v4k-git-backup/engine/art/shaderlib/shadowmap.glsl

157 lines
5.3 KiB
GLSL

#ifndef SHADOWMAP_GLSL
#define SHADOWMAP_GLSL
#include "utils.glsl"
uniform bool u_shadow_receiver;
uniform float u_cascade_distances[MAX_LIGHTS * NUM_SHADOW_CASCADES];
uniform samplerCube shadowMap[MAX_LIGHTS];
uniform sampler2D shadowMap2D[MAX_LIGHTS * NUM_SHADOW_CASCADES];
// const float bias_modifier[NUM_SHADOW_CASCADES] = float[NUM_SHADOW_CASCADES](0.95, 0.35, 0.20, 0.1, 0.1, 0.1);
const float bias_modifier[NUM_SHADOW_CASCADES] = float[NUM_SHADOW_CASCADES](0.95, 0.35, 0.20, 0.15);
//// From http://fabiensanglard.net/shadowmappingVSM/index.php
float shadow_vsm(float distance, vec3 dir, int light_index, float min_variance, float variance_transition) {
distance = distance/200;
// Define offsets for 3x3 PCF
vec3 offsets[9] = vec3[9](
vec3(-1, -1, 0) * 0.01,
vec3( 0, -1, 0) * 0.01,
vec3( 1, -1, 0) * 0.01,
vec3(-1, 0, 0) * 0.01,
vec3( 0, 0, 0) * 0.01,
vec3( 1, 0, 0) * 0.01,
vec3(-1, 1, 0) * 0.01,
vec3( 0, 1, 0) * 0.01,
vec3( 1, 1, 0) * 0.01
);
float shadow = 0.0;
// Perform 3x3 PCF
for (int i = 0; i < 9; i++) {
vec3 sampleDir = dir + offsets[i] * (rand(vec2(v_position_ws.x + offsets[i].x, v_position_ws.y + offsets[i].y))*1.75f + 1.25f);
vec2 moments = texture(shadowMap[light_index], sampleDir).rg;
// If the shadow map is sampled outside of its bounds, add 1.0
if (moments.x == 1.0 && moments.y == 1.0) {
shadow += 1.0;
continue;
}
// Surface is fully lit if the current fragment is before the light occluder
if (distance <= moments.x) {
shadow += 1.0;
continue;
}
// Calculate VSM for this sample
float p = step(distance, moments.x);
float variance = max(moments.y - (moments.x * moments.x), min_variance);
float d = distance - moments.x;
float p_max = linstep(variance_transition, 1.0, variance / (variance + d*d));
shadow += min(max(p, p_max), 1.0);
}
// Average the results
return shadow / 9.0;
}
float shadow_csm(float distance, vec3 lightDir, int light_index, float shadow_bias, float normal_bias) {
// Determine which cascade to use
int cascade_index = -1;
int min_cascades_range = light_index * NUM_SHADOW_CASCADES;
int max_cascades_range = min_cascades_range + NUM_SHADOW_CASCADES;
for (int i = min_cascades_range; i < max_cascades_range; i++) {
if (distance < u_cascade_distances[i]) {
cascade_index = i;
break;
}
}
if (cascade_index == -1) {
cascade_index = max_cascades_range - 1;
}
light_t light = u_lights[light_index];
int matrix_index = cascade_index - min_cascades_range;
vec4 fragPosLightSpace = light.shadow_matrix[matrix_index] * vec4(v_position_ws, 1.0);
// Perform perspective divide
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
// Transform to [0,1] range
projCoords = projCoords * 0.5 + 0.5;
float currentDepth = projCoords.z;
if (currentDepth > 1.0) {
return 1.0;
}
// Calculate bias
vec3 normal = normalize(vneye.xyz);
float bias = max(normal_bias * (1.0 - dot(normal, lightDir)), shadow_bias);
bias *= 1 / (u_cascade_distances[cascade_index] * bias_modifier[matrix_index]);
// CSM
float shadow = 0.0;
vec2 texelSize = 1.0 / textureSize(shadowMap2D[cascade_index], 0);
#if 1
for(int x = -3; x <= 3; ++x)
{
for(int y = -3; y <= 3; ++y)
{
float csmDepth = texture(shadowMap2D[cascade_index], projCoords.xy + vec2(x, y) * texelSize * (rand(vec2(projCoords.x + x, projCoords.y + y))*0.75f + 0.25f)).r;
shadow += currentDepth - bias > csmDepth ? 1.0 : 0.0;
}
}
shadow /= 36.0;
#else
for(int x = -1; x <= 1; ++x)
{
for(int y = -1; y <= 1; ++y)
{
float csmDepth = texture(shadowMap2D[cascade_index], projCoords.xy + vec2(x, y) * texelSize * (rand(vec2(projCoords.x + x, projCoords.y + y))*0.75f + 0.25f)).r;
shadow += currentDepth - bias > csmDepth ? 1.0 : 0.0;
}
}
shadow /= 9.0;
#endif
return 1.0 - shadow;
}
vec4 shadowmap(int idx, in vec4 peye, in vec4 neye) {
vec3 fragment = vec3(peye);
float shadowFactor = 1.0;
light_t light = u_lights[idx];
if (light.processed_shadows) {
if (light.type == LIGHT_DIRECTIONAL) {
shadowFactor = shadow_csm(-peye.z, light.dir, idx, light.shadow_bias, light.normal_bias);
} else if (light.type == LIGHT_POINT || light.type == LIGHT_SPOT) {
vec3 light_pos = (view * vec4(light.pos, 1.0)).xyz;
vec3 dir = light_pos - fragment;
vec4 sc = inv_view * vec4(dir, 0.0);
shadowFactor = shadow_vsm(length(dir), -sc.xyz, idx, light.min_variance, light.variance_transition);
}
}
return vec4(vec3(shadowFactor), 1.0);
}
vec4 shadowing(int idx) {
if (u_shadow_receiver) {
return shadowmap(idx, vpeye, vneye);
} else {
return vec4(1.0);
}
}
#endif