129 lines
3.2 KiB
GLSL
129 lines
3.2 KiB
GLSL
#ifndef LIGHT_GLSL
|
|
#define LIGHT_GLSL
|
|
|
|
#include "brdf.glsl"
|
|
|
|
uniform int u_num_lights;
|
|
|
|
#define NUM_SHADOW_CASCADES 6
|
|
|
|
struct light_t {
|
|
int type;
|
|
vec3 diffuse;
|
|
vec3 specular;
|
|
vec3 ambient;
|
|
vec3 pos;
|
|
vec3 dir;
|
|
float power;
|
|
float radius;
|
|
float innerCone;
|
|
float outerCone;
|
|
bool processed_shadows;
|
|
|
|
// falloff
|
|
float constant;
|
|
float linear;
|
|
float quadratic;
|
|
|
|
// shadows
|
|
mat4 shadow_matrix[NUM_SHADOW_CASCADES];
|
|
};
|
|
|
|
#define MAX_LIGHTS 16
|
|
const int LIGHT_DIRECTIONAL = 0;
|
|
const int LIGHT_POINT = 1;
|
|
const int LIGHT_SPOT = 2;
|
|
|
|
uniform light_t u_lights[MAX_LIGHTS];
|
|
|
|
struct material_t {
|
|
vec3 albedo;
|
|
vec3 normal;
|
|
vec3 F0;
|
|
float roughness;
|
|
float metallic;
|
|
float alpha;
|
|
};
|
|
|
|
vec3 shading_light(light_t l, material_t m) {
|
|
vec3 lightDir;
|
|
float attenuation = 1.0;
|
|
|
|
if (l.type == LIGHT_DIRECTIONAL) {
|
|
lightDir = normalize(-l.dir);
|
|
} else if (l.type == LIGHT_POINT || l.type == LIGHT_SPOT) {
|
|
vec3 toLight = l.pos - v_position_ws;
|
|
lightDir = normalize(toLight);
|
|
float distance = length(toLight);
|
|
|
|
/* fast-reject based on radius */
|
|
if (l.radius != 0.0 && distance > l.radius) {
|
|
return vec3(0,0,0);
|
|
}
|
|
attenuation = 1.0 / (l.constant + l.linear * distance + l.quadratic * (distance * distance));
|
|
|
|
if (l.type == LIGHT_SPOT) {
|
|
float angle = dot(l.dir, -lightDir);
|
|
if (angle > l.innerCone) {
|
|
float intensity = (angle-l.innerCone)/(l.outerCone-l.innerCone);
|
|
attenuation *= clamp(intensity, 0.0, 1.0);
|
|
} else {
|
|
attenuation = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// fast-rejection for faraway vertices
|
|
if (attenuation <= 0.01) {
|
|
return vec3(0,0,0);
|
|
}
|
|
|
|
#ifdef SHADING_PBR
|
|
vec3 radiance = l.diffuse * BOOST_LIGHTING;
|
|
vec3 V = normalize( v_to_camera );
|
|
vec3 N = m.normal;
|
|
vec3 L = normalize( lightDir );
|
|
vec3 H = normalize( V + L );
|
|
|
|
vec3 F = fresnel_schlick( H, V, m.F0 );
|
|
vec3 kS = F;
|
|
vec3 kD = vec3(1.0) - kS;
|
|
kD *= 1.0 - m.metallic;
|
|
|
|
// Premultiplied alpha applied to the diffuse component only
|
|
kD *= m.alpha;
|
|
|
|
float D = distribution_ggx( N, H, m.roughness );
|
|
float G = geometry_smith( N, V, L, m.roughness );
|
|
|
|
vec3 num = D * F * G;
|
|
float denom = 4. * max( 0., dot( N, V ) ) * max( 0., dot( N, L ) );
|
|
|
|
vec3 specular = kS * (num / max( 0.001, denom ));
|
|
|
|
float NdotL = max( 0., dot( N, L ) );
|
|
|
|
return ( kD * ( m.albedo / PI ) + specular ) * radiance * NdotL * attenuation;
|
|
#else
|
|
vec3 n = normalize(v_normal_ws);
|
|
|
|
float diffuse = max(dot(n, lightDir), 0.0);
|
|
|
|
vec3 halfVec = normalize(lightDir + u_cam_dir);
|
|
float specular = pow(max(dot(n, halfVec), 0.0), l.power);
|
|
|
|
return (attenuation*l.ambient + diffuse*attenuation*l.diffuse + specular*attenuation*l.specular);
|
|
#endif
|
|
}
|
|
|
|
vec3 lighting(material_t m) {
|
|
vec3 lit = vec3(0,0,0);
|
|
#ifndef SHADING_NONE
|
|
for (int i=0; i<u_num_lights; i++) {
|
|
lit += shading_light(u_lights[i], m);
|
|
}
|
|
#endif
|
|
return lit;
|
|
}
|
|
|
|
#endif |