/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the Irr importer class */ #include "AssimpPCH.h" #include "IRRLoader.h" #include "ParsingUtils.h" #include "fast_atof.h" #include "GenericProperty.h" #include "SceneCombiner.h" #include "StandardShapes.h" // We need boost::common_factor to compute the lcm/gcd of a number #ifdef ASSIMP_BUILD_BOOST_WORKAROUND # include "../include/BoostWorkaround/boost/common_factor_rt.hpp" #else # include #endif using namespace Assimp; using namespace boost::math; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer IRRImporter::IRRImporter() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Destructor, private as well IRRImporter::~IRRImporter() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool IRRImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { /* NOTE: A simple check for the file extension is not enough * here. Irrmesh and irr are easy, but xml is too generic * and could be collada, too. So we need to open the file and * search for typical tokens. */ std::string::size_type pos = pFile.find_last_of('.'); // no file extension - can't read if( pos == std::string::npos) return false; std::string extension = pFile.substr( pos); for (std::string::iterator i = extension.begin(); i != extension.end();++i) *i = ::tolower(*i); if (extension == ".irr")return true; else if (extension == ".xml") { /* If CanRead() is called in order to check whether we * support a specific file extension in general pIOHandler * might be NULL and it's our duty to return true here. */ if (!pIOHandler)return true; const char* tokens[] = {"irr_scene"}; return SearchFileHeaderForToken(pIOHandler,pFile,tokens,1); } return false; } // ------------------------------------------------------------------------------------------------ void IRRImporter::GetExtensionList(std::string& append) { /* NOTE: The file extenxsion .xml is too generic. We'll * need to open the file in CanRead() and check whether it is * a real irrlicht file */ append.append("*.xml;*.irr"); } // ------------------------------------------------------------------------------------------------ void IRRImporter::SetupProperties(const Importer* pImp) { // read the output frame rate of all node animation channels fps = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_IRR_ANIM_FPS,100); if (!fps) { DefaultLogger::get()->error("IRR: Invalid FPS configuration"); fps = 100; } } // ------------------------------------------------------------------------------------------------ // Build a mesh tha consists of a single squad (a side of a skybox) aiMesh* IRRImporter::BuildSingleQuadMesh(const SkyboxVertex& v1, const SkyboxVertex& v2, const SkyboxVertex& v3, const SkyboxVertex& v4) { // allocate and prepare the mesh aiMesh* out = new aiMesh(); out->mPrimitiveTypes = aiPrimitiveType_POLYGON; out->mNumFaces = 1; // build the face out->mFaces = new aiFace[1]; aiFace& face = out->mFaces[0]; face.mNumIndices = 4; face.mIndices = new unsigned int[4]; for (unsigned int i = 0; i < 4;++i) face.mIndices[i] = i; out->mNumVertices = 4; // copy vertex positions aiVector3D* vec = out->mVertices = new aiVector3D[4]; *vec++ = v1.position; *vec++ = v2.position; *vec++ = v3.position; *vec = v4.position; // copy vertex normals vec = out->mNormals = new aiVector3D[4]; *vec++ = v1.normal; *vec++ = v2.normal; *vec++ = v3.normal; *vec = v4.normal; // copy texture coordinates vec = out->mTextureCoords[0] = new aiVector3D[4]; *vec++ = v1.uv; *vec++ = v2.uv; *vec++ = v3.uv; *vec = v4.uv; return out; } // ------------------------------------------------------------------------------------------------ void IRRImporter::BuildSkybox(std::vector& meshes, std::vector materials) { // Update the material of the skybox - replace the name // and disable shading for skyboxes. for (unsigned int i = 0; i < 6;++i) { MaterialHelper* out = ( MaterialHelper* ) (*(materials.end()-(6-i))); aiString s; s.length = ::sprintf( s.data, "SkyboxSide_%i",i ); out->AddProperty(&s,AI_MATKEY_NAME); int shading = aiShadingMode_NoShading; out->AddProperty(&shading,1,AI_MATKEY_SHADING_MODEL); } // Skyboxes are much more difficult. They are represented // by six single planes with different textures, so we'll // need to build six meshes. const float l = 10.f; // the size used by Irrlicht // FRONT SIDE meshes.push_back( BuildSingleQuadMesh( SkyboxVertex(-l,-l,-l, 0, 0, 1, 1.f,1.f), SkyboxVertex( l,-l,-l, 0, 0, 1, 0.f,1.f), SkyboxVertex( l, l,-l, 0, 0, 1, 0.f,0.f), SkyboxVertex(-l, l,-l, 0, 0, 1, 1.f,0.f)) ); meshes.back()->mMaterialIndex = materials.size()-6u; // LEFT SIDE meshes.push_back( BuildSingleQuadMesh( SkyboxVertex( l,-l,-l, -1, 0, 0, 1.f,1.f), SkyboxVertex( l,-l, l, -1, 0, 0, 0.f,1.f), SkyboxVertex( l, l, l, -1, 0, 0, 0.f,0.f), SkyboxVertex( l, l,-l, -1, 0, 0, 1.f,0.f)) ); meshes.back()->mMaterialIndex = materials.size()-5u; // BACK SIDE meshes.push_back( BuildSingleQuadMesh( SkyboxVertex( l,-l, l, 0, 0, -1, 1.f,1.f), SkyboxVertex(-l,-l, l, 0, 0, -1, 0.f,1.f), SkyboxVertex(-l, l, l, 0, 0, -1, 0.f,0.f), SkyboxVertex( l, l, l, 0, 0, -1, 1.f,0.f)) ); meshes.back()->mMaterialIndex = materials.size()-4u; // RIGHT SIDE meshes.push_back( BuildSingleQuadMesh( SkyboxVertex(-l,-l, l, 1, 0, 0, 1.f,1.f), SkyboxVertex(-l,-l,-l, 1, 0, 0, 0.f,1.f), SkyboxVertex(-l, l,-l, 1, 0, 0, 0.f,0.f), SkyboxVertex(-l, l, l, 1, 0, 0, 1.f,0.f)) ); meshes.back()->mMaterialIndex = materials.size()-3u; // TOP SIDE meshes.push_back( BuildSingleQuadMesh( SkyboxVertex( l, l,-l, 0, -1, 0, 1.f,1.f), SkyboxVertex( l, l, l, 0, -1, 0, 0.f,1.f), SkyboxVertex(-l, l, l, 0, -1, 0, 0.f,0.f), SkyboxVertex(-l, l,-l, 0, -1, 0, 1.f,0.f)) ); meshes.back()->mMaterialIndex = materials.size()-2u; // BOTTOM SIDE meshes.push_back( BuildSingleQuadMesh( SkyboxVertex( l,-l, l, 0, 1, 0, 0.f,0.f), SkyboxVertex( l,-l,-l, 0, 1, 0, 1.f,0.f), SkyboxVertex(-l,-l,-l, 0, 1, 0, 1.f,1.f), SkyboxVertex(-l,-l, l, 0, 1, 0, 0.f,1.f)) ); meshes.back()->mMaterialIndex = materials.size()-1u; } // ------------------------------------------------------------------------------------------------ void IRRImporter::CopyMaterial(std::vector& materials, std::vector< std::pair >& inmaterials, unsigned int& defMatIdx, aiMesh* mesh) { if (inmaterials.empty()) { // Do we have a default material? If not we need to create one if (0xffffffff == defMatIdx) { defMatIdx = (unsigned int)materials.size(); MaterialHelper* mat = new MaterialHelper(); aiString s; s.Set(AI_DEFAULT_MATERIAL_NAME); mat->AddProperty(&s,AI_MATKEY_NAME); aiColor3D c(0.6f,0.6f,0.6f); mat->AddProperty(&c,1,AI_MATKEY_COLOR_DIFFUSE); } mesh->mMaterialIndex = defMatIdx; return; } else if (inmaterials.size() > 1) { DefaultLogger::get()->info("IRR: Skipping additional materials"); } mesh->mMaterialIndex = (unsigned int)materials.size(); materials.push_back(inmaterials[0].first); } // ------------------------------------------------------------------------------------------------ inline int ClampSpline(int idx, int size) { return ( idx<0 ? size+idx : ( idx>=size ? idx-size : idx ) ); } // ------------------------------------------------------------------------------------------------ inline void FindSuitableMultiple(int& angle) { if (angle < 3)angle = 3; else if (angle < 10) angle = 10; else if (angle < 20) angle = 20; else if (angle < 30) angle = 30; else { } } // ------------------------------------------------------------------------------------------------ void IRRImporter::ComputeAnimations(Node* root, aiNode* real, std::vector& anims) { ai_assert(NULL != root && NULL != real); if (root->animators.empty())return; const aiMatrix4x4& transform = real->mTransformation; unsigned int total = 0; for (std::list::iterator it = root->animators.begin(); it != root->animators.end(); ++it) { if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER) { DefaultLogger::get()->warn("IRR: Skipping unknown or unsupported animator"); continue; } ++total; } if (!total)return; else if (1 == total) { DefaultLogger::get()->warn("IRR: Generating dummy nodes to simulate multiple animators"); } // NOTE: 1 tick == i millisecond unsigned int cur = 0; for (std::list::iterator it = root->animators.begin(); it != root->animators.end(); ++it) { if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER)continue; Animator& in = *it ; aiNodeAnim* anim = new aiNodeAnim(); if (cur != total-1) { // Build a new name - a prefix instead of a suffix because it is // easier to check against anim->mNodeName.length = ::sprintf(anim->mNodeName.data, "$INST_DUMMY_%i_%s",total-1, (root->name.length() ? root->name.c_str() : "")); // we'll also need to insert a dummy in the node hierarchy. aiNode* dummy = new aiNode(); for (unsigned int i = 0; i < real->mParent->mNumChildren;++i) if (real->mParent->mChildren[i] == real) real->mParent->mChildren[i] = dummy; dummy->mParent = real->mParent; dummy->mName = anim->mNodeName; dummy->mNumChildren = 1; dummy->mChildren = new aiNode*[dummy->mNumChildren]; dummy->mChildren[0] = real; // the transformation matrix of the dummy node is the identity real->mParent = dummy; } else anim->mNodeName.Set(root->name); ++cur; switch (in.type) { case Animator::ROTATION: { // ----------------------------------------------------- // find out how long a full rotation will take // This is the least common multiple of 360.f and all // three euler angles. Although we'll surely find a // possible multiple (haha) it could be somewhat large // for our purposes. So we need to modify the angles // here in order to get good results. // ----------------------------------------------------- int angles[3]; angles[0] = (int)(in.direction.x*100); angles[1] = (int)(in.direction.y*100); angles[2] = (int)(in.direction.z*100); angles[0] %= 360; angles[1] %= 360; angles[2] %= 360; if ((angles[0]*angles[1]) && (angles[1]*angles[2])) { FindSuitableMultiple(angles[0]); FindSuitableMultiple(angles[1]); FindSuitableMultiple(angles[2]); } int lcm = 360; if (angles[0]) lcm = boost::math::lcm(lcm,angles[0]); if (angles[1]) lcm = boost::math::lcm(lcm,angles[1]); if (angles[2]) lcm = boost::math::lcm(lcm,angles[2]); if (360 == lcm) break; // This can be a division through zero, but we don't care float f1 = (float)lcm / angles[0]; float f2 = (float)lcm / angles[1]; float f3 = (float)lcm / angles[2]; // find out how many time units we'll need for the finest // track (in seconds) - this defines the number of output // keys (fps * seconds) float max ; if (angles[0]) max = (float)lcm / angles[0]; if (angles[1]) max = std::max(max, (float)lcm / angles[1]); if (angles[2]) max = std::max(max, (float)lcm / angles[2]); anim->mNumRotationKeys = (unsigned int)(max*fps); anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys]; // begin with a zero angle aiVector3D angle; for (unsigned int i = 0; i < anim->mNumRotationKeys;++i) { // build the quaternion for the given euler angles aiQuatKey& q = anim->mRotationKeys[i]; q.mValue = aiQuaternion(angle.x, angle.y, angle.z); q.mTime = (double)i; // increase the angle angle += in.direction; } // This animation is repeated and repeated ... anim->mPostState = aiAnimBehaviour_REPEAT; anim->mPreState = aiAnimBehaviour_CONSTANT; } break; case Animator::FLY_CIRCLE: { anim->mPostState = aiAnimBehaviour_REPEAT; anim->mPreState = aiAnimBehaviour_CONSTANT; // ----------------------------------------------------- // Find out how much time we'll need to perform a // full circle. // ----------------------------------------------------- const double seconds = (1. / in.speed) / 1000.; const double tdelta = 1000. / fps; anim->mNumPositionKeys = (unsigned int) (fps * seconds); anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys]; // from Irrlicht, what else should we do than copying it? aiVector3D vecU,vecV; if (in.direction.y) { vecV = aiVector3D(50,0,0) ^ in.direction; } else vecV = aiVector3D(0,50,00) ^ in.direction; vecV.Normalize(); vecU = (vecV ^ in.direction).Normalize(); // build the output keys for (unsigned int i = 0; i < anim->mNumPositionKeys;++i) { aiVectorKey& key = anim->mPositionKeys[i]; key.mTime = i * tdelta; const float t = (float) ( in.speed * key.mTime ); key.mValue = in.circleCenter + in.circleRadius * ((vecU*::cos(t)) + (vecV*::sin(t))); } } break; case Animator::FLY_STRAIGHT: { anim->mPostState = (in.loop ? aiAnimBehaviour_REPEAT : aiAnimBehaviour_CONSTANT); anim->mPreState = aiAnimBehaviour_CONSTANT; const double seconds = in.timeForWay / 1000.; const double tdelta = 1000. / fps; anim->mNumPositionKeys = (unsigned int) (fps * seconds); anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys]; aiVector3D diff = in.direction - in.circleCenter; const float lengthOfWay = diff.Length(); diff.Normalize(); const double timeFactor = lengthOfWay / in.timeForWay; // build the output keys for (unsigned int i = 0; i < anim->mNumPositionKeys;++i) { aiVectorKey& key = anim->mPositionKeys[i]; key.mTime = i * tdelta; key.mValue = in.circleCenter + diff * float(timeFactor * key.mTime); } } break; case Animator::FOLLOW_SPLINE: { anim->mPostState = aiAnimBehaviour_REPEAT; anim->mPreState = aiAnimBehaviour_CONSTANT; const int size = (int)in.splineKeys.size(); if (!size) { // We have no point in the spline. That's bad. Really bad. DefaultLogger::get()->warn("IRR: Spline animators with no points defined"); delete anim;anim = NULL; break; } else if (size == 1) { // We have just one point in the spline so we don't need the full calculation anim->mNumPositionKeys = 1; anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys]; anim->mPositionKeys[0].mValue = in.splineKeys[0].mValue; anim->mPositionKeys[0].mTime = 0.f; break; } unsigned int ticksPerFull = 15; anim->mNumPositionKeys = (unsigned int) ( ticksPerFull * fps ); anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys]; for (unsigned int i = 0; i < anim->mNumPositionKeys;++i) { aiVectorKey& key = anim->mPositionKeys[i]; const float dt = (i * in.speed * 0.001f ); const float u = dt - floor(dt); const int idx = (int)floor(dt) % size; // get the 4 current points to evaluate the spline const aiVector3D& p0 = in.splineKeys[ ClampSpline( idx - 1, size ) ].mValue; const aiVector3D& p1 = in.splineKeys[ ClampSpline( idx + 0, size ) ].mValue; const aiVector3D& p2 = in.splineKeys[ ClampSpline( idx + 1, size ) ].mValue; const aiVector3D& p3 = in.splineKeys[ ClampSpline( idx + 2, size ) ].mValue; // compute polynomials const float u2 = u*u; const float u3 = u2*2; const float h1 = 2.0f * u3 - 3.0f * u2 + 1.0f; const float h2 = -2.0f * u3 + 3.0f * u3; const float h3 = u3 - 2.0f * u3; const float h4 = u3 - u2; // compute the spline tangents const aiVector3D t1 = ( p2 - p0 ) * in.tightness; aiVector3D t2 = ( p3 - p1 ) * in.tightness; // and use them to get the interpolated point t2 = (h1 * p1 + p2 * h2 + t1 * h3 + h4 * t2); // build a simple translation matrix from it key.mValue = t2.x; key.mTime = (double) i; } } break; }; if (anim) { anims.push_back(anim); ++total; } } } // ------------------------------------------------------------------------------------------------ // This function is maybe more generic than we'd need it here void SetupMapping (MaterialHelper* mat, aiTextureMapping mode, const aiVector3D& axis = aiVector3D(0.f,1.f,0.f)) { // Check whether there are texture properties defined - setup // the desired texture mapping mode for all of them and ignore // all UV settings we might encounter. WE HAVE NO UVS! std::vector p; p.reserve(mat->mNumProperties+1); for (unsigned int i = 0; i < mat->mNumProperties;++i) { aiMaterialProperty* prop = mat->mProperties[i]; if (!::strcmp( prop->mKey.data, "$tex.file")) { // Setup the mapping key aiMaterialProperty* m = new aiMaterialProperty(); m->mKey.Set("$tex.mapping"); m->mIndex = prop->mIndex; m->mSemantic = prop->mSemantic; m->mType = aiPTI_Integer; m->mDataLength = 4; m->mData = new char[4]; *((int*)m->mData) = mode; p.push_back(prop); p.push_back(m); // Setup the mapping axis if (mode == aiTextureMapping_CYLINDER || mode == aiTextureMapping_PLANE || mode == aiTextureMapping_SPHERE) { m = new aiMaterialProperty(); m->mKey.Set("$tex.mapaxis"); m->mIndex = prop->mIndex; m->mSemantic = prop->mSemantic; m->mType = aiPTI_Float; m->mDataLength = 12; m->mData = new char[12]; *((aiVector3D*)m->mData) = axis; p.push_back(m); } } else if (! ::strcmp( prop->mKey.data, "$tex.uvwsrc")) { delete mat->mProperties[i]; } else p.push_back(prop); } if (p.empty())return; // rebuild the output array if (p.size() > mat->mNumAllocated) { delete[] mat->mProperties; mat->mProperties = new aiMaterialProperty*[p.size()]; } mat->mNumProperties = (unsigned int)p.size(); ::memcpy(mat->mProperties,&p[0],sizeof(void*)*mat->mNumProperties); } // ------------------------------------------------------------------------------------------------ void IRRImporter::GenerateGraph(Node* root,aiNode* rootOut ,aiScene* scene, BatchLoader& batch, std::vector& meshes, std::vector& anims, std::vector& attach, std::vector& materials, unsigned int& defMatIdx) { unsigned int oldMeshSize = (unsigned int)meshes.size(); unsigned int meshTrafoAssign = 0; // Now determine the type of the node switch (root->type) { case Node::ANIMMESH: case Node::MESH: { if (!root->meshPath.length()) break; // Get the loaded mesh from the scene and add it to // the list of all scenes to be attached to the // graph we're currently building aiScene* scene = batch.GetImport(root->meshPath); if (!scene) { DefaultLogger::get()->error("IRR: Unable to load external file: " + root->meshPath); break; } attach.push_back(AttachmentInfo(scene,rootOut)); meshTrafoAssign = 1; // If the root node of the scene is animated - and *this* node // is animated, too, we need to insert a dummy node into the // hierarchy in order to avoid interferences with animations for (unsigned int i = 0; i < scene->mNumAnimations;++i) { aiAnimation* anim = scene->mAnimations[i]; for (unsigned int a = 0; a < anim->mNumChannels;++a) { if (scene->mRootNode->mName == anim->mChannels[a]->mNodeName) { if (root->animators.empty()) { meshTrafoAssign = 2; } else { meshTrafoAssign = 3; aiNode* dummy = new aiNode(); dummy->mName.Set("$CSpaceSeam$"); dummy->mNumChildren = 1; dummy->mChildren = new aiNode*[1]; dummy->mChildren[0] = scene->mRootNode; scene->mRootNode->mParent = dummy; scene->mRootNode = dummy; scene->mRootNode->mTransformation = AI_TO_IRR_MATRIX; } break; } } } if (1 == meshTrafoAssign) scene->mRootNode->mTransformation *= AI_TO_IRR_MATRIX; // Now combine the material we've loaded for this mesh // with the real materials we got from the file. As we // don't execute any pp-steps on the file, the numbers // should be equal. If they are not, we can impossibly // do this ... if (root->materials.size() != (unsigned int)scene->mNumMaterials) { DefaultLogger::get()->warn("IRR: Failed to match imported materials " "with the materials found in the IRR scene file"); break; } for (unsigned int i = 0; i < scene->mNumMaterials;++i) { // Delete the old material, we don't need it anymore delete scene->mMaterials[i]; std::pair& src = root->materials[i]; scene->mMaterials[i] = src.first; } // NOTE: Each mesh should have exactly one material assigned, // but we do it in a separate loop if this behaviour changes // in the future. for (unsigned int i = 0; i < scene->mNumMeshes;++i) { // Process material flags aiMesh* mesh = scene->mMeshes[i]; // If "trans_vertex_alpha" mode is enabled, search all vertex colors // and check whether they have a common alpha value. This is quite // often the case so we can simply extract it to a shared oacity // value. std::pair& src = root->materials[ mesh->mMaterialIndex]; MaterialHelper* mat = (MaterialHelper*)src.first; if (mesh->HasVertexColors(0) && src.second & AI_IRRMESH_MAT_trans_vertex_alpha) { bool bdo = true; for (unsigned int a = 1; a < mesh->mNumVertices;++a) { if (mesh->mColors[0][a].a != mesh->mColors[0][a-1].a) { bdo = false; break; } } if (bdo) { DefaultLogger::get()->info("IRR: Replacing mesh vertex " "alpha with common opacity"); for (unsigned int a = 0; a < mesh->mNumVertices;++a) mesh->mColors[0][a].a = 1.f; mat->AddProperty(& mesh->mColors[0][0].a, 1, AI_MATKEY_OPACITY); } } // If we have a second texture coordinate set and a second texture // (either lightmap, normalmap, 2layered material) we need to // setup the correct UV index for it. The texture can either // be diffuse (lightmap & 2layer) or a normal map (normal & parallax) if (mesh->HasTextureCoords(1)) { int idx = 1; if (src.second & (AI_IRRMESH_MAT_solid_2layer | AI_IRRMESH_MAT_lightmap)) { mat->AddProperty(&idx,1,AI_MATKEY_UVWSRC_DIFFUSE(0)); } else if (src.second & AI_IRRMESH_MAT_normalmap_solid) { mat->AddProperty(&idx,1,AI_MATKEY_UVWSRC_NORMALS(0)); } } } } break; case Node::LIGHT: case Node::CAMERA: // We're already finished with lights and cameras break; case Node::SPHERE: { // Generate the sphere model. Our input parameter to // the sphere generation algorithm is the number of // subdivisions of each triangle - but here we have // the number of poylgons on a specific axis. Just // use some hardcoded limits to approximate this ... unsigned int mul = root->spherePolyCountX*root->spherePolyCountY; if (mul < 100)mul = 2; else if (mul < 300)mul = 3; else mul = 4; meshes.push_back(StandardShapes::MakeMesh(mul, &StandardShapes::MakeSphere)); // Adjust scaling root->scaling *= root->sphereRadius/2; // Copy one output material CopyMaterial(materials, root->materials, defMatIdx, meshes.back()); // Now adjust this output material - if there is a first texture // set, setup spherical UV mapping around the Y axis. SetupMapping ( (MaterialHelper*) materials.back(), aiTextureMapping_SPHERE); } break; case Node::CUBE: { // Generate an unit cube first meshes.push_back(StandardShapes::MakeMesh( &StandardShapes::MakeHexahedron)); // Adjust scaling root->scaling *= root->sphereRadius; // Copy one output material CopyMaterial(materials, root->materials, defMatIdx, meshes.back()); // Now adjust this output material - if there is a first texture // set, setup cubic UV mapping SetupMapping ( (MaterialHelper*) materials.back(), aiTextureMapping_BOX ); } break; case Node::SKYBOX: { // A skybox is defined by six materials if (root->materials.size() < 6) { DefaultLogger::get()->error("IRR: There should be six materials " "for a skybox"); break; } // copy those materials and generate 6 meshes for our new skybox materials.reserve(materials.size() + 6); for (unsigned int i = 0; i < 6;++i) materials.insert(materials.end(),root->materials[i].first); BuildSkybox(meshes,materials); // ************************************************************* // Skyboxes will require a different code path for rendering, // so there must be a way for the user to add special support // for IRR skyboxes. We add a 'IRR.SkyBox_' prefix to the node. // ************************************************************* root->name = "IRR.SkyBox_" + root->name; DefaultLogger::get()->info("IRR: Loading skybox, this will " "require special handling to be displayed correctly"); } break; case Node::TERRAIN: { // to support terrains, we'd need to have a texture decoder DefaultLogger::get()->error("IRR: Unsupported node - TERRAIN"); } break; }; // Check whether we added a mesh (or more than one ...). In this case // we'll also need to attach it to the node if (oldMeshSize != (unsigned int) meshes.size()) { rootOut->mNumMeshes = (unsigned int)meshes.size() - oldMeshSize; rootOut->mMeshes = new unsigned int[rootOut->mNumMeshes]; for (unsigned int a = 0; a < rootOut->mNumMeshes;++a) { rootOut->mMeshes[a] = oldMeshSize+a; } } // Setup the name of this node rootOut->mName.Set(root->name); // Now compute the final local transformation matrix of the // node from the given translation, rotation and scaling values. // (the rotation is given in Euler angles, XYZ order) rootOut->mTransformation.FromEulerAnglesXYZ(AI_DEG_TO_RAD(root->rotation) ); // apply scaling aiMatrix4x4& mat = rootOut->mTransformation; mat.a1 *= root->scaling.x; mat.b1 *= root->scaling.x; mat.c1 *= root->scaling.x; mat.a2 *= root->scaling.y; mat.b2 *= root->scaling.y; mat.c2 *= root->scaling.y; mat.a3 *= root->scaling.z; mat.b3 *= root->scaling.z; mat.c3 *= root->scaling.z; // apply translation mat.a4 += root->position.x; mat.b4 += root->position.y; mat.c4 += root->position.z; if (meshTrafoAssign == 2) mat *= AI_TO_IRR_MATRIX; // now compute animations for the node ComputeAnimations(root,rootOut, anims); // Add all children recursively. First allocate enough storage // for them, then call us again rootOut->mNumChildren = (unsigned int)root->children.size(); if (rootOut->mNumChildren) { rootOut->mChildren = new aiNode*[rootOut->mNumChildren]; for (unsigned int i = 0; i < rootOut->mNumChildren;++i) { aiNode* node = rootOut->mChildren[i] = new aiNode(); node->mParent = rootOut; GenerateGraph(root->children[i],node,scene,batch,meshes, anims,attach,materials,defMatIdx); } } } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void IRRImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { boost::scoped_ptr file( pIOHandler->Open( pFile)); // Check whether we can read from the file if( file.get() == NULL) throw new ImportErrorException( "Failed to open IRR file " + pFile + ""); // Construct the irrXML parser CIrrXML_IOStreamReader st(file.get()); reader = createIrrXMLReader((IFileReadCallBack*) &st); // The root node of the scene Node* root = new Node(Node::DUMMY); root->parent = NULL; root->name = ""; // Current node parent Node* curParent = root; // Scenegraph node we're currently working on Node* curNode = NULL; // List of output cameras std::vector cameras; // List of output lights std::vector lights; // Batch loader used to load external models BatchLoader batch(pIOHandler); batch.SetBasePath(pFile); cameras.reserve(5); lights.reserve(5); bool inMaterials = false, inAnimator = false; unsigned int guessedAnimCnt = 0, guessedMeshCnt = 0, guessedMatCnt = 0; // Parse the XML file while (reader->read()) { switch (reader->getNodeType()) { case EXN_ELEMENT: if (!ASSIMP_stricmp(reader->getNodeName(),"node")) { // *********************************************************************** /* What we're going to do with the node depends * on its type: * * "mesh" - Load a mesh from an external file * "cube" - Generate a cube * "skybox" - Generate a skybox * "light" - A light source * "sphere" - Generate a sphere mesh * "animatedMesh" - Load an animated mesh from an external file * and join its animation channels with ours. * "empty" - A dummy node * "camera" - A camera * "terrain" - a terrain node (data comes from a heightmap) * "billboard", "" * * Each of these nodes can be animated and all can have multiple * materials assigned (except lights, cameras and dummies, of course). */ // *********************************************************************** const char* sz = reader->getAttributeValueSafe("type"); Node* nd; if (!ASSIMP_stricmp(sz,"mesh") || !ASSIMP_stricmp(sz,"octTree")) { // OctTree's and meshes are treated equally nd = new Node(Node::MESH); } else if (!ASSIMP_stricmp(sz,"cube")) { nd = new Node(Node::CUBE); ++guessedMeshCnt; // meshes.push_back(StandardShapes::MakeMesh(&StandardShapes::MakeHexahedron)); } else if (!ASSIMP_stricmp(sz,"skybox")) { nd = new Node(Node::SKYBOX); guessedMeshCnt += 6; } else if (!ASSIMP_stricmp(sz,"camera")) { nd = new Node(Node::CAMERA); // Setup a temporary name for the camera aiCamera* cam = new aiCamera(); cam->mName.Set( nd->name ); cameras.push_back(cam); } else if (!ASSIMP_stricmp(sz,"light")) { nd = new Node(Node::LIGHT); // Setup a temporary name for the light aiLight* cam = new aiLight(); cam->mName.Set( nd->name ); lights.push_back(cam); } else if (!ASSIMP_stricmp(sz,"sphere")) { nd = new Node(Node::SPHERE); ++guessedMeshCnt; } else if (!ASSIMP_stricmp(sz,"animatedMesh")) { nd = new Node(Node::ANIMMESH); } else if (!ASSIMP_stricmp(sz,"empty")) { nd = new Node(Node::DUMMY); } else if (!ASSIMP_stricmp(sz,"terrain")) { nd = new Node(Node::TERRAIN); } else if (!ASSIMP_stricmp(sz,"billBoard")) { // We don't support billboards, so ignore them DefaultLogger::get()->error("IRR: Billboards are not supported by Assimp"); nd = new Node(Node::DUMMY); } else { DefaultLogger::get()->warn("IRR: Found unknown node: " + std::string(sz)); /* We skip the contents of nodes we don't know. * We parse the transformation and all animators * and skip the rest. */ nd = new Node(Node::DUMMY); } /* Attach the newly created node to the scenegraph */ curNode = nd; nd->parent = curParent; curParent->children.push_back(nd); } else if (!ASSIMP_stricmp(reader->getNodeName(),"materials")) { inMaterials = true; } else if (!ASSIMP_stricmp(reader->getNodeName(),"animators")) { inAnimator = true; } else if (!ASSIMP_stricmp(reader->getNodeName(),"attributes")) { /* We should have a valid node here * FIX: no ... the scene root node is also contained in an attributes block */ if (!curNode) { #if 0 DefaultLogger::get()->error("IRR: Encountered element, but " "there is no node active"); #endif continue; } Animator* curAnim = NULL; // Materials can occur for nearly any type of node if (inMaterials && curNode->type != Node::DUMMY) { /* This is a material description - parse it! */ curNode->materials.push_back(std::pair< aiMaterial*, unsigned int > () ); std::pair< aiMaterial*, unsigned int >& p = curNode->materials.back(); p.first = ParseMaterial(p.second); ++guessedMatCnt; continue; } else if (inAnimator) { /* This is an animation path - add a new animator * to the list. */ curNode->animators.push_back(Animator()); curAnim = & curNode->animators.back(); ++guessedAnimCnt; } /* Parse all elements in the attributes block * and process them. */ while (reader->read()) { if (reader->getNodeType() == EXN_ELEMENT) { if (!ASSIMP_stricmp(reader->getNodeName(),"vector3d")) { VectorProperty prop; ReadVectorProperty(prop); if (inAnimator) { if (curAnim->type == Animator::ROTATION && prop.name == "Rotation") { // We store the rotation euler angles in 'direction' curAnim->direction = prop.value; } else if (curAnim->type == Animator::FOLLOW_SPLINE) { // Check whether the vector follows the PointN naming scheme, // here N is the ONE-based index of the point if (prop.name.length() >= 6 && prop.name.substr(0,5) == "Point") { // Add a new key to the list curAnim->splineKeys.push_back(aiVectorKey()); aiVectorKey& key = curAnim->splineKeys.back(); // and parse its properties key.mValue = prop.value; key.mTime = strtol10(&prop.name[5]); } } else if (curAnim->type == Animator::FLY_CIRCLE) { if (prop.name == "Center") { curAnim->circleCenter = prop.value; } else if (prop.name == "Direction") { curAnim->direction = prop.value; // From Irrlicht source - a workaround for backward // compatibility with Irrlicht 1.1 if (curAnim->direction == aiVector3D()) { curAnim->direction = aiVector3D(0.f,1.f,0.f); } else curAnim->direction.Normalize(); } } else if (curAnim->type == Animator::FLY_STRAIGHT) { if (prop.name == "Start") { // We reuse the field here curAnim->circleCenter = prop.value; } else if (prop.name == "End") { // We reuse the field here curAnim->direction = prop.value; } } } else { if (prop.name == "Position") { curNode->position = prop.value; } else if (prop.name == "Rotation") { curNode->rotation = prop.value; } else if (prop.name == "Scale") { curNode->scaling = prop.value; } else if (Node::CAMERA == curNode->type) { aiCamera* cam = cameras.back(); if (prop.name == "Target") { cam->mLookAt = prop.value; } else if (prop.name == "UpVector") { cam->mUp = prop.value; } } } } else if (!ASSIMP_stricmp(reader->getNodeName(),"bool")) { BoolProperty prop; ReadBoolProperty(prop); if (inAnimator && curAnim->type == Animator::FLY_CIRCLE && prop.name == "Loop") { curAnim->loop = prop.value; } } else if (!ASSIMP_stricmp(reader->getNodeName(),"float")) { FloatProperty prop; ReadFloatProperty(prop); if (inAnimator) { // The speed property exists for several animators if (prop.name == "Speed") { curAnim->speed = prop.value; } else if (curAnim->type == Animator::FLY_CIRCLE && prop.name == "Radius") { curAnim->circleRadius = prop.value; } else if (curAnim->type == Animator::FOLLOW_SPLINE && prop.name == "Tightness") { curAnim->tightness = prop.value; } } else { if (prop.name == "FramesPerSecond" && Node::ANIMMESH == curNode->type) { curNode->framesPerSecond = prop.value; } else if (Node::CAMERA == curNode->type) { /* This is the vertical, not the horizontal FOV. * We need to compute the right FOV from the * screen aspect which we don't know yet. */ if (prop.name == "Fovy") { cameras.back()->mHorizontalFOV = prop.value; } else if (prop.name == "Aspect") { cameras.back()->mAspect = prop.value; } else if (prop.name == "ZNear") { cameras.back()->mClipPlaneNear = prop.value; } else if (prop.name == "ZFar") { cameras.back()->mClipPlaneFar = prop.value; } } else if (Node::LIGHT == curNode->type) { /* Additional light information */ if (prop.name == "Attenuation") { lights.back()->mAttenuationLinear = prop.value; } else if (prop.name == "OuterCone") { lights.back()->mAngleOuterCone = AI_DEG_TO_RAD( prop.value ); } else if (prop.name == "InnerCone") { lights.back()->mAngleInnerCone = AI_DEG_TO_RAD( prop.value ); } } // radius of the sphere to be generated - // or alternatively, size of the cube else if (Node::SPHERE == curNode->type && prop.name == "Radius" || Node::CUBE == curNode->type && prop.name == "Size" ) { curNode->sphereRadius = prop.value; } } } else if (!ASSIMP_stricmp(reader->getNodeName(),"int")) { IntProperty prop; ReadIntProperty(prop); if (inAnimator) { if (curAnim->type == Animator::FLY_STRAIGHT && prop.name == "TimeForWay") { curAnim->timeForWay = prop.value; } } else { // sphere polgon numbers in each direction if (Node::SPHERE == curNode->type) { if (prop.name == "PolyCountX") { curNode->spherePolyCountX = prop.value; } else if (prop.name == "PolyCountY") { curNode->spherePolyCountY = prop.value; } } } } else if (!ASSIMP_stricmp(reader->getNodeName(),"string") || !ASSIMP_stricmp(reader->getNodeName(),"enum")) { StringProperty prop; ReadStringProperty(prop); if (prop.value.length()) { if (prop.name == "Name") { curNode->name = prop.value; /* If we're either a camera or a light source * we need to update the name in the aiLight/ * aiCamera structure, too. */ if (Node::CAMERA == curNode->type) { cameras.back()->mName.Set(prop.value); } else if (Node::LIGHT == curNode->type) { lights.back()->mName.Set(prop.value); } } else if (Node::LIGHT == curNode->type && "LightType" == prop.name) { if (prop.value == "Spot") lights.back()->mType = aiLightSource_SPOT; else if (prop.value == "Point") lights.back()->mType = aiLightSource_POINT; else if (prop.value == "Directional") lights.back()->mType = aiLightSource_DIRECTIONAL; else { // We won't pass the validation with aiLightSourceType_UNDEFINED, // so we remove the light and replace it with a silly dummy node delete lights.back(); lights.pop_back(); curNode->type = Node::DUMMY; DefaultLogger::get()->error("Ignoring light of unknown type: " + prop.value); } } else if (prop.name == "Mesh" && Node::MESH == curNode->type || Node::ANIMMESH == curNode->type) { /* This is the file name of the mesh - either * animated or not. We need to make sure we setup * the correct postprocessing settings here. */ unsigned int pp = 0; BatchLoader::PropertyMap map; /* If the mesh is a static one remove all animations */ if (Node::ANIMMESH != curNode->type) { pp |= aiProcess_RemoveComponent; SetGenericProperty(map.ints,AI_CONFIG_PP_RVC_FLAGS, aiComponent_ANIMATIONS | aiComponent_BONEWEIGHTS); } /* TODO: maybe implement the protection against recursive * loading calls directly in BatchLoader? The current * implementation is not absolutely safe. A LWS and an IRR * file referencing each other *could* cause the system to * recurse forever. */ std::string::size_type pos = prop.value.find_last_of('.'); // no file extension - can't read, so we don't need to try it if( pos == std::string::npos) { DefaultLogger::get()->error("IRR: Can't load files without a file extension"); } else { std::string extension = prop.value.substr( pos); for (std::string::iterator i = extension.begin(); i != extension.end();++i) *i = ::tolower(*i); if (".irr" == prop.value) { DefaultLogger::get()->error("IRR: Can't load another IRR file recursively"); } else { batch.AddLoadRequest(prop.value,pp,&map); curNode->meshPath = prop.value; } } } else if (inAnimator && prop.name == "Type") { // type of the animator if (prop.value == "rotation") { curAnim->type = Animator::ROTATION; } else if (prop.value == "flyCircle") { curAnim->type = Animator::FLY_CIRCLE; } else if (prop.value == "flyStraight") { curAnim->type = Animator::FLY_CIRCLE; } else if (prop.value == "followSpline") { curAnim->type = Animator::FOLLOW_SPLINE; } else { DefaultLogger::get()->warn("IRR: Ignoring unknown animator: " + prop.value); curAnim->type = Animator::UNKNOWN; } } } } } else if (reader->getNodeType() == EXN_ELEMENT_END && !ASSIMP_stricmp(reader->getNodeName(),"attributes")) { break; } } } break; case EXN_ELEMENT_END: // If we reached the end of a node, we need to continue processing its parent if (!ASSIMP_stricmp(reader->getNodeName(),"node")) { if (!curNode) { // currently is no node set. We need to go // back in the node hierarchy if (!curParent) { curParent = root; DefaultLogger::get()->error("IRR: Too many closing elements"); } else curParent = curParent->parent; } else curNode = NULL; } // clear all flags else if (!ASSIMP_stricmp(reader->getNodeName(),"materials")) { inMaterials = false; } else if (!ASSIMP_stricmp(reader->getNodeName(),"animators")) { inAnimator = false; } break; default: // GCC complains that not all enumeration values are handled break; } } /* Now iterate through all cameras and compute their final (horizontal) FOV */ for (std::vector::iterator it = cameras.begin(), end = cameras.end(); it != end; ++it) { aiCamera* cam = *it; if (cam->mAspect) // screen aspect could be missing { cam->mHorizontalFOV *= cam->mAspect; } else DefaultLogger::get()->warn("IRR: Camera aspect is not given, can't compute horizontal FOV"); } batch.LoadAll(); /* Allocate a tempoary scene data structure */ aiScene* tempScene = new aiScene(); tempScene->mRootNode = new aiNode(); tempScene->mRootNode->mName.Set(""); /* Copy the cameras to the output array */ if (!cameras.empty()) { tempScene->mNumCameras = (unsigned int)cameras.size(); tempScene->mCameras = new aiCamera*[tempScene->mNumCameras]; ::memcpy(tempScene->mCameras,&cameras[0],sizeof(void*)*tempScene->mNumCameras); } /* Copy the light sources to the output array */ if (!lights.empty()) { tempScene->mNumLights = (unsigned int)lights.size(); tempScene->mLights = new aiLight*[tempScene->mNumLights]; ::memcpy(tempScene->mLights,&lights[0],sizeof(void*)*tempScene->mNumLights); } // temporary data std::vector< aiNodeAnim*> anims; std::vector< aiMaterial*> materials; std::vector< AttachmentInfo > attach; std::vector meshes; // try to guess how much storage we'll need anims.reserve (guessedAnimCnt + (guessedAnimCnt >> 2)); meshes.reserve (guessedMeshCnt + (guessedMeshCnt >> 2)); materials.reserve (guessedMatCnt + (guessedMatCnt >> 2)); /* Now process our scenegraph recursively: generate final * meshes and generate animation channels for all nodes. */ unsigned int defMatIdx = 0xffffffff; GenerateGraph(root,tempScene->mRootNode, tempScene, batch, meshes, anims, attach, materials, defMatIdx); if (!anims.empty()) { tempScene->mNumAnimations = 1; tempScene->mAnimations = new aiAnimation*[tempScene->mNumAnimations]; aiAnimation* an = tempScene->mAnimations[0] = new aiAnimation(); // *********************************************************** // This is only the global animation channel of the scene. // If there are animated models, they will have separate // animation channels in the scene. To display IRR scenes // correctly, users will need to combine the global anim // channel with all the local animations they want to play // *********************************************************** an->mName.Set("Irr_GlobalAnimChannel"); // copy all node animation channels to the global channel an->mNumChannels = (unsigned int)anims.size(); an->mChannels = new aiNodeAnim*[an->mNumChannels]; ::memcpy(an->mChannels, & anims [0], sizeof(void*)*an->mNumChannels); } if (!meshes.empty()) { // copy all meshes to the temporary scene tempScene->mNumMeshes = (unsigned int)meshes.size(); tempScene->mMeshes = new aiMesh*[tempScene->mNumMeshes]; ::memcpy(tempScene->mMeshes,&meshes[0],tempScene->mNumMeshes* sizeof(void*)); } /* Copy all materials to the output array */ if (!materials.empty()) { tempScene->mNumMaterials = (unsigned int)materials.size(); tempScene->mMaterials = new aiMaterial*[tempScene->mNumMaterials]; ::memcpy(tempScene->mMaterials,&materials[0],sizeof(void*)* tempScene->mNumMaterials); } /* Now merge all sub scenes and attach them to the correct * attachment points in the scenegraph. */ SceneCombiner::MergeScenes(&pScene,tempScene,attach, AI_INT_MERGE_SCENE_GEN_UNIQUE_MATNAMES | AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES); /* If we have no meshes | no materials now set the INCOMPLETE * scene flag. This is necessary if we failed to load all * models from external files */ if (!pScene->mNumMeshes || !pScene->mNumMaterials) { DefaultLogger::get()->warn("IRR: No meshes loaded, setting AI_SCENE_FLAGS_INCOMPLETE"); pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; } // transformation matrix to convert from IRRMESH to ASSIMP coordinates pScene->mRootNode->mTransformation *= AI_TO_IRR_MATRIX; /* Finished ... everything destructs automatically and all * temporary scenes have already been deleted by MergeScenes() */ return; }