v4k-git-backup/engine/split/3rd_polychop.h

410 lines
14 KiB
C

/* Progressive Mesh type Polygon Reduction Algorithm
*
* 1998: Original version by Stan Melax (c) 1998
* Permission to use any of this code wherever you want is granted..
* Although, please do acknowledge authorship if appropriate.
*
* 2014: Code style upgraded to be more consistent with graphics/gamedev conventions. Relicensed as MIT/PD.
* Stan Melax: "Yes, this code can be licensed with the same license as the original. That should be fine."
*
* 2020: C version by Cloud Wu (c) 2020. Licensed as MIT/PD.
*/
static inline void array_find_and_remove(array(int) arr, int v) {
for( int i = 0, end = array_count(arr); i < end; i++ )
if( arr[i] == v ) { array_erase_fast(arr, i); --end; break; }
}
#include <assert.h>
#include <math.h>
#include <stdlib.h>
struct triangle_n {
int vertex[3]; // the 3 points (id) that make this tri
vec3 normal; // unit vector othogonal to this face
};
struct vertex {
vec3 position; // location of point in euclidean space
array(int) neighbor; // adjacent vertices
array(int) face; // adjacent triangles
int id; // place of vertex in original Array
int collapse; // candidate vertex (id) for collapse
float objdist; // cached cost of collapsing edge
};
struct mesh {
struct vertex *v;
struct triangle_n *t;
int n_face;
int n_vertex;
};
// array
static inline struct vertex *Vertex(struct mesh *M, int id) { return M->v + id; }
static inline struct triangle_n *Triangle(struct mesh *M, int id) { return M->t + id; }
static inline struct triangle_n *Face(struct mesh *M, struct vertex *v, int idx) { return M->t + v->face[idx]; }
static void AddVertex(struct mesh *M, const float *v) {
int id = M->n_vertex++;
struct vertex * tmp = Vertex(M, id);
tmp->position = ptr3(v);
tmp->neighbor = NULL;
tmp->face = NULL;
tmp->id = id;
tmp->collapse = -1;
tmp->objdist = 0;
}
static void RemoveVertex(struct mesh *M, int id) {
struct vertex * v = Vertex(M, id);
ASSERT(v->id == id);
ASSERT(array_count(v->face) == 0);
for (int i=0;i<array_count(v->face);i++) {
struct vertex * nv = Vertex(M, v->face[i]);
array_find_and_remove(nv->neighbor, id);
}
v->id = -1; // invalid vertex id
array_free(v->neighbor);
array_free(v->face);
}
static void ComputeNormal(struct mesh *M, struct triangle_n *t) {
struct vertex * v0 = Vertex(M, t->vertex[0]);
struct vertex * v1 = Vertex(M, t->vertex[1]);
struct vertex * v2 = Vertex(M, t->vertex[2]);
vec3 a = sub3(v1->position, v0->position);
vec3 b = sub3(v2->position, v1->position);
t->normal = norm3(cross3(a,b));
}
static void AddNeighbor(struct mesh *M, int vid, int id) {
struct vertex *v = Vertex(M, vid);
for (int i=0;i<array_count(v->neighbor);i++) {
if (v->neighbor[i] == id)
return;
}
array_push(v->neighbor, id);
}
static void AddTriangle(struct mesh *M, const int v[3]) {
if (v[0] == v[1] || v[0] == v[2] || v[1] == v[2])
return;
ASSERT(v[0] < M->n_vertex);
ASSERT(v[1] < M->n_vertex);
ASSERT(v[2] < M->n_vertex);
int id = M->n_face++;
struct triangle_n * tmp = Triangle(M, id);
tmp->vertex[0] = v[0];
tmp->vertex[1] = v[1];
tmp->vertex[2] = v[2];
ComputeNormal(M, tmp);
for(int i=0;i<3;i++) {
struct vertex *obj = Vertex(M, v[i]);
array_push(obj->face, id);
}
AddNeighbor(M, v[0], v[1]);
AddNeighbor(M, v[0], v[2]);
AddNeighbor(M, v[1], v[0]);
AddNeighbor(M, v[1], v[2]);
AddNeighbor(M, v[2], v[0]);
AddNeighbor(M, v[2], v[1]);
}
static int HasVertex(struct triangle_n * t, int vid) {
return (t->vertex[0] == vid || t->vertex[1] == vid || t->vertex[2] == vid);
}
static void RemoveIfNonNeighbor_(struct mesh *M, struct vertex *v, int id) {
for (int i=0;i<array_count(v->neighbor);i++) {
if (v->neighbor[i] == id) {
for (int j=0;j<array_count(v->face);j++) {
if (HasVertex(Face(M, v, j), id))
return;
}
// remove from neighbors
array_erase_fast(v->neighbor, i);
return;
}
}
}
static void RemoveIfNonNeighbor(struct mesh *M, struct vertex *v0, struct vertex *v1) {
if (v0 == NULL || v1 == NULL)
return;
RemoveIfNonNeighbor_(M, v0, v1->id);
RemoveIfNonNeighbor_(M, v1, v0->id);
}
static void RemoveTriangle(struct mesh *M, int id) {
struct triangle_n * face = Triangle(M, id);
struct vertex * v[3];
for (int i=0;i<3;i++) {
v[i] = Vertex(M, face->vertex[i]);
if (v[i]->id < 0)
v[i] = NULL;
else {
array_find_and_remove(v[i]->face, id);
}
}
RemoveIfNonNeighbor(M, v[0], v[1]);
RemoveIfNonNeighbor(M, v[1], v[2]);
RemoveIfNonNeighbor(M, v[2], v[0]);
}
static void ReplaceVertex(struct mesh *M, int faceid, int oldid, int newid) {
struct triangle_n * face = Triangle(M, faceid);
ASSERT(oldid >=0 && newid >= 0);
ASSERT(HasVertex(face, oldid));
ASSERT(!HasVertex(face, newid));
if(oldid==face->vertex[0]){
face->vertex[0]=newid;
} else if(oldid==face->vertex[1]){
face->vertex[1]=newid;
} else {
face->vertex[2]=newid;
}
struct vertex *vold = Vertex(M, oldid);
struct vertex *vnew = Vertex(M, newid);
array_find_and_remove(vold->face, faceid);
array_push(vnew->face, faceid);
RemoveIfNonNeighbor(M, vold, Vertex(M, face->vertex[0]));
RemoveIfNonNeighbor(M, vold, Vertex(M, face->vertex[1]));
RemoveIfNonNeighbor(M, vold, Vertex(M, face->vertex[2]));
AddNeighbor(M, face->vertex[0], face->vertex[1]);
AddNeighbor(M, face->vertex[0], face->vertex[2]);
AddNeighbor(M, face->vertex[1], face->vertex[0]);
AddNeighbor(M, face->vertex[1], face->vertex[2]);
AddNeighbor(M, face->vertex[2], face->vertex[0]);
AddNeighbor(M, face->vertex[2], face->vertex[1]);
ComputeNormal(M, face);
}
static void MeshInit(struct mesh *M, int vert_n, int tri_n) {
M->n_face = 0;
M->n_vertex = 0;
M->v = (struct vertex *)MALLOC(vert_n * sizeof(struct vertex));
M->t = (struct triangle_n *)MALLOC(tri_n * sizeof(struct triangle));
}
static void MeshFree(struct mesh *M) {
FREE(M->v);
FREE(M->t);
}
static float ComputeEdgeCollapseCost(struct mesh *M, struct vertex *u, int vid) {
// if we collapse edge uv by moving u to v then how
// much different will the model change, i.e. how much "error".
// Texture, vertex normal, and border vertex code was removed
// to keep this demo as simple as possible.
// The method of determining cost was designed in order
// to exploit small and coplanar regions for
// effective polygon reduction.
// Is is possible to add some checks here to see if "folds"
// would be generated. i.e. normal of a remaining face gets
// flipped. I never seemed to run into this problem and
// therefore never added code to detect this case.
struct vertex *v = Vertex(M, vid);
vec3 tmp = sub3(v->position, u->position);
float edgelength = len3(tmp);
float curvature=0;
// find the "sides" triangles that are on the edge uv
array(int) sides = 0;
for (int i = 0; i<array_count(u->face); i++) {
if (HasVertex(Face(M, u, i), vid)) {
array_push(sides, u->face[i]);
}
}
// use the triangle facing most away from the sides
// to determine our curvature term
for (int i = 0; i<array_count(u->face); i++) {
float mincurv=1; // curve for face i and closer side to it
for (int j = 0; j<array_count(sides); j++) {
float dotprod = dot3(Triangle(M, u->face[i])->normal,
Triangle(M, sides[j])->normal); // use dot product of face normals.
float t = (1-dotprod)/2.0f;
if (t < mincurv) {
mincurv = t;
}
}
if (mincurv > curvature)
curvature = mincurv;
}
array_free(sides);
// the more coplanar the lower the curvature term
return edgelength * curvature;
}
static void ComputeEdgeCostAtVertex(struct mesh *M, struct vertex *v) {
// compute the edge collapse cost for all edges that start
// from vertex v. Since we are only interested in reducing
// the object by selecting the min cost edge at each step, we
// only cache the cost of the least cost edge at this vertex
// (in member variable collapse) as well as the value of the
// cost (in member variable objdist).
if (array_count(v->neighbor) == 0) {
// v doesn't have neighbors so it costs nothing to collapse
v->collapse=-1;
v->objdist=-0.01f;
return;
}
v->objdist = 1000000;
v->collapse=-1;
// search all neighboring edges for "least cost" edge
for (int i = 0; i<array_count(v->neighbor); i++) {
float dist = ComputeEdgeCollapseCost(M, v, v->neighbor[i]);
if(dist<v->objdist) {
v->collapse=v->neighbor[i]; // candidate for edge collapse
v->objdist=dist; // cost of the collapse
}
}
}
static void ComputeAllEdgeCollapseCosts(struct mesh *M) {
// For all the edges, compute the difference it would make
// to the model if it was collapsed. The least of these
// per vertex is cached in each vertex object.
for (int i = 0; i<M->n_vertex; i++) {
ComputeEdgeCostAtVertex(M, Vertex(M, i));
}
}
static void Collapse(struct mesh *M, int uid, int vid) {
// Collapse the edge uv by moving vertex u onto v
// Actually remove tris on uv, then update tris that
// have u to have v, and then remove u.
struct vertex *u = Vertex(M, uid);
if(vid < 0) {
// u is a vertex all by itself so just delete it
RemoveVertex(M, uid);
return;
}
array(int) tmp = 0;
// make tmp a Array of all the neighbors of u
for (int i = 0; i<array_count(u->neighbor); i++) {
array_push(tmp, u->neighbor[i]);
}
// delete triangles on edge uv:
for( int i = array_count(u->face); i--; ) {
if (HasVertex(Face(M, u, i), vid)) {
RemoveTriangle(M, u->face[i]);
}
}
// update remaining triangles to have v instead of u
for( int i = array_count(u->face); i--; ) {
ReplaceVertex(M, u->face[i], uid, vid);
}
RemoveVertex(M, uid);
// recompute the edge collapse costs for neighboring vertices
for (int i = 0; i<array_count(tmp); i++) {
ComputeEdgeCostAtVertex(M, Vertex(M, tmp[i]));
}
array_free(tmp);
}
static struct vertex *MinimumCostEdge(struct mesh *M) {
// Find the edge that when collapsed will affect model the least.
// This function actually returns a Vertex, the second vertex
// of the edge (collapse candidate) is stored in the vertex data.
// Serious optimization opportunity here: this function currently
// does a sequential search through an unsorted Array :-(
// Our algorithm could be O(n*lg(n)) instead of O(n*n)
struct vertex *mn = NULL;
for (int i = 0; i<M->n_vertex; i++) {
struct vertex *v = Vertex(M, i);
if (v->id >=0) {
if (mn == NULL || v->objdist < mn->objdist) {
mn = v;
}
}
}
return mn;
}
/*
* The function ProgressiveMesh() takes a model in an "indexed face
* set" sort of way. i.e. Array of vertices and Array of triangles.
* The function then does the polygon reduction algorithm
* internally and reduces the model all the way down to 0
* vertices and then returns the order in which the
* vertices are collapsed and to which neighbor each vertex
* is collapsed to. More specifically the returned "permutation"
* indicates how to reorder your vertices so you can render
* an object by using the first n vertices (for the n
* vertex version). After permuting your vertices, the
* map Array indicates to which vertex each vertex is collapsed to.
*/
API void ProgressiveMesh(int vert_n, int vert_stride, const float *v, int tri_n, const int *tri, int *map, int *permutation) {
struct mesh M;
MeshInit(&M, vert_n, tri_n);
// put input data into our data structures M
const char * tmp = (const char *)v;
for (int i=0;i<vert_n;i++, tmp += vert_stride ) {
AddVertex(&M, (const float *)tmp);
}
for (int i=0;i<tri_n;i++) {
AddTriangle(&M, &tri[i*3]);
}
ComputeAllEdgeCollapseCosts(&M); // cache all edge collapse costs
for (int i = vert_n-1; i>=0; i--) {
// get the next vertex to collapse
struct vertex *mn = MinimumCostEdge(&M);
// keep track of this vertex, i.e. the collapse ordering
permutation[mn->id] = i;
// keep track of vertex to which we collapse to
map[i] = mn->collapse;
// Collapse this edge
Collapse(&M, mn->id, mn->collapse);
}
// reorder the map Array based on the collapse ordering
for (int i = 0; i<vert_n; i++) {
map[i] = (map[i]==-1)?0:permutation[map[i]];
}
// The caller of this function should reorder their vertices
// according to the returned "permutation".
MeshFree(&M);
}
/*
* The MIT License (MIT)
*
* Copyright (c) 2014 Stan Melax
* Copyright (c) 2020 Cloud Wu
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/