#ifdef SHADING_PBR uniform vec2 resolution; /// set:640,480 // debug options below use this (USE_MAP_DEBUGGING, USE_AMBIENT_DEBUGGING) #define USE_BRUTEFORCE_IRRADIANCE false // Samples irradiance from tex_skysphere when enabled. #define USE_WRAPAROUND_SPECULAR true // Makes silhouettes more reflective to avoid black pixels. #define USE_SPECULAR_AO_ATTENUATION true // Dampens IBL specular ambient with AO if enabled. #define USE_NORMAL_VARIATION_TO_ROUGHNESS true // Increases roughness if normal map has variation and was minified. #define USE_MAP_DEBUGGING false // Shows all ColorMaps as horizontal bars #define USE_AMBIENT_DEBUGGING false // Splits the screen in two and shows image-based specular (left), full shading (middle), diffuse shading (right). #define BOOST_LIGHTING 2.00f // Multiplies analytic light's color with this constant because otherwise they look really pathetic. #define BOOST_SPECULAR 1.50f #define BOOST_NOISE 2.50f struct ColorMap { bool has_tex; vec4 color; }; uniform ColorMap map_albedo; uniform sampler2D map_albedo_tex; uniform ColorMap map_diffuse; uniform sampler2D map_diffuse_tex; uniform ColorMap map_specular; uniform sampler2D map_specular_tex; // not used uniform ColorMap map_normals; uniform sampler2D map_normals_tex; uniform ColorMap map_roughness; uniform sampler2D map_roughness_tex; uniform ColorMap map_metallic; uniform sampler2D map_metallic_tex; uniform ColorMap map_ao; uniform sampler2D map_ao_tex; uniform ColorMap map_ambient; uniform sampler2D map_ambient_tex; uniform ColorMap map_emissive; uniform sampler2D map_emissive_tex; #define sample_colormap(ColorMap_, uv_) \ (ColorMap_.has_tex ? texture( ColorMap_##_tex, uv_ ) : ColorMap_.color) uniform float skysphere_rotation; /// set:0 uniform float skysphere_mip_count; uniform float exposure; /// set:1 uniform float specular_shininess; uniform sampler2D tex_skysphere; uniform sampler2D tex_skyenv; uniform sampler2D tex_brdf_lut; uniform bool has_tex_skysphere; uniform bool has_tex_skyenv; const float PI = 3.1415926536; // MurMurHash 3 finalizer. Implementation is in public domain. uint hash( uint h ) { h ^= h >> 16; h *= 0x85ebca6bU; h ^= h >> 13; h *= 0xc2b2ae35U; h ^= h >> 16; return h; } // Random function using the idea of StackOverflow user "Spatial" https://stackoverflow.com/a/17479300 // Creates random 23 bits and puts them into the fraction bits of an 32-bit float. float random( uvec3 h ) { uint m = hash(h.x ^ hash( h.y ) ^ hash( h.z )); return uintBitsToFloat( ( m & 0x007FFFFFu ) | 0x3f800000u ) - 1.; } float random( vec3 v ) { return random(floatBitsToUint( v )); } vec3 fresnel_schlick( vec3 H, vec3 V, vec3 F0 ) { float cosTheta = clamp( dot( H, V ), 0., 1. ); return F0 + ( vec3( 1.0 ) - F0 ) * pow( 1. - cosTheta, 5.0 ); } // A Fresnel term that dampens rough specular reflections. // https://seblagarde.wordpress.com/2011/08/17/hello-world/ vec3 fresnel_schlick_roughness( vec3 H, vec3 V, vec3 F0, float roughness ) { float cosTheta = clamp( dot( H, V ), 0., 1. ); return F0 + ( max( vec3( 1.0 - roughness ), F0 ) - F0 ) * pow( 1. - cosTheta, 5.0 ); } float distribution_ggx( vec3 N, vec3 H, float roughness ) { float a = roughness * roughness; float a2 = a * a; float NdotH = max( 0., dot( N, H ) ); float factor = NdotH * NdotH * ( a2 - 1. ) + 1.; return a2 / ( PI * factor * factor ); } float geometry_schlick_ggx( vec3 N, vec3 V, float k ) { float NdotV = max( 0., dot( N, V ) ); return NdotV / (NdotV * ( 1. - k ) + k ); } float geometry_smith( vec3 N, vec3 V, vec3 L, float roughness ) { #if 1 // original float r = roughness + 1.; float k = (r * r) / 8.; #elif 0 // vries float a = roughness; float k = (a * a) / 2.0; #elif 0 // vries improved? float a = roughness * roughness; float k = a / 2.0; #endif return geometry_schlick_ggx( N, V, k ) * geometry_schlick_ggx( N, L, k ); } vec2 sphere_to_polar( vec3 normal ) { normal = normalize( normal ); return vec2( 1-atan( normal.z, normal.x ) / PI + 0.5 , acos( normal.y ) / PI ); } // Our vertically GL_CLAMPed textures seem to blend towards black when sampling the half-pixel edge. // Not sure if it has a border, or this if is a driver bug, but can repro on multiple nvidia cards. // Knowing the texture height we can limit sampling to the centers of the top and bottom pixel rows. vec2 sphere_to_polar_clamp_y( vec3 normal, float texture_height ) { normal = normalize( normal ); return vec2( ( atan( normal.z, normal.x ) + skysphere_rotation ) / PI / 2.0 + 0.5, clamp(acos( normal.y ) / PI, 0.5 / texture_height, 1.0 - 0.5 / texture_height) ); } vec3 sample_sky( vec3 normal ) { vec2 polar = sphere_to_polar( normal ); return texture( tex_skysphere, polar ).rgb * exposure; } // Takes samples around the hemisphere, converts them to radiances via weighting and // returns a normalized sum. vec3 sample_irradiance_slow( vec3 normal, vec3 vertex_tangent ) { float delta = 0.10; vec3 up = abs( normal.y ) < 0.999 ? vec3( 0., 1., 0. ) : vec3( 0., 0., 1. ); vec3 tangent_x = normalize( cross( up, normal ) ); vec3 tangent_y = cross( normal, tangent_x ); int numIrradianceSamples = 0; vec3 irradiance = vec3(0.); for ( float phi = 0.; phi < 2. * PI ; phi += delta ) { for ( float theta = 0.; theta < 0.5 * PI; theta += delta ) { vec3 tangent_space = vec3( sin( theta ) * cos( phi ), sin( theta ) * sin( phi ), cos( theta ) ); vec3 world_space = tangent_space.x * tangent_x + tangent_space.y + tangent_y + tangent_space.z * normal; vec3 color = sample_sky( world_space ); irradiance += color * cos( theta ) * sin( theta ); numIrradianceSamples++; } } irradiance = PI * irradiance / float( numIrradianceSamples ); return irradiance; } vec3 sample_irradiance_fast( vec3 normal, vec3 vertex_tangent ) { // Sample the irradiance map if it exists, otherwise fall back to blurred reflection map. if ( has_tex_skyenv ) { vec2 polar = sphere_to_polar( normal ); return textureLod( tex_skyenv, polar, 0.0 ).rgb * exposure; } else { vec2 polar = sphere_to_polar( normal ); return textureLod( tex_skysphere, polar, 0.80 * skysphere_mip_count ).rgb * exposure; } } vec3 specular_ibl( vec3 V, vec3 N, float roughness, vec3 fresnel ) { // What we'd like to do here is take a LOT of skybox samples around the reflection // vector R according to the BRDF lobe. // // Unfortunately it's not possible in real time so we use the following UE4 style approximations: // 1. Integrate incoming light and BRDF separately ("split sum approximation") // 2. Assume V = R = N so that we can just blur the skybox and sample that. // 3. Bake the BRDF integral into a lookup texture so that it can be computed in constant time. // // Here we also simplify approximation #2 by using bilinear mipmaps with a magic formula instead // of properly convolving it with a GGX lobe. // // For details, see Brian Karis, "Real Shading in Unreal Engine 4", 2013. vec3 R = 2. * dot( V, N ) * N - V; vec2 polar = sphere_to_polar( R ); // Map roughness from range [0, 1] into a mip LOD [0, skysphere_mip_count]. // The magic numbers were chosen empirically. float mip = 0.9 * skysphere_mip_count * pow(roughness, 0.25 * BOOST_SPECULAR); vec3 prefiltered = textureLod( tex_skysphere, polar, mip ).rgb * exposure; float NdotV = dot( N, V ); // dot( N, V ) seems to produce negative values so we can try to stretch it a bit behind the silhouette // to avoid black pixels. if (USE_WRAPAROUND_SPECULAR) { NdotV = NdotV * 0.9 + 0.1; } NdotV = min(0.99, max(0.01, NdotV)); // A precomputed lookup table contains a scale and a bias term for specular intensity (called "fresnel" here). // See equation (8) in Karis' course notes mentioned above. vec2 envBRDF = texture( tex_brdf_lut, vec2(NdotV, 1.0-roughness) ).xy; // (NdotV,1-roughtness) for green top-left (NdotV,roughness) for green bottom-left vec3 specular = prefiltered * (fresnel * envBRDF.x + vec3(envBRDF.y)); return specular; } #endif