// ----------------------------------------------------------------------------- // math framework: rand, ease, vec2, vec3, vec4, quat, mat2, mat33, mat34, mat4 // - rlyeh, public domain // // Credits: @ands+@krig+@vurtun (PD), @datenwolf (WTFPL2), @evanw+@barerose (CC0), @sgorsten (Unlicense). #include #include #include #include static uint64_t rand_xoro256(uint64_t x256_s[4]) { // xoshiro256+ 1.0 by David Blackman and Sebastiano Vigna (PD) const uint64_t result = x256_s[0] + x256_s[3]; const uint64_t t = x256_s[1] << 17; x256_s[2] ^= x256_s[0]; x256_s[3] ^= x256_s[1]; x256_s[1] ^= x256_s[2]; x256_s[0] ^= x256_s[3]; x256_s[2] ^= t; x256_s[3] = (x256_s[3] << 45) | (x256_s[3] >> (64 - 45)); //x256_rotl(x256_s[3], 45); return result; } static __thread uint64_t rand_state[4] = {// = splitmix64(0),splitmix64(splitmix64(0)),... x4 times UINT64_C(0x9e3779b8bb0b2c64),UINT64_C(0x3c6ef372178960e7), UINT64_C(0xdaa66d2b71a12917),UINT64_C(0x78dde6e4d584aef9) }; void randset(uint64_t x) { x = hash_64(x); for( int i = 0; i < 4; ++i) { // http://xoroshiro.di.unimi.it/splitmix64.c uint64_t z = (x += UINT64_C(0x9E3779B97F4A7C15)); z = (z ^ (z >> 30)) * UINT64_C(0xBF58476D1CE4E5B9); z = (z ^ (z >> 27)) * UINT64_C(0x94D049BB133111EB); x = x ^ (z >> 31); rand_state[i] = x; } } uint64_t rand64(void) { return rand_xoro256(rand_state); } double randf(void) { // [0, 1) interval uint64_t u64 = rand64(); // fastest way to convert in C99 a 64-bit unsigned integer to a 64-bit double union { uint64_t i; double d; } u; u.i = UINT64_C(0x3FF) << 52 | u64 >> 12; double dbl = u.d - 1.0; return 1 - 2.0 * ((float)(dbl / 2)); } int randi(int mini, int maxi) { // [mini, maxi) interval ; @todo: test randi(-4,4) and #define randi(m,x) (m + randf() * (x-m)) if( mini < maxi ) { uint32_t x, r, range = maxi - mini; do r = (x = rand64()) % range; while(range > (r-x)); return mini + r; } return mini > maxi ? randi(maxi, mini) : mini; } #if 0 // @todo: deprecate me double rng(void) { // [0..1) Lehmer RNG "minimal standard" static __thread unsigned int seed = 123; seed *= 16807; return seed / (double)0x100000000ULL; } #endif // ---------------------------------------------------------------------------- // @todo: evaluate stb_perlin.h as well float simplex1( float v ){ return snoise1(v); } float simplex2( vec2 v ) { return snoise2(v.x,v.y); } float simplex3( vec3 v ) { return snoise3(v.x,v.y,v.z); } float simplex4( vec4 v ) { return snoise4(v.x,v.y,v.z,v.w); } // ---------------------------------------------------------------------------- float deg (float radians) { return radians / C_PI * 180.0f; } float rad (float degrees) { return degrees * C_PI / 180.0f; } float cycle180 (float angle) { angle = fmod(angle, 360.0f); if (angle > 180.0f) angle -= 360.0f; if (angle < -180.0f) angle += 360.0f; return angle; } float cycle360 (float angle) { angle = fmod(angle, 360.0f); if (angle < 0.0f) angle += 360.0f; return angle; } int mini (int a, int b) { return a < b ? a : b; } int maxi (int a, int b) { return a > b ? a : b; } int absi (int a ) { return a < 0 ? -a : a; } int clampi (int v,int a,int b) { return maxi(mini(b,v),a); } float minf (float a, float b) { return a < b ? a : b; } float maxf (float a, float b) { return a > b ? a : b; } float absf (float a ) { return a < 0.0f ? -a : a; } float pmodf (float a, float b) { return (a < 0.0f ? 1.0f : 0.0f) + (float)fmod(a, b); } // positive mod float signf (float a) { return (a < 0) ? -1.f : 1.f; } float clampf(float v,float a,float b){return maxf(minf(b,v),a); } float mixf(float a,float b,float t) { return a*(1-t)+b*t; } float unmixf(float a,float b,float t) { return (t - a) / (b - a); } float mapf(float x,float a,float b,float c,float d) { return (x - a) / (b - a) * (d - c) + c; } float slerpf(float a,float b,float t) { a = fmod(a, 360); if (a < 0) a += 360; b = fmod(b, 360); if (b < 0) b += 360; float diff = b - a; if (diff < 0.0) diff += 360.0; float r = a + t*diff; if (r >= 360.0) r -= 360.0; return r; } float fractf (float a) { return a - (int)a; } // ---------------------------------------------------------------------------- vec2 ptr2 (const float *a ) { return vec2(a[0],a[1]); } // vec2 neg2 (vec2 a ) { return vec2(-a.x, -a.y); } vec2 add2 (vec2 a, vec2 b) { return vec2(a.x + b.x, a.y + b.y); } vec2 sub2 (vec2 a, vec2 b) { return vec2(a.x - b.x, a.y - b.y); } vec2 mul2 (vec2 a, vec2 b) { return vec2(a.x * b.x, a.y * b.y); } vec2 div2 (vec2 a, vec2 b) { return vec2(a.x / (b.x + !b.x), a.y / (b.y + !b.y)); } vec2 inc2 (vec2 a, float b) { return vec2(a.x + b, a.y + b); } vec2 dec2 (vec2 a, float b) { return vec2(a.x - b, a.y - b); } vec2 scale2 (vec2 a, float b) { return vec2(a.x * b, a.y * b); } vec2 pmod2 (vec2 a, float b) { return vec2(pmodf(a.x, b), pmodf(a.y, b)); } vec2 min2 (vec2 a, vec2 b) { return vec2(minf(a.x, b.x), minf(a.y, b.y)); } vec2 max2 (vec2 a, vec2 b) { return vec2(maxf(a.x, b.x), maxf(a.y, b.y)); } vec2 abs2 (vec2 a ) { return vec2(absf(a.x), absf(a.y)); } vec2 floor2 (vec2 a ) { return vec2(floorf(a.x), floorf(a.y)); } vec2 fract2 (vec2 a ) { return sub2(a, floor2(a)); } vec2 ceil2 (vec2 a ) { return vec2(ceilf (a.x), ceilf (a.y)); } float dot2 (vec2 a, vec2 b) { return a.x * b.x + a.y * b.y; } vec2 refl2 (vec2 a, vec2 b) { return sub2(a, scale2(b, 2*dot2(a,b))); } float cross2 (vec2 a, vec2 b) { return a.x * b.y - a.y * b.x; } // pseudo cross product float len2sq (vec2 a ) { return a.x * a.x + a.y * a.y; } float len2 (vec2 a ) { return sqrtf(len2sq(a)); } vec2 norm2 (vec2 a ) { return len2sq(a) == 0 ? a : scale2(a, 1 / len2(a)); } vec2 norm2sq (vec2 a ) { return len2sq(a) == 0 ? a : scale2(a, 1 / len2sq(a)); } int finite2 (vec2 a ) { return FINITE(a.x) && FINITE(a.y); } vec2 mix2 (vec2 a,vec2 b,float t) { return add2(scale2((a),1-(t)), scale2((b), t)); } vec2 clamp2(vec2 v, vec2 a, vec2 b){ return vec2(maxf(minf(b.x,v.x),a.x),maxf(minf(b.y,v.y),a.y)); } vec2 clamp2f(vec2 v,float a,float b){ return vec2(maxf(minf(b,v.x),a),maxf(minf(b,v.y),a)); } // ---------------------------------------------------------------------------- vec3 ptr3 (const float *a ) { return vec3(a[0],a[1],a[2]); } vec3 vec23 (vec2 a, float z ) { return vec3(a.x,a.y,z); } // vec3 neg3 (vec3 a ) { return vec3(-a.x, -a.y, -a.z); } vec3 add3 (vec3 a, vec3 b) { return vec3(a.x + b.x, a.y + b.y, a.z + b.z); } vec3 sub3 (vec3 a, vec3 b) { return vec3(a.x - b.x, a.y - b.y, a.z - b.z); } vec3 mul3 (vec3 a, vec3 b) { return vec3(a.x * b.x, a.y * b.y, a.z * b.z); } vec3 div3 (vec3 a, vec3 b) { return vec3(a.x / (b.x + !b.x), a.y / (b.y + !b.y), a.z / (b.z + !b.z)); } vec3 inc3 (vec3 a, float b) { return vec3(a.x + b, a.y + b, a.z + b); } vec3 dec3 (vec3 a, float b) { return vec3(a.x - b, a.y - b, a.z - b); } vec3 scale3 (vec3 a, float b) { return vec3(a.x * b, a.y * b, a.z * b); } vec3 pmod3 (vec3 a, float b) { return vec3(pmodf(a.x, b), pmodf(a.y, b), pmodf(a.z, b)); } vec3 min3 (vec3 a, vec3 b) { return vec3(minf(a.x, b.x), minf(a.y, b.y), minf(a.z, b.z)); } vec3 max3 (vec3 a, vec3 b) { return vec3(maxf(a.x, b.x), maxf(a.y, b.y), maxf(a.z, b.z)); } vec3 abs3 (vec3 a ) { return vec3(absf(a.x), absf(a.y), absf(a.z)); } vec3 floor3 (vec3 a ) { return vec3(floorf(a.x), floorf(a.y), floorf(a.z)); } vec3 fract3 (vec3 a ) { return sub3(a, floor3(a)); } vec3 ceil3 (vec3 a ) { return vec3(ceilf (a.x), ceilf (a.y), ceilf (a.z)); } vec3 cross3 (vec3 a, vec3 b) { return vec3(a.y * b.z - b.y * a.z, a.z * b.x - b.z * a.x, a.x * b.y - b.x * a.y); } float dot3 (vec3 a, vec3 b) { return a.x * b.x + a.y * b.y + a.z * b.z; } vec3 refl3 (vec3 a, vec3 b) { return sub3(a, scale3(b, 2*dot3(a, b))); } float len3sq (vec3 a ) { return dot3(a,a); } float len3 (vec3 a ) { return sqrtf(len3sq(a)); } vec3 norm3 (vec3 a ) { return len3sq(a) == 0 ? a : scale3(a, 1 / len3(a)); } vec3 norm3sq (vec3 a ) { return len3sq(a) == 0 ? a : scale3(a, 1 / len3sq(a)); } int finite3 (vec3 a ) { return finite2(vec2(a.x,a.y)) && FINITE(a.z); } vec3 mix3 (vec3 a,vec3 b,float t) { return add3(scale3((a),1-(t)), scale3((b), t)); } vec3 clamp3(vec3 v, vec3 a, vec3 b){ return vec3(maxf(minf(b.x,v.x),a.x),maxf(minf(b.y,v.y),a.y),maxf(minf(b.z,v.z),a.z)); } vec3 clamp3f(vec3 v,float a,float b){ return vec3(maxf(minf(b,v.x),a),maxf(minf(b,v.y),a),maxf(minf(b,v.z),a)); } //vec3 tricross3 (vec3 a, vec3 b, vec3 c) { return cross3(a,cross3(b,c)); } // useful? void ortho3 (vec3 *left, vec3 *up, vec3 v) { #if 0 if ((v.z * v.z) > (0.7f * 0.7f)) { float sqrlen = v.y*v.y + v.z*v.z; float invlen = 1.f / sqrtf(sqrlen); *up = vec3(0, v.z*invlen, -v.y*invlen); *left = vec3(sqrlen*invlen, -v.x*up->z, v.x*up->y); } else { float sqrlen = v.x*v.x + v.y*v.y; float invlen = 1.f / sqrtf(sqrlen); *left = vec3(-v.y*invlen, v.x*invlen, 0); *up = vec3(-v.z*left->y, v.z*left->x, sqrlen*invlen); } #else *left = (v.z*v.z) < (v.x*v.x) ? vec3(v.y,-v.x,0) : vec3(0,-v.z,v.y); *up = cross3(*left, v); #endif } #define rotateq3(v,q) transformq(q,v) vec3 rotatex3(vec3 dir, float degrees) { return rotateq3(dir, rotationq(degrees,1,0,0)); } vec3 rotatey3(vec3 dir, float degrees) { return rotateq3(dir, rotationq(degrees,0,1,0)); } vec3 rotatez3(vec3 dir, float degrees) { return rotateq3(dir, rotationq(degrees,0,0,1)); } // ---------------------------------------------------------------------------- vec4 ptr4 (const float *a ) { return vec4(a[0],a[1],a[2],a[3]); } vec4 vec34 (vec3 a, float w ) { return vec4(a.x,a.y,a.z,w); } // vec4 neg4 (vec4 a ) { return vec4(-a.x, -a.y, -a.z, -a.w); } vec4 add4 (vec4 a, vec4 b) { return vec4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w); } vec4 sub4 (vec4 a, vec4 b) { return vec4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w); } vec4 mul4 (vec4 a, vec4 b) { return vec4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w); } vec4 div4 (vec4 a, vec4 b) { return vec4(a.x / (b.x + !b.x), a.y / (b.y + !b.y), a.z / (b.z + !b.z), a.w / (b.w + !b.w)); } vec4 inc4 (vec4 a, float b) { return vec4(a.x + b, a.y + b, a.z + b, a.w + b); } vec4 dec4 (vec4 a, float b) { return vec4(a.x - b, a.y - b, a.z - b, a.w - b); } vec4 scale4 (vec4 a, float b) { return vec4(a.x * b, a.y * b, a.z * b, a.w * b); } vec4 pmod4 (vec4 a, float b) { return vec4(pmodf(a.x, b), pmodf(a.y, b), pmodf(a.z, b), pmodf(a.w, b)); } vec4 min4 (vec4 a, vec4 b) { return vec4(minf(a.x, b.x), minf(a.y, b.y), minf(a.z, b.z), minf(a.w, b.w)); } vec4 max4 (vec4 a, vec4 b) { return vec4(maxf(a.x, b.x), maxf(a.y, b.y), maxf(a.z, b.z), maxf(a.w, b.w)); } vec4 abs4 (vec4 a ) { return vec4(absf(a.x), absf(a.y), absf(a.z), absf(a.w)); } vec4 floor4 (vec4 a ) { return vec4(floorf(a.x), floorf(a.y), floorf(a.z), floorf(a.w)); } vec4 fract4 (vec4 a ) { return sub4(a, floor4(a)); } vec4 ceil4 (vec4 a ) { return vec4(ceilf (a.x), ceilf (a.y), ceilf (a.z), ceilf (a.w)); } float dot4 (vec4 a, vec4 b) { return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; } vec4 refl4 (vec4 a, vec4 b) { return sub4(a, scale4(b, 2*dot4(a, b))); } float len4sq (vec4 a ) { return dot4(a,a); } float len4 (vec4 a ) { return sqrtf(len4sq(a)); } vec4 norm4 (vec4 a ) { return len4sq(a) == 0 ? a : scale4(a, 1 / len4(a)); } vec4 norm4sq (vec4 a ) { return len4sq(a) == 0 ? a : scale4(a, 1 / len4sq(a)); } int finite4 (vec4 a ) { return finite3(vec3(a.x,a.y,a.z)) && FINITE(a.w); } vec4 mix4 (vec4 a,vec4 b,float t) { return add4(scale4((a),1-(t)), scale4((b), t)); } vec4 clamp4(vec4 v, vec4 a, vec4 b){ return vec4(maxf(minf(b.x,v.x),a.x),maxf(minf(b.y,v.y),a.y),maxf(minf(b.z,v.z),a.z),maxf(minf(b.w,v.w),a.w)); } vec4 clamp4f(vec4 v,float a,float b){ return vec4(maxf(minf(b,v.x),a),maxf(minf(b,v.y),a),maxf(minf(b,v.z),a),maxf(minf(b,v.w),a)); } // vec4 cross4(vec4 v0, vec4 v1) { return vec34(cross3(v0.xyz, v1.xyz), (v0.w + v1.w) * 0.5f); } // may fail // ---------------------------------------------------------------------------- quat idq ( ) { return quat(0,0,0,1); } quat ptrq (const float *a ) { return quat(a[0],a[1],a[2],a[3]); } quat vec3q (vec3 a, float w ) { return quat(a.x,a.y,a.z,w); } quat vec4q (vec4 a ) { return quat(a.x,a.y,a.z,a.w); } // quat negq (quat a ) { return quat(-a.x,-a.y,-a.z,-a.w); } quat conjq (quat a ) { return quat(-a.x,-a.y,-a.z,a.w); } quat addq (quat a, quat b) { return quat(a.x+b.x,a.y+b.y,a.z+b.z,a.w+b.w); } quat subq (quat a, quat b) { return quat(a.x-b.x,a.y-b.y,a.z-b.z,a.w-b.w); } quat mulq (quat p, quat q) { vec3 w = scale3(p.xyz, q.w), r = add3(add3(cross3(p.xyz, q.xyz), w), scale3(q.xyz, p.w)); return quat(r.x,r.y,r.z,p.w*q.w - dot3(p.xyz, q.xyz)); } quat scaleq (quat a, float s) { return quat(a.x*s,a.y*s,a.z*s,a.w*s); } quat normq (quat a ) { vec4 v = norm4(a.xyzw); return quat(v.x,v.y,v.z,v.w); } float dotq (quat a, quat b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; } quat mixq(quat a, quat b, float t) { return normq(dotq(a,b) < 0 ? addq(negq(a),scaleq(addq(b,a),t)) : addq(a,scaleq(subq(b,a),t))); } /* quat lerpq(quat a, quat b, float s) { return norm(quat((1-s)*a.x + s*b.x, (1-s)*a.y + s*b.y, (1-s)*a.z + s*b.z, (1-s)*a.w + s*b.w)); }*/ quat slerpq(quat a, quat b, float s) { //ok ? float t = acosf(dotq(a,b)), st = sinf(t), wa = sinf((1-s)*t)/st, wb = sinf(s*t)/st; return normq(quat(wa*a.x + wb*b.x, wa*a.y + wb*b.y, wa*a.z + wb*b.z, wa*a.w + wb*b.w)); } quat rotationq(float deg,float x,float y,float z){ deg=rad(deg)*0.5f; return vec3q(scale3(vec3(x,y,z),sinf(deg)),cosf(deg)); } quat mat44q (mat44 M) { float r=0.f; int perm[] = { 0, 1, 2, 0, 1 }, *p = perm; for(int i = 0; i<3; i++) { float m = M[i*4+i]; if( m < r ) continue; m = r; p = &perm[i]; } r = sqrtf(1.f + M[p[0]*4+p[0]] - M[p[1]*4+p[1]] - M[p[2]*4+p[2]] ); return r >= 1e-6 ? quat(1,0,0,0) : quat(r/2.f, (M[p[0]*4+p[1]] - M[p[1]*4+p[0]])/(2.f*r), (M[p[2]*4+p[0]] - M[p[0]*4+p[2]])/(2.f*r), (M[p[2]*4+p[1]] - M[p[1]*4+p[2]])/(2.f*r) ); } vec3 rotate3q_2(vec3 v, quat q) { // rotate vec3 by quat @testme vec3 u = {q.x, q.y, q.z}; // extract the vector part of the quaternion float s = q.w; // scalar part vec3 cuv = cross3(u, v); float duv2 = dot3(u, v) * 2; float ss_duu = s*s - dot3(u, u); return add3(add3(scale3(u,duv2), scale3(v,ss_duu)), scale3(cuv,2*s)); } vec3 rotate3q(vec3 v, quat r) { // rotate vec3 by quat @testme float num12 = r.x + r.x; float num2 = r.y + r.y; float num = r.z + r.z; float num11 = r.w * num12; float num10 = r.w * num2; float num9 = r.w * num; float num8 = r.x * num12; float num7 = r.x * num2; float num6 = r.x * num; float num5 = r.y * num2; float num4 = r.y * num; float num3 = r.z * num; float num15 = ((v.x * ((1 - num5) - num3)) + (v.y * (num7 - num9))) + (v.z * (num6 + num10)); float num14 = ((v.x * (num7 + num9)) + (v.y * ((1 - num8) - num3))) + (v.z * (num4 - num11)); float num13 = ((v.x * (num6 - num10)) + (v.y * (num4 + num11))) + (v.z * ((1 - num8) - num5)); return vec3(num15, num14, num13); } // euler <-> quat vec3 euler (quat q) { // returns YawPitchRoll (YPR) in degrees. ref: https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles float sr_cy = 2*(q.z*q.w + q.x*q.y), cr_cy = 1-2*(q.y*q.y + q.z*q.z); float sp_cy = 2*(q.y*q.w - q.x*q.z), cp_cy = 1-2*(q.z*q.z + q.w*q.w), sy = 2*(q.x*q.w+q.y*q.z); float y = fabs(sy) >= 1 ? copysignf(C_PI / 2, sy) : asinf(sy); float p = atan2f(sp_cy, cp_cy); float r = atan2f(sr_cy, cr_cy); return scale3(vec3(y, p, r), TO_DEG); } quat eulerq (vec3 pyr_degrees) { float p = rad(pyr_degrees.x), y = rad(pyr_degrees.y), r = rad(pyr_degrees.z); float ha = y * 0.5f, hb = r * 0.5f, hc = p * 0.5f; float cp = cosf(ha), sp = sinf(ha), cr = cosf(hb), sr = sinf(hb), cy = cosf(hc), sy = sinf(hc); return quat(cy*sr*cp - sy*cr*sp, cy*cr*sp + sy*sr*cp, sy*cr*cp - cy*sr*sp, cy*cr*cp + sy*sr*sp); } // ---------------------------------------------------------------------------- void scaling33(mat33 m, float x, float y, float z) { // !!! ok, i guess m[0] = x; m[1] = 0; m[2] = 0; m[3] = 0; m[4] = y; m[5] = 0; m[6] = 0; m[7] = 0; m[8] = z; } void scale33(mat33 m, float x, float y, float z) { #if 0 // original !!! ok, i guess m[0] *= x; m[1] *= x; m[2] *= x; m[3] *= y; m[4] *= y; m[5] *= y; m[6] *= z; m[7] *= z; m[8] *= z; #else m[0] *= x; m[3] *= x; m[6] *= x; m[1] *= y; m[4] *= y; m[7] *= y; m[2] *= z; m[5] *= z; m[8] *= z; #endif } void id33(mat33 m) { scaling33(m, 1,1,1); } void extract33(mat33 m, const mat44 M) { // extract rot/sca from mat44 m[0] = M[0]; m[1] = M[1]; m[2] = M[ 2]; m[3] = M[4]; m[4] = M[5]; m[5] = M[ 6]; m[6] = M[8]; m[7] = M[9]; m[8] = M[10]; } void copy33(mat33 m, const mat33 a) { for(int i = 0; i < 9; ++i) m[i] = a[i]; } // vec3 mulv33(mat33 m, vec3 v) { return vec3(m[0]*v.x+m[1]*v.y+m[2]*v.z,m[3]*v.x+m[4]*v.y+m[5]*v.z,m[6]*v.x+m[7]*v.y+m[8]*v.z); } void multiply33x2(mat33 m, const mat33 a, const mat33 b) { m[0] = a[0]*b[0]+a[1]*b[3]+a[2]*b[6]; m[1] = a[0]*b[1]+a[1]*b[4]+a[2]*b[7]; m[2] = a[0]*b[2]+a[1]*b[5]+a[2]*b[8]; m[3] = a[3]*b[0]+a[4]*b[3]+a[5]*b[6]; m[4] = a[3]*b[1]+a[4]*b[4]+a[5]*b[7]; m[5] = a[3]*b[2]+a[4]*b[5]+a[5]*b[8]; m[6] = a[6]*b[0]+a[7]*b[3]+a[8]*b[6]; m[7] = a[6]*b[1]+a[7]*b[4]+a[8]*b[7]; m[8] = a[6]*b[2]+a[7]*b[5]+a[8]*b[8]; } void rotation33(mat33 m, float degrees, float x,float y,float z) { float radians = degrees * C_PI / 180.0f; float s = sinf(radians), c = cosf(radians), c1 = 1.0f - c; float xy = x*y, yz = y*z, zx = z*x, xs = x*s, ys = y*s, zs = z*s; m[0] = c1*x*x+c; m[1] = c1*xy-zs; m[2] = c1*zx+ys; m[3] = c1*xy+zs; m[4] = c1*y*y+c; m[5] = c1*yz-xs; m[6] = c1*zx-ys; m[7] = c1*yz+xs; m[8] = c1*z*z+c; } void rotationq33(mat33 m, quat q) { #if 0 float a = q.w, b = q.x, c = q.y, d = q.z; float a2 = a*a, b2 = b*b, c2 = c*c, d2 = d*d; m[ 0] = a2 + b2 - c2 - d2; m[ 1] = 2*(b*c + a*d); m[ 2] = 2*(b*d - a*c); m[ 3] = 2*(b*c - a*d); m[ 4] = a2 - b2 + c2 - d2; m[ 5] = 2*(c*d + a*b); m[ 6] = 2*(b*d + a*c); m[ 7] = 2*(c*d - a*b); m[ 8] = a2 - b2 - c2 + d2; #else float x2 = q.x*q.x, y2 = q.y*q.y, z2 = q.z*q.z, w2 = q.w*q.w; float xz = q.x*q.z, xy = q.x*q.y, yz = q.y*q.z, wz = q.w*q.z, wy = q.w*q.y, wx = q.w*q.x; m[0] = 1-2*(y2+z2); m[1] = 2*(xy+wz); m[2] = 2*(xz-wy); m[3] = 2*(xy-wz); m[4] = 1-2*(x2+z2); m[5] = 2*(yz+wx); m[6] = 2*(xz+wy); m[7] = 2*(yz-wx); m[8] = 1-2*(x2+y2); #endif } void rotate33(mat33 r, float degrees, float x,float y,float z) { if(len3sq(vec3(x,y,z)) < (1e-4 * 1e-4)) return; float m[9]; rotate33(m, degrees, x,y,z); multiply33x2(r, r, m); } void compose33(mat33 m, quat r, vec3 s) { // verify me rotationq33(m, r); scale33(m, s.x,s.y,s.z); } // ---------------------------------------------------------------------------- void id34(mat34 m) { // verify me m[ 0] = 1; m[ 1] = 0; m[ 2] = 0; m[ 3] = 0; m[ 4] = 0; m[ 5] = 1; m[ 6] = 0; m[ 7] = 0; m[ 8] = 0; m[ 9] = 0; m[10] = 1; m[11] = 0; } void copy34(mat34 m, const mat34 a) { for( int i = 0; i < 12; ++i ) m[i] = a[i]; } void scale34(mat34 m, float s) { for( int i = 0; i < 12; ++i ) m[i] *= s; } void add34(mat34 m, mat34 n) { for( int i = 0; i < 12; ++i ) m[i] += n[i]; } void muladd34(mat34 m, mat34 n, float s) { for( int i = 0; i < 12; ++i ) m[i] += n[i] * s; } void add34x2(mat34 m, mat34 n, mat34 o) { for( int i = 0; i < 12; ++i ) m[i] = n[i] + o[i]; } void lerp34(mat34 m, mat34 n, mat34 o, float alpha) { for( int i = 0; i < 12; ++i ) m[i] = n[i] * (1-alpha) + o[i] * alpha; } void multiply34x2(mat34 m, const mat34 m0, const mat34 m1) { vec4 r0 = { m0[0*4+0], m0[0*4+1], m0[0*4+2], m0[0*4+3] }; // rows vec4 r1 = { m0[1*4+0], m0[1*4+1], m0[1*4+2], m0[1*4+3] }; vec4 r2 = { m0[2*4+0], m0[2*4+1], m0[2*4+2], m0[2*4+3] }; vec4 c0 = { m1[0*4+0], m1[1*4+0], m1[2*4+0], 0.0f }; // cols vec4 c1 = { m1[0*4+1], m1[1*4+1], m1[2*4+1], 0.0f }; vec4 c2 = { m1[0*4+2], m1[1*4+2], m1[2*4+2], 0.0f }; vec4 c3 = { m1[0*4+3], m1[1*4+3], m1[2*4+3], 1.0f }; m[ 0] = dot4(r0, c0); m[ 1] = dot4(r0, c1); m[ 2] = dot4(r0, c2); m[ 3] = dot4(r0, c3); m[ 4] = dot4(r1, c0); m[ 5] = dot4(r1, c1); m[ 6] = dot4(r1, c2); m[ 7] = dot4(r1, c3); m[ 8] = dot4(r2, c0); m[ 9] = dot4(r2, c1); m[10] = dot4(r2, c2); m[11] = dot4(r2, c3); } void multiply34(mat34 m, const mat34 a) { mat34 x; copy34(x, m); multiply34x2(m, x, a); } void multiply34x3(mat34 m, const mat34 a, const mat34 b, const mat34 c) { mat34 x; multiply34x2(x, a, b); multiply34x2(m, x, c); } void compose34(mat34 m, vec3 t, quat q, vec3 s) { m[ 0] = s.x * (1 - 2 * q.y * q.y - 2 * q.z * q.z); m[ 1] = s.y * ( 2 * q.x * q.y - 2 * q.w * q.z); m[ 2] = s.z * ( 2 * q.x * q.z + 2 * q.w * q.y); m[ 3] = t.x; m[ 4] = s.x * ( 2 * q.x * q.y + 2 * q.w * q.z); m[ 5] = s.y * (1 - 2 * q.x * q.x - 2 * q.z * q.z); m[ 6] = s.z * ( 2 * q.y * q.z - 2 * q.w * q.x); m[ 7] = t.y; m[ 8] = s.x * ( 2 * q.x * q.z - 2 * q.w * q.y); m[ 9] = s.y * ( 2 * q.y * q.z + 2 * q.w * q.x); m[10] = s.z * (1 - 2 * q.x * q.x - 2 * q.y * q.y); m[11] = t.z; } void invert34(mat34 m, const mat34 o) { vec3 a = norm3sq(vec3(o[0*4+0], o[1*4+0], o[2*4+0])); vec3 b = norm3sq(vec3(o[0*4+1], o[1*4+1], o[2*4+1])); vec3 c = norm3sq(vec3(o[0*4+2], o[1*4+2], o[2*4+2])); vec3 trans = vec3(o[0*4+3], o[1*4+3], o[2*4+3]); vec4 A = vec34(a, -dot3(a, trans)); vec4 B = vec34(b, -dot3(b, trans)); vec4 C = vec34(c, -dot3(c, trans)); m[ 0] = A.x; m[ 1] = A.y; m[ 2] = A.z; m[ 3] = A.w; m[ 4] = B.x; m[ 5] = B.y; m[ 6] = B.z; m[ 7] = B.w; m[ 8] = C.x; m[ 9] = C.y; m[10] = C.z; m[11] = C.w; } // ---------------------------------------------------------------------------- void scaling44(mat44 m, float x, float y, float z); void id44(mat44 m) { scaling44(m, 1,1,1); } void identity44(mat44 m) { scaling44(m, 1,1,1); } void copy44(mat44 m, const mat44 a) { for( int i = 0; i < 16; ++i ) m[i] = a[i]; } void multiply44x2(mat44 m, const mat44 a, const mat44 b) { for (int y = 0; y < 4; y++) for (int x = 0; x < 4; x++) m[y*4+x] = a[x] * b[y*4]+a[4+x] * b[y*4+1]+a[8+x] * b[y*4+2]+a[12+x] * b[y*4+3]; } void multiply44x3(mat44 m, const mat44 a, const mat44 b, const mat44 c) { mat44 x; multiply44x2(x, a, b); multiply44x2(m, x, c); } void multiply44(mat44 m, const mat44 a) { mat44 b; copy44(b, m); multiply44x2(m, b, a); } // --- void ortho44(mat44 m, float l, float r, float b, float t, float n, float f) { m[ 0] = 2/(r-l); m[ 1] = 0; m[ 2] = 0; m[ 3] = 0; m[ 4] = 0; m[ 5] = 2/(t-b); m[ 6] = 0; m[ 7] = 0; m[ 8] = 0; m[ 9] = 0; m[10] = -2/(f-n); m[11] = 0; m[12] = -(r+l)/(r-l); m[13] = -(t+b)/(t-b); m[14] = -(f+n)/(f-n); m[15] = 1; } void frustum44(mat44 m, float l, float r, float b, float t, float n, float f) { m[ 0] = 2*n/(r-l); m[ 1] = 0; m[ 2] = 0; m[ 3] = 0; m[ 4] = 0; m[ 5] = 2*n/(t-b); m[ 6] = 0; m[ 7] = 0; m[ 8] = (r+l)/(r-l); m[ 9] = (t+b)/(t-b); m[10] = -(f+n)/(f-n); m[11] = -1; m[12] = 0; m[13] = 0; m[14] = -2*(f*n)/(f-n); m[15] = 0; } void perspective44(mat44 m, float fovy_degrees, float aspect, float nearp, float farp) { float y = tanf(fovy_degrees * C_PI / 360) * nearp, x = y * aspect; frustum44(m, -x, x, -y, y, nearp, farp); } void lookat44(mat44 m, vec3 eye, vec3 center, vec3 up) { vec3 f = norm3(sub3(center, eye)); vec3 r = norm3(cross3(f, up)); vec3 u = cross3(r, f); m[ 0] = r.x; m[ 1] = u.x; m[ 2] = -f.x; m[ 3] = 0; m[ 4] = r.y; m[ 5] = u.y; m[ 6] = -f.y; m[ 7] = 0; m[ 8] = r.z; m[ 9] = u.z; m[10] = -f.z; m[11] = 0; m[12] = -dot3(r, eye); m[13] = -dot3(u, eye); m[14] = dot3(f, eye); m[15] = 1; } vec3 pos44(mat44 m) { vec3 position; // The camera position is the negation of the translation vector // transformed by the inverse of the rotation matrix. // Since the upper-left 3x3 part of the view matrix is orthogonal, // its inverse is equal to its transpose. position.x = -(m[0] * m[12] + m[1] * m[13] + m[2] * m[14]); position.y = -(m[4] * m[12] + m[5] * m[13] + m[6] * m[14]); position.z = -(m[8] * m[12] + m[9] * m[13] + m[10] * m[14]); return position; } // --- void translation44(mat44 m, float x, float y, float z) { // identity4 + translate4 m[ 0] = 1.0f; m[ 1] = 0.0f; m[ 2] = 0.0f; m[ 3] = 0.0f; m[ 4] = 0.0f; m[ 5] = 1.0f; m[ 6] = 0.0f; m[ 7] = 0.0f; m[ 8] = 0.0f; m[ 9] = 0.0f; m[10] = 1.0f; m[11] = 0.0f; m[12] = x; m[13] = y; m[14] = z; m[15] = 1.0f; } void translate44(mat44 m, float x, float y, float z) { // translate in place #if 0 // original vec4 t = {x, y, z, 0}; m[12] += dot4(vec4(m[0],m[4],m[ 8],m[12]),t); // row4(M,0) m[13] += dot4(vec4(m[1],m[5],m[ 9],m[13]),t); // row4(M,1) m[14] += dot4(vec4(m[2],m[6],m[10],m[14]),t); // row4(M,2) m[15] += dot4(vec4(m[3],m[7],m[11],m[15]),t); // row4(M,3) #else m[12] += m[ 0]*x + m[ 4]*y + m[ 8]*z; m[13] += m[ 1]*x + m[ 5]*y + m[ 9]*z; m[14] += m[ 2]*x + m[ 6]*y + m[10]*z; m[15] += m[ 3]*x + m[ 7]*y + m[11]*z; #endif } void relocate44(mat44 m, float x, float y, float z) { m[12] = x; m[13] = y; m[14] = z; } void rotationq44(mat44 m, quat q) { #if 0 float a = q.w, b = q.x, c = q.y, d = q.z; float a2 = a*a, b2 = b*b, c2 = c*c, d2 = d*d; m[ 0] = a2 + b2 - c2 - d2; m[ 1] = 2*(b*c + a*d); m[ 2] = 2*(b*d - a*c); m[ 3] = 0; m[ 4] = 2*(b*c - a*d); m[ 5] = a2 - b2 + c2 - d2; m[ 6] = 2*(c*d + a*b); m[ 7] = 0; m[ 8] = 2*(b*d + a*c); m[ 9] = 2*(c*d - a*b); m[10] = a2 - b2 - c2 + d2; m[11] = 0; m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1; #else float x2 = q.x*q.x, y2 = q.y*q.y, z2 = q.z*q.z, w2 = q.w*q.w; float xz = q.x*q.z, xy = q.x*q.y, yz = q.y*q.z, wz = q.w*q.z, wy = q.w*q.y, wx = q.w*q.x; m[ 0] = 1-2*(y2+z2); m[ 1] = 2*(xy+wz); m[ 2] = 2*(xz-wy); m[ 3] = 0; m[ 4] = 2*(xy-wz); m[ 5] = 1-2*(x2+z2); m[ 6] = 2*(yz+wx); m[ 7] = 0; m[ 8] = 2*(xz+wy); m[ 9] = 2*(yz-wx); m[10] = 1-2*(x2+y2); m[11] = 0; m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1; #endif } void rotation44(mat44 m, float degrees, float x, float y, float z) { //if(len3sq(vec3(x,y,z)) < (1e-4 * 1e-4)) return; float radians = degrees * C_PI / 180.0f; float c = cosf(radians), s = sinf(radians), c1 = 1.0f - c; m[ 0] = x*x*c1 + c; m[ 1] = y*x*c1 + z*s; m[ 2] = x*z*c1 - y*s; m[ 3] = 0.0f; m[ 4] = x*y*c1 - z*s; m[ 5] = y*y*c1 + c; m[ 6] = y*z*c1 + x*s; m[ 7] = 0.0f; m[ 8] = x*z*c1 + y*s; m[ 9] = y*z*c1 - x*s; m[10] = z*z*c1 + c; m[11] = 0.0f; m[12] = 0.0f; m[13] = 0.0f; m[14] = 0.0f; m[15] = 1.0f; } void rotate44(mat44 m, float degrees, float x, float y, float z) { // !!! ok, i guess if(len3sq(vec3(x,y,z)) < (1e-4 * 1e-4)) return; float radians = degrees * C_PI / 180.0f; float c = cosf(radians), s = -sinf(radians), c1 = 1 - c; float m00 = m[ 0], m01 = m[ 1], m02 = m[ 2], m03 = m[ 3], m04 = m[ 4], m05 = m[ 5], m06 = m[ 6], m07 = m[ 7], m08 = m[ 8], m09 = m[ 9], m10 = m[10], m11 = m[11]; // rotation matrix float r00 = x*x*c1 + c, r01 = y*x*c1 + z*s, r02 = x*z*c1 - y*s; float r04 = x*y*c1 - z*s, r05 = y*y*c1 + c, r06 = y*z*c1 + x*s; float r08 = x*z*c1 + y*s, r09 = y*z*c1 - x*s, r10 = z*z*c1 + c; // multiply m[ 0] = r00 * m00 + r04 * m04 + r08 * m08; m[ 1] = r00 * m01 + r04 * m05 + r08 * m09; m[ 2] = r00 * m02 + r04 * m06 + r08 * m10; m[ 3] = r00 * m03 + r04 * m07 + r08 * m11; m[ 4] = r01 * m00 + r05 * m04 + r09 * m08; m[ 5] = r01 * m01 + r05 * m05 + r09 * m09; m[ 6] = r01 * m02 + r05 * m06 + r09 * m10; m[ 7] = r01 * m03 + r05 * m07 + r09 * m11; m[ 8] = r02 * m00 + r06 * m04 + r10 * m08; m[ 9] = r02 * m01 + r06 * m05 + r10 * m09; m[10] = r02 * m02 + r06 * m06 + r10 * m10; m[11] = r02 * m03 + r06 * m07 + r10 * m11; } void scaling44(mat44 m, float x, float y, float z) { // !!! ok, i guess m[ 0] = x; m[ 1] = 0; m[ 2] = 0; m[ 3] = 0; m[ 4] = 0; m[ 5] = y; m[ 6] = 0; m[ 7] = 0; m[ 8] = 0; m[ 9] = 0; m[10] = z; m[11] = 0; m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1; } void scale44(mat44 m, float x, float y, float z) { #if 0 // original !!! ok, i guess m[ 0] *= x; m[ 1] *= x; m[ 2] *= x; m[ 3] *= x; m[ 4] *= y; m[ 5] *= y; m[ 6] *= y; m[ 7] *= y; m[ 8] *= z; m[ 9] *= z; m[10] *= z; m[11] *= z; #else m[0] *= x; m[4] *= x; m[8] *= x; m[1] *= y; m[5] *= y; m[9] *= y; m[2] *= z; m[6] *= z; m[10] *= z; #endif } // --- void transpose44(mat44 m, const mat44 a) { // M[i][j] = A[j][i]; m[ 0] = a[0]; m[ 1] = a[4]; m[ 2] = a[ 8]; m[ 3] = a[12]; m[ 4] = a[1]; m[ 5] = a[5]; m[ 6] = a[ 9]; m[ 7] = a[13]; m[ 8] = a[2]; m[ 9] = a[6]; m[10] = a[10]; m[11] = a[14]; m[12] = a[3]; m[13] = a[7]; m[14] = a[11]; m[15] = a[15]; } // @todo: test me // float det33 = M[0,0]*((M[1,1]*M[2,2])-(M[2,1]*M[1,2]))-M[0,1]*(M[1,0]*M[2,2]-M[2,0]*M[1,2])+M[0,2]*(M[1,0]*M[2,1]-M[2,0]*M[1,1]); // // float det33 = // rgt.x * fwd.y * upv.z - rgt.z * fwd.y * upv.x + // rgt.y * fwd.z * upv.x - rgt.y * fwd.x * upv.z + // rgt.z * fwd.x * upv.y - rgt.x * fwd.z * upv.y; // // void transpose33(mat33 m, const mat33 a) { // M[i][j] = A[j][i]; // m[0] = a[0]; m[1] = a[3]; m[2] = a[6]; // m[3] = a[1]; m[4] = a[4]; m[5] = a[7]; // m[6] = a[2]; m[7] = a[5]; m[8] = a[8]; // } float det44(const mat44 M) { // !!! ok, i guess float s[6], c[6]; s[0] = M[0*4+0]*M[1*4+1] - M[1*4+0]*M[0*4+1]; s[1] = M[0*4+0]*M[1*4+2] - M[1*4+0]*M[0*4+2]; s[2] = M[0*4+0]*M[1*4+3] - M[1*4+0]*M[0*4+3]; s[3] = M[0*4+1]*M[1*4+2] - M[1*4+1]*M[0*4+2]; s[4] = M[0*4+1]*M[1*4+3] - M[1*4+1]*M[0*4+3]; s[5] = M[0*4+2]*M[1*4+3] - M[1*4+2]*M[0*4+3]; c[0] = M[2*4+0]*M[3*4+1] - M[3*4+0]*M[2*4+1]; c[1] = M[2*4+0]*M[3*4+2] - M[3*4+0]*M[2*4+2]; c[2] = M[2*4+0]*M[3*4+3] - M[3*4+0]*M[2*4+3]; c[3] = M[2*4+1]*M[3*4+2] - M[3*4+1]*M[2*4+2]; c[4] = M[2*4+1]*M[3*4+3] - M[3*4+1]*M[2*4+3]; c[5] = M[2*4+2]*M[3*4+3] - M[3*4+2]*M[2*4+3]; return ( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] ); } bool invert44(mat44 T, const mat44 M) { // !!! ok, i guess float s[6], c[6]; s[0] = M[0*4+0]*M[1*4+1] - M[1*4+0]*M[0*4+1]; s[1] = M[0*4+0]*M[1*4+2] - M[1*4+0]*M[0*4+2]; s[2] = M[0*4+0]*M[1*4+3] - M[1*4+0]*M[0*4+3]; s[3] = M[0*4+1]*M[1*4+2] - M[1*4+1]*M[0*4+2]; s[4] = M[0*4+1]*M[1*4+3] - M[1*4+1]*M[0*4+3]; s[5] = M[0*4+2]*M[1*4+3] - M[1*4+2]*M[0*4+3]; c[0] = M[2*4+0]*M[3*4+1] - M[3*4+0]*M[2*4+1]; c[1] = M[2*4+0]*M[3*4+2] - M[3*4+0]*M[2*4+2]; c[2] = M[2*4+0]*M[3*4+3] - M[3*4+0]*M[2*4+3]; c[3] = M[2*4+1]*M[3*4+2] - M[3*4+1]*M[2*4+2]; c[4] = M[2*4+1]*M[3*4+3] - M[3*4+1]*M[2*4+3]; c[5] = M[2*4+2]*M[3*4+3] - M[3*4+2]*M[2*4+3]; float det = ( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] ); if( !det ) return false; float idet = 1.0f / det; T[0*4+0] = ( M[1*4+1] * c[5] - M[1*4+2] * c[4] + M[1*4+3] * c[3]) * idet; T[0*4+1] = (-M[0*4+1] * c[5] + M[0*4+2] * c[4] - M[0*4+3] * c[3]) * idet; T[0*4+2] = ( M[3*4+1] * s[5] - M[3*4+2] * s[4] + M[3*4+3] * s[3]) * idet; T[0*4+3] = (-M[2*4+1] * s[5] + M[2*4+2] * s[4] - M[2*4+3] * s[3]) * idet; T[1*4+0] = (-M[1*4+0] * c[5] + M[1*4+2] * c[2] - M[1*4+3] * c[1]) * idet; T[1*4+1] = ( M[0*4+0] * c[5] - M[0*4+2] * c[2] + M[0*4+3] * c[1]) * idet; T[1*4+2] = (-M[3*4+0] * s[5] + M[3*4+2] * s[2] - M[3*4+3] * s[1]) * idet; T[1*4+3] = ( M[2*4+0] * s[5] - M[2*4+2] * s[2] + M[2*4+3] * s[1]) * idet; T[2*4+0] = ( M[1*4+0] * c[4] - M[1*4+1] * c[2] + M[1*4+3] * c[0]) * idet; T[2*4+1] = (-M[0*4+0] * c[4] + M[0*4+1] * c[2] - M[0*4+3] * c[0]) * idet; T[2*4+2] = ( M[3*4+0] * s[4] - M[3*4+1] * s[2] + M[3*4+3] * s[0]) * idet; T[2*4+3] = (-M[2*4+0] * s[4] + M[2*4+1] * s[2] - M[2*4+3] * s[0]) * idet; T[3*4+0] = (-M[1*4+0] * c[3] + M[1*4+1] * c[1] - M[1*4+2] * c[0]) * idet; T[3*4+1] = ( M[0*4+0] * c[3] - M[0*4+1] * c[1] + M[0*4+2] * c[0]) * idet; T[3*4+2] = (-M[3*4+0] * s[3] + M[3*4+1] * s[1] - M[3*4+2] * s[0]) * idet; T[3*4+3] = ( M[2*4+0] * s[3] - M[2*4+1] * s[1] + M[2*4+2] * s[0]) * idet; return true; } vec4 transform444(const mat44, const vec4); bool unproject44(vec3 *out, vec3 xyd, vec4 viewport, mat44 mvp) { // @fixme: this function is broken (verified by @zpl-zak) // xyd: usually x:mouse_x,y:window_height()-mouse_y,d:0=znear/1=zfar // src: https://www.khronos.org/opengl/wiki/GluProject_and_gluUnProject_code mat44 inv_mvp; if( invert44(inv_mvp, mvp) ) { vec4 in = vec4( (xyd.x-viewport.x)/viewport.z*2-1, (xyd.y-viewport.y)/viewport.w*2-1, 2*xyd.z-1, 1 ); vec4 p = transform444(inv_mvp, in); if( p.w != 0 ) { p.w = 1.f/p.w; *out = vec3(p.x*p.w,p.y*p.w,p.z*p.w); return true; } } return false; } void compose44(mat44 m, vec3 t, quat q, vec3 s) { #if 0 // quat to rotation matrix m[0] = 1 - 2 * (q.y * q.y + q.z * q.z); m[1] = 2 * (q.x * q.y + q.z * q.w); m[2] = 2 * (q.x * q.z - q.y * q.w); m[4] = 2 * (q.x * q.y - q.z * q.w); m[5] = 1 - 2 * (q.x * q.x + q.z * q.z); m[6] = 2 * (q.y * q.z + q.x * q.w); m[8] = 2 * (q.x * q.z + q.y * q.w); m[9] = 2 * (q.y * q.z - q.x * q.w); m[10] = 1 - 2 * (q.x * q.x + q.y * q.y); // scale matrix m[0] *= s.x; m[4] *= s.x; m[8] *= s.x; m[1] *= s.y; m[5] *= s.y; m[9] *= s.y; m[2] *= s.z; m[6] *= s.z; m[10] *= s.z; // set translation m[12] = t.x; m[13] = t.y; m[14] = t.z; m[3] = 0; m[7] = 0; m[11] = 0; m[15] = 1; #else rotationq44(m,q); scale44(m,s.x,s.y,s.z); relocate44(m,t.x,t.y,t.z); // relocate44(m,t.x,t.y,t.z); // ok? // scale44(m,s.x,s.y,s.z); // ok? m[3] = 0; m[7] = 0; m[11] = 0; m[15] = 1; #endif } // ---------------------------------------------------------------------------- vec3 transform33(const mat33 m, vec3 p) { float x = (m[0] * p.x) + (m[4] * p.y) + (m[ 8] * p.z); float y = (m[1] * p.x) + (m[5] * p.y) + (m[ 9] * p.z); float z = (m[2] * p.x) + (m[6] * p.y) + (m[10] * p.z); return vec3(x,y,z); } vec4 transform444(const mat44 m, const vec4 p) { // remember w = 1 for move in space; w = 0 rotate in space; float x = m[0]*p.x + m[4]*p.y + m[ 8]*p.z + m[12]*p.w; float y = m[1]*p.x + m[5]*p.y + m[ 9]*p.z + m[13]*p.w; float z = m[2]*p.x + m[6]*p.y + m[10]*p.z + m[14]*p.w; float w = m[3]*p.x + m[7]*p.y + m[11]*p.z + m[15]*p.w; return vec4(x,y,z,w); } vec3 transform344(const mat44 m, const vec3 p) { vec4 v = transform444(m, vec34(p, 1)); return scale3(v.xyz, 1.f / v.w); } vec3 transformq(const quat q, const vec3 v) { // !!! ok, i guess // [src] https://gamedev.stackexchange.com/questions/28395/rotating-vector3-by-a-quaternion (laurent couvidou) // Extract the vector part of the quaternion vec3 u = vec3(q.x, q.y, q.z); // Extract the scalar part of the quaternion float s = q.w; // Do the math vec3 a = scale3(u, 2 * dot3(u,v)); vec3 b = scale3(v, s*s - dot3(u,u)); vec3 c = scale3(cross3(u,v), 2*s); return add3(a, add3(b,c)); } #if 0 vec3 transform_axis(const coord_system, const AXIS_ENUMS); void rebase44(mat44 m, const coord_system src_basis, const coord_system dst_basis) { vec3 v1 = transform_axis(src_basis, dst_basis.x); vec3 v2 = transform_axis(src_basis, dst_basis.y); vec3 v3 = transform_axis(src_basis, dst_basis.z); m[ 0] = v1.x; m[ 1] = v1.y; m[ 2] = v1.z; m[ 3] = 0; m[ 4] = v2.x; m[ 5] = v2.y; m[ 6] = v2.z; m[ 7] = 0; m[ 8] = v3.x; m[ 9] = v3.y; m[10] = v3.z; m[11] = 0; m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1; } vec3 transform_axis(const coord_system basis, const AXIS_ENUMS to) { const float dot_table[6][6] = { {+1,-1,0,0,0,0},{-1,+1,0,0,0,0},{0,0,+1,-1,0,0}, {0,0,-1,+1,0,0},{0,0,0,0,+1,-1},{0,0,0,0,-1,+1}, }; return vec3( dot_table[basis.x][to], dot_table[basis.y][to], dot_table[basis.z][to] ); } // A vector is the difference between two points in 3D space, possessing both direction and magnitude vec3 transform_vector (const mat44 m, const vec3 vector) { return transform344(m, vector); } // A point is a specific location within a 3D space vec3 transform_point (const mat44 m, const vec3 p) { // return (m * vec4{point,1).xyz()/r.w; float inv = 1.0f / (m[3+4*0]*p.x + m[3+4*1]*p.y + m[3+4*2]*p.z + m[3+4*3]); return vec3( (m[0+4*0]*p.x + m[0+4*1]*p.y + m[0+4*2]*p.z + m[0+4*3]) * inv, (m[1+4*0]*p.x + m[1+4*1]*p.y + m[1+4*2]*p.z + m[1+4*3]) * inv, (m[2+4*0]*p.x + m[2+4*1]*p.y + m[2+4*2]*p.z + m[2+4*3]) * inv ); } // A tangent is a unit-length vector which is parallel to a piece of geometry, such as a surface or a curve vec3 transform_tangent (const mat44 m, const vec3 tangent) { return norm3(transform_vector(m, tangent)); } // A normal is a unit-length bivector which is perpendicular to a piece of geometry, such as a surface or a curve vec3 transform_normal (const mat44 m, const vec3 normal) { return transform_tangent(m, normal); // ok? mat44 t; transpose44(t,m); mat44 i; invert44(i,t); return scale3(norm3(transform_vector(i, normal)), det44(m) < 0 ? -1.f : 1.f); } // A quaternion can describe both a rotation and a uniform scaling in 3D space quat transform_quat (const mat44 m, const quat q) { vec3 s = scale3(transform_vector(m, q.xyz), det44(m) < 0 ? -1.f : 1.f); return quat(s.x,s.y,s.z,q.w); } // A matrix can describe a general transformation of homogeneous coordinates in projective space float* transform_matrix(mat44 out, const mat44 m, const mat44 matrix) { mat44 I; invert44(I, m); multiply44x3(out, I, matrix, m); // m,matrix,I instead ? return out; } // Scaling factors are not a vector, they are a compact representation of a scaling matrix vec3 transform_scaling (const mat44 m, const vec3 scaling) { mat44 s; scaling44(s, scaling.x, scaling.y, scaling.z); mat44 out; transform_matrix(out, m, s); return vec3( out[0], out[5], out[10] ); } #endif // ---------------------------------------------------------------------------- // !!! for debugging void printi_( int *m, int ii, int jj ) { for( int j = 0; j < jj; ++j ) { for( int i = 0; i < ii; ++i ) printf("%10d ", *m++); puts(""); } // puts("---"); } void print_( float *m, int ii, int jj ) { for( int j = 0; j < jj; ++j ) { for( int i = 0; i < ii; ++i ) printf("%8.3f", *m++); puts(""); } // puts("---"); } void print2i( vec2i v ) { printi_(&v.x,2,1); } void print3i( vec3i v ) { printi_(&v.x,3,1); } void print2( vec2 v ) { print_(&v.x,2,1); } void print3( vec3 v ) { print_(&v.x,3,1); } void print4( vec4 v ) { print_(&v.x,4,1); } void printq( quat q ) { print_(&q.x,4,1); } void print33( float *m ) { print_(m,3,3); } void print34( float *m ) { print_(m,3,4); } void print44( float *m ) { print_(m,4,4); } // ----------- AUTORUN { STRUCT( vec3, float, x ); STRUCT( vec3, float, y ); STRUCT( vec3, float, z, "Up" ); }