assimp/code/IRRLoader.cpp

1650 lines
51 KiB
C++
Raw Normal View History

/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file Implementation of the Irr importer class */
#include "AssimpPCH.h"
#include "IRRLoader.h"
#include "ParsingUtils.h"
#include "fast_atof.h"
#include "GenericProperty.h"
#include "SceneCombiner.h"
#include "StandardShapes.h"
// We need boost::common_factor to compute the lcm/gcd of a number
#ifdef ASSIMP_BUILD_BOOST_WORKAROUND
# include "../include/BoostWorkaround/boost/common_factor_rt.hpp"
#else
# include <boost/math/common_factor_rt.hpp>
#endif
using namespace Assimp;
using namespace boost::math;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
IRRImporter::IRRImporter()
{
// nothing to do here
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
IRRImporter::~IRRImporter()
{
// nothing to do here
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool IRRImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
{
/* NOTE: A simple check for the file extension is not enough
* here. Irrmesh and irr are easy, but xml is too generic
* and could be collada, too. So we need to open the file and
* search for typical tokens.
*/
std::string::size_type pos = pFile.find_last_of('.');
// no file extension - can't read
if( pos == std::string::npos)
return false;
std::string extension = pFile.substr( pos);
for (std::string::iterator i = extension.begin(); i != extension.end();++i)
*i = ::tolower(*i);
if (extension == ".irr")return true;
else if (extension == ".xml")
{
/* If CanRead() is called in order to check whether we
* support a specific file extension in general pIOHandler
* might be NULL and it's our duty to return true here.
*/
if (!pIOHandler)return true;
const char* tokens[] = {"irr_scene"};
return SearchFileHeaderForToken(pIOHandler,pFile,tokens,1);
}
return false;
}
// ------------------------------------------------------------------------------------------------
void IRRImporter::GetExtensionList(std::string& append)
{
/* NOTE: The file extenxsion .xml is too generic. We'll
* need to open the file in CanRead() and check whether it is
* a real irrlicht file
*/
append.append("*.xml;*.irr");
}
// ------------------------------------------------------------------------------------------------
void IRRImporter::SetupProperties(const Importer* pImp)
{
// read the output frame rate of all node animation channels
fps = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_IRR_ANIM_FPS,100);
if (!fps)
{
DefaultLogger::get()->error("IRR: Invalid FPS configuration");
fps = 100;
}
}
// ------------------------------------------------------------------------------------------------
// Build a mesh tha consists of a single squad (a side of a skybox)
aiMesh* IRRImporter::BuildSingleQuadMesh(const SkyboxVertex& v1,
const SkyboxVertex& v2,
const SkyboxVertex& v3,
const SkyboxVertex& v4)
{
// allocate and prepare the mesh
aiMesh* out = new aiMesh();
out->mPrimitiveTypes = aiPrimitiveType_POLYGON;
out->mNumFaces = 1;
// build the face
out->mFaces = new aiFace[1];
aiFace& face = out->mFaces[0];
face.mNumIndices = 4;
face.mIndices = new unsigned int[4];
for (unsigned int i = 0; i < 4;++i)
face.mIndices[i] = i;
out->mNumVertices = 4;
// copy vertex positions
aiVector3D* vec = out->mVertices = new aiVector3D[4];
*vec++ = v1.position;
*vec++ = v2.position;
*vec++ = v3.position;
*vec = v4.position;
// copy vertex normals
vec = out->mNormals = new aiVector3D[4];
*vec++ = v1.normal;
*vec++ = v2.normal;
*vec++ = v3.normal;
*vec = v4.normal;
// copy texture coordinates
vec = out->mTextureCoords[0] = new aiVector3D[4];
*vec++ = v1.uv;
*vec++ = v2.uv;
*vec++ = v3.uv;
*vec = v4.uv;
return out;
}
// ------------------------------------------------------------------------------------------------
void IRRImporter::BuildSkybox(std::vector<aiMesh*>& meshes, std::vector<aiMaterial*> materials)
{
// Update the material of the skybox - replace the name
// and disable shading for skyboxes.
for (unsigned int i = 0; i < 6;++i)
{
MaterialHelper* out = ( MaterialHelper* ) (*(materials.end()-(6-i)));
aiString s;
s.length = ::sprintf( s.data, "SkyboxSide_%i",i );
out->AddProperty(&s,AI_MATKEY_NAME);
int shading = aiShadingMode_NoShading;
out->AddProperty(&shading,1,AI_MATKEY_SHADING_MODEL);
}
// Skyboxes are much more difficult. They are represented
// by six single planes with different textures, so we'll
// need to build six meshes.
const float l = 10.f; // the size used by Irrlicht
// FRONT SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex(-l,-l,-l, 0, 0, 1, 1.f,1.f),
SkyboxVertex( l,-l,-l, 0, 0, 1, 0.f,1.f),
SkyboxVertex( l, l,-l, 0, 0, 1, 0.f,0.f),
SkyboxVertex(-l, l,-l, 0, 0, 1, 1.f,0.f)) );
meshes.back()->mMaterialIndex = materials.size()-6u;
// LEFT SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex( l,-l,-l, -1, 0, 0, 1.f,1.f),
SkyboxVertex( l,-l, l, -1, 0, 0, 0.f,1.f),
SkyboxVertex( l, l, l, -1, 0, 0, 0.f,0.f),
SkyboxVertex( l, l,-l, -1, 0, 0, 1.f,0.f)) );
meshes.back()->mMaterialIndex = materials.size()-5u;
// BACK SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex( l,-l, l, 0, 0, -1, 1.f,1.f),
SkyboxVertex(-l,-l, l, 0, 0, -1, 0.f,1.f),
SkyboxVertex(-l, l, l, 0, 0, -1, 0.f,0.f),
SkyboxVertex( l, l, l, 0, 0, -1, 1.f,0.f)) );
meshes.back()->mMaterialIndex = materials.size()-4u;
// RIGHT SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex(-l,-l, l, 1, 0, 0, 1.f,1.f),
SkyboxVertex(-l,-l,-l, 1, 0, 0, 0.f,1.f),
SkyboxVertex(-l, l,-l, 1, 0, 0, 0.f,0.f),
SkyboxVertex(-l, l, l, 1, 0, 0, 1.f,0.f)) );
meshes.back()->mMaterialIndex = materials.size()-3u;
// TOP SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex( l, l,-l, 0, -1, 0, 1.f,1.f),
SkyboxVertex( l, l, l, 0, -1, 0, 0.f,1.f),
SkyboxVertex(-l, l, l, 0, -1, 0, 0.f,0.f),
SkyboxVertex(-l, l,-l, 0, -1, 0, 1.f,0.f)) );
meshes.back()->mMaterialIndex = materials.size()-2u;
// BOTTOM SIDE
meshes.push_back( BuildSingleQuadMesh(
SkyboxVertex( l,-l, l, 0, 1, 0, 0.f,0.f),
SkyboxVertex( l,-l,-l, 0, 1, 0, 1.f,0.f),
SkyboxVertex(-l,-l,-l, 0, 1, 0, 1.f,1.f),
SkyboxVertex(-l,-l, l, 0, 1, 0, 0.f,1.f)) );
meshes.back()->mMaterialIndex = materials.size()-1u;
}
// ------------------------------------------------------------------------------------------------
void IRRImporter::CopyMaterial(std::vector<aiMaterial*>& materials,
std::vector< std::pair<aiMaterial*, unsigned int> >& inmaterials,
unsigned int& defMatIdx,
aiMesh* mesh)
{
if (inmaterials.empty())
{
// Do we have a default material? If not we need to create one
if (0xffffffff == defMatIdx)
{
defMatIdx = (unsigned int)materials.size();
MaterialHelper* mat = new MaterialHelper();
aiString s;
s.Set(AI_DEFAULT_MATERIAL_NAME);
mat->AddProperty(&s,AI_MATKEY_NAME);
aiColor3D c(0.6f,0.6f,0.6f);
mat->AddProperty(&c,1,AI_MATKEY_COLOR_DIFFUSE);
}
mesh->mMaterialIndex = defMatIdx;
return;
}
else if (inmaterials.size() > 1)
{
DefaultLogger::get()->info("IRR: Skipping additional materials");
}
mesh->mMaterialIndex = (unsigned int)materials.size();
materials.push_back(inmaterials[0].first);
}
// ------------------------------------------------------------------------------------------------
inline int ClampSpline(int idx, int size)
{
return ( idx<0 ? size+idx : ( idx>=size ? idx-size : idx ) );
}
// ------------------------------------------------------------------------------------------------
inline void FindSuitableMultiple(int& angle)
{
if (angle < 3)angle = 3;
else if (angle < 10) angle = 10;
else if (angle < 20) angle = 20;
else if (angle < 30) angle = 30;
else
{
}
}
// ------------------------------------------------------------------------------------------------
void IRRImporter::ComputeAnimations(Node* root, aiNode* real, std::vector<aiNodeAnim*>& anims)
{
ai_assert(NULL != root && NULL != real);
if (root->animators.empty())return;
const aiMatrix4x4& transform = real->mTransformation;
unsigned int total = 0;
for (std::list<Animator>::iterator it = root->animators.begin();
it != root->animators.end(); ++it)
{
if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER)
{
DefaultLogger::get()->warn("IRR: Skipping unknown or unsupported animator");
continue;
}
++total;
}
if (!total)return;
else if (1 == total)
{
DefaultLogger::get()->warn("IRR: Generating dummy nodes to simulate multiple animators");
}
// NOTE: 1 tick == i millisecond
unsigned int cur = 0;
for (std::list<Animator>::iterator it = root->animators.begin();
it != root->animators.end(); ++it)
{
if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER)continue;
Animator& in = *it ;
aiNodeAnim* anim = new aiNodeAnim();
if (cur != total-1)
{
// Build a new name - a prefix instead of a suffix because it is
// easier to check against
anim->mNodeName.length = ::sprintf(anim->mNodeName.data,
"$INST_DUMMY_%i_%s",total-1,
(root->name.length() ? root->name.c_str() : ""));
// we'll also need to insert a dummy in the node hierarchy.
aiNode* dummy = new aiNode();
for (unsigned int i = 0; i < real->mParent->mNumChildren;++i)
if (real->mParent->mChildren[i] == real)
real->mParent->mChildren[i] = dummy;
dummy->mParent = real->mParent;
dummy->mName = anim->mNodeName;
dummy->mNumChildren = 1;
dummy->mChildren = new aiNode*[dummy->mNumChildren];
dummy->mChildren[0] = real;
// the transformation matrix of the dummy node is the identity
real->mParent = dummy;
}
else anim->mNodeName.Set(root->name);
++cur;
switch (in.type)
{
case Animator::ROTATION:
{
// -----------------------------------------------------
// find out how long a full rotation will take
// This is the least common multiple of 360.f and all
// three euler angles. Although we'll surely find a
// possible multiple (haha) it could be somewhat large
// for our purposes. So we need to modify the angles
// here in order to get good results.
// -----------------------------------------------------
int angles[3];
angles[0] = (int)(in.direction.x*100);
angles[1] = (int)(in.direction.y*100);
angles[2] = (int)(in.direction.z*100);
angles[0] %= 360;
angles[1] %= 360;
angles[2] %= 360;
if ((angles[0]*angles[1]) && (angles[1]*angles[2]))
{
FindSuitableMultiple(angles[0]);
FindSuitableMultiple(angles[1]);
FindSuitableMultiple(angles[2]);
}
int lcm = 360;
if (angles[0])
lcm = boost::math::lcm(lcm,angles[0]);
if (angles[1])
lcm = boost::math::lcm(lcm,angles[1]);
if (angles[2])
lcm = boost::math::lcm(lcm,angles[2]);
if (360 == lcm)
break;
// This can be a division through zero, but we don't care
float f1 = (float)lcm / angles[0];
float f2 = (float)lcm / angles[1];
float f3 = (float)lcm / angles[2];
// find out how many time units we'll need for the finest
// track (in seconds) - this defines the number of output
// keys (fps * seconds)
float max ;
if (angles[0])
max = (float)lcm / angles[0];
if (angles[1])
max = std::max(max, (float)lcm / angles[1]);
if (angles[2])
max = std::max(max, (float)lcm / angles[2]);
anim->mNumRotationKeys = (unsigned int)(max*fps);
anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
// begin with a zero angle
aiVector3D angle;
for (unsigned int i = 0; i < anim->mNumRotationKeys;++i)
{
// build the quaternion for the given euler angles
aiQuatKey& q = anim->mRotationKeys[i];
q.mValue = aiQuaternion(angle.x, angle.y, angle.z);
q.mTime = (double)i;
// increase the angle
angle += in.direction;
}
// This animation is repeated and repeated ...
anim->mPostState = aiAnimBehaviour_REPEAT;
anim->mPreState = aiAnimBehaviour_CONSTANT;
}
break;
case Animator::FLY_CIRCLE:
{
anim->mPostState = aiAnimBehaviour_REPEAT;
anim->mPreState = aiAnimBehaviour_CONSTANT;
// -----------------------------------------------------
// Find out how much time we'll need to perform a
// full circle.
// -----------------------------------------------------
const double seconds = (1. / in.speed) / 1000.;
const double tdelta = 1000. / fps;
anim->mNumPositionKeys = (unsigned int) (fps * seconds);
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
// from Irrlicht, what else should we do than copying it?
aiVector3D vecU,vecV;
if (in.direction.y)
{
vecV = aiVector3D(50,0,0) ^ in.direction;
}
else vecV = aiVector3D(0,50,00) ^ in.direction;
vecV.Normalize();
vecU = (vecV ^ in.direction).Normalize();
// build the output keys
for (unsigned int i = 0; i < anim->mNumPositionKeys;++i)
{
aiVectorKey& key = anim->mPositionKeys[i];
key.mTime = i * tdelta;
const float t = (float) ( in.speed * key.mTime );
key.mValue = in.circleCenter + in.circleRadius * ((vecU*::cos(t)) + (vecV*::sin(t)));
}
}
break;
case Animator::FLY_STRAIGHT:
{
anim->mPostState = (in.loop ? aiAnimBehaviour_REPEAT : aiAnimBehaviour_CONSTANT);
anim->mPreState = aiAnimBehaviour_CONSTANT;
const double seconds = in.timeForWay / 1000.;
const double tdelta = 1000. / fps;
anim->mNumPositionKeys = (unsigned int) (fps * seconds);
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
aiVector3D diff = in.direction - in.circleCenter;
const float lengthOfWay = diff.Length();
diff.Normalize();
const double timeFactor = lengthOfWay / in.timeForWay;
// build the output keys
for (unsigned int i = 0; i < anim->mNumPositionKeys;++i)
{
aiVectorKey& key = anim->mPositionKeys[i];
key.mTime = i * tdelta;
key.mValue = in.circleCenter + diff * float(timeFactor * key.mTime);
}
}
break;
case Animator::FOLLOW_SPLINE:
{
anim->mPostState = aiAnimBehaviour_REPEAT;
anim->mPreState = aiAnimBehaviour_CONSTANT;
const int size = (int)in.splineKeys.size();
if (!size)
{
// We have no point in the spline. That's bad. Really bad.
DefaultLogger::get()->warn("IRR: Spline animators with no points defined");
delete anim;anim = NULL;
break;
}
else if (size == 1)
{
// We have just one point in the spline so we don't need the full calculation
anim->mNumPositionKeys = 1;
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
anim->mPositionKeys[0].mValue = in.splineKeys[0].mValue;
anim->mPositionKeys[0].mTime = 0.f;
break;
}
unsigned int ticksPerFull = 15;
anim->mNumPositionKeys = (unsigned int) ( ticksPerFull * fps );
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
for (unsigned int i = 0; i < anim->mNumPositionKeys;++i)
{
aiVectorKey& key = anim->mPositionKeys[i];
const float dt = (i * in.speed * 0.001f );
const float u = dt - floor(dt);
const int idx = (int)floor(dt) % size;
// get the 4 current points to evaluate the spline
const aiVector3D& p0 = in.splineKeys[ ClampSpline( idx - 1, size ) ].mValue;
const aiVector3D& p1 = in.splineKeys[ ClampSpline( idx + 0, size ) ].mValue;
const aiVector3D& p2 = in.splineKeys[ ClampSpline( idx + 1, size ) ].mValue;
const aiVector3D& p3 = in.splineKeys[ ClampSpline( idx + 2, size ) ].mValue;
// compute polynomials
const float u2 = u*u;
const float u3 = u2*2;
const float h1 = 2.0f * u3 - 3.0f * u2 + 1.0f;
const float h2 = -2.0f * u3 + 3.0f * u3;
const float h3 = u3 - 2.0f * u3;
const float h4 = u3 - u2;
// compute the spline tangents
const aiVector3D t1 = ( p2 - p0 ) * in.tightness;
aiVector3D t2 = ( p3 - p1 ) * in.tightness;
// and use them to get the interpolated point
t2 = (h1 * p1 + p2 * h2 + t1 * h3 + h4 * t2);
// build a simple translation matrix from it
key.mValue = t2.x;
key.mTime = (double) i;
}
}
break;
};
if (anim)
{
anims.push_back(anim);
++total;
}
}
}
// ------------------------------------------------------------------------------------------------
// This function is maybe more generic than we'd need it here
void SetupMapping (MaterialHelper* mat, aiTextureMapping mode, const aiVector3D& axis = aiVector3D(0.f,1.f,0.f))
{
// Check whether there are texture properties defined - setup
// the desired texture mapping mode for all of them and ignore
// all UV settings we might encounter. WE HAVE NO UVS!
std::vector<aiMaterialProperty*> p;
p.reserve(mat->mNumProperties+1);
for (unsigned int i = 0; i < mat->mNumProperties;++i)
{
aiMaterialProperty* prop = mat->mProperties[i];
if (!::strcmp( prop->mKey.data, "$tex.file"))
{
// Setup the mapping key
aiMaterialProperty* m = new aiMaterialProperty();
m->mKey.Set("$tex.mapping");
m->mIndex = prop->mIndex;
m->mSemantic = prop->mSemantic;
m->mType = aiPTI_Integer;
m->mDataLength = 4;
m->mData = new char[4];
*((int*)m->mData) = mode;
p.push_back(prop);
p.push_back(m);
// Setup the mapping axis
if (mode == aiTextureMapping_CYLINDER || mode == aiTextureMapping_PLANE ||
mode == aiTextureMapping_SPHERE)
{
m = new aiMaterialProperty();
m->mKey.Set("$tex.mapaxis");
m->mIndex = prop->mIndex;
m->mSemantic = prop->mSemantic;
m->mType = aiPTI_Float;
m->mDataLength = 12;
m->mData = new char[12];
*((aiVector3D*)m->mData) = axis;
p.push_back(m);
}
}
else if (! ::strcmp( prop->mKey.data, "$tex.uvwsrc")) {
delete mat->mProperties[i];
}
else p.push_back(prop);
}
if (p.empty())return;
// rebuild the output array
if (p.size() > mat->mNumAllocated) {
delete[] mat->mProperties;
mat->mProperties = new aiMaterialProperty*[p.size()];
}
mat->mNumProperties = (unsigned int)p.size();
::memcpy(mat->mProperties,&p[0],sizeof(void*)*mat->mNumProperties);
}
// ------------------------------------------------------------------------------------------------
void IRRImporter::GenerateGraph(Node* root,aiNode* rootOut ,aiScene* scene,
BatchLoader& batch,
std::vector<aiMesh*>& meshes,
std::vector<aiNodeAnim*>& anims,
std::vector<AttachmentInfo>& attach,
std::vector<aiMaterial*>& materials,
unsigned int& defMatIdx)
{
unsigned int oldMeshSize = (unsigned int)meshes.size();
unsigned int meshTrafoAssign = 0;
// Now determine the type of the node
switch (root->type)
{
case Node::ANIMMESH:
case Node::MESH:
{
if (!root->meshPath.length())
break;
// Get the loaded mesh from the scene and add it to
// the list of all scenes to be attached to the
// graph we're currently building
aiScene* scene = batch.GetImport(root->meshPath);
if (!scene)
{
DefaultLogger::get()->error("IRR: Unable to load external file: "
+ root->meshPath);
break;
}
attach.push_back(AttachmentInfo(scene,rootOut));
meshTrafoAssign = 1;
// If the root node of the scene is animated - and *this* node
// is animated, too, we need to insert a dummy node into the
// hierarchy in order to avoid interferences with animations
for (unsigned int i = 0; i < scene->mNumAnimations;++i)
{
aiAnimation* anim = scene->mAnimations[i];
for (unsigned int a = 0; a < anim->mNumChannels;++a)
{
if (scene->mRootNode->mName == anim->mChannels[a]->mNodeName)
{
if (root->animators.empty())
{
meshTrafoAssign = 2;
}
else
{
meshTrafoAssign = 3;
aiNode* dummy = new aiNode();
dummy->mName.Set("$CSpaceSeam$");
dummy->mNumChildren = 1;
dummy->mChildren = new aiNode*[1];
dummy->mChildren[0] = scene->mRootNode;
scene->mRootNode->mParent = dummy;
scene->mRootNode = dummy;
scene->mRootNode->mTransformation = AI_TO_IRR_MATRIX;
}
break;
}
}
}
if (1 == meshTrafoAssign)
scene->mRootNode->mTransformation *= AI_TO_IRR_MATRIX;
// Now combine the material we've loaded for this mesh
// with the real materials we got from the file. As we
// don't execute any pp-steps on the file, the numbers
// should be equal. If they are not, we can impossibly
// do this ...
if (root->materials.size() != (unsigned int)scene->mNumMaterials)
{
DefaultLogger::get()->warn("IRR: Failed to match imported materials "
"with the materials found in the IRR scene file");
break;
}
for (unsigned int i = 0; i < scene->mNumMaterials;++i)
{
// Delete the old material, we don't need it anymore
delete scene->mMaterials[i];
std::pair<aiMaterial*, unsigned int>& src = root->materials[i];
scene->mMaterials[i] = src.first;
}
// NOTE: Each mesh should have exactly one material assigned,
// but we do it in a separate loop if this behaviour changes
// in the future.
for (unsigned int i = 0; i < scene->mNumMeshes;++i)
{
// Process material flags
aiMesh* mesh = scene->mMeshes[i];
// If "trans_vertex_alpha" mode is enabled, search all vertex colors
// and check whether they have a common alpha value. This is quite
// often the case so we can simply extract it to a shared oacity
// value.
std::pair<aiMaterial*, unsigned int>& src = root->materials[
mesh->mMaterialIndex];
MaterialHelper* mat = (MaterialHelper*)src.first;
if (mesh->HasVertexColors(0) && src.second & AI_IRRMESH_MAT_trans_vertex_alpha)
{
bool bdo = true;
for (unsigned int a = 1; a < mesh->mNumVertices;++a)
{
if (mesh->mColors[0][a].a != mesh->mColors[0][a-1].a)
{
bdo = false;
break;
}
}
if (bdo)
{
DefaultLogger::get()->info("IRR: Replacing mesh vertex "
"alpha with common opacity");
for (unsigned int a = 0; a < mesh->mNumVertices;++a)
mesh->mColors[0][a].a = 1.f;
mat->AddProperty(& mesh->mColors[0][0].a, 1, AI_MATKEY_OPACITY);
}
}
// If we have a second texture coordinate set and a second texture
// (either lightmap, normalmap, 2layered material) we need to
// setup the correct UV index for it. The texture can either
// be diffuse (lightmap & 2layer) or a normal map (normal & parallax)
if (mesh->HasTextureCoords(1))
{
int idx = 1;
if (src.second & (AI_IRRMESH_MAT_solid_2layer | AI_IRRMESH_MAT_lightmap)) {
mat->AddProperty(&idx,1,AI_MATKEY_UVWSRC_DIFFUSE(0));
}
else if (src.second & AI_IRRMESH_MAT_normalmap_solid) {
mat->AddProperty(&idx,1,AI_MATKEY_UVWSRC_NORMALS(0));
}
}
}
}
break;
case Node::LIGHT:
case Node::CAMERA:
// We're already finished with lights and cameras
break;
case Node::SPHERE:
{
// Generate the sphere model. Our input parameter to
// the sphere generation algorithm is the number of
// subdivisions of each triangle - but here we have
// the number of poylgons on a specific axis. Just
// use some hardcoded limits to approximate this ...
unsigned int mul = root->spherePolyCountX*root->spherePolyCountY;
if (mul < 100)mul = 2;
else if (mul < 300)mul = 3;
else mul = 4;
meshes.push_back(StandardShapes::MakeMesh(mul,
&StandardShapes::MakeSphere));
// Adjust scaling
root->scaling *= root->sphereRadius/2;
// Copy one output material
CopyMaterial(materials, root->materials, defMatIdx, meshes.back());
// Now adjust this output material - if there is a first texture
// set, setup spherical UV mapping around the Y axis.
SetupMapping ( (MaterialHelper*) materials.back(), aiTextureMapping_SPHERE);
}
break;
case Node::CUBE:
{
// Generate an unit cube first
meshes.push_back(StandardShapes::MakeMesh(
&StandardShapes::MakeHexahedron));
// Adjust scaling
root->scaling *= root->sphereRadius;
// Copy one output material
CopyMaterial(materials, root->materials, defMatIdx, meshes.back());
// Now adjust this output material - if there is a first texture
// set, setup cubic UV mapping
SetupMapping ( (MaterialHelper*) materials.back(), aiTextureMapping_BOX );
}
break;
case Node::SKYBOX:
{
// A skybox is defined by six materials
if (root->materials.size() < 6)
{
DefaultLogger::get()->error("IRR: There should be six materials "
"for a skybox");
break;
}
// copy those materials and generate 6 meshes for our new skybox
materials.reserve(materials.size() + 6);
for (unsigned int i = 0; i < 6;++i)
materials.insert(materials.end(),root->materials[i].first);
BuildSkybox(meshes,materials);
// *************************************************************
// Skyboxes will require a different code path for rendering,
// so there must be a way for the user to add special support
// for IRR skyboxes. We add a 'IRR.SkyBox_' prefix to the node.
// *************************************************************
root->name = "IRR.SkyBox_" + root->name;
DefaultLogger::get()->info("IRR: Loading skybox, this will "
"require special handling to be displayed correctly");
}
break;
case Node::TERRAIN:
{
// to support terrains, we'd need to have a texture decoder
DefaultLogger::get()->error("IRR: Unsupported node - TERRAIN");
}
break;
};
// Check whether we added a mesh (or more than one ...). In this case
// we'll also need to attach it to the node
if (oldMeshSize != (unsigned int) meshes.size())
{
rootOut->mNumMeshes = (unsigned int)meshes.size() - oldMeshSize;
rootOut->mMeshes = new unsigned int[rootOut->mNumMeshes];
for (unsigned int a = 0; a < rootOut->mNumMeshes;++a)
{
rootOut->mMeshes[a] = oldMeshSize+a;
}
}
// Setup the name of this node
rootOut->mName.Set(root->name);
// Now compute the final local transformation matrix of the
// node from the given translation, rotation and scaling values.
// (the rotation is given in Euler angles, XYZ order)
rootOut->mTransformation.FromEulerAnglesXYZ(AI_DEG_TO_RAD(root->rotation) );
// apply scaling
aiMatrix4x4& mat = rootOut->mTransformation;
mat.a1 *= root->scaling.x;
mat.b1 *= root->scaling.x;
mat.c1 *= root->scaling.x;
mat.a2 *= root->scaling.y;
mat.b2 *= root->scaling.y;
mat.c2 *= root->scaling.y;
mat.a3 *= root->scaling.z;
mat.b3 *= root->scaling.z;
mat.c3 *= root->scaling.z;
// apply translation
mat.a4 += root->position.x;
mat.b4 += root->position.y;
mat.c4 += root->position.z;
if (meshTrafoAssign == 2)
mat *= AI_TO_IRR_MATRIX;
// now compute animations for the node
ComputeAnimations(root,rootOut, anims);
// Add all children recursively. First allocate enough storage
// for them, then call us again
rootOut->mNumChildren = (unsigned int)root->children.size();
if (rootOut->mNumChildren)
{
rootOut->mChildren = new aiNode*[rootOut->mNumChildren];
for (unsigned int i = 0; i < rootOut->mNumChildren;++i)
{
aiNode* node = rootOut->mChildren[i] = new aiNode();
node->mParent = rootOut;
GenerateGraph(root->children[i],node,scene,batch,meshes,
anims,attach,materials,defMatIdx);
}
}
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void IRRImporter::InternReadFile( const std::string& pFile,
aiScene* pScene, IOSystem* pIOHandler)
{
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile));
// Check whether we can read from the file
if( file.get() == NULL)
throw new ImportErrorException( "Failed to open IRR file " + pFile + "");
// Construct the irrXML parser
CIrrXML_IOStreamReader st(file.get());
reader = createIrrXMLReader((IFileReadCallBack*) &st);
// The root node of the scene
Node* root = new Node(Node::DUMMY);
root->parent = NULL;
root->name = "<IRRSceneRoot>";
// Current node parent
Node* curParent = root;
// Scenegraph node we're currently working on
Node* curNode = NULL;
// List of output cameras
std::vector<aiCamera*> cameras;
// List of output lights
std::vector<aiLight*> lights;
// Batch loader used to load external models
BatchLoader batch(pIOHandler);
batch.SetBasePath(pFile);
cameras.reserve(5);
lights.reserve(5);
bool inMaterials = false, inAnimator = false;
unsigned int guessedAnimCnt = 0, guessedMeshCnt = 0, guessedMatCnt = 0;
// Parse the XML file
while (reader->read())
{
switch (reader->getNodeType())
{
case EXN_ELEMENT:
if (!ASSIMP_stricmp(reader->getNodeName(),"node"))
{
// ***********************************************************************
/* What we're going to do with the node depends
* on its type:
*
* "mesh" - Load a mesh from an external file
* "cube" - Generate a cube
* "skybox" - Generate a skybox
* "light" - A light source
* "sphere" - Generate a sphere mesh
* "animatedMesh" - Load an animated mesh from an external file
* and join its animation channels with ours.
* "empty" - A dummy node
* "camera" - A camera
* "terrain" - a terrain node (data comes from a heightmap)
* "billboard", ""
*
* Each of these nodes can be animated and all can have multiple
* materials assigned (except lights, cameras and dummies, of course).
*/
// ***********************************************************************
const char* sz = reader->getAttributeValueSafe("type");
Node* nd;
if (!ASSIMP_stricmp(sz,"mesh") || !ASSIMP_stricmp(sz,"octTree"))
{
// OctTree's and meshes are treated equally
nd = new Node(Node::MESH);
}
else if (!ASSIMP_stricmp(sz,"cube"))
{
nd = new Node(Node::CUBE);
++guessedMeshCnt;
// meshes.push_back(StandardShapes::MakeMesh(&StandardShapes::MakeHexahedron));
}
else if (!ASSIMP_stricmp(sz,"skybox"))
{
nd = new Node(Node::SKYBOX);
guessedMeshCnt += 6;
}
else if (!ASSIMP_stricmp(sz,"camera"))
{
nd = new Node(Node::CAMERA);
// Setup a temporary name for the camera
aiCamera* cam = new aiCamera();
cam->mName.Set( nd->name );
cameras.push_back(cam);
}
else if (!ASSIMP_stricmp(sz,"light"))
{
nd = new Node(Node::LIGHT);
// Setup a temporary name for the light
aiLight* cam = new aiLight();
cam->mName.Set( nd->name );
lights.push_back(cam);
}
else if (!ASSIMP_stricmp(sz,"sphere"))
{
nd = new Node(Node::SPHERE);
++guessedMeshCnt;
}
else if (!ASSIMP_stricmp(sz,"animatedMesh"))
{
nd = new Node(Node::ANIMMESH);
}
else if (!ASSIMP_stricmp(sz,"empty"))
{
nd = new Node(Node::DUMMY);
}
else if (!ASSIMP_stricmp(sz,"terrain"))
{
nd = new Node(Node::TERRAIN);
}
else if (!ASSIMP_stricmp(sz,"billBoard"))
{
// We don't support billboards, so ignore them
DefaultLogger::get()->error("IRR: Billboards are not supported by Assimp");
nd = new Node(Node::DUMMY);
}
else
{
DefaultLogger::get()->warn("IRR: Found unknown node: " + std::string(sz));
/* We skip the contents of nodes we don't know.
* We parse the transformation and all animators
* and skip the rest.
*/
nd = new Node(Node::DUMMY);
}
/* Attach the newly created node to the scenegraph
*/
curNode = nd;
nd->parent = curParent;
curParent->children.push_back(nd);
}
else if (!ASSIMP_stricmp(reader->getNodeName(),"materials"))
{
inMaterials = true;
}
else if (!ASSIMP_stricmp(reader->getNodeName(),"animators"))
{
inAnimator = true;
}
else if (!ASSIMP_stricmp(reader->getNodeName(),"attributes"))
{
/* We should have a valid node here
* FIX: no ... the scene root node is also contained in an attributes block
*/
if (!curNode)
{
#if 0
DefaultLogger::get()->error("IRR: Encountered <attributes> element, but "
"there is no node active");
#endif
continue;
}
Animator* curAnim = NULL;
// Materials can occur for nearly any type of node
if (inMaterials && curNode->type != Node::DUMMY)
{
/* This is a material description - parse it!
*/
curNode->materials.push_back(std::pair< aiMaterial*, unsigned int > () );
std::pair< aiMaterial*, unsigned int >& p = curNode->materials.back();
p.first = ParseMaterial(p.second);
++guessedMatCnt;
continue;
}
else if (inAnimator)
{
/* This is an animation path - add a new animator
* to the list.
*/
curNode->animators.push_back(Animator());
curAnim = & curNode->animators.back();
++guessedAnimCnt;
}
/* Parse all elements in the attributes block
* and process them.
*/
while (reader->read())
{
if (reader->getNodeType() == EXN_ELEMENT)
{
if (!ASSIMP_stricmp(reader->getNodeName(),"vector3d"))
{
VectorProperty prop;
ReadVectorProperty(prop);
if (inAnimator)
{
if (curAnim->type == Animator::ROTATION && prop.name == "Rotation")
{
// We store the rotation euler angles in 'direction'
curAnim->direction = prop.value;
}
else if (curAnim->type == Animator::FOLLOW_SPLINE)
{
// Check whether the vector follows the PointN naming scheme,
// here N is the ONE-based index of the point
if (prop.name.length() >= 6 && prop.name.substr(0,5) == "Point")
{
// Add a new key to the list
curAnim->splineKeys.push_back(aiVectorKey());
aiVectorKey& key = curAnim->splineKeys.back();
// and parse its properties
key.mValue = prop.value;
key.mTime = strtol10(&prop.name[5]);
}
}
else if (curAnim->type == Animator::FLY_CIRCLE)
{
if (prop.name == "Center")
{
curAnim->circleCenter = prop.value;
}
else if (prop.name == "Direction")
{
curAnim->direction = prop.value;
// From Irrlicht source - a workaround for backward
// compatibility with Irrlicht 1.1
if (curAnim->direction == aiVector3D())
{
curAnim->direction = aiVector3D(0.f,1.f,0.f);
}
else curAnim->direction.Normalize();
}
}
else if (curAnim->type == Animator::FLY_STRAIGHT)
{
if (prop.name == "Start")
{
// We reuse the field here
curAnim->circleCenter = prop.value;
}
else if (prop.name == "End")
{
// We reuse the field here
curAnim->direction = prop.value;
}
}
}
else
{
if (prop.name == "Position")
{
curNode->position = prop.value;
}
else if (prop.name == "Rotation")
{
curNode->rotation = prop.value;
}
else if (prop.name == "Scale")
{
curNode->scaling = prop.value;
}
else if (Node::CAMERA == curNode->type)
{
aiCamera* cam = cameras.back();
if (prop.name == "Target")
{
cam->mLookAt = prop.value;
}
else if (prop.name == "UpVector")
{
cam->mUp = prop.value;
}
}
}
}
else if (!ASSIMP_stricmp(reader->getNodeName(),"bool"))
{
BoolProperty prop;
ReadBoolProperty(prop);
if (inAnimator && curAnim->type == Animator::FLY_CIRCLE && prop.name == "Loop")
{
curAnim->loop = prop.value;
}
}
else if (!ASSIMP_stricmp(reader->getNodeName(),"float"))
{
FloatProperty prop;
ReadFloatProperty(prop);
if (inAnimator)
{
// The speed property exists for several animators
if (prop.name == "Speed")
{
curAnim->speed = prop.value;
}
else if (curAnim->type == Animator::FLY_CIRCLE && prop.name == "Radius")
{
curAnim->circleRadius = prop.value;
}
else if (curAnim->type == Animator::FOLLOW_SPLINE && prop.name == "Tightness")
{
curAnim->tightness = prop.value;
}
}
else
{
if (prop.name == "FramesPerSecond" &&
Node::ANIMMESH == curNode->type)
{
curNode->framesPerSecond = prop.value;
}
else if (Node::CAMERA == curNode->type)
{
/* This is the vertical, not the horizontal FOV.
* We need to compute the right FOV from the
* screen aspect which we don't know yet.
*/
if (prop.name == "Fovy")
{
cameras.back()->mHorizontalFOV = prop.value;
}
else if (prop.name == "Aspect")
{
cameras.back()->mAspect = prop.value;
}
else if (prop.name == "ZNear")
{
cameras.back()->mClipPlaneNear = prop.value;
}
else if (prop.name == "ZFar")
{
cameras.back()->mClipPlaneFar = prop.value;
}
}
else if (Node::LIGHT == curNode->type)
{
/* Additional light information
*/
if (prop.name == "Attenuation")
{
lights.back()->mAttenuationLinear = prop.value;
}
else if (prop.name == "OuterCone")
{
lights.back()->mAngleOuterCone = AI_DEG_TO_RAD( prop.value );
}
else if (prop.name == "InnerCone")
{
lights.back()->mAngleInnerCone = AI_DEG_TO_RAD( prop.value );
}
}
// radius of the sphere to be generated -
// or alternatively, size of the cube
else if (Node::SPHERE == curNode->type && prop.name == "Radius" ||
Node::CUBE == curNode->type && prop.name == "Size" )
{
curNode->sphereRadius = prop.value;
}
}
}
else if (!ASSIMP_stricmp(reader->getNodeName(),"int"))
{
IntProperty prop;
ReadIntProperty(prop);
if (inAnimator)
{
if (curAnim->type == Animator::FLY_STRAIGHT && prop.name == "TimeForWay")
{
curAnim->timeForWay = prop.value;
}
}
else
{
// sphere polgon numbers in each direction
if (Node::SPHERE == curNode->type)
{
if (prop.name == "PolyCountX")
{
curNode->spherePolyCountX = prop.value;
}
else if (prop.name == "PolyCountY")
{
curNode->spherePolyCountY = prop.value;
}
}
}
}
else if (!ASSIMP_stricmp(reader->getNodeName(),"string") ||
!ASSIMP_stricmp(reader->getNodeName(),"enum"))
{
StringProperty prop;
ReadStringProperty(prop);
if (prop.value.length())
{
if (prop.name == "Name")
{
curNode->name = prop.value;
/* If we're either a camera or a light source
* we need to update the name in the aiLight/
* aiCamera structure, too.
*/
if (Node::CAMERA == curNode->type)
{
cameras.back()->mName.Set(prop.value);
}
else if (Node::LIGHT == curNode->type)
{
lights.back()->mName.Set(prop.value);
}
}
else if (Node::LIGHT == curNode->type && "LightType" == prop.name)
{
if (prop.value == "Spot")
lights.back()->mType = aiLightSource_SPOT;
else if (prop.value == "Point")
lights.back()->mType = aiLightSource_POINT;
else if (prop.value == "Directional")
lights.back()->mType = aiLightSource_DIRECTIONAL;
else
{
// We won't pass the validation with aiLightSourceType_UNDEFINED,
// so we remove the light and replace it with a silly dummy node
delete lights.back();
lights.pop_back();
curNode->type = Node::DUMMY;
DefaultLogger::get()->error("Ignoring light of unknown type: " + prop.value);
}
}
else if (prop.name == "Mesh" && Node::MESH == curNode->type ||
Node::ANIMMESH == curNode->type)
{
/* This is the file name of the mesh - either
* animated or not. We need to make sure we setup
* the correct postprocessing settings here.
*/
unsigned int pp = 0;
BatchLoader::PropertyMap map;
/* If the mesh is a static one remove all animations
*/
if (Node::ANIMMESH != curNode->type)
{
pp |= aiProcess_RemoveComponent;
SetGenericProperty<int>(map.ints,AI_CONFIG_PP_RVC_FLAGS,
aiComponent_ANIMATIONS | aiComponent_BONEWEIGHTS);
}
/* TODO: maybe implement the protection against recursive
* loading calls directly in BatchLoader? The current
* implementation is not absolutely safe. A LWS and an IRR
* file referencing each other *could* cause the system to
* recurse forever.
*/
std::string::size_type pos = prop.value.find_last_of('.');
// no file extension - can't read, so we don't need to try it
if( pos == std::string::npos)
{
DefaultLogger::get()->error("IRR: Can't load files without a file extension");
}
else
{
std::string extension = prop.value.substr( pos);
for (std::string::iterator i = extension.begin(); i != extension.end();++i)
*i = ::tolower(*i);
if (".irr" == prop.value)
{
DefaultLogger::get()->error("IRR: Can't load another IRR file recursively");
}
else
{
batch.AddLoadRequest(prop.value,pp,&map);
curNode->meshPath = prop.value;
}
}
}
else if (inAnimator && prop.name == "Type")
{
// type of the animator
if (prop.value == "rotation")
{
curAnim->type = Animator::ROTATION;
}
else if (prop.value == "flyCircle")
{
curAnim->type = Animator::FLY_CIRCLE;
}
else if (prop.value == "flyStraight")
{
curAnim->type = Animator::FLY_CIRCLE;
}
else if (prop.value == "followSpline")
{
curAnim->type = Animator::FOLLOW_SPLINE;
}
else
{
DefaultLogger::get()->warn("IRR: Ignoring unknown animator: "
+ prop.value);
curAnim->type = Animator::UNKNOWN;
}
}
}
}
}
else if (reader->getNodeType() == EXN_ELEMENT_END &&
!ASSIMP_stricmp(reader->getNodeName(),"attributes"))
{
break;
}
}
}
break;
case EXN_ELEMENT_END:
// If we reached the end of a node, we need to continue processing its parent
if (!ASSIMP_stricmp(reader->getNodeName(),"node"))
{
if (!curNode)
{
// currently is no node set. We need to go
// back in the node hierarchy
if (!curParent)
{
curParent = root;
DefaultLogger::get()->error("IRR: Too many closing <node> elements");
}
else curParent = curParent->parent;
}
else curNode = NULL;
}
// clear all flags
else if (!ASSIMP_stricmp(reader->getNodeName(),"materials"))
{
inMaterials = false;
}
else if (!ASSIMP_stricmp(reader->getNodeName(),"animators"))
{
inAnimator = false;
}
break;
default:
// GCC complains that not all enumeration values are handled
break;
}
}
/* Now iterate through all cameras and compute their final (horizontal) FOV
*/
for (std::vector<aiCamera*>::iterator it = cameras.begin(), end = cameras.end();
it != end; ++it)
{
aiCamera* cam = *it;
if (cam->mAspect) // screen aspect could be missing
{
cam->mHorizontalFOV *= cam->mAspect;
}
else DefaultLogger::get()->warn("IRR: Camera aspect is not given, can't compute horizontal FOV");
}
batch.LoadAll();
/* Allocate a tempoary scene data structure
*/
aiScene* tempScene = new aiScene();
tempScene->mRootNode = new aiNode();
tempScene->mRootNode->mName.Set("<IRRRoot>");
/* Copy the cameras to the output array
*/
if (!cameras.empty())
{
tempScene->mNumCameras = (unsigned int)cameras.size();
tempScene->mCameras = new aiCamera*[tempScene->mNumCameras];
::memcpy(tempScene->mCameras,&cameras[0],sizeof(void*)*tempScene->mNumCameras);
}
/* Copy the light sources to the output array
*/
if (!lights.empty())
{
tempScene->mNumLights = (unsigned int)lights.size();
tempScene->mLights = new aiLight*[tempScene->mNumLights];
::memcpy(tempScene->mLights,&lights[0],sizeof(void*)*tempScene->mNumLights);
}
// temporary data
std::vector< aiNodeAnim*> anims;
std::vector< aiMaterial*> materials;
std::vector< AttachmentInfo > attach;
std::vector<aiMesh*> meshes;
// try to guess how much storage we'll need
anims.reserve (guessedAnimCnt + (guessedAnimCnt >> 2));
meshes.reserve (guessedMeshCnt + (guessedMeshCnt >> 2));
materials.reserve (guessedMatCnt + (guessedMatCnt >> 2));
/* Now process our scenegraph recursively: generate final
* meshes and generate animation channels for all nodes.
*/
unsigned int defMatIdx = 0xffffffff;
GenerateGraph(root,tempScene->mRootNode, tempScene,
batch, meshes, anims, attach, materials, defMatIdx);
if (!anims.empty())
{
tempScene->mNumAnimations = 1;
tempScene->mAnimations = new aiAnimation*[tempScene->mNumAnimations];
aiAnimation* an = tempScene->mAnimations[0] = new aiAnimation();
// ***********************************************************
// This is only the global animation channel of the scene.
// If there are animated models, they will have separate
// animation channels in the scene. To display IRR scenes
// correctly, users will need to combine the global anim
// channel with all the local animations they want to play
// ***********************************************************
an->mName.Set("Irr_GlobalAnimChannel");
// copy all node animation channels to the global channel
an->mNumChannels = (unsigned int)anims.size();
an->mChannels = new aiNodeAnim*[an->mNumChannels];
::memcpy(an->mChannels, & anims [0], sizeof(void*)*an->mNumChannels);
}
if (!meshes.empty())
{
// copy all meshes to the temporary scene
tempScene->mNumMeshes = (unsigned int)meshes.size();
tempScene->mMeshes = new aiMesh*[tempScene->mNumMeshes];
::memcpy(tempScene->mMeshes,&meshes[0],tempScene->mNumMeshes*
sizeof(void*));
}
/* Copy all materials to the output array
*/
if (!materials.empty())
{
tempScene->mNumMaterials = (unsigned int)materials.size();
tempScene->mMaterials = new aiMaterial*[tempScene->mNumMaterials];
::memcpy(tempScene->mMaterials,&materials[0],sizeof(void*)*
tempScene->mNumMaterials);
}
/* Now merge all sub scenes and attach them to the correct
* attachment points in the scenegraph.
*/
SceneCombiner::MergeScenes(&pScene,tempScene,attach,
AI_INT_MERGE_SCENE_GEN_UNIQUE_MATNAMES |
AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES);
/* If we have no meshes | no materials now set the INCOMPLETE
* scene flag. This is necessary if we failed to load all
* models from external files
*/
if (!pScene->mNumMeshes || !pScene->mNumMaterials)
{
DefaultLogger::get()->warn("IRR: No meshes loaded, setting AI_SCENE_FLAGS_INCOMPLETE");
pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
}
// transformation matrix to convert from IRRMESH to ASSIMP coordinates
pScene->mRootNode->mTransformation *= AI_TO_IRR_MATRIX;
/* Finished ... everything destructs automatically and all
* temporary scenes have already been deleted by MergeScenes()
*/
return;
}