assimp/code/AssetLib/3MF/XmlSerializer.cpp

597 lines
20 KiB
C++
Raw Normal View History

/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2021, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
#include "XmlSerializer.h"
#include "D3MFOpcPackage.h"
#include "3MFXmlTags.h"
#include "3MFTypes.h"
#include <assimp/scene.h>
namespace Assimp {
namespace D3MF {
static const int IdNotSet = -1;
2021-08-28 12:20:12 +00:00
namespace {
static const size_t ColRGBA_Len = 9;
static const size_t ColRGB_Len = 7;
// format of the color string: #RRGGBBAA or #RRGGBB (3MF Core chapter 5.1.1)
bool validateColorString(const char *color) {
const size_t len = strlen(color);
if (ColRGBA_Len != len && ColRGB_Len != len) {
return false;
}
return true;
}
aiFace ReadTriangle(XmlNode &node) {
aiFace face;
face.mNumIndices = 3;
face.mIndices = new unsigned int[face.mNumIndices];
face.mIndices[0] = static_cast<unsigned int>(std::atoi(node.attribute(XmlTag::v1).as_string()));
face.mIndices[1] = static_cast<unsigned int>(std::atoi(node.attribute(XmlTag::v2).as_string()));
face.mIndices[2] = static_cast<unsigned int>(std::atoi(node.attribute(XmlTag::v3).as_string()));
return face;
}
aiVector3D ReadVertex(XmlNode &node) {
aiVector3D vertex;
vertex.x = ai_strtof(node.attribute(XmlTag::x).as_string(), nullptr);
vertex.y = ai_strtof(node.attribute(XmlTag::y).as_string(), nullptr);
vertex.z = ai_strtof(node.attribute(XmlTag::z).as_string(), nullptr);
return vertex;
}
bool getNodeAttribute(const XmlNode &node, const std::string &attribute, std::string &value) {
pugi::xml_attribute objectAttribute = node.attribute(attribute.c_str());
if (!objectAttribute.empty()) {
value = objectAttribute.as_string();
return true;
}
return false;
}
bool getNodeAttribute(const XmlNode &node, const std::string &attribute, int &value) {
std::string strValue;
const bool ret = getNodeAttribute(node, attribute, strValue);
if (ret) {
value = std::atoi(strValue.c_str());
return true;
}
return false;
}
aiMatrix4x4 parseTransformMatrix(std::string matrixStr) {
// split the string
std::vector<float> numbers;
std::string currentNumber;
for (char c : matrixStr) {
if (c == ' ') {
if (!currentNumber.empty()) {
float f = std::stof(currentNumber);
numbers.push_back(f);
currentNumber.clear();
}
} else {
currentNumber.push_back(c);
}
}
if (!currentNumber.empty()) {
const float f = std::stof(currentNumber);
numbers.push_back(f);
}
aiMatrix4x4 transformMatrix;
transformMatrix.a1 = numbers[0];
transformMatrix.b1 = numbers[1];
transformMatrix.c1 = numbers[2];
transformMatrix.d1 = 0;
transformMatrix.a2 = numbers[3];
transformMatrix.b2 = numbers[4];
transformMatrix.c2 = numbers[5];
transformMatrix.d2 = 0;
transformMatrix.a3 = numbers[6];
transformMatrix.b3 = numbers[7];
transformMatrix.c3 = numbers[8];
transformMatrix.d3 = 0;
transformMatrix.a4 = numbers[9];
transformMatrix.b4 = numbers[10];
transformMatrix.c4 = numbers[11];
transformMatrix.d4 = 1;
return transformMatrix;
}
bool parseColor(const char *color, aiColor4D &diffuse) {
if (nullptr == color) {
return false;
}
if (!validateColorString(color)) {
return false;
}
//const char *buf(color);
if ('#' != color[0]) {
return false;
}
char r[3] = { color[1], color[2], '\0' };
diffuse.r = static_cast<ai_real>(strtol(r, nullptr, 16)) / ai_real(255.0);
char g[3] = { color[3], color[4], '\0' };
diffuse.g = static_cast<ai_real>(strtol(g, nullptr, 16)) / ai_real(255.0);
char b[3] = { color[5], color[6], '\0' };
diffuse.b = static_cast<ai_real>(strtol(b, nullptr, 16)) / ai_real(255.0);
const size_t len = strlen(color);
if (ColRGB_Len == len) {
return true;
}
char a[3] = { color[7], color[8], '\0' };
diffuse.a = static_cast<ai_real>(strtol(a, nullptr, 16)) / ai_real(255.0);
return true;
}
void assignDiffuseColor(XmlNode &node, aiMaterial *mat) {
const char *color = node.attribute(XmlTag::basematerials_displaycolor).as_string();
aiColor4D diffuse;
if (parseColor(color, diffuse)) {
mat->AddProperty<aiColor4D>(&diffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
}
}
} // namespace
XmlSerializer::XmlSerializer(XmlParser *xmlParser, D3MFOpcPackage *archive) :
mResourcesDictionnary(),
mMeshCount(0),
mXmlParser(xmlParser),
mD3MFOpcPackage(archive) {
ai_assert(nullptr != xmlParser);
ai_assert(nullptr != archive);
}
XmlSerializer::~XmlSerializer() {
for (auto &it : mResourcesDictionnary) {
delete it.second;
}
}
void XmlSerializer::ImportXml(aiScene *scene) {
if (nullptr == scene) {
return;
}
scene->mRootNode = new aiNode(XmlTag::RootTag);
XmlNode node = mXmlParser->getRootNode().child(XmlTag::model);
if (node.empty()) {
return;
}
XmlNode resNode = node.child(XmlTag::resources);
for (auto &currentNode : resNode.children()) {
const std::string currentNodeName = currentNode.name();
if (currentNodeName == XmlTag::texture_2d) {
ReadEmbeddecTexture(currentNode);
} else if (currentNodeName == XmlTag::texture_group) {
ReadTextureGroup(currentNode);
} else if (currentNodeName == XmlTag::object) {
ReadObject(currentNode);
} else if (currentNodeName == XmlTag::basematerials) {
ReadBaseMaterials(currentNode);
} else if (currentNodeName == XmlTag::meta) {
ReadMetadata(currentNode);
}
}
StoreMaterialsInScene(scene);
XmlNode buildNode = node.child(XmlTag::build);
if (buildNode.empty()) {
return;
}
for (auto &currentNode : buildNode.children()) {
const std::string currentNodeName = currentNode.name();
if (currentNodeName == XmlTag::item) {
int objectId = IdNotSet;
std::string transformationMatrixStr;
aiMatrix4x4 transformationMatrix;
getNodeAttribute(currentNode, D3MF::XmlTag::objectid, objectId);
bool hasTransform = getNodeAttribute(currentNode, D3MF::XmlTag::transform, transformationMatrixStr);
auto it = mResourcesDictionnary.find(objectId);
if (it != mResourcesDictionnary.end() && it->second->getType() == ResourceType::RT_Object) {
Object *obj = static_cast<Object *>(it->second);
if (hasTransform) {
transformationMatrix = parseTransformMatrix(transformationMatrixStr);
}
addObjectToNode(scene->mRootNode, obj, transformationMatrix);
}
}
}
// import the metadata
if (!mMetaData.empty()) {
const size_t numMeta = mMetaData.size();
scene->mMetaData = aiMetadata::Alloc(static_cast<unsigned int>(numMeta));
for (size_t i = 0; i < numMeta; ++i) {
aiString val(mMetaData[i].value);
scene->mMetaData->Set(static_cast<unsigned int>(i), mMetaData[i].name, val);
}
}
// import the meshes, materials are already stored
scene->mNumMeshes = static_cast<unsigned int>(mMeshCount);
if (scene->mNumMeshes != 0) {
scene->mMeshes = new aiMesh *[scene->mNumMeshes]();
for (auto &it : mResourcesDictionnary) {
if (it.second->getType() == ResourceType::RT_Object) {
Object *obj = static_cast<Object *>(it.second);
ai_assert(nullptr != obj);
for (unsigned int i = 0; i < obj->mMeshes.size(); ++i) {
scene->mMeshes[obj->mMeshIndex[i]] = obj->mMeshes[i];
}
}
}
}
}
void XmlSerializer::addObjectToNode(aiNode *parent, Object *obj, aiMatrix4x4 nodeTransform) {
ai_assert(nullptr != obj);
aiNode *sceneNode = new aiNode(obj->mName);
sceneNode->mNumMeshes = static_cast<unsigned int>(obj->mMeshes.size());
sceneNode->mMeshes = new unsigned int[sceneNode->mNumMeshes];
std::copy(obj->mMeshIndex.begin(), obj->mMeshIndex.end(), sceneNode->mMeshes);
sceneNode->mTransformation = nodeTransform;
if (nullptr != parent) {
parent->addChildren(1, &sceneNode);
}
for (Assimp::D3MF::Component c : obj->mComponents) {
auto it = mResourcesDictionnary.find(c.mObjectId);
if (it != mResourcesDictionnary.end() && it->second->getType() == ResourceType::RT_Object) {
addObjectToNode(sceneNode, static_cast<Object *>(it->second), c.mTransformation);
}
}
}
void XmlSerializer::ReadObject(XmlNode &node) {
int id = IdNotSet, pid = IdNotSet, pindex = IdNotSet;
bool hasId = getNodeAttribute(node, XmlTag::id, id);
if (!hasId) {
return;
}
bool hasPid = getNodeAttribute(node, XmlTag::pid, pid);
bool hasPindex = getNodeAttribute(node, XmlTag::pindex, pindex);
Object *obj = new Object(id);
for (XmlNode &currentNode : node.children()) {
const std::string currentName = currentNode.name();
if (currentName == D3MF::XmlTag::mesh) {
auto mesh = ReadMesh(currentNode);
mesh->mName.Set(ai_to_string(id));
if (hasPid) {
auto it = mResourcesDictionnary.find(pid);
if (hasPindex && it != mResourcesDictionnary.end() && it->second->getType() == ResourceType::RT_BaseMaterials) {
BaseMaterials *materials = static_cast<BaseMaterials *>(it->second);
mesh->mMaterialIndex = materials->mMaterialIndex[pindex];
}
}
obj->mMeshes.push_back(mesh);
obj->mMeshIndex.push_back(mMeshCount);
mMeshCount++;
} else if (currentName == D3MF::XmlTag::components) {
for (XmlNode &currentSubNode : currentNode.children()) {
const std::string subNodeName = currentSubNode.name();
if (subNodeName == D3MF::XmlTag::component) {
int objectId = IdNotSet;
std::string componentTransformStr;
aiMatrix4x4 componentTransform;
if (getNodeAttribute(currentSubNode, D3MF::XmlTag::transform, componentTransformStr)) {
componentTransform = parseTransformMatrix(componentTransformStr);
}
if (getNodeAttribute(currentSubNode, D3MF::XmlTag::objectid, objectId)) {
obj->mComponents.push_back({ objectId, componentTransform });
}
}
}
}
}
mResourcesDictionnary.insert(std::make_pair(id, obj));
}
aiMesh *XmlSerializer::ReadMesh(XmlNode &node) {
if (node.empty()) {
return nullptr;
}
aiMesh *mesh = new aiMesh();
for (XmlNode &currentNode : node.children()) {
const std::string currentName = currentNode.name();
if (currentName == XmlTag::vertices) {
ImportVertices(currentNode, mesh);
} else if (currentName == XmlTag::triangles) {
ImportTriangles(currentNode, mesh);
}
}
return mesh;
}
void XmlSerializer::ReadMetadata(XmlNode &node) {
pugi::xml_attribute attribute = node.attribute(D3MF::XmlTag::meta_name);
const std::string name = attribute.as_string();
const std::string value = node.value();
if (name.empty()) {
return;
}
MetaEntry entry;
entry.name = name;
entry.value = value;
mMetaData.push_back(entry);
}
void XmlSerializer::ImportVertices(XmlNode &node, aiMesh *mesh) {
ai_assert(nullptr != mesh);
std::vector<aiVector3D> vertices;
for (XmlNode &currentNode : node.children()) {
const std::string currentName = currentNode.name();
if (currentName == XmlTag::vertex) {
vertices.push_back(ReadVertex(currentNode));
}
}
mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
std::copy(vertices.begin(), vertices.end(), mesh->mVertices);
}
void XmlSerializer::ImportTriangles(XmlNode &node, aiMesh *mesh) {
std::vector<aiFace> faces;
for (XmlNode &currentNode : node.children()) {
const std::string currentName = currentNode.name();
if (currentName == XmlTag::triangle) {
int pid = IdNotSet, p1 = IdNotSet;
bool hasPid = getNodeAttribute(currentNode, D3MF::XmlTag::pid, pid);
bool hasP1 = getNodeAttribute(currentNode, D3MF::XmlTag::p1, p1);
if (hasPid && hasP1) {
auto it = mResourcesDictionnary.find(pid);
if (it != mResourcesDictionnary.end()) {
if (it->second->getType() == ResourceType::RT_BaseMaterials) {
BaseMaterials *baseMaterials = static_cast<BaseMaterials *>(it->second);
mesh->mMaterialIndex = baseMaterials->mMaterialIndex[p1];
} else if (it->second->getType() == ResourceType::RT_Texture2DGroup) {
if (mesh->mTextureCoords[0] == nullptr) {
Texture2DGroup *group = static_cast<Texture2DGroup *>(it->second);
const std::string name = ai_to_string(group->mTexId);
for (size_t i = 0; i < mMaterials.size(); ++i) {
if (name == mMaterials[i]->GetName().C_Str()) {
mesh->mMaterialIndex = static_cast<unsigned int>(i);
}
}
mesh->mTextureCoords[0] = new aiVector3D[group->mTex2dCoords.size()];
for (unsigned int i = 0; i < group->mTex2dCoords.size(); ++i) {
mesh->mTextureCoords[0][i] = aiVector3D(group->mTex2dCoords[i].x, group->mTex2dCoords[i].y, 0);
}
}
}
}
}
aiFace face = ReadTriangle(currentNode);
faces.push_back(face);
}
}
mesh->mNumFaces = static_cast<unsigned int>(faces.size());
mesh->mFaces = new aiFace[mesh->mNumFaces];
mesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;
std::copy(faces.begin(), faces.end(), mesh->mFaces);
}
void XmlSerializer::ReadBaseMaterials(XmlNode &node) {
int id = IdNotSet;
if (getNodeAttribute(node, D3MF::XmlTag::id, id)) {
BaseMaterials *baseMaterials = new BaseMaterials(id);
for (XmlNode &currentNode : node.children()) {
const std::string currentName = currentNode.name();
if (currentName == XmlTag::basematerials_base) {
baseMaterials->mMaterialIndex.push_back(static_cast<unsigned int>(mMaterials.size()));
mMaterials.push_back(readMaterialDef(currentNode, id));
}
}
mResourcesDictionnary.insert(std::make_pair(id, baseMaterials));
}
}
void XmlSerializer::ReadEmbeddecTexture(XmlNode &node) {
if (node.empty()) {
return;
}
std::string value;
EmbeddedTexture *tex2D = nullptr;
if (XmlParser::getStdStrAttribute(node, XmlTag::id, value)) {
tex2D = new EmbeddedTexture(atoi(value.c_str()));
}
if (nullptr == tex2D) {
return;
}
if (XmlParser::getStdStrAttribute(node, XmlTag::path, value)) {
tex2D->mPath = value;
}
if (XmlParser::getStdStrAttribute(node, XmlTag::texture_content_type, value)) {
tex2D->mContentType = value;
}
if (XmlParser::getStdStrAttribute(node, XmlTag::texture_tilestyleu, value)) {
tex2D->mTilestyleU = value;
}
if (XmlParser::getStdStrAttribute(node, XmlTag::texture_tilestylev, value)) {
tex2D->mTilestyleV = value;
}
mEmbeddedTextures.emplace_back(tex2D);
StoreEmbeddedTexture(tex2D);
}
void XmlSerializer::StoreEmbeddedTexture(EmbeddedTexture *tex) {
aiMaterial *mat = new aiMaterial;
aiString s;
s.Set(ai_to_string(tex->mId).c_str());
mat->AddProperty(&s, AI_MATKEY_NAME);
2021-08-28 11:33:25 +00:00
const std::string name = "*" + tex->mPath;
s.Set(name);
mat->AddProperty(&s, AI_MATKEY_TEXTURE_DIFFUSE(0));
aiColor3D col;
mat->AddProperty<aiColor3D>(&col, 1, AI_MATKEY_COLOR_DIFFUSE);
mat->AddProperty<aiColor3D>(&col, 1, AI_MATKEY_COLOR_AMBIENT);
mat->AddProperty<aiColor3D>(&col, 1, AI_MATKEY_COLOR_EMISSIVE);
mat->AddProperty<aiColor3D>(&col, 1, AI_MATKEY_COLOR_SPECULAR);
mMaterials.emplace_back(mat);
}
void XmlSerializer::ReadTextureCoords2D(XmlNode &node, Texture2DGroup *tex2DGroup) {
if (node.empty() || nullptr == tex2DGroup) {
return;
}
2021-08-28 12:20:12 +00:00
int id = IdNotSet;
if (XmlParser::getIntAttribute(node, "texid", id)) {
tex2DGroup->mTexId = id;
}
2021-08-28 12:20:12 +00:00
double value = 0.0;
for (XmlNode currentNode : node.children()) {
const std::string currentName = currentNode.name();
aiVector2D texCoord;
if (currentName == XmlTag::texture_2d_coord) {
XmlParser::getDoubleAttribute(currentNode, XmlTag::texture_cuurd_u, value);
texCoord.x = (ai_real)value;
XmlParser::getDoubleAttribute(currentNode, XmlTag::texture_cuurd_v, value);
texCoord.y = (ai_real)value;
tex2DGroup->mTex2dCoords.push_back(texCoord);
}
}
}
void XmlSerializer::ReadTextureGroup(XmlNode &node) {
if (node.empty()) {
return;
}
int id = IdNotSet;
if (!XmlParser::getIntAttribute(node, XmlTag::id, id)) {
return;
}
Texture2DGroup *group = new Texture2DGroup(id);
ReadTextureCoords2D(node, group);
mResourcesDictionnary.insert(std::make_pair(id, group));
}
aiMaterial *XmlSerializer::readMaterialDef(XmlNode &node, unsigned int basematerialsId) {
aiMaterial *material = new aiMaterial();
material->mNumProperties = 0;
std::string name;
bool hasName = getNodeAttribute(node, D3MF::XmlTag::basematerials_name, name);
std::string stdMaterialName;
const std::string strId(ai_to_string(basematerialsId));
stdMaterialName += "id";
stdMaterialName += strId;
stdMaterialName += "_";
if (hasName) {
stdMaterialName += std::string(name);
} else {
stdMaterialName += "basemat_";
stdMaterialName += ai_to_string(mMaterials.size());
}
aiString assimpMaterialName(stdMaterialName);
material->AddProperty(&assimpMaterialName, AI_MATKEY_NAME);
assignDiffuseColor(node, material);
return material;
}
2021-08-28 12:20:12 +00:00
void XmlSerializer::StoreMaterialsInScene(aiScene *scene) {
if (nullptr == scene || mMaterials.empty()) {
return;
}
scene->mNumMaterials = static_cast<unsigned int>(mMaterials.size());
2021-08-28 12:20:12 +00:00
scene->mMaterials = new aiMaterial *[scene->mNumMaterials];
for (size_t i = 0; i < mMaterials.size(); ++i) {
scene->mMaterials[i] = mMaterials[i];
}
}
2021-08-28 12:20:12 +00:00
} // namespace D3MF
} // namespace Assimp