v4k-git-backup/engine/art/shaderlib/shadowmap.glsl

136 lines
4.3 KiB
GLSL

#ifndef SHADOWMAP_GLSL
#define SHADOWMAP_GLSL
#include "utils.glsl"
uniform bool u_shadow_receiver;
uniform float u_cascade_distances[MAX_LIGHTS * NUM_SHADOW_CASCADES];
uniform samplerCube shadowMap[MAX_LIGHTS];
uniform sampler2D shadowMap2D[MAX_LIGHTS * NUM_SHADOW_CASCADES];
const float bias_modifier[NUM_SHADOW_CASCADES] = float[NUM_SHADOW_CASCADES](0.95, 0.35, 0.20, 0.15, 0.15, 0.15);
// const float bias_modifier[NUM_SHADOW_CASCADES] = float[NUM_SHADOW_CASCADES](0.95, 0.35, 0.20, 0.15);
//// From http://fabiensanglard.net/shadowmappingVSM/index.php
float shadow_vsm(float distance, vec3 dir, int light_index) {
distance = distance/200;
vec2 moments = texture(shadowMap[light_index], dir).rg;
// If the shadow map is sampled outside of its bounds, return 1.0
if (moments.x == 1.0 && moments.y == 1.0) {
return 1.0;
}
// Surface is fully lit. as the current fragment is before the light occluder
if (distance <= moments.x) {
return 1.0;
}
// The fragment is either in shadow or penumbra. We now use chebyshev's upperBound to check
// How likely this pixel is to be lit (p_max)
float variance = moments.y - (moments.x*moments.x);
//variance = max(variance, 0.000002);
// variance = max(variance, 0.00002);
variance = max(variance, 0.0002);
float d = distance - moments.x;
float p_max = variance / (variance + d*d);
return p_max;
}
float shadow_pcf(float distance, vec3 lightDir, int light_index) {
// Determine which cascade to use
int cascade_index = -1;
int min_cascades_range = light_index * NUM_SHADOW_CASCADES;
int max_cascades_range = min_cascades_range + NUM_SHADOW_CASCADES;
for (int i = min_cascades_range; i < max_cascades_range; i++) {
if (distance < u_cascade_distances[i]) {
cascade_index = i;
break;
}
}
if (cascade_index == -1) {
cascade_index = max_cascades_range - 1;
}
light_t light = u_lights[light_index];
int matrix_index = cascade_index - min_cascades_range;
vec4 fragPosLightSpace = light.shadow_matrix[matrix_index] * vec4(v_position_ws, 1.0);
// Perform perspective divide
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
// Transform to [0,1] range
projCoords = projCoords * 0.5 + 0.5;
float currentDepth = projCoords.z;
if (currentDepth > 1.0) {
return 1.0;
}
// Calculate bias
vec3 normal = normalize(vneye.xyz);
float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
bias *= 1 / (u_cascade_distances[cascade_index] * bias_modifier[matrix_index]);
// PCF
float shadow = 0.0;
vec2 texelSize = 1.0 / textureSize(shadowMap2D[cascade_index], 0);
#if 1
for(int x = -3; x <= 3; ++x)
{
for(int y = -3; y <= 3; ++y)
{
float pcfDepth = texture(shadowMap2D[cascade_index], projCoords.xy + vec2(x, y) * texelSize * (rand(vec2(projCoords.x + x, projCoords.y + y))*0.75f + 0.25f)).r;
shadow += currentDepth - bias > pcfDepth ? 1.0 : 0.0;
}
}
shadow /= 36.0;
#else
for(int x = -1; x <= 1; ++x)
{
for(int y = -1; y <= 1; ++y)
{
float pcfDepth = texture(shadowMap2D[cascade_index], projCoords.xy + vec2(x, y) * texelSize).r;
shadow += currentDepth - bias > pcfDepth ? 1.0 : 0.0;
}
}
shadow /= 9.0;
#endif
return 1.0 - shadow;
}
vec4 shadowmap(int idx, in vec4 peye, in vec4 neye) {
vec3 fragment = vec3(peye);
float shadowFactor = 1.0;
light_t light = u_lights[idx];
if (light.processed_shadows) {
if (light.type == LIGHT_DIRECTIONAL) {
shadowFactor = shadow_pcf(-peye.z, light.dir, idx);
} else if (light.type == LIGHT_POINT || light.type == LIGHT_SPOT) {
vec3 light_pos = (view * vec4(light.pos, 1.0)).xyz;
vec3 dir = light_pos - fragment;
vec4 sc = inv_view * vec4(dir, 0.0);
shadowFactor = shadow_vsm(length(dir), -sc.xyz, idx);
}
}
return vec4(vec3(shadowFactor), 1.0);
}
vec4 shadowing(int idx) {
if (u_shadow_receiver) {
return shadowmap(idx, vpeye, vneye);
} else {
return vec4(1.0);
}
}
#endif