237 lines
9.5 KiB
GLSL
237 lines
9.5 KiB
GLSL
#ifndef SHADOWMAP_GLSL
|
|
#define SHADOWMAP_GLSL
|
|
|
|
#include "utils.glsl"
|
|
|
|
uniform bool u_shadow_receiver;
|
|
uniform float u_cascade_distances[MAX_LIGHTS * NUM_SHADOW_CASCADES];
|
|
uniform samplerCube shadowMap[MAX_LIGHTS];
|
|
uniform sampler2D shadowMap2D[MAX_LIGHTS * NUM_SHADOW_CASCADES];
|
|
uniform sampler3D shadow_offsets;
|
|
uniform int shadow_filter_size;
|
|
uniform int shadow_window_size;
|
|
|
|
// const float bias_modifier[NUM_SHADOW_CASCADES] = float[NUM_SHADOW_CASCADES](0.95, 0.35, 0.20, 0.1, 0.1, 0.1);
|
|
const float bias_modifier[NUM_SHADOW_CASCADES] = float[NUM_SHADOW_CASCADES](1.0, 6.0, 9.0, 16.0);
|
|
// const float bias_modifier[NUM_SHADOW_CASCADES] = float[NUM_SHADOW_CASCADES](0.95, 0.35, 0.20, 0.15);
|
|
|
|
vec2 shadow_vsm_variance(vec3 dir, int light_index, float distance, float min_variance, float variance_transition, out float alpha) {
|
|
// Calculate the variance
|
|
vec3 sampledValue = texture(shadowMap[light_index], dir).rgb;
|
|
vec2 moments = sampledValue.rg;
|
|
alpha = 1.0;//sampledValue.b;
|
|
float variance = max(moments.y - (moments.x * moments.x), min_variance);
|
|
float d = distance - moments.x;
|
|
return (vec2(linstep(variance_transition, 1.0, variance / (variance + d * d)), moments.x));
|
|
}
|
|
|
|
float shadow_vsm(float distance, vec3 dir, int light_index, float min_variance, float variance_transition, float shadow_softness_raw, float penumbra_size) {
|
|
float clamped_distance = clamp(distance, 0.0, 200.0);
|
|
float shadow_softness = shadow_softness_raw * 10.0;
|
|
shadow_softness = mix(shadow_softness, distance * 10.0, penumbra_size);
|
|
distance = distance / 200;
|
|
|
|
|
|
// Get the offset coordinates
|
|
ivec3 ofs_coord = ivec3(0);
|
|
vec2 ofs = mod(gl_FragCoord.xy, vec2(shadow_window_size));
|
|
ofs_coord.yz = ivec2(ofs);
|
|
float ofs_sum = 0.0;
|
|
int samples_div2 = int(shadow_filter_size * shadow_filter_size / 2.0);
|
|
vec4 sc = vec4(dir, 1.0);
|
|
sc.z = dir.z;
|
|
|
|
vec2 tex_size = textureSize(shadowMap[light_index], 0);
|
|
vec3 texelSize = 1.0 / vec3(tex_size.xyy);
|
|
vec3 light_plane_normal = normalize(dir);
|
|
vec3 up_axis = normalize(view[1].xyz);
|
|
vec3 tangent = normalize(cross(light_plane_normal, up_axis));
|
|
vec3 bitangent = cross(light_plane_normal, tangent);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
ofs_coord.x = i;
|
|
vec4 offsets = texelFetch(shadow_offsets, ofs_coord, 0) * shadow_softness;
|
|
|
|
vec3 offset_dir = tangent * offsets.r + bitangent * offsets.g;
|
|
sc.xyz = dir.xyz + offset_dir * texelSize;
|
|
float alpha;
|
|
vec2 variance = shadow_vsm_variance(sc.xyz, light_index, distance, min_variance, variance_transition, alpha);
|
|
ofs_sum += min(max(step(distance*alpha, variance.y), variance.x), 1.0);
|
|
|
|
offset_dir = tangent * offsets.b + bitangent * offsets.a;
|
|
sc.xyz = dir.xyz + offset_dir * texelSize;
|
|
variance = shadow_vsm_variance(sc.xyz, light_index, distance, min_variance, variance_transition, alpha);
|
|
ofs_sum += min(max(step(distance*alpha, variance.y), variance.x), 1.0);
|
|
}
|
|
|
|
float shadow_sum = ofs_sum / 8.0;
|
|
|
|
if (shadow_sum != 0.0 && shadow_sum != 1.0) {
|
|
for (int i = 4; i < samples_div2; i++) {
|
|
ofs_coord.x = i;
|
|
vec4 offsets = texelFetch(shadow_offsets, ofs_coord, 0) * shadow_softness;
|
|
|
|
vec3 offset_dir = tangent * offsets.r + bitangent * offsets.g;
|
|
sc.xyz = dir.xyz + offset_dir * texelSize;
|
|
float alpha;
|
|
vec2 variance = shadow_vsm_variance(sc.xyz, light_index, distance, min_variance, variance_transition, alpha);
|
|
ofs_sum += min(max(step(distance*alpha, variance.y), variance.x), 1.0);
|
|
|
|
offset_dir = tangent * offsets.b + bitangent * offsets.a;
|
|
sc.xyz = dir.xyz + offset_dir * texelSize;
|
|
variance = shadow_vsm_variance(sc.xyz, light_index, distance, min_variance, variance_transition, alpha);
|
|
ofs_sum += min(max(step(distance*alpha, variance.y), variance.x), 1.0);
|
|
}
|
|
|
|
shadow_sum = ofs_sum / (samples_div2 * 2.0);
|
|
}
|
|
|
|
// vec3 sampleDir = dir + (rand(vec2(v_position_ws.x, v_position_ws.y))*0.25f);
|
|
// float shadow = 0.0;
|
|
// vec2 moments = ;
|
|
|
|
// // Calculate the variance
|
|
// float variance = max(moments.y - (moments.x * moments.x), min_variance);
|
|
// float d = distance - moments.x;
|
|
// float p_max = linstep(variance_transition, 1.0, variance / (variance + d * d));
|
|
|
|
return shadow_sum;//min(max(step(distance, moments.x), shadow_sum), 1.0);
|
|
}
|
|
|
|
float shadowmap_cascade_sample(vec2 sc, int cascade_index, float blend_factor, out float alpha) {
|
|
vec2 s1 = texture(shadowMap2D[cascade_index], sc).rg;
|
|
// float s2 = texture(shadowMap2D[cascade_index + 1], sc).r;
|
|
// return mix(s1, s2, blend_factor);
|
|
alpha = 1.0;//s1.g;
|
|
return s1.r;
|
|
}
|
|
|
|
float shadow_csm(float distance, vec3 lightDir, int light_index, float shadow_bias, float normal_bias, float shadow_softness) {
|
|
// Determine which cascade to use
|
|
int cascade_index = -1;
|
|
int min_cascades_range = light_index * NUM_SHADOW_CASCADES;
|
|
int max_cascades_range = min_cascades_range + NUM_SHADOW_CASCADES;
|
|
for (int i = min_cascades_range; i < max_cascades_range; i++) {
|
|
if (distance < u_cascade_distances[i]) {
|
|
cascade_index = i;
|
|
break;
|
|
}
|
|
}
|
|
if (cascade_index == -1) {
|
|
cascade_index = max_cascades_range - 1;
|
|
}
|
|
|
|
int matrix_index = cascade_index - min_cascades_range;
|
|
|
|
// Blend cascades using a blend region value
|
|
float blend_region = 200.0;
|
|
float blend_factor = 0.0;
|
|
if (matrix_index < NUM_SHADOW_CASCADES - 1) {
|
|
blend_factor = 0.5;
|
|
}
|
|
// float cascade_start = u_cascade_distances[cascade_index];
|
|
// float cascade_end = u_cascade_distances[cascade_index + 1];
|
|
// float blend_start = cascade_end - blend_region;
|
|
|
|
// if (distance > blend_start) {
|
|
// blend_factor = smoothstep(blend_start, cascade_end, distance);
|
|
// }
|
|
// }
|
|
|
|
light_t light = u_lights[light_index];
|
|
|
|
vec4 fragPosLightSpace = light.shadow_matrix[matrix_index] * vec4(v_position_ws, 1.0);
|
|
|
|
// Perform perspective divide
|
|
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
|
|
|
|
// Transform to [0,1] range
|
|
projCoords = projCoords * 0.5 + 0.5;
|
|
vec4 sc = vec4(projCoords, 1.0);
|
|
|
|
float currentDepth = projCoords.z;
|
|
|
|
if (currentDepth > 1.0) {
|
|
return 1.0;
|
|
}
|
|
|
|
// Calculate bias
|
|
vec3 normal = normalize(vneye.xyz);
|
|
float bias = max(normal_bias * bias_modifier[matrix_index] * (1.0 - dot(normal, lightDir)), shadow_bias);
|
|
bias *= 1 / (u_cascade_distances[cascade_index]);
|
|
|
|
// CSM
|
|
float shadow = 0.0;
|
|
vec2 texelSize = 1.0 / textureSize(shadowMap2D[cascade_index], 0);
|
|
|
|
// Get the offset coordinates
|
|
ivec3 ofs_coord = ivec3(0);
|
|
vec2 ofs = mod(gl_FragCoord.xy, vec2(shadow_window_size));
|
|
ofs_coord.yz = ivec2(ofs);
|
|
float ofs_sum = 0.0;
|
|
int samples_div2 = int(shadow_filter_size * shadow_filter_size / 2.0);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
ofs_coord.x = i;
|
|
vec4 offsets = texelFetch(shadow_offsets, ofs_coord, 0) * shadow_softness;
|
|
sc.xy = projCoords.xy + offsets.rg * texelSize;
|
|
float alpha;
|
|
float csmDepth = shadowmap_cascade_sample(sc.xy, cascade_index, blend_factor, alpha);
|
|
ofs_sum += currentDepth - bias > csmDepth ? alpha : 0.0;
|
|
|
|
sc.xy = projCoords.xy + offsets.ba * texelSize;
|
|
csmDepth = shadowmap_cascade_sample(sc.xy, cascade_index, blend_factor, alpha);
|
|
ofs_sum += currentDepth - bias > csmDepth ? alpha : 0.0;
|
|
}
|
|
|
|
float shadow_sum = ofs_sum / 8.0;
|
|
|
|
if (shadow_sum != 0.0 && shadow_sum != 1.0) {
|
|
for (int i = 4; i < samples_div2; i++) {
|
|
ofs_coord.x = i;
|
|
vec4 offsets = texelFetch(shadow_offsets, ofs_coord, 0) * shadow_softness;
|
|
sc.xy = projCoords.xy + offsets.rg * texelSize;
|
|
float alpha;
|
|
float csmDepth = shadowmap_cascade_sample(sc.xy, cascade_index, blend_factor, alpha);
|
|
ofs_sum += currentDepth - bias > csmDepth ? alpha : 0.0;
|
|
|
|
sc.xy = projCoords.xy + offsets.ba * texelSize;
|
|
csmDepth = shadowmap_cascade_sample(sc.xy, cascade_index, blend_factor, alpha);
|
|
ofs_sum += currentDepth - bias > csmDepth ? alpha : 0.0;
|
|
}
|
|
|
|
shadow_sum = ofs_sum / (samples_div2 * 2.0);
|
|
}
|
|
return 1.0 - shadow_sum;
|
|
}
|
|
|
|
vec4 shadowmap(int idx, in vec4 peye, in vec4 neye) {
|
|
vec3 fragment = vec3(peye);
|
|
float shadowFactor = 1.0;
|
|
light_t light = u_lights[idx];
|
|
|
|
if (light.processed_shadows) {
|
|
if (light.type == LIGHT_DIRECTIONAL) {
|
|
shadowFactor = shadow_csm(-peye.z, light.dir, idx, light.shadow_bias, light.normal_bias, light.shadow_softness);
|
|
} else if (light.type == LIGHT_POINT || light.type == LIGHT_SPOT) {
|
|
vec3 light_pos = (view * vec4(light.pos, 1.0)).xyz;
|
|
vec3 dir = light_pos - fragment;
|
|
vec4 sc = inv_view * vec4(dir, 0.0);
|
|
shadowFactor = shadow_vsm(length(dir), -sc.xyz, idx, light.min_variance, light.variance_transition, light.shadow_softness, light.penumbra_size);
|
|
}
|
|
}
|
|
|
|
return vec4(vec3(shadowFactor), 1.0);
|
|
}
|
|
|
|
vec4 shadowing(int idx) {
|
|
if (u_shadow_receiver) {
|
|
return shadowmap(idx, vpeye, vneye);
|
|
} else {
|
|
return vec4(1.0);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|