v4k-git-backup/tools/3rd_tinyobjloader.h

1272 lines
35 KiB
C++

//
// Copyright 2012-2016, Syoyo Fujita.
//
// Licensed under 2-clause BSD license.
//
//
// version 0.9.22: Introduce `load_flags_t`.
// version 0.9.20: Fixes creating per-face material using `usemtl`(#68)
// version 0.9.17: Support n-polygon and crease tag(OpenSubdiv extension)
// version 0.9.16: Make tinyobjloader header-only
// version 0.9.15: Change API to handle no mtl file case correctly(#58)
// version 0.9.14: Support specular highlight, bump, displacement and alpha
// map(#53)
// version 0.9.13: Report "Material file not found message" in `err`(#46)
// version 0.9.12: Fix groups being ignored if they have 'usemtl' just before
// 'g' (#44)
// version 0.9.11: Invert `Tr` parameter(#43)
// version 0.9.10: Fix seg fault on windows.
// version 0.9.9 : Replace atof() with custom parser.
// version 0.9.8 : Fix multi-materials(per-face material ID).
// version 0.9.7 : Support multi-materials(per-face material ID) per
// object/group.
// version 0.9.6 : Support Ni(index of refraction) mtl parameter.
// Parse transmittance material parameter correctly.
// version 0.9.5 : Parse multiple group name.
// Add support of specifying the base path to load material
// file.
// version 0.9.4 : Initial support of group tag(g)
// version 0.9.3 : Fix parsing triple 'x/y/z'
// version 0.9.2 : Add more .mtl load support
// version 0.9.1 : Add initial .mtl load support
// version 0.9.0 : Initial
//
//
// Use this in *one* .cc
// #define TINYOBJLOADER_IMPLEMENTATION
// #include "tiny_obj_loader.h"
//
#ifndef TINY_OBJ_LOADER_H_
#define TINY_OBJ_LOADER_H_
#include <cmath>
#include <map>
#include <string>
#include <vector>
namespace tinyobj {
typedef struct {
std::string name;
float ambient[3];
float diffuse[3];
float specular[3];
float transmittance[3];
float emission[3];
float shininess;
float ior; // index of refraction
float dissolve; // 1 == opaque; 0 == fully transparent
// illumination model (see http://www.fileformat.info/format/material/)
int illum;
int dummy; // Suppress padding warning.
std::string ambient_texname; // map_Ka
std::string diffuse_texname; // map_Kd
std::string specular_texname; // map_Ks
std::string specular_highlight_texname; // map_Ns
std::string bump_texname; // map_bump, bump
std::string displacement_texname; // disp
std::string alpha_texname; // map_d
std::map<std::string, std::string> unknown_parameter;
} material_t;
typedef struct {
std::string name;
std::vector<int> intValues;
std::vector<float> floatValues;
std::vector<std::string> stringValues;
} tag_t;
typedef struct {
std::vector<float> positions;
std::vector<float> normals;
std::vector<float> texcoords;
std::vector<unsigned int> indices;
std::vector<unsigned char>
num_vertices; // The number of vertices per face. Up to 255.
std::vector<int> material_ids; // per-face material ID
std::vector<tag_t> tags; // SubD tag
} mesh_t;
typedef struct {
std::string name;
mesh_t mesh;
} shape_t;
typedef enum {
triangulation = 1, // used whether triangulate polygon face in .obj
calculate_normals =
2, // used whether calculate the normals if the .obj normals are empty
// Some nice stuff here
} load_flags_t;
class float3 {
public:
float3() : x(0.0f), y(0.0f), z(0.0f) {}
float3(float coord_x, float coord_y, float coord_z)
: x(coord_x), y(coord_y), z(coord_z) {}
float3(const float3 &from, const float3 &to) {
coord[0] = to.coord[0] - from.coord[0];
coord[1] = to.coord[1] - from.coord[1];
coord[2] = to.coord[2] - from.coord[2];
}
float3 crossproduct(const float3 &vec) {
float a = y * vec.z - z * vec.y;
float b = z * vec.x - x * vec.z;
float c = x * vec.y - y * vec.x;
return float3(a, b, c);
}
void normalize() {
const float length = std::sqrt(
(coord[0] * coord[0]) + (coord[1] * coord[1]) + (coord[2] * coord[2]));
if (length != 1) {
coord[0] = (coord[0] / length);
coord[1] = (coord[1] / length);
coord[2] = (coord[2] / length);
}
}
private:
union {
float coord[3];
struct {
float x, y, z;
};
};
};
class MaterialReader {
public:
MaterialReader() {}
virtual ~MaterialReader();
virtual bool operator()(const std::string &matId,
std::vector<material_t> &materials,
std::map<std::string, int> &matMap,
std::string &err) = 0;
};
class MaterialFileReader : public MaterialReader {
public:
MaterialFileReader(const std::string &mtl_basepath)
: m_mtlBasePath(mtl_basepath) {}
virtual ~MaterialFileReader() {}
virtual bool operator()(const std::string &matId,
std::vector<material_t> &materials,
std::map<std::string, int> &matMap, std::string &err);
private:
std::string m_mtlBasePath;
};
/// Loads .obj from a file.
/// 'shapes' will be filled with parsed shape data
/// The function returns error string.
/// Returns true when loading .obj become success.
/// Returns warning and error message into `err`
/// 'mtl_basepath' is optional, and used for base path for .mtl file.
/// 'optional flags
bool LoadObj(std::vector<shape_t> &shapes, // [output]
std::vector<material_t> &materials, // [output]
std::string &err, // [output]
const char *filename, const char *mtl_basepath = NULL,
unsigned int flags = 1);
/// Loads object from a std::istream, uses GetMtlIStreamFn to retrieve
/// std::istream for materials.
/// Returns true when loading .obj become success.
/// Returns warning and error message into `err`
bool LoadObj(std::vector<shape_t> &shapes, // [output]
std::vector<material_t> &materials, // [output]
std::string &err, // [output]
std::istream &inStream, MaterialReader &readMatFn,
unsigned int flags = 1);
/// Loads materials into std::map
void LoadMtl(std::map<std::string, int> &material_map, // [output]
std::vector<material_t> &materials, // [output]
std::istream &inStream);
}
#ifdef TINYOBJLOADER_IMPLEMENTATION
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
//#include "tiny_obj_loader.h"
namespace tinyobj {
MaterialReader::~MaterialReader() {}
#define TINYOBJ_SSCANF_BUFFER_SIZE (4096)
struct vertex_index {
int v_idx, vt_idx, vn_idx;
vertex_index() : v_idx(-1), vt_idx(-1), vn_idx(-1) {}
explicit vertex_index(int idx) : v_idx(idx), vt_idx(idx), vn_idx(idx) {}
vertex_index(int vidx, int vtidx, int vnidx)
: v_idx(vidx), vt_idx(vtidx), vn_idx(vnidx) {}
};
struct tag_sizes {
tag_sizes() : num_ints(0), num_floats(0), num_strings(0) {}
int num_ints;
int num_floats;
int num_strings;
};
// for std::map
static inline bool operator<(const vertex_index &a, const vertex_index &b) {
if (a.v_idx != b.v_idx)
return (a.v_idx < b.v_idx);
if (a.vn_idx != b.vn_idx)
return (a.vn_idx < b.vn_idx);
if (a.vt_idx != b.vt_idx)
return (a.vt_idx < b.vt_idx);
return false;
}
struct obj_shape {
std::vector<float> v;
std::vector<float> vn;
std::vector<float> vt;
};
// See
// http://stackoverflow.com/questions/6089231/getting-std-ifstream-to-handle-lf-cr-and-crlf
std::istream &safeGetline(std::istream &is, std::string &t) {
t.clear();
// The characters in the stream are read one-by-one using a std::streambuf.
// That is faster than reading them one-by-one using the std::istream.
// Code that uses streambuf this way must be guarded by a sentry object.
// The sentry object performs various tasks,
// such as thread synchronization and updating the stream state.
std::istream::sentry se(is, true);
std::streambuf *sb = is.rdbuf();
for (;;) {
int c = sb->sbumpc();
switch (c) {
case '\n':
return is;
case '\r':
if (sb->sgetc() == '\n')
sb->sbumpc();
return is;
case EOF:
// Also handle the case when the last line has no line ending
if (t.empty())
is.setstate(std::ios::eofbit);
return is;
default:
t += (char)c;
}
}
}
#define IS_SPACE(x) (((x) == ' ') || ((x) == '\t'))
#define IS_DIGIT(x) ((unsigned int)((x) - '0') < (unsigned int)10)
#define IS_NEW_LINE(x) (((x) == '\r') || ((x) == '\n') || ((x) == '\0'))
// Make index zero-base, and also support relative index.
static inline int fixIndex(int idx, int n) {
if (idx > 0)
return idx - 1;
if (idx == 0)
return 0;
return n + idx; // negative value = relative
}
static inline std::string parseString(const char *&token) {
std::string s;
token += strspn(token, " \t");
size_t e = strcspn(token, " \t\r");
s = std::string(token, &token[e]);
token += e;
return s;
}
static inline int parseInt(const char *&token) {
token += strspn(token, " \t");
int i = atoi(token);
token += strcspn(token, " \t\r");
return i;
}
// Tries to parse a floating point number located at s.
//
// s_end should be a location in the string where reading should absolutely
// stop. For example at the end of the string, to prevent buffer overflows.
//
// Parses the following EBNF grammar:
// sign = "+" | "-" ;
// END = ? anything not in digit ?
// digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
// integer = [sign] , digit , {digit} ;
// decimal = integer , ["." , integer] ;
// float = ( decimal , END ) | ( decimal , ("E" | "e") , integer , END ) ;
//
// Valid strings are for example:
// -0 +3.1417e+2 -0.0E-3 1.0324 -1.41 11e2
//
// If the parsing is a success, result is set to the parsed value and true
// is returned.
//
// The function is greedy and will parse until any of the following happens:
// - a non-conforming character is encountered.
// - s_end is reached.
//
// The following situations triggers a failure:
// - s >= s_end.
// - parse failure.
//
static bool tryParseDouble(const char *s, const char *s_end, double *result) {
if (s >= s_end) {
return false;
}
double mantissa = 0.0;
// This exponent is base 2 rather than 10.
// However the exponent we parse is supposed to be one of ten,
// thus we must take care to convert the exponent/and or the
// mantissa to a * 2^E, where a is the mantissa and E is the
// exponent.
// To get the final double we will use ldexp, it requires the
// exponent to be in base 2.
int exponent = 0;
// NOTE: THESE MUST BE DECLARED HERE SINCE WE ARE NOT ALLOWED
// TO JUMP OVER DEFINITIONS.
char sign = '+';
char exp_sign = '+';
char const *curr = s;
// How many characters were read in a loop.
int read = 0;
// Tells whether a loop terminated due to reaching s_end.
bool end_not_reached = false;
/*
BEGIN PARSING.
*/
// Find out what sign we've got.
if (*curr == '+' || *curr == '-') {
sign = *curr;
curr++;
} else if (IS_DIGIT(*curr)) { /* Pass through. */
} else {
goto fail;
}
// Read the integer part.
while ((end_not_reached = (curr != s_end)) && IS_DIGIT(*curr)) {
mantissa *= 10;
mantissa += static_cast<int>(*curr - 0x30);
curr++;
read++;
}
// We must make sure we actually got something.
if (read == 0)
goto fail;
// We allow numbers of form "#", "###" etc.
if (!end_not_reached)
goto assemble;
// Read the decimal part.
if (*curr == '.') {
curr++;
read = 1;
while ((end_not_reached = (curr != s_end)) && IS_DIGIT(*curr)) {
// NOTE: Don't use powf here, it will absolutely murder precision.
mantissa += static_cast<int>(*curr - 0x30) * pow(10.0, -read);
read++;
curr++;
}
} else if (*curr == 'e' || *curr == 'E') {
} else {
goto assemble;
}
if (!end_not_reached)
goto assemble;
// Read the exponent part.
if (*curr == 'e' || *curr == 'E') {
curr++;
// Figure out if a sign is present and if it is.
if ((end_not_reached = (curr != s_end)) && (*curr == '+' || *curr == '-')) {
exp_sign = *curr;
curr++;
} else if (IS_DIGIT(*curr)) { /* Pass through. */
} else {
// Empty E is not allowed.
goto fail;
}
read = 0;
while ((end_not_reached = (curr != s_end)) && IS_DIGIT(*curr)) {
exponent *= 10;
exponent += static_cast<int>(*curr - 0x30);
curr++;
read++;
}
exponent *= (exp_sign == '+' ? 1 : -1);
if (read == 0)
goto fail;
}
assemble:
*result =
(sign == '+' ? 1 : -1) * ldexp(mantissa * pow(5.0, exponent), exponent);
return true;
fail:
return false;
}
static inline float parseFloat(const char *&token) {
token += strspn(token, " \t");
#ifdef TINY_OBJ_LOADER_OLD_FLOAT_PARSER
float f = (float)atof(token);
token += strcspn(token, " \t\r");
#else
const char *end = token + strcspn(token, " \t\r");
double val = 0.0;
tryParseDouble(token, end, &val);
float f = static_cast<float>(val);
token = end;
#endif
return f;
}
static inline void parseFloat2(float &x, float &y, const char *&token) {
x = parseFloat(token);
y = parseFloat(token);
}
static inline void parseFloat3(float &x, float &y, float &z,
const char *&token) {
x = parseFloat(token);
y = parseFloat(token);
z = parseFloat(token);
}
static tag_sizes parseTagTriple(const char *&token) {
tag_sizes ts;
ts.num_ints = atoi(token);
token += strcspn(token, "/ \t\r");
if (token[0] != '/') {
return ts;
}
token++;
ts.num_floats = atoi(token);
token += strcspn(token, "/ \t\r");
if (token[0] != '/') {
return ts;
}
token++;
ts.num_strings = atoi(token);
token += strcspn(token, "/ \t\r") + 1;
return ts;
}
// Parse triples: i, i/j/k, i//k, i/j
static vertex_index parseTriple(const char *&token, int vsize, int vnsize,
int vtsize) {
vertex_index vi(-1);
vi.v_idx = fixIndex(atoi(token), vsize);
token += strcspn(token, "/ \t\r");
if (token[0] != '/') {
return vi;
}
token++;
// i//k
if (token[0] == '/') {
token++;
vi.vn_idx = fixIndex(atoi(token), vnsize);
token += strcspn(token, "/ \t\r");
return vi;
}
// i/j/k or i/j
vi.vt_idx = fixIndex(atoi(token), vtsize);
token += strcspn(token, "/ \t\r");
if (token[0] != '/') {
return vi;
}
// i/j/k
token++; // skip '/'
vi.vn_idx = fixIndex(atoi(token), vnsize);
token += strcspn(token, "/ \t\r");
return vi;
}
static unsigned int
updateVertex(std::map<vertex_index, unsigned int> &vertexCache,
std::vector<float> &positions, std::vector<float> &normals,
std::vector<float> &texcoords,
const std::vector<float> &in_positions,
const std::vector<float> &in_normals,
const std::vector<float> &in_texcoords, const vertex_index &i) {
const std::map<vertex_index, unsigned int>::iterator it = vertexCache.find(i);
if (it != vertexCache.end()) {
// found cache
return it->second;
}
assert(in_positions.size() > static_cast<unsigned int>(3 * i.v_idx + 2));
positions.push_back(in_positions[3 * static_cast<size_t>(i.v_idx) + 0]);
positions.push_back(in_positions[3 * static_cast<size_t>(i.v_idx) + 1]);
positions.push_back(in_positions[3 * static_cast<size_t>(i.v_idx) + 2]);
if ((i.vn_idx >= 0) &&
(static_cast<size_t>(i.vn_idx * 3 + 2) < in_normals.size())) {
normals.push_back(in_normals[3 * static_cast<size_t>(i.vn_idx) + 0]);
normals.push_back(in_normals[3 * static_cast<size_t>(i.vn_idx) + 1]);
normals.push_back(in_normals[3 * static_cast<size_t>(i.vn_idx) + 2]);
}
if ((i.vt_idx >= 0) &&
(static_cast<size_t>(i.vt_idx * 2 + 1) < in_texcoords.size())) {
texcoords.push_back(in_texcoords[2 * static_cast<size_t>(i.vt_idx) + 0]);
texcoords.push_back(in_texcoords[2 * static_cast<size_t>(i.vt_idx) + 1]);
}
unsigned int idx = static_cast<unsigned int>(positions.size() / 3 - 1);
vertexCache[i] = idx;
return idx;
}
static void InitMaterial(material_t &material) {
material.name = "";
material.ambient_texname = "";
material.diffuse_texname = "";
material.specular_texname = "";
material.specular_highlight_texname = "";
material.bump_texname = "";
material.displacement_texname = "";
material.alpha_texname = "";
for (int i = 0; i < 3; i++) {
material.ambient[i] = 0.f;
material.diffuse[i] = 0.f;
material.specular[i] = 0.f;
material.transmittance[i] = 0.f;
material.emission[i] = 0.f;
}
material.illum = 0;
material.dissolve = 1.f;
material.shininess = 1.f;
material.ior = 1.f;
material.unknown_parameter.clear();
}
static bool exportFaceGroupToShape(
shape_t &shape, std::map<vertex_index, unsigned int> vertexCache,
const std::vector<float> &in_positions,
const std::vector<float> &in_normals,
const std::vector<float> &in_texcoords,
const std::vector<std::vector<vertex_index> > &faceGroup,
std::vector<tag_t> &tags, const int material_id, const std::string &name,
bool clearCache, unsigned int flags, std::string &err) {
if (faceGroup.empty()) {
return false;
}
bool triangulate((flags & triangulation) == triangulation);
bool normals_calculation((flags & calculate_normals) == calculate_normals);
// Flatten vertices and indices
for (size_t i = 0; i < faceGroup.size(); i++) {
const std::vector<vertex_index> &face = faceGroup[i];
vertex_index i0 = face[0];
vertex_index i1(-1);
vertex_index i2 = face[1];
size_t npolys = face.size();
if (triangulate) {
// Polygon -> triangle fan conversion
for (size_t k = 2; k < npolys; k++) {
i1 = i2;
i2 = face[k];
unsigned int v0 = updateVertex(
vertexCache, shape.mesh.positions, shape.mesh.normals,
shape.mesh.texcoords, in_positions, in_normals, in_texcoords, i0);
unsigned int v1 = updateVertex(
vertexCache, shape.mesh.positions, shape.mesh.normals,
shape.mesh.texcoords, in_positions, in_normals, in_texcoords, i1);
unsigned int v2 = updateVertex(
vertexCache, shape.mesh.positions, shape.mesh.normals,
shape.mesh.texcoords, in_positions, in_normals, in_texcoords, i2);
shape.mesh.indices.push_back(v0);
shape.mesh.indices.push_back(v1);
shape.mesh.indices.push_back(v2);
shape.mesh.num_vertices.push_back(3);
shape.mesh.material_ids.push_back(material_id);
}
} else {
for (size_t k = 0; k < npolys; k++) {
unsigned int v =
updateVertex(vertexCache, shape.mesh.positions, shape.mesh.normals,
shape.mesh.texcoords, in_positions, in_normals,
in_texcoords, face[k]);
shape.mesh.indices.push_back(v);
}
shape.mesh.num_vertices.push_back(static_cast<unsigned char>(npolys));
shape.mesh.material_ids.push_back(material_id); // per face
}
}
if (normals_calculation && shape.mesh.normals.empty()) {
const size_t nIndexs = shape.mesh.indices.size();
if (nIndexs % 3 == 0) {
shape.mesh.normals.resize(shape.mesh.positions.size());
for (size_t iIndices = 0; iIndices < nIndexs; iIndices += 3) {
float3 v1, v2, v3;
memcpy(&v1, &shape.mesh.positions[shape.mesh.indices[iIndices] * 3],
sizeof(float3));
memcpy(&v2, &shape.mesh.positions[shape.mesh.indices[iIndices + 1] * 3],
sizeof(float3));
memcpy(&v3, &shape.mesh.positions[shape.mesh.indices[iIndices + 2] * 3],
sizeof(float3));
float3 v12(v1, v2);
float3 v13(v1, v3);
float3 normal = v12.crossproduct(v13);
normal.normalize();
memcpy(&shape.mesh.normals[shape.mesh.indices[iIndices] * 3], &normal,
sizeof(float3));
memcpy(&shape.mesh.normals[shape.mesh.indices[iIndices + 1] * 3],
&normal, sizeof(float3));
memcpy(&shape.mesh.normals[shape.mesh.indices[iIndices + 2] * 3],
&normal, sizeof(float3));
}
} else {
std::stringstream ss;
ss << "WARN: The shape " << name
<< " does not have a topology of triangles, therfore the normals "
"calculation could not be performed. Select the "
"tinyobj::triangulation flag for this object."
<< std::endl;
err += ss.str();
}
}
shape.name = name;
shape.mesh.tags.swap(tags);
if (clearCache)
vertexCache.clear();
return true;
}
void LoadMtl(std::map<std::string, int> &material_map,
std::vector<material_t> &materials, std::istream &inStream) {
// Create a default material anyway.
material_t material;
InitMaterial(material);
while (inStream.peek() != -1) {
std::string linebuf;
safeGetline(inStream, linebuf);
// Trim trailing whitespace
if (linebuf.size() > 0) {
linebuf = linebuf.substr(0, linebuf.find_last_not_of(" \t") + 1);
}
// Trim newline '\r\n' or '\n'
if (linebuf.size() > 0) {
if (linebuf[linebuf.size() - 1] == '\n')
linebuf.erase(linebuf.size() - 1);
}
if (linebuf.size() > 0) {
if (linebuf[linebuf.size() - 1] == '\r')
linebuf.erase(linebuf.size() - 1);
}
// Skip if empty line.
if (linebuf.empty()) {
continue;
}
// Skip leading space.
const char *token = linebuf.c_str();
token += strspn(token, " \t");
assert(token);
if (token[0] == '\0')
continue; // empty line
if (token[0] == '#')
continue; // comment line
// new mtl
if ((0 == strncmp(token, "newmtl", 6)) && IS_SPACE((token[6]))) {
// flush previous material.
if (!material.name.empty()) {
material_map.insert(std::pair<std::string, int>(
material.name, static_cast<int>(materials.size())));
materials.push_back(material);
}
// initial temporary material
InitMaterial(material);
// set new mtl name
char namebuf[TINYOBJ_SSCANF_BUFFER_SIZE];
token += 7;
#ifdef _MSC_VER
sscanf_s(token, "%s", namebuf, (unsigned)_countof(namebuf));
#else
sscanf(token, "%s", namebuf);
#endif
material.name = namebuf;
continue;
}
// ambient
if (token[0] == 'K' && token[1] == 'a' && IS_SPACE((token[2]))) {
token += 2;
float r, g, b;
parseFloat3(r, g, b, token);
material.ambient[0] = r;
material.ambient[1] = g;
material.ambient[2] = b;
continue;
}
// diffuse
if (token[0] == 'K' && token[1] == 'd' && IS_SPACE((token[2]))) {
token += 2;
float r, g, b;
parseFloat3(r, g, b, token);
material.diffuse[0] = r;
material.diffuse[1] = g;
material.diffuse[2] = b;
continue;
}
// specular
if (token[0] == 'K' && token[1] == 's' && IS_SPACE((token[2]))) {
token += 2;
float r, g, b;
parseFloat3(r, g, b, token);
material.specular[0] = r;
material.specular[1] = g;
material.specular[2] = b;
continue;
}
// transmittance
if (token[0] == 'K' && token[1] == 't' && IS_SPACE((token[2]))) {
token += 2;
float r, g, b;
parseFloat3(r, g, b, token);
material.transmittance[0] = r;
material.transmittance[1] = g;
material.transmittance[2] = b;
continue;
}
// ior(index of refraction)
if (token[0] == 'N' && token[1] == 'i' && IS_SPACE((token[2]))) {
token += 2;
material.ior = parseFloat(token);
continue;
}
// emission
if (token[0] == 'K' && token[1] == 'e' && IS_SPACE(token[2])) {
token += 2;
float r, g, b;
parseFloat3(r, g, b, token);
material.emission[0] = r;
material.emission[1] = g;
material.emission[2] = b;
continue;
}
// shininess
if (token[0] == 'N' && token[1] == 's' && IS_SPACE(token[2])) {
token += 2;
material.shininess = parseFloat(token);
continue;
}
// illum model
if (0 == strncmp(token, "illum", 5) && IS_SPACE(token[5])) {
token += 6;
material.illum = parseInt(token);
continue;
}
// dissolve
if ((token[0] == 'd' && IS_SPACE(token[1]))) {
token += 1;
material.dissolve = parseFloat(token);
continue;
}
if (token[0] == 'T' && token[1] == 'r' && IS_SPACE(token[2])) {
token += 2;
// Invert value of Tr(assume Tr is in range [0, 1])
material.dissolve = 1.0f - parseFloat(token);
continue;
}
// ambient texture
if ((0 == strncmp(token, "map_Ka", 6)) && IS_SPACE(token[6])) {
token += 7;
material.ambient_texname = token;
continue;
}
// diffuse texture
if ((0 == strncmp(token, "map_Kd", 6)) && IS_SPACE(token[6])) {
token += 7;
material.diffuse_texname = token;
continue;
}
// specular texture
if ((0 == strncmp(token, "map_Ks", 6)) && IS_SPACE(token[6])) {
token += 7;
material.specular_texname = token;
continue;
}
// specular highlight texture
if ((0 == strncmp(token, "map_Ns", 6)) && IS_SPACE(token[6])) {
token += 7;
material.specular_highlight_texname = token;
continue;
}
// bump texture
if ((0 == strncmp(token, "map_bump", 8)) && IS_SPACE(token[8])) {
token += 9;
material.bump_texname = token;
continue;
}
// alpha texture
if ((0 == strncmp(token, "map_d", 5)) && IS_SPACE(token[5])) {
token += 6;
material.alpha_texname = token;
continue;
}
// bump texture
if ((0 == strncmp(token, "bump", 4)) && IS_SPACE(token[4])) {
token += 5;
material.bump_texname = token;
continue;
}
// displacement texture
if ((0 == strncmp(token, "disp", 4)) && IS_SPACE(token[4])) {
token += 5;
material.displacement_texname = token;
continue;
}
// unknown parameter
const char *_space = strchr(token, ' ');
if (!_space) {
_space = strchr(token, '\t');
}
if (_space) {
std::ptrdiff_t len = _space - token;
std::string key(token, static_cast<size_t>(len));
std::string value = _space + 1;
material.unknown_parameter.insert(
std::pair<std::string, std::string>(key, value));
}
}
// flush last material.
material_map.insert(std::pair<std::string, int>(
material.name, static_cast<int>(materials.size())));
materials.push_back(material);
}
bool MaterialFileReader::operator()(const std::string &matId,
std::vector<material_t> &materials,
std::map<std::string, int> &matMap,
std::string &err) {
std::string filepath;
if (!m_mtlBasePath.empty()) {
filepath = std::string(m_mtlBasePath) + matId;
} else {
filepath = matId;
}
std::ifstream matIStream(filepath.c_str());
LoadMtl(matMap, materials, matIStream);
if (!matIStream) {
std::stringstream ss;
ss << "WARN: Material file [ " << filepath
<< " ] not found. Created a default material.";
err += ss.str();
}
return true;
}
bool LoadObj(std::vector<shape_t> &shapes, // [output]
std::vector<material_t> &materials, // [output]
std::string &err, const char *filename, const char *mtl_basepath,
unsigned int flags) {
shapes.clear();
std::stringstream errss;
std::ifstream ifs(filename);
if (!ifs) {
errss << "Cannot open file [" << filename << "]" << std::endl;
err = errss.str();
return false;
}
std::string basePath;
if (mtl_basepath) {
basePath = mtl_basepath;
}
MaterialFileReader matFileReader(basePath);
return LoadObj(shapes, materials, err, ifs, matFileReader, flags);
}
bool LoadObj(std::vector<shape_t> &shapes, // [output]
std::vector<material_t> &materials, // [output]
std::string &err, std::istream &inStream,
MaterialReader &readMatFn, unsigned int flags) {
std::stringstream errss;
std::vector<float> v;
std::vector<float> vn;
std::vector<float> vt;
std::vector<tag_t> tags;
std::vector<std::vector<vertex_index> > faceGroup;
std::string name;
// material
std::map<std::string, int> material_map;
std::map<vertex_index, unsigned int> vertexCache;
int material = -1;
shape_t shape;
while (inStream.peek() != -1) {
std::string linebuf;
safeGetline(inStream, linebuf);
// Trim newline '\r\n' or '\n'
if (linebuf.size() > 0) {
if (linebuf[linebuf.size() - 1] == '\n')
linebuf.erase(linebuf.size() - 1);
}
if (linebuf.size() > 0) {
if (linebuf[linebuf.size() - 1] == '\r')
linebuf.erase(linebuf.size() - 1);
}
// Skip if empty line.
if (linebuf.empty()) {
continue;
}
// Skip leading space.
const char *token = linebuf.c_str();
token += strspn(token, " \t");
assert(token);
if (token[0] == '\0')
continue; // empty line
if (token[0] == '#')
continue; // comment line
// vertex
if (token[0] == 'v' && IS_SPACE((token[1]))) {
token += 2;
float x, y, z;
parseFloat3(x, y, z, token);
v.push_back(x);
v.push_back(y);
v.push_back(z);
continue;
}
// normal
if (token[0] == 'v' && token[1] == 'n' && IS_SPACE((token[2]))) {
token += 3;
float x, y, z;
parseFloat3(x, y, z, token);
vn.push_back(x);
vn.push_back(y);
vn.push_back(z);
continue;
}
// texcoord
if (token[0] == 'v' && token[1] == 't' && IS_SPACE((token[2]))) {
token += 3;
float x, y;
parseFloat2(x, y, token);
vt.push_back(x);
vt.push_back(y);
continue;
}
// face
if (token[0] == 'f' && IS_SPACE((token[1]))) {
token += 2;
token += strspn(token, " \t");
std::vector<vertex_index> face;
face.reserve(3);
while (!IS_NEW_LINE(token[0])) {
vertex_index vi = parseTriple(token, static_cast<int>(v.size() / 3),
static_cast<int>(vn.size() / 3),
static_cast<int>(vt.size() / 2));
face.push_back(vi);
size_t n = strspn(token, " \t\r");
token += n;
}
// replace with emplace_back + std::move on C++11
faceGroup.push_back(std::vector<vertex_index>());
faceGroup[faceGroup.size() - 1].swap(face);
continue;
}
// use mtl
if ((0 == strncmp(token, "usemtl", 6)) && IS_SPACE((token[6]))) {
char namebuf[TINYOBJ_SSCANF_BUFFER_SIZE];
token += 7;
#ifdef _MSC_VER
sscanf_s(token, "%s", namebuf, (unsigned)_countof(namebuf));
#else
sscanf(token, "%s", namebuf);
#endif
int newMaterialId = -1;
if (material_map.find(namebuf) != material_map.end()) {
newMaterialId = material_map[namebuf];
} else {
// { error!! material not found }
}
if (newMaterialId != material) {
// Create per-face material
exportFaceGroupToShape(shape, vertexCache, v, vn, vt, faceGroup, tags,
material, name, true, flags, err);
faceGroup.clear();
material = newMaterialId;
}
continue;
}
// load mtl
if ((0 == strncmp(token, "mtllib", 6)) && IS_SPACE((token[6]))) {
char namebuf[TINYOBJ_SSCANF_BUFFER_SIZE];
token += 7;
#ifdef _MSC_VER
sscanf_s(token, "%s", namebuf, (unsigned)_countof(namebuf));
#else
sscanf(token, "%s", namebuf);
#endif
std::string err_mtl;
bool ok = readMatFn(namebuf, materials, material_map, err_mtl);
err += err_mtl;
if (!ok) {
faceGroup.clear(); // for safety
return false;
}
continue;
}
// group name
if (token[0] == 'g' && IS_SPACE((token[1]))) {
// flush previous face group.
bool ret =
exportFaceGroupToShape(shape, vertexCache, v, vn, vt, faceGroup, tags,
material, name, true, flags, err);
if (ret) {
shapes.push_back(shape);
}
shape = shape_t();
// material = -1;
faceGroup.clear();
std::vector<std::string> names;
names.reserve(2);
while (!IS_NEW_LINE(token[0])) {
std::string str = parseString(token);
names.push_back(str);
token += strspn(token, " \t\r"); // skip tag
}
assert(names.size() > 0);
// names[0] must be 'g', so skip the 0th element.
if (names.size() > 1) {
name = names[1];
} else {
name = "";
}
continue;
}
// object name
if (token[0] == 'o' && IS_SPACE((token[1]))) {
// flush previous face group.
bool ret =
exportFaceGroupToShape(shape, vertexCache, v, vn, vt, faceGroup, tags,
material, name, true, flags, err);
if (ret) {
shapes.push_back(shape);
}
// material = -1;
faceGroup.clear();
shape = shape_t();
// @todo { multiple object name? }
char namebuf[TINYOBJ_SSCANF_BUFFER_SIZE];
token += 2;
#ifdef _MSC_VER
sscanf_s(token, "%s", namebuf, (unsigned)_countof(namebuf));
#else
sscanf(token, "%s", namebuf);
#endif
name = std::string(namebuf);
continue;
}
if (token[0] == 't' && IS_SPACE(token[1])) {
tag_t tag;
char namebuf[4096];
token += 2;
#ifdef _MSC_VER
sscanf_s(token, "%s", namebuf, (unsigned)_countof(namebuf));
#else
sscanf(token, "%s", namebuf);
#endif
tag.name = std::string(namebuf);
token += tag.name.size() + 1;
tag_sizes ts = parseTagTriple(token);
tag.intValues.resize(static_cast<size_t>(ts.num_ints));
for (size_t i = 0; i < static_cast<size_t>(ts.num_ints); ++i) {
tag.intValues[i] = atoi(token);
token += strcspn(token, "/ \t\r") + 1;
}
tag.floatValues.resize(static_cast<size_t>(ts.num_floats));
for (size_t i = 0; i < static_cast<size_t>(ts.num_floats); ++i) {
tag.floatValues[i] = parseFloat(token);
token += strcspn(token, "/ \t\r") + 1;
}
tag.stringValues.resize(static_cast<size_t>(ts.num_strings));
for (size_t i = 0; i < static_cast<size_t>(ts.num_strings); ++i) {
char stringValueBuffer[4096];
#ifdef _MSC_VER
sscanf_s(token, "%s", stringValueBuffer,
(unsigned)_countof(stringValueBuffer));
#else
sscanf(token, "%s", stringValueBuffer);
#endif
tag.stringValues[i] = stringValueBuffer;
token += tag.stringValues[i].size() + 1;
}
tags.push_back(tag);
}
// Ignore unknown command.
}
bool ret = exportFaceGroupToShape(shape, vertexCache, v, vn, vt, faceGroup,
tags, material, name, true, flags, err);
if (ret) {
shapes.push_back(shape);
}
faceGroup.clear(); // for safety
err += errss.str();
return true;
}
} // namespace
#endif
#endif // TINY_OBJ_LOADER_H_