_FLOAT_EQ( 1.0f, *a0 );
float *a1 = a0+1;
EXPECT_FLOAT_EQ( 0.0f, *a1 );
float *a2 = a0 + 2;
EXPECT_FLOAT_EQ( 0.0f, *a2 );
float *a3 = a0 + 3;
EXPECT_FLOAT_EQ( 0.0f, *a3 );
ai_real *a0 = m[ 0 ];
EXPECT_FLOAT_EQ( 1.0, *a0 );
ai_real *a1 = a0+1;
EXPECT_FLOAT_EQ( 0.0, *a1 );
ai_real *a2 = a0 + 2;
EXPECT_FLOAT_EQ( 0.0, *a2 );
ai_real *a3 = a0 + 3;
EXPECT_FLOAT_EQ( 0.0, *a3 );
float *a4 = m[ 1 ];
EXPECT_FLOAT_EQ( 0.0f, *a4 );
float *a5 = a4 + 1;
EXPECT_FLOAT_EQ( 1.0f, *a5 );
float *a6 = a4 + 2;
EXPECT_FLOAT_EQ( 0.0f, *a6 );
float *a7 = a4 + 3;
EXPECT_FLOAT_EQ( 0.0f, *a7 );
ai_real *a4 = m[ 1 ];
EXPECT_FLOAT_EQ( 0.0, *a4 );
ai_real *a5 = a4 + 1;
EXPECT_FLOAT_EQ( 1.0, *a5 );
ai_real *a6 = a4 + 2;
EXPECT_FLOAT_EQ( 0.0, *a6 );
ai_real *a7 = a4 + 3;
EXPECT_FLOAT_EQ( 0.0, *a7 );
float *a8 = m[ 2 ];
EXPECT_FLOAT_EQ( 0.0f, *a8 );
float *a9 = a8 + 1;
EXPECT_FLOAT_EQ( 0.0f, *a9 );
float *a10 = a8 + 2;
EXPECT_FLOAT_EQ( 1.0f, *a10 );
float *a11 = a8 + 3;
EXPECT_FLOAT_EQ( 0.0f, *a11 );
ai_real *a8 = m[ 2 ];
EXPECT_FLOAT_EQ( 0.0, *a8 );
ai_real *a9 = a8 + 1;
EXPECT_FLOAT_EQ( 0.0, *a9 );
ai_real *a10 = a8 + 2;
EXPECT_FLOAT_EQ( 1.0, *a10 );
ai_real *a11 = a8 + 3;
EXPECT_FLOAT_EQ( 0.0, *a11 );
float *a12 = m[ 3 ];
EXPECT_FLOAT_EQ( 0.0f, *a12 );
float *a13 = a12 + 1;
EXPECT_FLOAT_EQ( 0.0f, *a13 );
float *a14 = a12 + 2;
EXPECT_FLOAT_EQ( 0.0f, *a14 );
float *a15 = a12 + 3;
EXPECT_FLOAT_EQ( 1.0f, *a15 );
ai_real *a12 = m[ 3 ];
EXPECT_FLOAT_EQ( 0.0, *a12 );
ai_real *a13 = a12 + 1;
EXPECT_FLOAT_EQ( 0.0, *a13 );
ai_real *a14 = a12 + 2;
EXPECT_FLOAT_EQ( 0.0, *a14 );
ai_real *a15 = a12 + 3;
EXPECT_FLOAT_EQ( 1.0, *a15 );
}

View File

@ -150,11 +150,11 @@ void FindSpecialPoints(const aiScene* scene,const aiNode* root,aiVector3D specia
// -----------------------------------------------------------------------------------
void FindSpecialPoints(const aiScene* scene,aiVector3D special_points[3])
{
special_points[0] = aiVector3D(1e10f,1e10f,1e10f);
special_points[1] = aiVector3D(-1e10f,-1e10f,-1e10f);
special_points[0] = aiVector3D(1e10,1e10,1e10);
special_points[1] = aiVector3D(-1e10,-1e10,-1e10);
FindSpecialPoints(scene,scene->mRootNode,special_points);
special_points[2] = 0.5f*(special_points[0]+special_points[1]);
special_points[2] = (special_points[0]+special_points[1])*(ai_real)0.5;
}
// -----------------------------------------------------------------------------------
@ -349,4 +349,3 @@ int Assimp_Info (const char* const* params, unsigned int num)
printf("\n");
return 0;
}