uniform vec3 uSunPos; uniform vec3 uRayOrigin; uniform float uSunIntensity; uniform float uPlanetRadius; uniform float uAtmosphereRadius; uniform vec3 uRayleighScattering; uniform float uMieScattering; uniform float uRayleighScaleHeight; uniform float uMieScaleHeight; uniform float uMiePreferredDirection; uniform float u_gamma; /// set:2.2 in vec3 v_direction; out vec4 fragcolor; vec3 atmosphere(vec3 r, vec3 r0, vec3 pSun, float iSun, float rPlanet, float rAtmos, vec3 kRlh, float kMie, float shRlh, float shMie, float g); void main() { vec3 color = atmosphere( normalize(v_direction), // normalized ray direction uRayOrigin, // ray origin uSunPos, // position of the sun uSunIntensity, // intensity of the sun uPlanetRadius, // radius of the planet in meters uAtmosphereRadius, // radius of the atmosphere in meters uRayleighScattering, // Rayleigh scattering coefficient uMieScattering, // Mie scattering coefficient uRayleighScaleHeight, // Rayleigh scale height uMieScaleHeight, // Mie scale height uMiePreferredDirection // Mie preferred scattering direction ); // Apply exposure. color = 1.0 - exp(-1.0 * color); fragcolor = vec4(color, 1); fragcolor.rgb = pow(fragcolor.rgb, vec3(u_gamma)); } // [src] https://github.com/wwwtyro/glsl-atmosphere by wwwtyro (Unlicensed) // For more information, please refer to #define PI 3.141592 #define iSteps 16 #define jSteps 8 vec2 rsi(vec3 r0, vec3 rd, float sr) { // ray-sphere intersection that assumes // the sphere is centered at the origin. // No intersection when result.x > result.y float a = dot(rd, rd); float b = 2.0 * dot(rd, r0); float c = dot(r0, r0) - (sr * sr); float d = (b*b) - 4.0*a*c; if (d < 0.0) return vec2(1e5,-1e5); return vec2( (-b - sqrt(d))/(2.0*a), (-b + sqrt(d))/(2.0*a) ); } vec3 atmosphere(vec3 r, vec3 r0, vec3 pSun, float iSun, float rPlanet, float rAtmos, vec3 kRlh, float kMie, float shRlh, float shMie, float g) { // Normalize the sun and view directions. pSun = normalize(pSun); r = normalize(r); // Calculate the step size of the primary ray. vec2 p = rsi(r0, r, rAtmos); if (p.x > p.y) return vec3(0,0,0); p.y = min(p.y, rsi(r0, r, rPlanet).x); float iStepSize = (p.y - p.x) / float(iSteps); // Initialize the primary ray time. float iTime = 0.0; // Initialize accumulators for Rayleigh and Mie scattering. vec3 totalRlh = vec3(0,0,0); vec3 totalMie = vec3(0,0,0); // Initialize optical depth accumulators for the primary ray. float iOdRlh = 0.0; float iOdMie = 0.0; // Calculate the Rayleigh and Mie phases. float mu = dot(r, pSun); float mumu = mu * mu; float gg = g * g; float pRlh = 3.0 / (16.0 * PI) * (1.0 + mumu); float pMie = 3.0 / (8.0 * PI) * ((1.0 - gg) * (mumu + 1.0)) / (pow(1.0 + gg - 2.0 * mu * g, 1.5) * (2.0 + gg)); // Sample the primary ray. for (int i = 0; i < iSteps; i++) { // Calculate the primary ray sample position. vec3 iPos = r0 + r * (iTime + iStepSize * 0.5); // Calculate the height of the sample. float iHeight = length(iPos) - rPlanet; // Calculate the optical depth of the Rayleigh and Mie scattering for this step. float odStepRlh = exp(-iHeight / shRlh) * iStepSize; float odStepMie = exp(-iHeight / shMie) * iStepSize; // Accumulate optical depth. iOdRlh += odStepRlh; iOdMie += odStepMie; // Calculate the step size of the secondary ray. float jStepSize = rsi(iPos, pSun, rAtmos).y / float(jSteps); // Initialize the secondary ray time. float jTime = 0.0; // Initialize optical depth accumulators for the secondary ray. float jOdRlh = 0.0; float jOdMie = 0.0; // Sample the secondary ray. for (int j = 0; j < jSteps; j++) { // Calculate the secondary ray sample position. vec3 jPos = iPos + pSun * (jTime + jStepSize * 0.5); // Calculate the height of the sample. float jHeight = length(jPos) - rPlanet; // Accumulate the optical depth. jOdRlh += exp(-jHeight / shRlh) * jStepSize; jOdMie += exp(-jHeight / shMie) * jStepSize; // Increment the secondary ray time. jTime += jStepSize; } // Calculate attenuation. vec3 attn = exp(-(kMie * (iOdMie + jOdMie) + kRlh * (iOdRlh + jOdRlh))); // Accumulate scattering. totalRlh += odStepRlh * attn; totalMie += odStepMie * attn; // Increment the primary ray time. iTime += iStepSize; } // Calculate and return the final color. return iSun * (pRlh * kRlh * totalRlh + pMie * kMie * totalMie); }