// ModPlug-XMMS and libmodplug are now in the public domain. /* * This source code is public domain. * * Authors: Kenton Varda <temporal@gauge3d.org> (C interface wrapper) */ #ifndef MODPLUG_H__INCLUDED #define MODPLUG_H__INCLUDED #include <stdint.h> #include <math.h> #define sinf sin #ifdef __cplusplus extern "C" { #endif #if defined(_WIN32) || defined(__CYGWIN__) # if defined(MODPLUG_BUILD) && defined(DLL_EXPORT) /* building libmodplug as a dll for windows */ # define MODPLUG_EXPORT __declspec(dllexport) # elif defined(MODPLUG_BUILD) || defined(MODPLUG_STATIC) /* building or using static libmodplug for windows */ # define MODPLUG_EXPORT # else # define MODPLUG_EXPORT __declspec(dllimport) /* using libmodplug dll for windows */ # endif #elif defined(__OS2__) && defined(__WATCOMC__) # if defined(MODPLUG_BUILD) && defined(__SW_BD) /* building libmodplug as a dll for os/2 */ # define MODPLUG_EXPORT __declspec(dllexport) # else # define MODPLUG_EXPORT /* using dll or static libmodplug for os/2 */ # endif #elif defined(MODPLUG_BUILD) && defined(SYM_VISIBILITY) # define MODPLUG_EXPORT __attribute__((visibility("default"))) #else #define MODPLUG_EXPORT #endif struct _ModPlugFile; typedef struct _ModPlugFile ModPlugFile; struct _ModPlugNote { unsigned char Note; unsigned char Instrument; unsigned char VolumeEffect; unsigned char Effect; unsigned char Volume; unsigned char Parameter; }; typedef struct _ModPlugNote ModPlugNote; typedef void (*ModPlugMixerProc)(int*, unsigned long, unsigned long); /* Load a mod file. [data] should point to a block of memory containing the complete * file, and [size] should be the size of that block. * Return the loaded mod file on success, or NULL on failure. */ MODPLUG_EXPORT ModPlugFile* ModPlug_Load(const void* data, int size); /* Unload a mod file. */ MODPLUG_EXPORT void ModPlug_Unload(ModPlugFile* file); /* Read sample data into the buffer. Returns the number of bytes read. If the end * of the mod has been reached, zero is returned. */ MODPLUG_EXPORT int ModPlug_Read(ModPlugFile* file, void* buffer, int size); /* Get the name of the mod. The returned buffer is stored within the ModPlugFile * structure and will remain valid until you unload the file. */ MODPLUG_EXPORT const char* ModPlug_GetName(ModPlugFile* file); /* Get the length of the mod, in milliseconds. Note that this result is not always * accurate, especially in the case of mods with loops. */ MODPLUG_EXPORT int ModPlug_GetLength(ModPlugFile* file); /* Seek to a particular position in the song. Note that seeking and MODs don't mix very * well. Some mods will be missing instruments for a short time after a seek, as ModPlug * does not scan the sequence backwards to find out which instruments were supposed to be * playing at that time. (Doing so would be difficult and not very reliable.) Also, * note that seeking is not very exact in some mods -- especially those for which * ModPlug_GetLength() does not report the full length. */ MODPLUG_EXPORT void ModPlug_Seek(ModPlugFile* file, int millisecond); enum _ModPlug_Flags { MODPLUG_ENABLE_OVERSAMPLING = 1 << 0, /* Enable oversampling (*highly* recommended) */ MODPLUG_ENABLE_NOISE_REDUCTION = 1 << 1, /* Enable noise reduction */ MODPLUG_ENABLE_REVERB = 1 << 2, /* Enable reverb */ MODPLUG_ENABLE_MEGABASS = 1 << 3, /* Enable megabass */ MODPLUG_ENABLE_SURROUND = 1 << 4 /* Enable surround sound. */ }; enum _ModPlug_ResamplingMode { MODPLUG_RESAMPLE_NEAREST = 0, /* No interpolation (very fast, extremely bad sound quality) */ MODPLUG_RESAMPLE_LINEAR = 1, /* Linear interpolation (fast, good quality) */ MODPLUG_RESAMPLE_SPLINE = 2, /* Cubic spline interpolation (high quality) */ MODPLUG_RESAMPLE_FIR = 3 /* 8-tap fir filter (extremely high quality) */ }; typedef struct _ModPlug_Settings { int mFlags; /* One or more of the MODPLUG_ENABLE_* flags above, bitwise-OR'ed */ /* Note that ModPlug always decodes sound at 44100kHz, 32 bit, stereo and then * down-mixes to the settings you choose. */ int mChannels; /* Number of channels - 1 for mono or 2 for stereo */ int mBits; /* Bits per sample - 8, 16, or 32 */ int mFrequency; /* Sampling rate - 11025, 22050, or 44100 */ int mResamplingMode; /* One of MODPLUG_RESAMPLE_*, above */ int mStereoSeparation; /* Stereo separation, 1 - 256 */ int mMaxMixChannels; /* Maximum number of mixing channels (polyphony), 32 - 256 */ int mReverbDepth; /* Reverb level 0(quiet)-100(loud) */ int mReverbDelay; /* Reverb delay in ms, usually 40-200ms */ int mBassAmount; /* XBass level 0(quiet)-100(loud) */ int mBassRange; /* XBass cutoff in Hz 10-100 */ int mSurroundDepth; /* Surround level 0(quiet)-100(heavy) */ int mSurroundDelay; /* Surround delay in ms, usually 5-40ms */ int mLoopCount; /* Number of times to loop. Zero prevents looping. * -1 loops forever. */ } ModPlug_Settings; /* Get and set the mod decoder settings. All options, except for channels, bits-per-sample, * sampling rate, and loop count, will take effect immediately. Those options which don't * take effect immediately will take effect the next time you load a mod. */ MODPLUG_EXPORT void ModPlug_GetSettings(ModPlug_Settings* settings); MODPLUG_EXPORT void ModPlug_SetSettings(const ModPlug_Settings* settings); /* New ModPlug API Functions */ /* NOTE: Master Volume (1-512) */ MODPLUG_EXPORT unsigned int ModPlug_GetMasterVolume(ModPlugFile* file) ; MODPLUG_EXPORT void ModPlug_SetMasterVolume(ModPlugFile* file,unsigned int cvol) ; MODPLUG_EXPORT int ModPlug_GetCurrentSpeed(ModPlugFile* file); MODPLUG_EXPORT int ModPlug_GetCurrentTempo(ModPlugFile* file); MODPLUG_EXPORT int ModPlug_GetCurrentOrder(ModPlugFile* file); MODPLUG_EXPORT int ModPlug_GetCurrentPattern(ModPlugFile* file); MODPLUG_EXPORT int ModPlug_GetCurrentRow(ModPlugFile* file); MODPLUG_EXPORT int ModPlug_GetPlayingChannels(ModPlugFile* file); MODPLUG_EXPORT void ModPlug_SeekOrder(ModPlugFile* file,int order); MODPLUG_EXPORT int ModPlug_GetModuleType(ModPlugFile* file); MODPLUG_EXPORT char* ModPlug_GetMessage(ModPlugFile* file); #define MODPLUG_NO_FILESAVE /* experimental yet. must match stdafx.h. */ #ifndef MODPLUG_NO_FILESAVE /* * EXPERIMENTAL Export Functions */ /*Export to a Scream Tracker 3 S3M module. EXPERIMENTAL (only works on Little-Endian platforms)*/ MODPLUG_EXPORT char ModPlug_ExportS3M(ModPlugFile* file, const char* filepath); /*Export to an Extended Module (XM). EXPERIMENTAL (only works on Little-Endian platforms)*/ MODPLUG_EXPORT char ModPlug_ExportXM(ModPlugFile* file, const char* filepath); /*Export to an Amiga MOD file. EXPERIMENTAL.*/ MODPLUG_EXPORT char ModPlug_ExportMOD(ModPlugFile* file, const char* filepath); /*Export to an Impulse Tracker IT file. Should work OK in Little-Endian & Big-Endian platforms :-) */ MODPLUG_EXPORT char ModPlug_ExportIT(ModPlugFile* file, const char* filepath); #endif /* MODPLUG_NO_FILESAVE */ MODPLUG_EXPORT unsigned int ModPlug_NumInstruments(ModPlugFile* file); MODPLUG_EXPORT unsigned int ModPlug_NumSamples(ModPlugFile* file); MODPLUG_EXPORT unsigned int ModPlug_NumPatterns(ModPlugFile* file); MODPLUG_EXPORT unsigned int ModPlug_NumChannels(ModPlugFile* file); MODPLUG_EXPORT unsigned int ModPlug_SampleName(ModPlugFile* file, unsigned int qual, char* buff); MODPLUG_EXPORT unsigned int ModPlug_InstrumentName(ModPlugFile* file, unsigned int qual, char* buff); /* * Retrieve pattern note-data */ MODPLUG_EXPORT ModPlugNote* ModPlug_GetPattern(ModPlugFile* file, int pattern, unsigned int* numrows); /* * ================= * Mixer callback * ================= * * Use this callback if you want to 'modify' the mixed data of LibModPlug. * * void proc(int* buffer,unsigned long channels,unsigned long nsamples) ; * * 'buffer': A buffer of mixed samples * 'channels': N. of channels in the buffer * 'nsamples': N. of samples in the buffeer (without taking care of n.channels) * * (Samples are signed 32-bit integers) */ MODPLUG_EXPORT void ModPlug_InitMixerCallback(ModPlugFile* file,ModPlugMixerProc proc) ; MODPLUG_EXPORT void ModPlug_UnloadMixerCallback(ModPlugFile* file) ; #ifdef __cplusplus } /* extern "C" */ #endif #endif /* MODPLUG_H__INCLUDED */ #ifdef MODPLUG_CPP #pragma once /* * This source code is public domain. * * Authors: Rani Assaf <rani@magic.metawire.com>, * Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (endian and char fixes for PPC) */ #ifndef _STDAFX_H_ #define _STDAFX_H_ /* Autoconf detection of stdint/inttypes */ #if defined(HAVE_CONFIG_H) && !defined(CONFIG_H_INCLUDED) # include "config.h" # define CONFIG_H_INCLUDED 1 #endif #ifdef HAVE_INTTYPES_H # include <inttypes.h> #endif #ifdef HAVE_STDINT_H # include <stdint.h> #endif /* disable AGC and FILESAVE for all targets for uniformity. */ #define NO_AGC #define MODPLUG_NO_FILESAVE #ifdef _WIN32 #ifdef _MSC_VER #pragma warning (disable:4201) #pragma warning (disable:4514) #endif #define WIN32_LEAN_AND_MEAN #include <windows.h> #include <mmsystem.h> /* for WAVE_FORMAT_PCM */ #include <stdio.h> #include <malloc.h> #if defined(_MSC_VER) && (_MSC_VER < 1600) typedef signed char int8_t; typedef signed short int16_t; typedef signed int int32_t; typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; #else #include <stdint.h> #endif #define sleep(_ms) Sleep(_ms * 1000) inline void ProcessPlugins(int n) { (void)n; } #undef strcasecmp #undef strncasecmp #define strcasecmp(a,b) _stricmp(a,b) #define strncasecmp(a,b,c) _strnicmp(a,b,c) #if defined(_MSC_VER) || defined(__MINGW32__) #define HAVE_SINF 1 #endif #ifndef isblank #define isblank(c) ((c) == ' ' || (c) == '\t') #endif #else #include <stdlib.h> #include <stdio.h> #include <string.h> #ifdef HAVE_MALLOC_H #include <malloc.h> #endif typedef int8_t CHAR; typedef uint8_t UCHAR; typedef uint8_t* PUCHAR; typedef uint16_t USHORT; typedef uint32_t ULONG; typedef uint32_t UINT; typedef uint32_t DWORD; typedef int32_t LONG; typedef int64_t LONGLONG; typedef int32_t* LPLONG; typedef uint32_t* LPDWORD; typedef uint16_t WORD; typedef uint8_t BYTE; typedef uint8_t* LPBYTE; typedef bool BOOL; /* FIXME: must be 'int' */ typedef char* LPSTR; typedef void* LPVOID; typedef uint16_t* LPWORD; typedef const char* LPCSTR; typedef void* PVOID; typedef void VOID; #define LPCTSTR LPCSTR #define lstrcpyn strncpy #define lstrcpy strcpy #define lstrcmp strcmp #define wsprintf sprintf #define WAVE_FORMAT_PCM 1 inline void ProcessPlugins(int n) { (void)n; } #ifndef FALSE #define FALSE false #endif #ifndef TRUE #define TRUE true #endif #endif /* _WIN32 */ #if defined(_WIN32) || defined(__CYGWIN__) # if defined(MODPLUG_BUILD) && defined(DLL_EXPORT) /* building libmodplug as a dll for windows */ # define MODPLUG_EXPORT __declspec(dllexport) # elif defined(MODPLUG_BUILD) || defined(MODPLUG_STATIC) /* building or using static libmodplug for windows */ # define MODPLUG_EXPORT # else # define MODPLUG_EXPORT __declspec(dllimport) /* using libmodplug dll for windows */ # endif #elif defined(__OS2__) && defined(__WATCOMC__) # if defined(MODPLUG_BUILD) && defined(__SW_BD) /* building libmodplug as a dll for os/2 */ # define MODPLUG_EXPORT __declspec(dllexport) # else # define MODPLUG_EXPORT /* using dll or static libmodplug for os/2 */ # endif #elif defined(MODPLUG_BUILD) && defined(SYM_VISIBILITY) # define MODPLUG_EXPORT __attribute__((visibility("default"))) #else #define MODPLUG_EXPORT #endif #if defined(_WIN32) && defined(_mm_free) #undef _mm_free #endif #define MMSTREAM FILE #define _mm_fopen(name,mode) fopen(name,mode) #define _mm_fgets(f,buf,sz) fgets(buf,sz,f) #define _mm_fseek(f,pos,whence) fseek(f,pos,whence) #define _mm_ftell(f) ftell(f) #define _mm_read_UBYTES(buf,sz,f) fread(buf,sz,1,f) #define _mm_read_SBYTES(buf,sz,f) fread(buf,sz,1,f) #define _mm_feof(f) feof(f) #define _mm_fclose(f) fclose(f) #define DupStr(h,buf,sz) strdup(buf) #define _mm_calloc(h,n,sz) calloc(n,sz) #define _mm_recalloc(h,buf,sz,elsz) realloc(buf,sz) #define _mm_free(h,p) free(p) typedef struct { char *mm; int sz; int pos; int error; } MMFILE; static MMFILE *mmfopen(const char *name, const char *mode) { FILE *fp; MMFILE *mmfile = NULL; long len; if( *mode != 'r' ) return NULL; fp = fopen(name, mode); if( !fp ) return NULL; fseek(fp, 0, SEEK_END); len = ftell(fp); if ( len > 0 ) mmfile = (MMFILE *)malloc(len+sizeof(MMFILE)); if( !mmfile || len <= 0 ) { fclose(fp); return NULL; } fseek(fp, 0, SEEK_SET); fread(&mmfile[1],1,len,fp); fclose(fp); mmfile->mm = (char *)&mmfile[1]; mmfile->sz = len; mmfile->pos = 0; return mmfile; } static void mmfclose(MMFILE *mmfile) { free(mmfile); } static bool mmfeof(MMFILE *mmfile) { if( mmfile->pos < 0 ) return TRUE; if( mmfile->pos < mmfile->sz ) return FALSE; return TRUE; } static int mmfgetc(MMFILE *mmfile) { int b; if( mmfeof(mmfile) ) return EOF; b = mmfile->mm[mmfile->pos]; mmfile->pos++; if( b=='\r' && !mmfeof(mmfile) && mmfile->mm[mmfile->pos] == '\n' ) { b = '\n'; mmfile->pos++; } return b; } static void mmfgets(char buf[], unsigned int bufsz, MMFILE *mmfile) { int i,b; for( i=0; i<(int)bufsz-1; i++ ) { b = mmfgetc(mmfile); if( b==EOF ) break; buf[i] = b; if( b == '\n' ) break; } buf[i] = '\0'; } static long mmftell(MMFILE *mmfile) { return mmfile->pos; } static void mmfseek(MMFILE *mmfile, long p, int whence) { int newpos = mmfile->pos; switch(whence) { case SEEK_SET: newpos = p; break; case SEEK_CUR: newpos += p; break; case SEEK_END: newpos = mmfile->sz + p; break; } if (newpos < mmfile->sz) mmfile->pos = newpos; else { mmfile->error = 1; // printf("WARNING: seeking too far\n"); } } static void mmreadUBYTES(BYTE *buf, long sz, MMFILE *mmfile) { int sztr = sz; // do not overread. if (sz > mmfile->sz - mmfile->pos) sztr = mmfile->sz - mmfile->pos; memcpy(buf, &mmfile->mm[mmfile->pos], sztr); mmfile->pos += sz; // if truncated read, populate the rest of the array with zeros. if (sz > sztr) memset(buf+sztr, 0, sz-sztr); } static void mmreadSBYTES(char *buf, long sz, MMFILE *mmfile) { // do not overread. if (sz > mmfile->sz - mmfile->pos) sz = mmfile->sz - mmfile->pos; memcpy(buf, &mmfile->mm[mmfile->pos], sz); mmfile->pos += sz; } #endif /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (endian and char fixes for PPC) */ #if defined(HAVE_CONFIG_H) && !defined(CONFIG_H_INCLUDED) //#include "config.h" #define CONFIG_H_INCLUDED 1 #endif #ifndef __SNDFILE_H #define __SNDFILE_H #ifdef UNDER_CE int _strnicmp(const char *str1,const char *str2, int n); #endif #ifndef LPCBYTE typedef const BYTE * LPCBYTE; #endif #define MOD_AMIGAC2 0x1AB #define MAX_SAMPLE_LENGTH 16000000 #define MAX_SAMPLE_RATE 192000 #define MAX_ORDERS 256 #define MAX_PATTERNS 240 #define MAX_SAMPLES 240 #define MAX_INSTRUMENTS MAX_SAMPLES #ifdef MODPLUG_FASTSOUNDLIB #define MAX_CHANNELS 80 #else #define MAX_CHANNELS 128 #endif #define MAX_BASECHANNELS 64 #define MAX_ENVPOINTS 32 #define MIN_PERIOD 0x0020 #define MAX_PERIOD 0xFFFF #define MAX_PATTERNNAME 32 #define MAX_CHANNELNAME 20 #define MAX_INFONAME 80 #define MAX_EQ_BANDS 6 #define MAX_MIXPLUGINS 8 #define MOD_TYPE_NONE 0x00 #define MOD_TYPE_MOD 0x01 #define MOD_TYPE_S3M 0x02 #define MOD_TYPE_XM 0x04 #define MOD_TYPE_MED 0x08 #define MOD_TYPE_MTM 0x10 #define MOD_TYPE_IT 0x20 #define MOD_TYPE_669 0x40 #define MOD_TYPE_ULT 0x80 #define MOD_TYPE_STM 0x100 #define MOD_TYPE_FAR 0x200 #define MOD_TYPE_WAV 0x400 #define MOD_TYPE_AMF 0x800 #define MOD_TYPE_AMS 0x1000 #define MOD_TYPE_DSM 0x2000 #define MOD_TYPE_MDL 0x4000 #define MOD_TYPE_OKT 0x8000 #define MOD_TYPE_MID 0x10000 #define MOD_TYPE_DMF 0x20000 #define MOD_TYPE_PTM 0x40000 #define MOD_TYPE_DBM 0x80000 #define MOD_TYPE_MT2 0x100000 #define MOD_TYPE_AMF0 0x200000 #define MOD_TYPE_PSM 0x400000 #define MOD_TYPE_J2B 0x800000 #define MOD_TYPE_ABC 0x1000000 #define MOD_TYPE_PAT 0x2000000 #define MOD_TYPE_UMX 0x80000000 // Fake type #define MAX_MODTYPE 24 // Channel flags: // Bits 0-7: Sample Flags #define CHN_16BIT 0x01 #define CHN_LOOP 0x02 #define CHN_PINGPONGLOOP 0x04 #define CHN_SUSTAINLOOP 0x08 #define CHN_PINGPONGSUSTAIN 0x10 #define CHN_PANNING 0x20 #define CHN_STEREO 0x40 #define CHN_PINGPONGFLAG 0x80 // Bits 8-31: Channel Flags #define CHN_MUTE 0x100 #define CHN_KEYOFF 0x200 #define CHN_NOTEFADE 0x400 #define CHN_SURROUND 0x800 #define CHN_NOIDO 0x1000 #define CHN_HQSRC 0x2000 #define CHN_FILTER 0x4000 #define CHN_VOLUMERAMP 0x8000 #define CHN_VIBRATO 0x10000 #define CHN_TREMOLO 0x20000 #define CHN_PANBRELLO 0x40000 #define CHN_PORTAMENTO 0x80000 #define CHN_GLISSANDO 0x100000 #define CHN_VOLENV 0x200000 #define CHN_PANENV 0x400000 #define CHN_PITCHENV 0x800000 #define CHN_FASTVOLRAMP 0x1000000 #define CHN_EXTRALOUD 0x2000000 #define CHN_REVERB 0x4000000 #define CHN_NOREVERB 0x8000000 #define ENV_VOLUME 0x0001 #define ENV_VOLSUSTAIN 0x0002 #define ENV_VOLLOOP 0x0004 #define ENV_PANNING 0x0008 #define ENV_PANSUSTAIN 0x0010 #define ENV_PANLOOP 0x0020 #define ENV_PITCH 0x0040 #define ENV_PITCHSUSTAIN 0x0080 #define ENV_PITCHLOOP 0x0100 #define ENV_SETPANNING 0x0200 #define ENV_FILTER 0x0400 #define ENV_VOLCARRY 0x0800 #define ENV_PANCARRY 0x1000 #define ENV_PITCHCARRY 0x2000 #define CMD_NONE 0 #define CMD_ARPEGGIO 1 #define CMD_PORTAMENTOUP 2 #define CMD_PORTAMENTODOWN 3 #define CMD_TONEPORTAMENTO 4 #define CMD_VIBRATO 5 #define CMD_TONEPORTAVOL 6 #define CMD_VIBRATOVOL 7 #define CMD_TREMOLO 8 #define CMD_PANNING8 9 #define CMD_OFFSET 10 #define CMD_VOLUMESLIDE 11 #define CMD_POSITIONJUMP 12 #define CMD_VOLUME 13 #define CMD_PATTERNBREAK 14 #define CMD_RETRIG 15 #define CMD_SPEED 16 #define CMD_TEMPO 17 #define CMD_TREMOR 18 #define CMD_MODCMDEX 19 #define CMD_S3MCMDEX 20 #define CMD_CHANNELVOLUME 21 #define CMD_CHANNELVOLSLIDE 22 #define CMD_GLOBALVOLUME 23 #define CMD_GLOBALVOLSLIDE 24 #define CMD_KEYOFF 25 #define CMD_FINEVIBRATO 26 #define CMD_PANBRELLO 27 #define CMD_XFINEPORTAUPDOWN 28 #define CMD_PANNINGSLIDE 29 #define CMD_SETENVPOSITION 30 #define CMD_MIDI 31 // Volume Column commands #define VOLCMD_VOLUME 1 #define VOLCMD_PANNING 2 #define VOLCMD_VOLSLIDEUP 3 #define VOLCMD_VOLSLIDEDOWN 4 #define VOLCMD_FINEVOLUP 5 #define VOLCMD_FINEVOLDOWN 6 #define VOLCMD_VIBRATOSPEED 7 #define VOLCMD_VIBRATO 8 #define VOLCMD_PANSLIDELEFT 9 #define VOLCMD_PANSLIDERIGHT 10 #define VOLCMD_TONEPORTAMENTO 11 #define VOLCMD_PORTAUP 12 #define VOLCMD_PORTADOWN 13 #define RSF_16BIT 0x04 #define RSF_STEREO 0x08 #define RS_PCM8S 0 // 8-bit signed #define RS_PCM8U 1 // 8-bit unsigned #define RS_PCM8D 2 // 8-bit delta values #define RS_ADPCM4 3 // 4-bit ADPCM-packed #define RS_PCM16D 4 // 16-bit delta values #define RS_PCM16S 5 // 16-bit signed #define RS_PCM16U 6 // 16-bit unsigned #define RS_PCM16M 7 // 16-bit motorola order #define RS_STPCM8S (RS_PCM8S|RSF_STEREO) // stereo 8-bit signed #define RS_STPCM8U (RS_PCM8U|RSF_STEREO) // stereo 8-bit unsigned #define RS_STPCM8D (RS_PCM8D|RSF_STEREO) // stereo 8-bit delta values #define RS_STPCM16S (RS_PCM16S|RSF_STEREO) // stereo 16-bit signed #define RS_STPCM16U (RS_PCM16U|RSF_STEREO) // stereo 16-bit unsigned #define RS_STPCM16D (RS_PCM16D|RSF_STEREO) // stereo 16-bit delta values #define RS_STPCM16M (RS_PCM16M|RSF_STEREO) // stereo 16-bit signed big endian // IT 2.14 compressed samples #define RS_IT2148 0x10 #define RS_IT21416 0x14 #define RS_IT2158 0x12 #define RS_IT21516 0x16 // AMS Packed Samples #define RS_AMS8 0x11 #define RS_AMS16 0x15 // DMF Huffman compression #define RS_DMF8 0x13 #define RS_DMF16 0x17 // MDL Huffman compression #define RS_MDL8 0x20 #define RS_MDL16 0x24 #define RS_PTM8DTO16 0x25 // Stereo Interleaved Samples #define RS_STIPCM8S (RS_PCM8S|0x40|RSF_STEREO) // stereo 8-bit signed #define RS_STIPCM8U (RS_PCM8U|0x40|RSF_STEREO) // stereo 8-bit unsigned #define RS_STIPCM16S (RS_PCM16S|0x40|RSF_STEREO) // stereo 16-bit signed #define RS_STIPCM16U (RS_PCM16U|0x40|RSF_STEREO) // stereo 16-bit unsigned #define RS_STIPCM16M (RS_PCM16M|0x40|RSF_STEREO) // stereo 16-bit signed big endian // 24-bit signed #define RS_PCM24S (RS_PCM16S|0x80) // mono 24-bit signed #define RS_STIPCM24S (RS_PCM16S|0x80|RSF_STEREO) // stereo 24-bit signed #define RS_PCM32S (RS_PCM16S|0xC0) // mono 24-bit signed #define RS_STIPCM32S (RS_PCM16S|0xC0|RSF_STEREO) // stereo 24-bit signed // NNA types #define NNA_NOTECUT 0 #define NNA_CONTINUE 1 #define NNA_NOTEOFF 2 #define NNA_NOTEFADE 3 // DCT types #define DCT_NONE 0 #define DCT_NOTE 1 #define DCT_SAMPLE 2 #define DCT_INSTRUMENT 3 // DNA types #define DNA_NOTECUT 0 #define DNA_NOTEOFF 1 #define DNA_NOTEFADE 2 // Mixer Hardware-Dependent features #define SYSMIX_ENABLEMMX 0x01 #define SYSMIX_WINDOWSNT 0x02 #define SYSMIX_SLOWCPU 0x04 #define SYSMIX_FASTCPU 0x08 // Module flags #define SONG_EMBEDMIDICFG 0x0001 #define SONG_FASTVOLSLIDES 0x0002 #define SONG_ITOLDEFFECTS 0x0004 #define SONG_ITCOMPATMODE 0x0008 #define SONG_LINEARSLIDES 0x0010 #define SONG_PATTERNLOOP 0x0020 #define SONG_STEP 0x0040 #define SONG_PAUSED 0x0080 #define SONG_FADINGSONG 0x0100 #define SONG_ENDREACHED 0x0200 #define SONG_GLOBALFADE 0x0400 #define SONG_CPUVERYHIGH 0x0800 #define SONG_FIRSTTICK 0x1000 #define SONG_MPTFILTERMODE 0x2000 #define SONG_SURROUNDPAN 0x4000 #define SONG_EXFILTERRANGE 0x8000 #define SONG_AMIGALIMITS 0x10000 // Global Options (Renderer) #define SNDMIX_REVERSESTEREO 0x0001 #define SNDMIX_NOISEREDUCTION 0x0002 #define SNDMIX_AGC 0x0004 #define SNDMIX_NORESAMPLING 0x0008 #define SNDMIX_HQRESAMPLER 0x0010 #define SNDMIX_MEGABASS 0x0020 #define SNDMIX_SURROUND 0x0040 #define SNDMIX_REVERB 0x0080 #define SNDMIX_EQ 0x0100 #define SNDMIX_SOFTPANNING 0x0200 #define SNDMIX_ULTRAHQSRCMODE 0x0400 // Misc Flags (can safely be turned on or off) #define SNDMIX_DIRECTTODISK 0x10000 #define SNDMIX_ENABLEMMX 0x20000 #define SNDMIX_NOBACKWARDJUMPS 0x40000 #define SNDMIX_MAXDEFAULTPAN 0x80000 // Used by the MOD loader // Reverb Types (GM2 Presets) enum { REVERBTYPE_SMALLROOM, REVERBTYPE_MEDIUMROOM, REVERBTYPE_LARGEROOM, REVERBTYPE_SMALLHALL, REVERBTYPE_MEDIUMHALL, REVERBTYPE_LARGEHALL, NUM_REVERBTYPES }; enum { SRCMODE_NEAREST, SRCMODE_LINEAR, SRCMODE_SPLINE, SRCMODE_POLYPHASE, NUM_SRC_MODES }; // Sample Struct typedef struct _MODINSTRUMENT { UINT nLength,nLoopStart,nLoopEnd; UINT nSustainStart, nSustainEnd; signed char *pSample; UINT nC4Speed; WORD nPan; WORD nVolume; WORD nGlobalVol; WORD uFlags; signed char RelativeTone; signed char nFineTune; BYTE nVibType; BYTE nVibSweep; BYTE nVibDepth; BYTE nVibRate; CHAR name[22]; } MODINSTRUMENT; // Instrument Struct typedef struct _INSTRUMENTHEADER { UINT nFadeOut; DWORD dwFlags; WORD nGlobalVol; WORD nPan; WORD VolPoints[MAX_ENVPOINTS]; WORD PanPoints[MAX_ENVPOINTS]; WORD PitchPoints[MAX_ENVPOINTS]; BYTE VolEnv[MAX_ENVPOINTS]; BYTE PanEnv[MAX_ENVPOINTS]; BYTE PitchEnv[MAX_ENVPOINTS]; BYTE Keyboard[128]; BYTE NoteMap[128]; BYTE nVolEnv; BYTE nPanEnv; BYTE nPitchEnv; BYTE nVolLoopStart; BYTE nVolLoopEnd; BYTE nVolSustainBegin; BYTE nVolSustainEnd; BYTE nPanLoopStart; BYTE nPanLoopEnd; BYTE nPanSustainBegin; BYTE nPanSustainEnd; BYTE nPitchLoopStart; BYTE nPitchLoopEnd; BYTE nPitchSustainBegin; BYTE nPitchSustainEnd; BYTE nNNA; BYTE nDCT; BYTE nDNA; BYTE nPanSwing; BYTE nVolSwing; BYTE nIFC; BYTE nIFR; WORD wMidiBank; BYTE nMidiProgram; BYTE nMidiChannel; BYTE nMidiDrumKey; signed char nPPS; unsigned char nPPC; CHAR name[32]; CHAR filename[12]; } INSTRUMENTHEADER; // Channel Struct typedef struct _MODCHANNEL { // First 32-bytes: Most used mixing information: don't change it signed char * pCurrentSample; DWORD nPos; DWORD nPosLo; // actually 16-bit LONG nInc; // 16.16 LONG nRightVol; LONG nLeftVol; LONG nRightRamp; LONG nLeftRamp; // 2nd cache line DWORD nLength; DWORD dwFlags; DWORD nLoopStart; DWORD nLoopEnd; LONG nRampRightVol; LONG nRampLeftVol; LONG nFilter_Y1, nFilter_Y2, nFilter_Y3, nFilter_Y4; LONG nFilter_A0, nFilter_B0, nFilter_B1; LONG nROfs, nLOfs; LONG nRampLength; // Information not used in the mixer signed char * pSample; LONG nNewRightVol, nNewLeftVol; LONG nRealVolume, nRealPan; LONG nVolume, nPan, nFadeOutVol; LONG nPeriod, nC4Speed, nPortamentoDest; INSTRUMENTHEADER *pHeader; MODINSTRUMENT *pInstrument; DWORD nVolEnvPosition, nPanEnvPosition, nPitchEnvPosition; DWORD nMasterChn, nVUMeter; LONG nGlobalVol, nInsVol; LONG nFineTune, nTranspose; LONG nPortamentoSlide, nAutoVibDepth; UINT nAutoVibPos, nVibratoPos, nTremoloPos, nPanbrelloPos; // 16-bit members signed short nVolSwing, nPanSwing; // 8-bit members BYTE nNote, nNNA; BYTE nNewNote, nNewIns, nCommand, nArpeggio; BYTE nOldVolumeSlide, nOldFineVolUpDown; BYTE nOldPortaUpDown, nOldFinePortaUpDown; BYTE nOldPanSlide, nOldChnVolSlide; BYTE nVibratoType, nVibratoSpeed, nVibratoDepth; BYTE nTremoloType, nTremoloSpeed, nTremoloDepth; BYTE nPanbrelloType, nPanbrelloSpeed, nPanbrelloDepth; BYTE nOldCmdEx, nOldVolParam, nOldTempo; BYTE nOldOffset, nOldHiOffset; BYTE nCutOff, nResonance; BYTE nRetrigCount, nRetrigParam; BYTE nTremorCount, nTremorParam; BYTE nPatternLoop, nPatternLoopCount; BYTE nRowNote, nRowInstr; BYTE nRowVolCmd, nRowVolume; BYTE nRowCommand, nRowParam; BYTE nLeftVU, nRightVU; BYTE nActiveMacro, nPadding; } MODCHANNEL; typedef struct _MODCHANNELSETTINGS { UINT nPan; UINT nVolume; DWORD dwFlags; UINT nMixPlugin; char szName[MAX_CHANNELNAME]; // changed from CHAR } MODCHANNELSETTINGS; typedef struct _MODCOMMAND { BYTE note; BYTE instr; BYTE volcmd; BYTE command; BYTE vol; BYTE param; } MODCOMMAND, *LPMODCOMMAND; //////////////////////////////////////////////////////////////////// // Mix Plugins #define MIXPLUG_MIXREADY 0x01 // Set when cleared class MODPLUG_EXPORT IMixPlugin { public: virtual ~IMixPlugin() {}; virtual int AddRef() = 0; virtual int Release() = 0; virtual void SaveAllParameters() = 0; virtual void RestoreAllParameters() = 0; virtual void Process(float *pOutL, float *pOutR, unsigned long nSamples) = 0; virtual void Init(unsigned long nFreq, int bReset) = 0; virtual void MidiSend(DWORD dwMidiCode) = 0; virtual void MidiCommand(UINT nMidiCh, UINT nMidiProg, UINT note, UINT vol) = 0; }; #define MIXPLUG_INPUTF_MASTEREFFECT 0x01 // Apply to master mix #define MIXPLUG_INPUTF_BYPASS 0x02 // Bypass effect #define MIXPLUG_INPUTF_WETMIX 0x04 // Wet Mix (dry added) typedef struct _SNDMIXPLUGINSTATE { DWORD dwFlags; // MIXPLUG_XXXX LONG nVolDecayL, nVolDecayR; // Buffer click removal int *pMixBuffer; // Stereo effect send buffer float *pOutBufferL; // Temp storage for int -> float conversion float *pOutBufferR; } SNDMIXPLUGINSTATE, *PSNDMIXPLUGINSTATE; typedef struct _SNDMIXPLUGININFO { DWORD dwPluginId1; DWORD dwPluginId2; DWORD dwInputRouting; // MIXPLUG_INPUTF_XXXX DWORD dwOutputRouting; // 0=mix 0x80+=fx DWORD dwReserved[4]; // Reserved for routing info CHAR szName[32]; CHAR szLibraryName[64]; // original DLL name } SNDMIXPLUGININFO, *PSNDMIXPLUGININFO; // Size should be 128 typedef struct _SNDMIXPLUGIN { IMixPlugin *pMixPlugin; PSNDMIXPLUGINSTATE pMixState; ULONG nPluginDataSize; PVOID pPluginData; SNDMIXPLUGININFO Info; } SNDMIXPLUGIN, *PSNDMIXPLUGIN; typedef BOOL (*PMIXPLUGINCREATEPROC)(PSNDMIXPLUGIN); //////////////////////////////////////////////////////////////////// enum { MIDIOUT_START=0, MIDIOUT_STOP, MIDIOUT_TICK, MIDIOUT_NOTEON, MIDIOUT_NOTEOFF, MIDIOUT_VOLUME, MIDIOUT_PAN, MIDIOUT_BANKSEL, MIDIOUT_PROGRAM, }; typedef struct MODMIDICFG { char szMidiGlb[9*32]; // changed from CHAR char szMidiSFXExt[16*32]; // changed from CHAR char szMidiZXXExt[128*32]; // changed from CHAR } MODMIDICFG, *LPMODMIDICFG; #define NOTE_MAX 120 //Defines maximum notevalue as well as maximum number of notes. typedef VOID (* LPSNDMIXHOOKPROC)(int *, unsigned long, unsigned long); // buffer, samples, channels //============== class MODPLUG_EXPORT CSoundFile //============== { public: // Static Members static UINT m_nXBassDepth; static UINT m_nXBassRange; static UINT m_nReverbDepth; static UINT m_nReverbDelay; static UINT gnReverbType; static UINT m_nProLogicDepth; static UINT m_nProLogicDelay; static UINT m_nStereoSeparation; static UINT m_nMaxMixChannels; static LONG m_nStreamVolume; static DWORD gdwSysInfo; static DWORD gdwSoundSetup; static DWORD gdwMixingFreq; static DWORD gnBitsPerSample; static DWORD gnChannels; static UINT gnAGC; static UINT gnVolumeRampSamples; static UINT gnVUMeter; static UINT gnCPUUsage; static LPSNDMIXHOOKPROC gpSndMixHook; static PMIXPLUGINCREATEPROC gpMixPluginCreateProc; public: // for Editing MODCHANNEL Chn[MAX_CHANNELS]; // Channels UINT ChnMix[MAX_CHANNELS]; // Channels to be mixed MODINSTRUMENT Ins[MAX_SAMPLES]; // Instruments INSTRUMENTHEADER *Headers[MAX_INSTRUMENTS]; // Instrument Headers MODCHANNELSETTINGS ChnSettings[MAX_BASECHANNELS]; // Channels settings MODCOMMAND *Patterns[MAX_PATTERNS]; // Patterns WORD PatternSize[MAX_PATTERNS]; // Patterns Lengths BYTE Order[MAX_ORDERS]; // Pattern Orders MODMIDICFG m_MidiCfg; // Midi macro config table SNDMIXPLUGIN m_MixPlugins[MAX_MIXPLUGINS]; // Mix plugins UINT m_nDefaultSpeed, m_nDefaultTempo, m_nDefaultGlobalVolume; DWORD m_dwSongFlags; // Song flags SONG_XXXX UINT m_nChannels, m_nMixChannels, m_nMixStat, m_nBufferCount; UINT m_nType, m_nSamples, m_nInstruments; UINT m_nTickCount, m_nTotalCount, m_nPatternDelay, m_nFrameDelay; UINT m_nMusicSpeed, m_nMusicTempo; UINT m_nNextRow, m_nRow, m_nNextStartRow; UINT m_nPattern,m_nCurrentPattern,m_nNextPattern,m_nRestartPos; UINT m_nMasterVolume, m_nGlobalVolume, m_nSongPreAmp; UINT m_nFreqFactor, m_nTempoFactor, m_nOldGlbVolSlide; LONG m_nMinPeriod, m_nMaxPeriod, m_nRepeatCount, m_nInitialRepeatCount; DWORD m_nGlobalFadeSamples, m_nGlobalFadeMaxSamples; UINT m_nMaxOrderPosition; UINT m_nPatternNames; LPSTR m_lpszSongComments, m_lpszPatternNames; char m_szNames[MAX_INSTRUMENTS][32]; // changed from CHAR CHAR CompressionTable[16]; public: CSoundFile(); ~CSoundFile(); public: BOOL Create(LPCBYTE lpStream, DWORD dwMemLength=0); BOOL Destroy(); UINT GetType() const { return m_nType; } UINT GetNumChannels() const; UINT GetLogicalChannels() const { return m_nChannels; } BOOL SetMasterVolume(UINT vol, BOOL bAdjustAGC=FALSE); UINT GetMasterVolume() const { return m_nMasterVolume; } UINT GetNumPatterns() const; UINT GetNumInstruments() const; UINT GetNumSamples() const { return m_nSamples; } UINT GetCurrentPos() const; UINT GetCurrentPattern() const { return m_nPattern; } UINT GetCurrentOrder() const { return m_nCurrentPattern; } UINT GetSongComments(LPSTR s, UINT cbsize, UINT linesize=32); UINT GetRawSongComments(LPSTR s, UINT cbsize, UINT linesize=32); UINT GetMaxPosition() const; void SetCurrentPos(UINT nPos); void SetCurrentOrder(UINT nOrder); void GetTitle(LPSTR s) const { lstrcpyn(s,m_szNames[0],32); } LPCSTR GetTitle() const { return m_szNames[0]; } UINT GetSampleName(UINT nSample,LPSTR s=NULL) const; UINT GetInstrumentName(UINT nInstr,LPSTR s=NULL) const; UINT GetMusicSpeed() const { return m_nMusicSpeed; } UINT GetMusicTempo() const { return m_nMusicTempo; } DWORD GetLength(BOOL bAdjust, BOOL bTotal=FALSE); DWORD GetSongTime() { return GetLength(FALSE, TRUE); } void SetRepeatCount(int n) { m_nRepeatCount = n; m_nInitialRepeatCount = n; } int GetRepeatCount() const { return m_nRepeatCount; } BOOL IsPaused() const { return (m_dwSongFlags & SONG_PAUSED) ? TRUE : FALSE; } void LoopPattern(int nPat, int nRow=0); void CheckCPUUsage(UINT nCPU); BOOL SetPatternName(UINT nPat, LPCSTR lpszName); BOOL GetPatternName(UINT nPat, LPSTR lpszName, UINT cbSize=MAX_PATTERNNAME) const; // Module Loaders BOOL ReadXM(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadS3M(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadMod(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadMed(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadMTM(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadSTM(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadIT(LPCBYTE lpStream, DWORD dwMemLength); BOOL Read669(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadUlt(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadWav(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadDSM(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadFAR(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadAMS(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadAMS2(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadMDL(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadOKT(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadDMF(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadPTM(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadDBM(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadAMF(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadMT2(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadPSM(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadJ2B(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadUMX(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadABC(LPCBYTE lpStream, DWORD dwMemLength); BOOL TestABC(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadMID(LPCBYTE lpStream, DWORD dwMemLength); BOOL TestMID(LPCBYTE lpStream, DWORD dwMemLength); BOOL ReadPAT(LPCBYTE lpStream, DWORD dwMemLength); BOOL TestPAT(LPCBYTE lpStream, DWORD dwMemLength); // Save Functions #ifndef MODPLUG_NO_FILESAVE UINT WriteSample(FILE *f, MODINSTRUMENT *pins, UINT nFlags, UINT nMaxLen=0); BOOL SaveXM(LPCSTR lpszFileName, UINT nPacking=0); BOOL SaveS3M(LPCSTR lpszFileName, UINT nPacking=0); BOOL SaveMod(LPCSTR lpszFileName, UINT nPacking=0); BOOL SaveIT(LPCSTR lpszFileName, UINT nPacking=0); #endif // MODPLUG_NO_FILESAVE // MOD Convert function UINT GetBestSaveFormat() const; UINT GetSaveFormats() const; void ConvertModCommand(MODCOMMAND *) const; void S3MConvert(MODCOMMAND *m, BOOL bIT) const; void S3MSaveConvert(UINT *pcmd, UINT *pprm, BOOL bIT) const; WORD ModSaveCommand(const MODCOMMAND *m, BOOL bXM) const; public: // Real-time sound functions VOID ResetChannels(); UINT Read(LPVOID lpBuffer, UINT cbBuffer); UINT CreateStereoMix(int count); BOOL FadeSong(UINT msec); BOOL GlobalFadeSong(UINT msec); UINT GetTotalTickCount() const { return m_nTotalCount; } VOID ResetTotalTickCount() { m_nTotalCount = 0; } public: // Mixer Config static BOOL InitPlayer(BOOL bReset=FALSE); static BOOL SetMixConfig(UINT nStereoSeparation, UINT nMaxMixChannels); static BOOL SetWaveConfig(UINT nRate,UINT nBits,UINT nChannels,BOOL bMMX=FALSE); static BOOL SetResamplingMode(UINT nMode); // SRCMODE_XXXX static BOOL IsStereo() { return (gnChannels > 1) ? TRUE : FALSE; } static DWORD GetSampleRate() { return gdwMixingFreq; } static DWORD GetBitsPerSample() { return gnBitsPerSample; } static DWORD InitSysInfo(); static DWORD GetSysInfo() { return gdwSysInfo; } // AGC static BOOL GetAGC() { return (gdwSoundSetup & SNDMIX_AGC) ? TRUE : FALSE; } static void SetAGC(BOOL b); static void ResetAGC(); static void ProcessAGC(int count); //GCCFIX -- added these functions back in! static BOOL SetWaveConfigEx(BOOL bSurround,BOOL bNoOverSampling,BOOL bReverb,BOOL hqido,BOOL bMegaBass,BOOL bNR,BOOL bEQ); // DSP Effects static void InitializeDSP(BOOL bReset); static void ProcessStereoDSP(int count); static void ProcessMonoDSP(int count); // [Reverb level 0(quiet)-100(loud)], [delay in ms, usually 40-200ms] static BOOL SetReverbParameters(UINT nDepth, UINT nDelay); // [XBass level 0(quiet)-100(loud)], [cutoff in Hz 10-100] static BOOL SetXBassParameters(UINT nDepth, UINT nRange); // [Surround level 0(quiet)-100(heavy)] [delay in ms, usually 5-40ms] static BOOL SetSurroundParameters(UINT nDepth, UINT nDelay); public: BOOL ReadNote(); BOOL ProcessRow(); BOOL ProcessEffects(); UINT GetNNAChannel(UINT nChn) const; void CheckNNA(UINT nChn, UINT instr, int note, BOOL bForceCut); void NoteChange(UINT nChn, int note, BOOL bPorta=FALSE, BOOL bResetEnv=TRUE); void InstrumentChange(MODCHANNEL *pChn, UINT instr, BOOL bPorta=FALSE,BOOL bUpdVol=TRUE,BOOL bResetEnv=TRUE); // Channel Effects void PortamentoUp(MODCHANNEL *pChn, UINT param); void PortamentoDown(MODCHANNEL *pChn, UINT param); void FinePortamentoUp(MODCHANNEL *pChn, UINT param); void FinePortamentoDown(MODCHANNEL *pChn, UINT param); void ExtraFinePortamentoUp(MODCHANNEL *pChn, UINT param); void ExtraFinePortamentoDown(MODCHANNEL *pChn, UINT param); void TonePortamento(MODCHANNEL *pChn, UINT param); void Vibrato(MODCHANNEL *pChn, UINT param); void FineVibrato(MODCHANNEL *pChn, UINT param); void VolumeSlide(MODCHANNEL *pChn, UINT param); void PanningSlide(MODCHANNEL *pChn, UINT param); void ChannelVolSlide(MODCHANNEL *pChn, UINT param); void FineVolumeUp(MODCHANNEL *pChn, UINT param); void FineVolumeDown(MODCHANNEL *pChn, UINT param); void Tremolo(MODCHANNEL *pChn, UINT param); void Panbrello(MODCHANNEL *pChn, UINT param); void RetrigNote(UINT nChn, UINT param); void NoteCut(UINT nChn, UINT nTick); void KeyOff(UINT nChn); int PatternLoop(MODCHANNEL *, UINT param); void ExtendedMODCommands(UINT nChn, UINT param); void ExtendedS3MCommands(UINT nChn, UINT param); void ExtendedChannelEffect(MODCHANNEL *, UINT param); void ProcessMidiMacro(UINT nChn, LPCSTR pszMidiMacro, UINT param=0); void SetupChannelFilter(MODCHANNEL *pChn, BOOL bReset, int flt_modifier=256) const; // Low-Level effect processing void DoFreqSlide(MODCHANNEL *pChn, LONG nFreqSlide); // Global Effects void SetTempo(UINT param); void SetSpeed(UINT param); void GlobalVolSlide(UINT param); DWORD IsSongFinished(UINT nOrder, UINT nRow) const; BOOL IsValidBackwardJump(UINT nStartOrder, UINT nStartRow, UINT nJumpOrder, UINT nJumpRow) const; // Read/Write sample functions signed char GetDeltaValue(signed char prev, UINT n) const { return (signed char)(prev + CompressionTable[n & 0x0F]); } UINT PackSample(int &sample, int next); BOOL CanPackSample(LPSTR pSample, UINT nLen, UINT nPacking, BYTE *result=NULL); UINT ReadSample(MODINSTRUMENT *pIns, UINT nFlags, LPCSTR pMemFile, DWORD dwMemLength); BOOL DestroySample(UINT nSample); BOOL DestroyInstrument(UINT nInstr); BOOL IsSampleUsed(UINT nSample); BOOL IsInstrumentUsed(UINT nInstr); BOOL RemoveInstrumentSamples(UINT nInstr); UINT DetectUnusedSamples(BOOL *); BOOL RemoveSelectedSamples(BOOL *); void AdjustSampleLoop(MODINSTRUMENT *pIns); // I/O from another sound file BOOL ReadInstrumentFromSong(UINT nInstr, CSoundFile *, UINT nSrcInstrument); BOOL ReadSampleFromSong(UINT nSample, CSoundFile *, UINT nSrcSample); // Period/Note functions UINT GetNoteFromPeriod(UINT period) const; UINT GetPeriodFromNote(UINT note, int nFineTune, UINT nC4Speed) const; UINT GetFreqFromPeriod(UINT period, UINT nC4Speed, int nPeriodFrac=0) const; // Misc functions MODINSTRUMENT *GetSample(UINT n) { return Ins+n; } void ResetMidiCfg(); UINT MapMidiInstrument(DWORD dwProgram, UINT nChannel, UINT nNote); BOOL ITInstrToMPT(const void *p, INSTRUMENTHEADER *penv, UINT trkvers); UINT SaveMixPlugins(FILE *f=NULL, BOOL bUpdate=TRUE); UINT LoadMixPlugins(const void *pData, UINT nLen); #ifndef NO_FILTER DWORD CutOffToFrequency(UINT nCutOff, int flt_modifier=256) const; // [0-255] => [1-10KHz] #endif // Static helper functions public: static DWORD TransposeToFrequency(int transp, int ftune=0); static int FrequencyToTranspose(DWORD freq); static void FrequencyToTranspose(MODINSTRUMENT *psmp); // System-Dependant functions public: static MODCOMMAND *AllocatePattern(UINT rows, UINT nchns); static signed char* AllocateSample(UINT nbytes); static void FreePattern(LPVOID pat); static void FreeSample(LPVOID p); static UINT Normalize24BitBuffer(LPBYTE pbuffer, UINT cbsizebytes, DWORD lmax24, DWORD dwByteInc); }; // inline DWORD BigEndian(DWORD x) { return ((x & 0xFF) << 24) | ((x & 0xFF00) << 8) | ((x & 0xFF0000) >> 8) | ((x & 0xFF000000) >> 24); } // inline WORD BigEndianW(WORD x) { return (WORD)(((x >> 8) & 0xFF) | ((x << 8) & 0xFF00)); } ////////////////////////////////////////////////////////// // WAVE format information #pragma pack(1) // Standard IFF chunks IDs #define IFFID_FORM 0x4d524f46 #define IFFID_RIFF 0x46464952 #define IFFID_WAVE 0x45564157 #define IFFID_LIST 0x5453494C #define IFFID_INFO 0x4F464E49 // IFF Info fields #define IFFID_ICOP 0x504F4349 #define IFFID_IART 0x54524149 #define IFFID_IPRD 0x44525049 #define IFFID_INAM 0x4D414E49 #define IFFID_ICMT 0x544D4349 #define IFFID_IENG 0x474E4549 #define IFFID_ISFT 0x54465349 #define IFFID_ISBJ 0x4A425349 #define IFFID_IGNR 0x524E4749 #define IFFID_ICRD 0x44524349 // Wave IFF chunks IDs #define IFFID_wave 0x65766177 #define IFFID_fmt 0x20746D66 #define IFFID_wsmp 0x706D7377 #define IFFID_pcm 0x206d6370 #define IFFID_data 0x61746164 #define IFFID_smpl 0x6C706D73 #define IFFID_xtra 0x61727478 typedef struct WAVEFILEHEADER { DWORD id_RIFF; // "RIFF" DWORD filesize; // file length-8 DWORD id_WAVE; } WAVEFILEHEADER; typedef struct WAVEFORMATHEADER { DWORD id_fmt; // "fmt " DWORD hdrlen; // 16 WORD format; // 1 WORD channels; // 1:mono, 2:stereo DWORD freqHz; // sampling freq DWORD bytessec; // bytes/sec=freqHz*samplesize WORD samplesize; // sizeof(sample) WORD bitspersample; // bits per sample (8/16) } WAVEFORMATHEADER; typedef struct WAVEDATAHEADER { DWORD id_data; // "data" DWORD length; // length of data } WAVEDATAHEADER; typedef struct WAVESMPLHEADER { // SMPL DWORD smpl_id; // "smpl" -> 0x6C706D73 DWORD smpl_len; // length of smpl: 3Ch (54h with sustain loop) DWORD dwManufacturer; DWORD dwProduct; DWORD dwSamplePeriod; // 1000000000/freqHz DWORD dwBaseNote; // 3Ch = C-4 -> 60 + RelativeTone DWORD dwPitchFraction; DWORD dwSMPTEFormat; DWORD dwSMPTEOffset; DWORD dwSampleLoops; // number of loops DWORD cbSamplerData; } WAVESMPLHEADER; typedef struct SAMPLELOOPSTRUCT { DWORD dwIdentifier; DWORD dwLoopType; // 0=normal, 1=bidi DWORD dwLoopStart; DWORD dwLoopEnd; // Byte offset ? DWORD dwFraction; DWORD dwPlayCount; // Loop Count, 0=infinite } SAMPLELOOPSTRUCT; typedef struct WAVESAMPLERINFO { WAVESMPLHEADER wsiHdr; SAMPLELOOPSTRUCT wsiLoops[2]; } WAVESAMPLERINFO; typedef struct WAVELISTHEADER { DWORD list_id; // "LIST" -> 0x5453494C DWORD list_len; DWORD info; // "INFO" } WAVELISTHEADER; typedef struct WAVEEXTRAHEADER { DWORD xtra_id; // "xtra" -> 0x61727478 DWORD xtra_len; DWORD dwFlags; WORD wPan; WORD wVolume; WORD wGlobalVol; WORD wReserved; BYTE nVibType; BYTE nVibSweep; BYTE nVibDepth; BYTE nVibRate; } WAVEEXTRAHEADER; #pragma pack() /////////////////////////////////////////////////////////// // Low-level Mixing functions #define MIXBUFFERSIZE 512 #define MIXING_ATTENUATION 4 #define MIXING_CLIPMIN (-0x08000000) #define MIXING_CLIPMAX (0x07FFFFFF) #define VOLUMERAMPPRECISION 12 #define FADESONGDELAY 100 #define EQ_BUFFERSIZE (MIXBUFFERSIZE) #define AGC_PRECISION 9 #define AGC_UNITY (1 << AGC_PRECISION) // Calling conventions #if defined(_MSC_VER) && defined(_M_IX86) #define MPPASMCALL __cdecl #define MPPFASTCALL __fastcall #else #define MPPASMCALL #define MPPFASTCALL #endif #define MOD2XMFineTune(k) ((int)( (signed char)((k)<<4) )) #define XM2MODFineTune(k) ((int)( (k>>4)&0x0f )) int _muldiv(long a, long b, long c); int _muldivr(long a, long b, long c); // Byte swapping functions from the GNU C Library and libsdl /* Swap bytes in 16 bit value. */ #ifdef __GNUC__ # define bswap_16(x) \ (__extension__ \ ({ unsigned short int __bsx = (x); \ ((((__bsx) >> 8) & 0xff) | (((__bsx) & 0xff) << 8)); })) #else static __inline unsigned short int bswap_16 (unsigned short int __bsx) { return ((((__bsx) >> 8) & 0xff) | (((__bsx) & 0xff) << 8)); } #endif /* Swap bytes in 32 bit value. */ #ifdef __GNUC__ # define bswap_32(x) \ (__extension__ \ ({ unsigned int __bsx = (x); \ ((((__bsx) & 0xff000000) >> 24) | (((__bsx) & 0x00ff0000) >> 8) | \ (((__bsx) & 0x0000ff00) << 8) | (((__bsx) & 0x000000ff) << 24)); })) #else static __inline unsigned int bswap_32 (unsigned int __bsx) { return ((((__bsx) & 0xff000000) >> 24) | (((__bsx) & 0x00ff0000) >> 8) | (((__bsx) & 0x0000ff00) << 8) | (((__bsx) & 0x000000ff) << 24)); } #endif #if (defined ARM) && (defined _WIN32_WCE) static __inline unsigned short int ARM_get16(const void *data) { unsigned short int s; memcpy(&s,data,sizeof(s)); return s; } static __inline unsigned int ARM_get32(const void *data) { unsigned int s; memcpy(&s,data,sizeof(s)); return s; } #define bswapLE16(X) ARM_get16(&X) #define bswapLE32(X) ARM_get32(&X) #define bswapBE16(X) bswap_16(ARM_get16(&X)) #define bswapBE32(X) bswap_32(ARM_get32(&X)) // From libsdl #elif defined(WORDS_BIGENDIAN) && WORDS_BIGENDIAN #define bswapLE16(X) bswap_16(X) #define bswapLE32(X) bswap_32(X) #define bswapBE16(X) (X) #define bswapBE32(X) (X) #else #define bswapLE16(X) (X) #define bswapLE32(X) (X) #define bswapBE16(X) bswap_16(X) #define bswapBE32(X) bswap_32(X) #endif #endif #ifndef _ITDEFS_H_ #define _ITDEFS_H_ #pragma pack(1) typedef struct tagITFILEHEADER { DWORD id; // 0x4D504D49 CHAR songname[26]; WORD reserved1; // 0x1004 WORD ordnum; WORD insnum; WORD smpnum; WORD patnum; WORD cwtv; WORD cmwt; WORD flags; WORD special; BYTE globalvol; BYTE mv; BYTE speed; BYTE tempo; BYTE sep; BYTE zero; WORD msglength; DWORD msgoffset; DWORD reserved2; BYTE chnpan[64]; BYTE chnvol[64]; } ITFILEHEADER; typedef struct tagITENVELOPE { BYTE flags; BYTE num; BYTE lpb; BYTE lpe; BYTE slb; BYTE sle; BYTE data[25*3]; BYTE reserved; } ITENVELOPE; // Old Impulse Instrument Format (cmwt < 0x200) typedef struct tagITOLDINSTRUMENT { DWORD id; // IMPI = 0x49504D49 CHAR filename[12]; // DOS file name BYTE zero; BYTE flags; BYTE vls; BYTE vle; BYTE sls; BYTE sle; WORD reserved1; WORD fadeout; BYTE nna; BYTE dnc; WORD trkvers; BYTE nos; BYTE reserved2; CHAR name[26]; WORD reserved3[3]; BYTE keyboard[240]; BYTE volenv[200]; BYTE nodes[50]; } ITOLDINSTRUMENT; // Impulse Instrument Format typedef struct tagITINSTRUMENT { DWORD id; CHAR filename[12]; BYTE zero; BYTE nna; BYTE dct; BYTE dca; WORD fadeout; signed char pps; BYTE ppc; BYTE gbv; BYTE dfp; BYTE rv; BYTE rp; WORD trkvers; BYTE nos; BYTE reserved1; CHAR name[26]; BYTE ifc; BYTE ifr; BYTE mch; BYTE mpr; WORD mbank; BYTE keyboard[240]; ITENVELOPE volenv; ITENVELOPE panenv; ITENVELOPE pitchenv; BYTE dummy[4]; // was 7, but IT v2.17 saves 554 bytes } ITINSTRUMENT; // IT Sample Format typedef struct ITSAMPLESTRUCT { DWORD id; // 0x53504D49 CHAR filename[12]; BYTE zero; BYTE gvl; BYTE flags; BYTE vol; CHAR name[26]; BYTE cvt; BYTE dfp; DWORD length; DWORD loopbegin; DWORD loopend; DWORD C5Speed; DWORD susloopbegin; DWORD susloopend; DWORD samplepointer; BYTE vis; BYTE vid; BYTE vir; BYTE vit; } ITSAMPLESTRUCT; #pragma pack() extern BYTE autovibit2xm[8]; extern BYTE autovibxm2it[8]; #endif #ifndef LOAD_PAT_H #define LOAD_PAT_H #ifdef __cplusplus extern "C" { #endif void pat_init_patnames(void); void pat_resetsmp(void); int pat_numinstr(void); int pat_numsmp(void); int pat_smptogm(int smp); int pat_gmtosmp(int gm); int pat_gm_drumnr(int n); int pat_gm_drumnote(int n); const char *pat_gm_name(int gm); int pat_modnote(int midinote); int pat_smplooped(int smp); BOOL PAT_Load_Instruments(void *c); #ifdef __cplusplus } #endif #endif /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ #pragma once //#include "stdafx.h" //#include "sndfile.h" #ifndef MODPLUG_FASTSOUNDLIB //#pragma data_seg(".tables") #endif static const BYTE ImpulseTrackerPortaVolCmd[16] = { 0x00, 0x01, 0x04, 0x08, 0x10, 0x20, 0x40, 0x60, 0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; // Period table for Protracker octaves 0-5: static const WORD ProTrackerPeriodTable[6*12] = { 1712,1616,1524,1440,1356,1280,1208,1140,1076,1016,960,907, 856,808,762,720,678,640,604,570,538,508,480,453, 428,404,381,360,339,320,302,285,269,254,240,226, 214,202,190,180,170,160,151,143,135,127,120,113, 107,101,95,90,85,80,75,71,67,63,60,56, 53,50,47,45,42,40,37,35,33,31,30,28 }; static const WORD ProTrackerTunedPeriods[16*12] = { 1712,1616,1524,1440,1356,1280,1208,1140,1076,1016,960,907, 1700,1604,1514,1430,1348,1274,1202,1134,1070,1010,954,900, 1688,1592,1504,1418,1340,1264,1194,1126,1064,1004,948,894, 1676,1582,1492,1408,1330,1256,1184,1118,1056,996,940,888, 1664,1570,1482,1398,1320,1246,1176,1110,1048,990,934,882, 1652,1558,1472,1388,1310,1238,1168,1102,1040,982,926,874, 1640,1548,1460,1378,1302,1228,1160,1094,1032,974,920,868, 1628,1536,1450,1368,1292,1220,1150,1086,1026,968,914,862, 1814,1712,1616,1524,1440,1356,1280,1208,1140,1076,1016,960, 1800,1700,1604,1514,1430,1350,1272,1202,1134,1070,1010,954, 1788,1688,1592,1504,1418,1340,1264,1194,1126,1064,1004,948, 1774,1676,1582,1492,1408,1330,1256,1184,1118,1056,996,940, 1762,1664,1570,1482,1398,1320,1246,1176,1110,1048,988,934, 1750,1652,1558,1472,1388,1310,1238,1168,1102,1040,982,926, 1736,1640,1548,1460,1378,1302,1228,1160,1094,1032,974,920, 1724,1628,1536,1450,1368,1292,1220,1150,1086,1026,968,914 }; // S3M C-4 periods static const WORD FreqS3MTable[16] = { 1712,1616,1524,1440,1356,1280, 1208,1140,1076,1016,960,907, 0,0,0,0 }; // S3M FineTune frequencies static const WORD S3MFineTuneTable[16] = { 7895,7941,7985,8046,8107,8169,8232,8280, 8363,8413,8463,8529,8581,8651,8723,8757, // 8363*2^((i-8)/(12*8)) }; // Sinus table static const int16_t ModSinusTable[64] = { 0,12,25,37,49,60,71,81,90,98,106,112,117,122,125,126, 127,126,125,122,117,112,106,98,90,81,71,60,49,37,25,12, 0,-12,-25,-37,-49,-60,-71,-81,-90,-98,-106,-112,-117,-122,-125,-126, -127,-126,-125,-122,-117,-112,-106,-98,-90,-81,-71,-60,-49,-37,-25,-12 }; // Triangle wave table (ramp down) static const int16_t ModRampDownTable[64] = { 0,-4,-8,-12,-16,-20,-24,-28,-32,-36,-40,-44,-48,-52,-56,-60, -64,-68,-72,-76,-80,-84,-88,-92,-96,-100,-104,-108,-112,-116,-120,-124, 127,123,119,115,111,107,103,99,95,91,87,83,79,75,71,67, 63,59,55,51,47,43,39,35,31,27,23,19,15,11,7,3 }; // Square wave table static const int16_t ModSquareTable[64] = { 127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127, 127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127, -127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127, -127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127,-127 }; // Random wave table static const int16_t ModRandomTable[64] = { 98,-127,-43,88,102,41,-65,-94,125,20,-71,-86,-70,-32,-16,-96, 17,72,107,-5,116,-69,-62,-40,10,-61,65,109,-18,-38,-13,-76, -23,88,21,-94,8,106,21,-112,6,109,20,-88,-30,9,-127,118, 42,-34,89,-4,-51,-72,21,-29,112,123,84,-101,-92,98,-54,-95 }; // volume fade tables for Retrig Note: static const int8_t retrigTable1[16] = { 0, 0, 0, 0, 0, 0, 10, 8, 0, 0, 0, 0, 0, 0, 24, 32 }; static const int8_t retrigTable2[16] = { 0, -1, -2, -4, -8, -16, 0, 0, 0, 1, 2, 4, 8, 16, 0, 0 }; static const WORD XMPeriodTable[104] = { 907,900,894,887,881,875,868,862,856,850,844,838,832,826,820,814, 808,802,796,791,785,779,774,768,762,757,752,746,741,736,730,725, 720,715,709,704,699,694,689,684,678,675,670,665,660,655,651,646, 640,636,632,628,623,619,614,610,604,601,597,592,588,584,580,575, 570,567,563,559,555,551,547,543,538,535,532,528,524,520,516,513, 508,505,502,498,494,491,487,484,480,477,474,470,467,463,460,457, 453,450,447,443,440,437,434,431 }; static const uint32_t XMLinearTable[768] = { 535232,534749,534266,533784,533303,532822,532341,531861, 531381,530902,530423,529944,529466,528988,528511,528034, 527558,527082,526607,526131,525657,525183,524709,524236, 523763,523290,522818,522346,521875,521404,520934,520464, 519994,519525,519057,518588,518121,517653,517186,516720, 516253,515788,515322,514858,514393,513929,513465,513002, 512539,512077,511615,511154,510692,510232,509771,509312, 508852,508393,507934,507476,507018,506561,506104,505647, 505191,504735,504280,503825,503371,502917,502463,502010, 501557,501104,500652,500201,499749,499298,498848,498398, 497948,497499,497050,496602,496154,495706,495259,494812, 494366,493920,493474,493029,492585,492140,491696,491253, 490809,490367,489924,489482,489041,488600,488159,487718, 487278,486839,486400,485961,485522,485084,484647,484210, 483773,483336,482900,482465,482029,481595,481160,480726, 480292,479859,479426,478994,478562,478130,477699,477268, 476837,476407,475977,475548,475119,474690,474262,473834, 473407,472979,472553,472126,471701,471275,470850,470425, 470001,469577,469153,468730,468307,467884,467462,467041, 466619,466198,465778,465358,464938,464518,464099,463681, 463262,462844,462427,462010,461593,461177,460760,460345, 459930,459515,459100,458686,458272,457859,457446,457033, 456621,456209,455797,455386,454975,454565,454155,453745, 453336,452927,452518,452110,451702,451294,450887,450481, 450074,449668,449262,448857,448452,448048,447644,447240, 446836,446433,446030,445628,445226,444824,444423,444022, 443622,443221,442821,442422,442023,441624,441226,440828, 440430,440033,439636,439239,438843,438447,438051,437656, 437261,436867,436473,436079,435686,435293,434900,434508, 434116,433724,433333,432942,432551,432161,431771,431382, 430992,430604,430215,429827,429439,429052,428665,428278, 427892,427506,427120,426735,426350,425965,425581,425197, 424813,424430,424047,423665,423283,422901,422519,422138, 421757,421377,420997,420617,420237,419858,419479,419101, 418723,418345,417968,417591,417214,416838,416462,416086, 415711,415336,414961,414586,414212,413839,413465,413092, 412720,412347,411975,411604,411232,410862,410491,410121, 409751,409381,409012,408643,408274,407906,407538,407170, 406803,406436,406069,405703,405337,404971,404606,404241, 403876,403512,403148,402784,402421,402058,401695,401333, 400970,400609,400247,399886,399525,399165,398805,398445, 398086,397727,397368,397009,396651,396293,395936,395579, 395222,394865,394509,394153,393798,393442,393087,392733, 392378,392024,391671,391317,390964,390612,390259,389907, 389556,389204,388853,388502,388152,387802,387452,387102, 386753,386404,386056,385707,385359,385012,384664,384317, 383971,383624,383278,382932,382587,382242,381897,381552, 381208,380864,380521,380177,379834,379492,379149,378807, 378466,378124,377783,377442,377102,376762,376422,376082, 375743,375404,375065,374727,374389,374051,373714,373377, 373040,372703,372367,372031,371695,371360,371025,370690, 370356,370022,369688,369355,369021,368688,368356,368023, 367691,367360,367028,366697,366366,366036,365706,365376, 365046,364717,364388,364059,363731,363403,363075,362747, 362420,362093,361766,361440,361114,360788,360463,360137, 359813,359488,359164,358840,358516,358193,357869,357547, 357224,356902,356580,356258,355937,355616,355295,354974, 354654,354334,354014,353695,353376,353057,352739,352420, 352103,351785,351468,351150,350834,350517,350201,349885, 349569,349254,348939,348624,348310,347995,347682,347368, 347055,346741,346429,346116,345804,345492,345180,344869, 344558,344247,343936,343626,343316,343006,342697,342388, 342079,341770,341462,341154,340846,340539,340231,339924, 339618,339311,339005,338700,338394,338089,337784,337479, 337175,336870,336566,336263,335959,335656,335354,335051, 334749,334447,334145,333844,333542,333242,332941,332641, 332341,332041,331741,331442,331143,330844,330546,330247, 329950,329652,329355,329057,328761,328464,328168,327872, 327576,327280,326985,326690,326395,326101,325807,325513, 325219,324926,324633,324340,324047,323755,323463,323171, 322879,322588,322297,322006,321716,321426,321136,320846, 320557,320267,319978,319690,319401,319113,318825,318538, 318250,317963,317676,317390,317103,316817,316532,316246, 315961,315676,315391,315106,314822,314538,314254,313971, 313688,313405,313122,312839,312557,312275,311994,311712, 311431,311150,310869,310589,310309,310029,309749,309470, 309190,308911,308633,308354,308076,307798,307521,307243, 306966,306689,306412,306136,305860,305584,305308,305033, 304758,304483,304208,303934,303659,303385,303112,302838, 302565,302292,302019,301747,301475,301203,300931,300660, 300388,300117,299847,299576,299306,299036,298766,298497, 298227,297958,297689,297421,297153,296884,296617,296349, 296082,295815,295548,295281,295015,294749,294483,294217, 293952,293686,293421,293157,292892,292628,292364,292100, 291837,291574,291311,291048,290785,290523,290261,289999, 289737,289476,289215,288954,288693,288433,288173,287913, 287653,287393,287134,286875,286616,286358,286099,285841, 285583,285326,285068,284811,284554,284298,284041,283785, 283529,283273,283017,282762,282507,282252,281998,281743, 281489,281235,280981,280728,280475,280222,279969,279716, 279464,279212,278960,278708,278457,278206,277955,277704, 277453,277203,276953,276703,276453,276204,275955,275706, 275457,275209,274960,274712,274465,274217,273970,273722, 273476,273229,272982,272736,272490,272244,271999,271753, 271508,271263,271018,270774,270530,270286,270042,269798, 269555,269312,269069,268826,268583,268341,268099,267857 }; static const int8_t ft2VibratoTable[256] = { 0,-2,-3,-5,-6,-8,-9,-11,-12,-14,-16,-17,-19,-20,-22,-23, -24,-26,-27,-29,-30,-32,-33,-34,-36,-37,-38,-39,-41,-42, -43,-44,-45,-46,-47,-48,-49,-50,-51,-52,-53,-54,-55,-56, -56,-57,-58,-59,-59,-60,-60,-61,-61,-62,-62,-62,-63,-63, -63,-64,-64,-64,-64,-64,-64,-64,-64,-64,-64,-64,-63,-63, -63,-62,-62,-62,-61,-61,-60,-60,-59,-59,-58,-57,-56,-56, -55,-54,-53,-52,-51,-50,-49,-48,-47,-46,-45,-44,-43,-42, -41,-39,-38,-37,-36,-34,-33,-32,-30,-29,-27,-26,-24,-23, -22,-20,-19,-17,-16,-14,-12,-11,-9,-8,-6,-5,-3,-2,0, 2,3,5,6,8,9,11,12,14,16,17,19,20,22,23,24,26,27,29,30, 32,33,34,36,37,38,39,41,42,43,44,45,46,47,48,49,50,51, 52,53,54,55,56,56,57,58,59,59,60,60,61,61,62,62,62,63, 63,63,64,64,64,64,64,64,64,64,64,64,64,63,63,63,62,62, 62,61,61,60,60,59,59,58,57,56,56,55,54,53,52,51,50,49, 48,47,46,45,44,43,42,41,39,38,37,36,34,33,32,30,29,27, 26,24,23,22,20,19,17,16,14,12,11,9,8,6,5,3,2 }; static const DWORD FineLinearSlideUpTable[16] = { 65536, 65595, 65654, 65714, 65773, 65832, 65892, 65951, 66011, 66071, 66130, 66190, 66250, 66309, 66369, 66429 }; static const DWORD FineLinearSlideDownTable[16] = { 65535, 65477, 65418, 65359, 65300, 65241, 65182, 65123, 65065, 65006, 64947, 64888, 64830, 64772, 64713, 64645 }; static const DWORD LinearSlideUpTable[256] = { 65536, 65773, 66010, 66249, 66489, 66729, 66971, 67213, 67456, 67700, 67945, 68190, 68437, 68685, 68933, 69182, 69432, 69684, 69936, 70189, 70442, 70697, 70953, 71209, 71467, 71725, 71985, 72245, 72507, 72769, 73032, 73296, 73561, 73827, 74094, 74362, 74631, 74901, 75172, 75444, 75717, 75991, 76265, 76541, 76818, 77096, 77375, 77655, 77935, 78217, 78500, 78784, 79069, 79355, 79642, 79930, 80219, 80509, 80800, 81093, 81386, 81680, 81976, 82272, 82570, 82868, 83168, 83469, 83771, 84074, 84378, 84683, 84989, 85297, 85605, 85915, 86225, 86537, 86850, 87164, 87480, 87796, 88113, 88432, 88752, 89073, 89395, 89718, 90043, 90369, 90695, 91023, 91353, 91683, 92015, 92347, 92681, 93017, 93353, 93691, 94029, 94370, 94711, 95053, 95397, 95742, 96088, 96436, 96785, 97135, 97486, 97839, 98193, 98548, 98904, 99262, 99621, 99981, 100343, 100706, 101070, 101435, 101802, 102170, 102540, 102911, 103283, 103657, 104031, 104408, 104785, 105164, 105545, 105926, 106309, 106694, 107080, 107467, 107856, 108246, 108637, 109030, 109425, 109820, 110217, 110616, 111016, 111418, 111821, 112225, 112631, 113038, 113447, 113857, 114269, 114682, 115097, 115514, 115931, 116351, 116771, 117194, 117618, 118043, 118470, 118898, 119328, 119760, 120193, 120628, 121064, 121502, 121941, 122382, 122825, 123269, 123715, 124162, 124611, 125062, 125514, 125968, 126424, 126881, 127340, 127801, 128263, 128727, 129192, 129660, 130129, 130599, 131072, 131546, 132021, 132499, 132978, 133459, 133942, 134426, 134912, 135400, 135890, 136381, 136875, 137370, 137866, 138365, 138865, 139368, 139872, 140378, 140885, 141395, 141906, 142419, 142935, 143451, 143970, 144491, 145014, 145538, 146064, 146593, 147123, 147655, 148189, 148725, 149263, 149803, 150344, 150888, 151434, 151982, 152531, 153083, 153637, 154192, 154750, 155310, 155871, 156435, 157001, 157569, 158138, 158710, 159284, 159860, 160439, 161019, 161601, 162186, 162772, 163361, 163952, 164545, }; static const DWORD LinearSlideDownTable[256] = { 65536, 65299, 65064, 64830, 64596, 64363, 64131, 63900, 63670, 63440, 63212, 62984, 62757, 62531, 62305, 62081, 61857, 61634, 61412, 61191, 60970, 60751, 60532, 60314, 60096, 59880, 59664, 59449, 59235, 59021, 58809, 58597, 58385, 58175, 57965, 57757, 57548, 57341, 57134, 56928, 56723, 56519, 56315, 56112, 55910, 55709, 55508, 55308, 55108, 54910, 54712, 54515, 54318, 54123, 53928, 53733, 53540, 53347, 53154, 52963, 52772, 52582, 52392, 52204, 52015, 51828, 51641, 51455, 51270, 51085, 50901, 50717, 50535, 50353, 50171, 49990, 49810, 49631, 49452, 49274, 49096, 48919, 48743, 48567, 48392, 48218, 48044, 47871, 47698, 47526, 47355, 47185, 47014, 46845, 46676, 46508, 46340, 46173, 46007, 45841, 45676, 45511, 45347, 45184, 45021, 44859, 44697, 44536, 44376, 44216, 44056, 43898, 43740, 43582, 43425, 43268, 43112, 42957, 42802, 42648, 42494, 42341, 42189, 42037, 41885, 41734, 41584, 41434, 41285, 41136, 40988, 40840, 40693, 40546, 40400, 40254, 40109, 39965, 39821, 39677, 39534, 39392, 39250, 39108, 38967, 38827, 38687, 38548, 38409, 38270, 38132, 37995, 37858, 37722, 37586, 37450, 37315, 37181, 37047, 36913, 36780, 36648, 36516, 36384, 36253, 36122, 35992, 35862, 35733, 35604, 35476, 35348, 35221, 35094, 34968, 34842, 34716, 34591, 34466, 34342, 34218, 34095, 33972, 33850, 33728, 33606, 33485, 33364, 33244, 33124, 33005, 32886, 32768, 32649, 32532, 32415, 32298, 32181, 32065, 31950, 31835, 31720, 31606, 31492, 31378, 31265, 31152, 31040, 30928, 30817, 30706, 30595, 30485, 30375, 30266, 30157, 30048, 29940, 29832, 29724, 29617, 29510, 29404, 29298, 29192, 29087, 28982, 28878, 28774, 28670, 28567, 28464, 28361, 28259, 28157, 28056, 27955, 27854, 27754, 27654, 27554, 27455, 27356, 27257, 27159, 27061, 26964, 26866, 26770, 26673, 26577, 26481, 26386, 26291, 26196, 26102, }; static const int SpectrumSinusTable[256*2] = { 0, 1, 1, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, 25, 25, 26, 27, 28, 28, 29, 30, 30, 31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 38, 38, 39, 39, 40, 41, 41, 42, 42, 43, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 53, 54, 54, 55, 55, 55, 56, 56, 57, 57, 57, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 61, 61, 61, 61, 61, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 57, 57, 57, 56, 56, 55, 55, 55, 54, 54, 53, 53, 53, 52, 52, 51, 51, 50, 50, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 44, 43, 42, 42, 41, 41, 40, 39, 39, 38, 38, 37, 36, 36, 35, 34, 34, 33, 32, 32, 31, 30, 30, 29, 28, 28, 27, 26, 25, 25, 24, 23, 22, 22, 21, 20, 20, 19, 18, 17, 17, 16, 15, 14, 14, 13, 12, 11, 10, 10, 9, 8, 7, 7, 6, 5, 4, 3, 3, 2, 1, 0, 0, -1, -1, -2, -3, -3, -4, -5, -6, -7, -7, -8, -9, -10, -10, -11, -12, -13, -14, -14, -15, -16, -17, -17, -18, -19, -20, -20, -21, -22, -22, -23, -24, -25, -25, -26, -27, -28, -28, -29, -30, -30, -31, -32, -32, -33, -34, -34, -35, -36, -36, -37, -38, -38, -39, -39, -40, -41, -41, -42, -42, -43, -44, -44, -45, -45, -46, -46, -47, -47, -48, -48, -49, -49, -50, -50, -51, -51, -52, -52, -53, -53, -53, -54, -54, -55, -55, -55, -56, -56, -57, -57, -57, -58, -58, -58, -59, -59, -59, -59, -60, -60, -60, -60, -61, -61, -61, -61, -61, -62, -62, -62, -62, -62, -62, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -63, -62, -62, -62, -62, -62, -62, -61, -61, -61, -61, -61, -60, -60, -60, -60, -59, -59, -59, -59, -58, -58, -58, -57, -57, -57, -56, -56, -55, -55, -55, -54, -54, -53, -53, -53, -52, -52, -51, -51, -50, -50, -49, -49, -48, -48, -47, -47, -46, -46, -45, -45, -44, -44, -43, -42, -42, -41, -41, -40, -39, -39, -38, -38, -37, -36, -36, -35, -34, -34, -33, -32, -32, -31, -30, -30, -29, -28, -28, -27, -26, -25, -25, -24, -23, -22, -22, -21, -20, -20, -19, -18, -17, -17, -16, -15, -14, -14, -13, -12, -11, -10, -10, -9, -8, -7, -7, -6, -5, -4, -3, -3, -2, -1, 0, }; /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> * Markus Fick <webmaster@mark-f.de> spline + fir-resampler */ //#include "stdafx.h" //#include "sndfile.h" #include <math.h> #if defined(_MSC_VER) && defined(_M_IX86) #pragma bss_seg(".modplug") #endif // Front Mix Buffer (Also room for interleaved rear mix) int MixSoundBuffer[MIXBUFFERSIZE*4]; // Reverb Mix Buffer #ifndef MODPLUG_NO_REVERB int MixReverbBuffer[MIXBUFFERSIZE*2]; extern UINT gnReverbSend; #endif #ifndef MODPLUG_FASTSOUNDLIB int MixRearBuffer[MIXBUFFERSIZE*2]; float MixFloatBuffer[MIXBUFFERSIZE*2]; #endif #if defined(_MSC_VER) && defined(_M_IX86) #pragma bss_seg() #endif extern LONG gnDryROfsVol; extern LONG gnDryLOfsVol; extern LONG gnRvbROfsVol; extern LONG gnRvbLOfsVol; // 4x256 taps polyphase FIR resampling filter extern short int gFastSinc[]; extern short int gKaiserSinc[]; // 8-taps polyphase /* *----------------------------------------------------------------------------- cubic spline interpolation doc, (derived from "digital image warping", g. wolberg) interpolation polynomial: f(x) = A3*(x-floor(x))**3 + A2*(x-floor(x))**2 + A1*(x-floor(x)) + A0 with Y = equispaced data points (dist=1), YD = first derivates of data points and IP = floor(x) the A[0..3] can be found by solving A0 = Y[IP] A1 = YD[IP] A2 = 3*(Y[IP+1]-Y[IP])-2.0*YD[IP]-YD[IP+1] A3 = -2.0 * (Y[IP+1]-Y[IP]) + YD[IP] - YD[IP+1] with the first derivates as YD[IP] = 0.5 * (Y[IP+1] - Y[IP-1]); YD[IP+1] = 0.5 * (Y[IP+2] - Y[IP]) the coefs becomes A0 = Y[IP] A1 = YD[IP] = 0.5*(Y[IP+1] - Y[IP-1]); A2 = 3.0*(Y[IP+1]-Y[IP])-2.0*YD[IP]-YD[IP+1] = 3.0*(Y[IP+1]-Y[IP]) - 0.5*2.0*(Y[IP+1]-Y[IP-1]) - 0.5*(Y[IP+2]-Y[IP]) = 3.0*Y[IP+1] - 3.0*Y[IP] - Y[IP+1] + Y[IP-1] - 0.5*Y[IP+2] + 0.5*Y[IP] = -0.5*Y[IP+2] + 2.0 * Y[IP+1] - 2.5*Y[IP] + Y[IP-1] = Y[IP-1] + 2 * Y[IP+1] - 0.5 * (5.0 * Y[IP] + Y[IP+2]) A3 = -2.0*(Y[IP+1]-Y[IP]) + YD[IP] + YD[IP+1] = -2.0*Y[IP+1] + 2.0*Y[IP] + 0.5*(Y[IP+1]-Y[IP-1]) + 0.5*(Y[IP+2]-Y[IP]) = -2.0*Y[IP+1] + 2.0*Y[IP] + 0.5*Y[IP+1] - 0.5*Y[IP-1] + 0.5*Y[IP+2] - 0.5*Y[IP] = 0.5 * Y[IP+2] - 1.5 * Y[IP+1] + 1.5 * Y[IP] - 0.5 * Y[IP-1] = 0.5 * (3.0 * (Y[IP] - Y[IP+1]) - Y[IP-1] + YP[IP+2]) then interpolated data value is (horner rule) out = (((A3*x)+A2)*x+A1)*x+A0 this gives parts of data points Y[IP-1] to Y[IP+2] of part x**3 x**2 x**1 x**0 Y[IP-1] -0.5 1 -0.5 0 Y[IP] 1.5 -2.5 0 1 Y[IP+1] -1.5 2 0.5 0 Y[IP+2] 0.5 -0.5 0 0 *--------------------------------------------------------------------------- */ // number of bits used to scale spline coefs #define SPLINE_QUANTBITS 14 #define SPLINE_QUANTSCALE (1L<<SPLINE_QUANTBITS) #define SPLINE_8SHIFT (SPLINE_QUANTBITS-8) #define SPLINE_16SHIFT (SPLINE_QUANTBITS) // forces coefsset to unity gain #define SPLINE_CLAMPFORUNITY // log2(number) of precalculated splines (range is [4..14]) #define SPLINE_FRACBITS 10 #define SPLINE_LUTLEN (1L<<SPLINE_FRACBITS) class CzCUBICSPLINE { public: CzCUBICSPLINE( ); ~CzCUBICSPLINE( ); static signed short lut[4*(1L<<SPLINE_FRACBITS)]; }; signed short CzCUBICSPLINE::lut[4*(1L<<SPLINE_FRACBITS)]; CzCUBICSPLINE::CzCUBICSPLINE( ) { int _LIi; int _LLen = (1L<<SPLINE_FRACBITS); float _LFlen = 1.0f / (float)_LLen; float _LScale = (float)SPLINE_QUANTSCALE; for(_LIi=0;_LIi<_LLen;_LIi++) { float _LCm1, _LC0, _LC1, _LC2; float _LX = ((float)_LIi)*_LFlen; int _LSum,_LIdx = _LIi<<2; _LCm1 = (float)floor( 0.5 + _LScale*(-0.5*_LX*_LX*_LX + 1.0*_LX*_LX - 0.5*_LX ) ); _LC0 = (float)floor( 0.5 + _LScale*( 1.5*_LX*_LX*_LX - 2.5*_LX*_LX + 1.0 ) ); _LC1 = (float)floor( 0.5 + _LScale*(-1.5*_LX*_LX*_LX + 2.0*_LX*_LX + 0.5*_LX ) ); _LC2 = (float)floor( 0.5 + _LScale*( 0.5*_LX*_LX*_LX - 0.5*_LX*_LX) ); lut[_LIdx+0] = (signed short)( (_LCm1 < -_LScale) ? -_LScale : ((_LCm1 > _LScale) ? _LScale : _LCm1) ); lut[_LIdx+1] = (signed short)( (_LC0 < -_LScale) ? -_LScale : ((_LC0 > _LScale) ? _LScale : _LC0 ) ); lut[_LIdx+2] = (signed short)( (_LC1 < -_LScale) ? -_LScale : ((_LC1 > _LScale) ? _LScale : _LC1 ) ); lut[_LIdx+3] = (signed short)( (_LC2 < -_LScale) ? -_LScale : ((_LC2 > _LScale) ? _LScale : _LC2 ) ); #ifdef SPLINE_CLAMPFORUNITY _LSum = lut[_LIdx+0]+lut[_LIdx+1]+lut[_LIdx+2]+lut[_LIdx+3]; if( _LSum != SPLINE_QUANTSCALE ) { int _LMax = _LIdx; if( lut[_LIdx+1]>lut[_LMax] ) _LMax = _LIdx+1; if( lut[_LIdx+2]>lut[_LMax] ) _LMax = _LIdx+2; if( lut[_LIdx+3]>lut[_LMax] ) _LMax = _LIdx+3; lut[_LMax] += ((signed short)SPLINE_QUANTSCALE-_LSum); } #endif } } CzCUBICSPLINE::~CzCUBICSPLINE( ) { // nothing todo } CzCUBICSPLINE sspline; /* ------------------------------------------------------------------------------ fir interpolation doc, (derived from "an engineer's guide to fir digital filters", n.j. loy) calculate coefficients for ideal lowpass filter (with cutoff = fc in 0..1 (mapped to 0..nyquist)) c[-N..N] = (i==0) ? fc : sin(fc*pi*i)/(pi*i) then apply selected window to coefficients c[-N..N] *= w(0..N) with n in 2*N and w(n) being a window function (see loy) then calculate gain and scale filter coefs to have unity gain. ------------------------------------------------------------------------------ */ // quantizer scale of window coefs #define WFIR_QUANTBITS 15 #define WFIR_QUANTSCALE (1L<<WFIR_QUANTBITS) #define WFIR_8SHIFT (WFIR_QUANTBITS-8) #define WFIR_16BITSHIFT (WFIR_QUANTBITS) // log2(number)-1 of precalculated taps range is [4..12] #define WFIR_FRACBITS 10 #define WFIR_LUTLEN ((1L<<(WFIR_FRACBITS+1))+1) // number of samples in window #define WFIR_LOG2WIDTH 3 #define WFIR_WIDTH (1L<<WFIR_LOG2WIDTH) #define WFIR_SMPSPERWING ((WFIR_WIDTH-1)>>1) // cutoff (1.0 == pi/2) #define WFIR_CUTOFF 0.90f // wfir type #define WFIR_HANN 0 #define WFIR_HAMMING 1 #define WFIR_BLACKMANEXACT 2 #define WFIR_BLACKMAN3T61 3 #define WFIR_BLACKMAN3T67 4 #define WFIR_BLACKMAN4T92 5 #define WFIR_BLACKMAN4T74 6 #define WFIR_KAISER4T 7 #define WFIR_TYPE WFIR_BLACKMANEXACT // wfir help #ifndef M_zPI #define M_zPI 3.1415926535897932384626433832795 #endif #define M_zEPS 1e-8 #define M_zBESSELEPS 1e-21 class CzWINDOWEDFIR { public: CzWINDOWEDFIR( ); ~CzWINDOWEDFIR( ); float coef( int _PCnr, float _POfs, float _PCut, int _PWidth, int _PType ) //OLD args to coef: float _PPos, float _PFc, int _PLen ) { double _LWidthM1 = _PWidth-1; double _LWidthM1Half = 0.5*_LWidthM1; double _LPosU = ((double)_PCnr - _POfs); double _LPos = _LPosU-_LWidthM1Half; double _LPIdl = 2.0*M_zPI/_LWidthM1; double _LWc,_LSi; if( fabs(_LPos)<M_zEPS ) { _LWc = 1.0; _LSi = _PCut; } else { switch( _PType ) { case WFIR_HANN: _LWc = 0.50 - 0.50 * cos(_LPIdl*_LPosU); break; case WFIR_HAMMING: _LWc = 0.54 - 0.46 * cos(_LPIdl*_LPosU); break; case WFIR_BLACKMANEXACT: _LWc = 0.42 - 0.50 * cos(_LPIdl*_LPosU) + 0.08 * cos(2.0*_LPIdl*_LPosU); break; case WFIR_BLACKMAN3T61: _LWc = 0.44959 - 0.49364 * cos(_LPIdl*_LPosU) + 0.05677 * cos(2.0*_LPIdl*_LPosU); break; case WFIR_BLACKMAN3T67: _LWc = 0.42323 - 0.49755 * cos(_LPIdl*_LPosU) + 0.07922 * cos(2.0*_LPIdl*_LPosU); break; case WFIR_BLACKMAN4T92: _LWc = 0.35875 - 0.48829 * cos(_LPIdl*_LPosU) + 0.14128 * cos(2.0*_LPIdl*_LPosU) - 0.01168 * cos(3.0*_LPIdl*_LPosU); break; case WFIR_BLACKMAN4T74: _LWc = 0.40217 - 0.49703 * cos(_LPIdl*_LPosU) + 0.09392 * cos(2.0*_LPIdl*_LPosU) - 0.00183 * cos(3.0*_LPIdl*_LPosU); break; case WFIR_KAISER4T: _LWc = 0.40243 - 0.49804 * cos(_LPIdl*_LPosU) + 0.09831 * cos(2.0*_LPIdl*_LPosU) - 0.00122 * cos(3.0*_LPIdl*_LPosU); break; default: _LWc = 1.0; break; } _LPos *= M_zPI; _LSi = sin(_PCut*_LPos)/_LPos; } return (float)(_LWc*_LSi); } static signed short lut[WFIR_LUTLEN*WFIR_WIDTH]; }; signed short CzWINDOWEDFIR::lut[WFIR_LUTLEN*WFIR_WIDTH]; CzWINDOWEDFIR::CzWINDOWEDFIR() { int _LPcl; float _LPcllen = (float)(1L<<WFIR_FRACBITS); // number of precalculated lines for 0..1 (-1..0) float _LNorm = 1.0f / (float)(2.0f * _LPcllen); float _LCut = WFIR_CUTOFF; float _LScale = (float)WFIR_QUANTSCALE; for( _LPcl=0;_LPcl<WFIR_LUTLEN;_LPcl++ ) { float _LGain,_LCoefs[WFIR_WIDTH]; float _LOfs = ((float)_LPcl-_LPcllen)*_LNorm; int _LCc,_LIdx = _LPcl<<WFIR_LOG2WIDTH; for( _LCc=0,_LGain=0.0f;_LCc<WFIR_WIDTH;_LCc++ ) { _LGain += (_LCoefs[_LCc] = coef( _LCc, _LOfs, _LCut, WFIR_WIDTH, WFIR_TYPE )); } _LGain = 1.0f/_LGain; for( _LCc=0;_LCc<WFIR_WIDTH;_LCc++ ) { float _LCoef = (float)floor( 0.5 + _LScale*_LCoefs[_LCc]*_LGain ); lut[_LIdx+_LCc] = (signed short)( (_LCoef<-_LScale)?-_LScale:((_LCoef>_LScale)?_LScale:_LCoef) ); } } } CzWINDOWEDFIR::~CzWINDOWEDFIR() { // nothing todo } CzWINDOWEDFIR sfir; // ---------------------------------------------------------------------------- // MIXING MACROS // ---------------------------------------------------------------------------- #if defined(__cplusplus) && (__cplusplus >= 201402L) #define REGISTER #else #define REGISTER register #endif #define SNDMIX_BEGINSAMPLELOOP8\ REGISTER MODCHANNEL * const pChn = pChannel;\ nPos = pChn->nPosLo;\ const signed char *p = (signed char *)(pChn->pCurrentSample+pChn->nPos);\ if (pChn->dwFlags & CHN_STEREO) p += pChn->nPos;\ int *pvol = pbuffer;\ do { #define SNDMIX_BEGINSAMPLELOOP16\ REGISTER MODCHANNEL * const pChn = pChannel;\ nPos = pChn->nPosLo;\ const signed short *p = (signed short *)(pChn->pCurrentSample+(pChn->nPos*2));\ if (pChn->dwFlags & CHN_STEREO) p += pChn->nPos;\ int *pvol = pbuffer;\ do { #define SNDMIX_ENDSAMPLELOOP\ nPos += pChn->nInc;\ } while (pvol < pbufmax);\ pChn->nPos += nPos >> 16;\ pChn->nPosLo = nPos & 0xFFFF; #define SNDMIX_ENDSAMPLELOOP8 SNDMIX_ENDSAMPLELOOP #define SNDMIX_ENDSAMPLELOOP16 SNDMIX_ENDSAMPLELOOP ////////////////////////////////////////////////////////////////////////////// // Mono // No interpolation #define SNDMIX_GETMONOVOL8NOIDO\ int vol = p[nPos >> 16] << 8; #define SNDMIX_GETMONOVOL16NOIDO\ int vol = p[nPos >> 16]; // Linear Interpolation #define SNDMIX_GETMONOVOL8LINEAR\ int poshi = nPos >> 16;\ int poslo = (nPos >> 8) & 0xFF;\ int srcvol = p[poshi];\ int destvol = p[poshi+1];\ int vol = (srcvol<<8) + ((int)(poslo * (destvol - srcvol))); #define SNDMIX_GETMONOVOL16LINEAR\ int poshi = nPos >> 16;\ int poslo = (nPos >> 8) & 0xFF;\ int srcvol = p[poshi];\ int destvol = p[poshi+1];\ int vol = srcvol + ((int)(poslo * (destvol - srcvol)) >> 8); // spline interpolation (2 guard bits should be enough???) #define SPLINE_FRACSHIFT ((16-SPLINE_FRACBITS)-2) #define SPLINE_FRACMASK (((1L<<(16-SPLINE_FRACSHIFT))-1)&~3) #define SNDMIX_GETMONOVOL8SPLINE \ int poshi = nPos >> 16; \ int poslo = (nPos >> SPLINE_FRACSHIFT) & SPLINE_FRACMASK; \ int vol = (CzCUBICSPLINE::lut[poslo ]*(int)p[poshi-1] + \ CzCUBICSPLINE::lut[poslo+1]*(int)p[poshi ] + \ CzCUBICSPLINE::lut[poslo+3]*(int)p[poshi+2] + \ CzCUBICSPLINE::lut[poslo+2]*(int)p[poshi+1]) >> SPLINE_8SHIFT; #define SNDMIX_GETMONOVOL16SPLINE \ int poshi = nPos >> 16; \ int poslo = (nPos >> SPLINE_FRACSHIFT) & SPLINE_FRACMASK; \ int vol = (CzCUBICSPLINE::lut[poslo ]*(int)p[poshi-1] + \ CzCUBICSPLINE::lut[poslo+1]*(int)p[poshi ] + \ CzCUBICSPLINE::lut[poslo+3]*(int)p[poshi+2] + \ CzCUBICSPLINE::lut[poslo+2]*(int)p[poshi+1]) >> SPLINE_16SHIFT; // fir interpolation #define WFIR_FRACSHIFT (16-(WFIR_FRACBITS+1+WFIR_LOG2WIDTH)) #define WFIR_FRACMASK ((((1L<<(17-WFIR_FRACSHIFT))-1)&~((1L<<WFIR_LOG2WIDTH)-1))) #define WFIR_FRACHALVE (1L<<(16-(WFIR_FRACBITS+2))) #define SNDMIX_GETMONOVOL8FIRFILTER \ int poshi = nPos >> 16;\ int poslo = (nPos & 0xFFFF);\ int firidx = ((poslo+WFIR_FRACHALVE)>>WFIR_FRACSHIFT) & WFIR_FRACMASK; \ int vol = (CzWINDOWEDFIR::lut[firidx+0]*(int)p[poshi+1-4]); \ vol += (CzWINDOWEDFIR::lut[firidx+1]*(int)p[poshi+2-4]); \ vol += (CzWINDOWEDFIR::lut[firidx+2]*(int)p[poshi+3-4]); \ vol += (CzWINDOWEDFIR::lut[firidx+3]*(int)p[poshi+4-4]); \ vol += (CzWINDOWEDFIR::lut[firidx+4]*(int)p[poshi+5-4]); \ vol += (CzWINDOWEDFIR::lut[firidx+5]*(int)p[poshi+6-4]); \ vol += (CzWINDOWEDFIR::lut[firidx+6]*(int)p[poshi+7-4]); \ vol += (CzWINDOWEDFIR::lut[firidx+7]*(int)p[poshi+8-4]); \ vol >>= WFIR_8SHIFT; #define SNDMIX_GETMONOVOL16FIRFILTER \ int poshi = nPos >> 16;\ int poslo = (nPos & 0xFFFF);\ int firidx = ((poslo+WFIR_FRACHALVE)>>WFIR_FRACSHIFT) & WFIR_FRACMASK; \ int vol1 = (CzWINDOWEDFIR::lut[firidx+0]*(int)p[poshi+1-4]); \ vol1 += (CzWINDOWEDFIR::lut[firidx+1]*(int)p[poshi+2-4]); \ vol1 += (CzWINDOWEDFIR::lut[firidx+2]*(int)p[poshi+3-4]); \ vol1 += (CzWINDOWEDFIR::lut[firidx+3]*(int)p[poshi+4-4]); \ int vol2 = (CzWINDOWEDFIR::lut[firidx+4]*(int)p[poshi+5-4]); \ vol2 += (CzWINDOWEDFIR::lut[firidx+5]*(int)p[poshi+6-4]); \ vol2 += (CzWINDOWEDFIR::lut[firidx+6]*(int)p[poshi+7-4]); \ vol2 += (CzWINDOWEDFIR::lut[firidx+7]*(int)p[poshi+8-4]); \ int vol = ((vol1>>1)+(vol2>>1)) >> (WFIR_16BITSHIFT-1); ///////////////////////////////////////////////////////////////////////////// // Stereo // No interpolation #define SNDMIX_GETSTEREOVOL8NOIDO\ int vol_l = p[(nPos>>16)*2] << 8;\ int vol_r = p[(nPos>>16)*2+1] << 8; #define SNDMIX_GETSTEREOVOL16NOIDO\ int vol_l = p[(nPos>>16)*2];\ int vol_r = p[(nPos>>16)*2+1]; // Linear Interpolation #define SNDMIX_GETSTEREOVOL8LINEAR\ int poshi = nPos >> 16;\ int poslo = (nPos >> 8) & 0xFF;\ int srcvol_l = p[poshi*2];\ int vol_l = (srcvol_l<<8) + ((int)(poslo * (p[poshi*2+2] - srcvol_l)));\ int srcvol_r = p[poshi*2+1];\ int vol_r = (srcvol_r<<8) + ((int)(poslo * (p[poshi*2+3] - srcvol_r))); #define SNDMIX_GETSTEREOVOL16LINEAR\ int poshi = nPos >> 16;\ int poslo = (nPos >> 8) & 0xFF;\ int srcvol_l = p[poshi*2];\ int vol_l = srcvol_l + ((int)(poslo * (p[poshi*2+2] - srcvol_l)) >> 8);\ int srcvol_r = p[poshi*2+1];\ int vol_r = srcvol_r + ((int)(poslo * (p[poshi*2+3] - srcvol_r)) >> 8);\ // Spline Interpolation #define SNDMIX_GETSTEREOVOL8SPLINE \ int poshi = nPos >> 16; \ int poslo = (nPos >> SPLINE_FRACSHIFT) & SPLINE_FRACMASK; \ int vol_l = (CzCUBICSPLINE::lut[poslo ]*(int)p[(poshi-1)*2 ] + \ CzCUBICSPLINE::lut[poslo+1]*(int)p[(poshi )*2 ] + \ CzCUBICSPLINE::lut[poslo+2]*(int)p[(poshi+1)*2 ] + \ CzCUBICSPLINE::lut[poslo+3]*(int)p[(poshi+2)*2 ]) >> SPLINE_8SHIFT; \ int vol_r = (CzCUBICSPLINE::lut[poslo ]*(int)p[(poshi-1)*2+1] + \ CzCUBICSPLINE::lut[poslo+1]*(int)p[(poshi )*2+1] + \ CzCUBICSPLINE::lut[poslo+2]*(int)p[(poshi+1)*2+1] + \ CzCUBICSPLINE::lut[poslo+3]*(int)p[(poshi+2)*2+1]) >> SPLINE_8SHIFT; #define SNDMIX_GETSTEREOVOL16SPLINE \ int poshi = nPos >> 16; \ int poslo = (nPos >> SPLINE_FRACSHIFT) & SPLINE_FRACMASK; \ int vol_l = (CzCUBICSPLINE::lut[poslo ]*(int)p[(poshi-1)*2 ] + \ CzCUBICSPLINE::lut[poslo+1]*(int)p[(poshi )*2 ] + \ CzCUBICSPLINE::lut[poslo+2]*(int)p[(poshi+1)*2 ] + \ CzCUBICSPLINE::lut[poslo+3]*(int)p[(poshi+2)*2 ]) >> SPLINE_16SHIFT; \ int vol_r = (CzCUBICSPLINE::lut[poslo ]*(int)p[(poshi-1)*2+1] + \ CzCUBICSPLINE::lut[poslo+1]*(int)p[(poshi )*2+1] + \ CzCUBICSPLINE::lut[poslo+2]*(int)p[(poshi+1)*2+1] + \ CzCUBICSPLINE::lut[poslo+3]*(int)p[(poshi+2)*2+1]) >> SPLINE_16SHIFT; // fir interpolation #define SNDMIX_GETSTEREOVOL8FIRFILTER \ int poshi = nPos >> 16;\ int poslo = (nPos & 0xFFFF);\ int firidx = ((poslo+WFIR_FRACHALVE)>>WFIR_FRACSHIFT) & WFIR_FRACMASK; \ int vol_l = (CzWINDOWEDFIR::lut[firidx+0]*(int)p[(poshi+1-4)*2 ]); \ vol_l += (CzWINDOWEDFIR::lut[firidx+1]*(int)p[(poshi+2-4)*2 ]); \ vol_l += (CzWINDOWEDFIR::lut[firidx+2]*(int)p[(poshi+3-4)*2 ]); \ vol_l += (CzWINDOWEDFIR::lut[firidx+3]*(int)p[(poshi+4-4)*2 ]); \ vol_l += (CzWINDOWEDFIR::lut[firidx+4]*(int)p[(poshi+5-4)*2 ]); \ vol_l += (CzWINDOWEDFIR::lut[firidx+5]*(int)p[(poshi+6-4)*2 ]); \ vol_l += (CzWINDOWEDFIR::lut[firidx+6]*(int)p[(poshi+7-4)*2 ]); \ vol_l += (CzWINDOWEDFIR::lut[firidx+7]*(int)p[(poshi+8-4)*2 ]); \ vol_l >>= WFIR_8SHIFT; \ int vol_r = (CzWINDOWEDFIR::lut[firidx+0]*(int)p[(poshi+1-4)*2+1]); \ vol_r += (CzWINDOWEDFIR::lut[firidx+1]*(int)p[(poshi+2-4)*2+1]); \ vol_r += (CzWINDOWEDFIR::lut[firidx+2]*(int)p[(poshi+3-4)*2+1]); \ vol_r += (CzWINDOWEDFIR::lut[firidx+3]*(int)p[(poshi+4-4)*2+1]); \ vol_r += (CzWINDOWEDFIR::lut[firidx+4]*(int)p[(poshi+5-4)*2+1]); \ vol_r += (CzWINDOWEDFIR::lut[firidx+5]*(int)p[(poshi+6-4)*2+1]); \ vol_r += (CzWINDOWEDFIR::lut[firidx+6]*(int)p[(poshi+7-4)*2+1]); \ vol_r += (CzWINDOWEDFIR::lut[firidx+7]*(int)p[(poshi+8-4)*2+1]); \ vol_r >>= WFIR_8SHIFT; #define SNDMIX_GETSTEREOVOL16FIRFILTER \ int poshi = nPos >> 16;\ int poslo = (nPos & 0xFFFF);\ int firidx = ((poslo+WFIR_FRACHALVE)>>WFIR_FRACSHIFT) & WFIR_FRACMASK; \ int vol1_l = (CzWINDOWEDFIR::lut[firidx+0]*(int)p[(poshi+1-4)*2 ]); \ vol1_l += (CzWINDOWEDFIR::lut[firidx+1]*(int)p[(poshi+2-4)*2 ]); \ vol1_l += (CzWINDOWEDFIR::lut[firidx+2]*(int)p[(poshi+3-4)*2 ]); \ vol1_l += (CzWINDOWEDFIR::lut[firidx+3]*(int)p[(poshi+4-4)*2 ]); \ int vol2_l = (CzWINDOWEDFIR::lut[firidx+4]*(int)p[(poshi+5-4)*2 ]); \ vol2_l += (CzWINDOWEDFIR::lut[firidx+5]*(int)p[(poshi+6-4)*2 ]); \ vol2_l += (CzWINDOWEDFIR::lut[firidx+6]*(int)p[(poshi+7-4)*2 ]); \ vol2_l += (CzWINDOWEDFIR::lut[firidx+7]*(int)p[(poshi+8-4)*2 ]); \ int vol_l = ((vol1_l>>1)+(vol2_l>>1)) >> (WFIR_16BITSHIFT-1); \ int vol1_r = (CzWINDOWEDFIR::lut[firidx+0]*(int)p[(poshi+1-4)*2+1]); \ vol1_r += (CzWINDOWEDFIR::lut[firidx+1]*(int)p[(poshi+2-4)*2+1]); \ vol1_r += (CzWINDOWEDFIR::lut[firidx+2]*(int)p[(poshi+3-4)*2+1]); \ vol1_r += (CzWINDOWEDFIR::lut[firidx+3]*(int)p[(poshi+4-4)*2+1]); \ int vol2_r = (CzWINDOWEDFIR::lut[firidx+4]*(int)p[(poshi+5-4)*2+1]); \ vol2_r += (CzWINDOWEDFIR::lut[firidx+5]*(int)p[(poshi+6-4)*2+1]); \ vol2_r += (CzWINDOWEDFIR::lut[firidx+6]*(int)p[(poshi+7-4)*2+1]); \ vol2_r += (CzWINDOWEDFIR::lut[firidx+7]*(int)p[(poshi+8-4)*2+1]); \ int vol_r = ((vol1_r>>1)+(vol2_r>>1)) >> (WFIR_16BITSHIFT-1); ///////////////////////////////////////////////////////////////////////////// #define SNDMIX_STOREMONOVOL\ pvol[0] += vol * pChn->nRightVol;\ pvol[1] += vol * pChn->nLeftVol;\ pvol += 2; #define SNDMIX_STORESTEREOVOL\ pvol[0] += vol_l * pChn->nRightVol;\ pvol[1] += vol_r * pChn->nLeftVol;\ pvol += 2; #define SNDMIX_STOREFASTMONOVOL\ int v = vol * pChn->nRightVol;\ pvol[0] += v;\ pvol[1] += v;\ pvol += 2; #define SNDMIX_RAMPMONOVOL\ nRampLeftVol += pChn->nLeftRamp;\ nRampRightVol += pChn->nRightRamp;\ pvol[0] += vol * (nRampRightVol >> VOLUMERAMPPRECISION);\ pvol[1] += vol * (nRampLeftVol >> VOLUMERAMPPRECISION);\ pvol += 2; #define SNDMIX_RAMPFASTMONOVOL\ nRampRightVol += pChn->nRightRamp;\ int fastvol = vol * (nRampRightVol >> VOLUMERAMPPRECISION);\ pvol[0] += fastvol;\ pvol[1] += fastvol;\ pvol += 2; #define SNDMIX_RAMPSTEREOVOL\ nRampLeftVol += pChn->nLeftRamp;\ nRampRightVol += pChn->nRightRamp;\ pvol[0] += vol_l * (nRampRightVol >> VOLUMERAMPPRECISION);\ pvol[1] += vol_r * (nRampLeftVol >> VOLUMERAMPPRECISION);\ pvol += 2; /////////////////////////////////////////////////// // Resonant Filters // Mono #define MIX_BEGIN_FILTER\ int fy1 = pChannel->nFilter_Y1;\ int fy2 = pChannel->nFilter_Y2;\ #define MIX_END_FILTER\ pChannel->nFilter_Y1 = fy1;\ pChannel->nFilter_Y2 = fy2; #define SNDMIX_PROCESSFILTER\ vol = (vol * pChn->nFilter_A0 + fy1 * pChn->nFilter_B0 + fy2 * pChn->nFilter_B1 + 4096) >> 13;\ fy2 = fy1;\ fy1 = vol;\ // Stereo #define MIX_BEGIN_STEREO_FILTER\ int fy1 = pChannel->nFilter_Y1;\ int fy2 = pChannel->nFilter_Y2;\ int fy3 = pChannel->nFilter_Y3;\ int fy4 = pChannel->nFilter_Y4;\ #define MIX_END_STEREO_FILTER\ pChannel->nFilter_Y1 = fy1;\ pChannel->nFilter_Y2 = fy2;\ pChannel->nFilter_Y3 = fy3;\ pChannel->nFilter_Y4 = fy4;\ #define SNDMIX_PROCESSSTEREOFILTER\ vol_l = (vol_l * pChn->nFilter_A0 + fy1 * pChn->nFilter_B0 + fy2 * pChn->nFilter_B1 + 4096) >> 13;\ vol_r = (vol_r * pChn->nFilter_A0 + fy3 * pChn->nFilter_B0 + fy4 * pChn->nFilter_B1 + 4096) >> 13;\ fy2 = fy1; fy1 = vol_l;\ fy4 = fy3; fy3 = vol_r;\ ////////////////////////////////////////////////////////// // Interfaces typedef VOID (MPPASMCALL * LPMIXINTERFACE)(MODCHANNEL *, int *, int *); #define BEGIN_MIX_INTERFACE(func)\ VOID MPPASMCALL func(MODCHANNEL *pChannel, int *pbuffer, int *pbufmax)\ {\ LONG nPos; #define END_MIX_INTERFACE()\ SNDMIX_ENDSAMPLELOOP\ } // Volume Ramps #define BEGIN_RAMPMIX_INTERFACE(func)\ BEGIN_MIX_INTERFACE(func)\ LONG nRampRightVol = pChannel->nRampRightVol;\ LONG nRampLeftVol = pChannel->nRampLeftVol; #define END_RAMPMIX_INTERFACE()\ SNDMIX_ENDSAMPLELOOP\ pChannel->nRampRightVol = nRampRightVol;\ pChannel->nRightVol = nRampRightVol >> VOLUMERAMPPRECISION;\ pChannel->nRampLeftVol = nRampLeftVol;\ pChannel->nLeftVol = nRampLeftVol >> VOLUMERAMPPRECISION;\ } #define BEGIN_FASTRAMPMIX_INTERFACE(func)\ BEGIN_MIX_INTERFACE(func)\ LONG nRampRightVol = pChannel->nRampRightVol; #define END_FASTRAMPMIX_INTERFACE()\ SNDMIX_ENDSAMPLELOOP\ pChannel->nRampRightVol = nRampRightVol;\ pChannel->nRampLeftVol = nRampRightVol;\ pChannel->nRightVol = nRampRightVol >> VOLUMERAMPPRECISION;\ pChannel->nLeftVol = pChannel->nRightVol;\ } // Mono Resonant Filters #define BEGIN_MIX_FLT_INTERFACE(func)\ BEGIN_MIX_INTERFACE(func)\ MIX_BEGIN_FILTER #define END_MIX_FLT_INTERFACE()\ SNDMIX_ENDSAMPLELOOP\ MIX_END_FILTER\ } #define BEGIN_RAMPMIX_FLT_INTERFACE(func)\ BEGIN_MIX_INTERFACE(func)\ LONG nRampRightVol = pChannel->nRampRightVol;\ LONG nRampLeftVol = pChannel->nRampLeftVol;\ MIX_BEGIN_FILTER #define END_RAMPMIX_FLT_INTERFACE()\ SNDMIX_ENDSAMPLELOOP\ MIX_END_FILTER\ pChannel->nRampRightVol = nRampRightVol;\ pChannel->nRightVol = nRampRightVol >> VOLUMERAMPPRECISION;\ pChannel->nRampLeftVol = nRampLeftVol;\ pChannel->nLeftVol = nRampLeftVol >> VOLUMERAMPPRECISION;\ } // Stereo Resonant Filters #define BEGIN_MIX_STFLT_INTERFACE(func)\ BEGIN_MIX_INTERFACE(func)\ MIX_BEGIN_STEREO_FILTER #define END_MIX_STFLT_INTERFACE()\ SNDMIX_ENDSAMPLELOOP\ MIX_END_STEREO_FILTER\ } #define BEGIN_RAMPMIX_STFLT_INTERFACE(func)\ BEGIN_MIX_INTERFACE(func)\ LONG nRampRightVol = pChannel->nRampRightVol;\ LONG nRampLeftVol = pChannel->nRampLeftVol;\ MIX_BEGIN_STEREO_FILTER #define END_RAMPMIX_STFLT_INTERFACE()\ SNDMIX_ENDSAMPLELOOP\ MIX_END_STEREO_FILTER\ pChannel->nRampRightVol = nRampRightVol;\ pChannel->nRightVol = nRampRightVol >> VOLUMERAMPPRECISION;\ pChannel->nRampLeftVol = nRampLeftVol;\ pChannel->nLeftVol = nRampLeftVol >> VOLUMERAMPPRECISION;\ } ///////////////////////////////////////////////////// // void MPPASMCALL X86_InitMixBuffer(int *pBuffer, UINT nSamples); void MPPASMCALL X86_EndChannelOfs(MODCHANNEL *pChannel, int *pBuffer, UINT nSamples); void MPPASMCALL X86_StereoFill(int *pBuffer, UINT nSamples, LPLONG lpROfs, LPLONG lpLOfs); void X86_StereoMixToFloat(const int *, float *, float *, UINT nCount); void X86_FloatToStereoMix(const float *pIn1, const float *pIn2, int *pOut, UINT nCount); ///////////////////////////////////////////////////// // Mono samples functions BEGIN_MIX_INTERFACE(Mono8BitMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8NOIDO SNDMIX_STOREMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Mono16BitMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16NOIDO SNDMIX_STOREMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Mono8BitLinearMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8LINEAR SNDMIX_STOREMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Mono16BitLinearMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16LINEAR SNDMIX_STOREMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Mono8BitSplineMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8SPLINE SNDMIX_STOREMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Mono16BitSplineMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16SPLINE SNDMIX_STOREMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Mono8BitFirFilterMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8FIRFILTER SNDMIX_STOREMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Mono16BitFirFilterMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16FIRFILTER SNDMIX_STOREMONOVOL END_MIX_INTERFACE() // Volume Ramps BEGIN_RAMPMIX_INTERFACE(Mono8BitRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8NOIDO SNDMIX_RAMPMONOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Mono16BitRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16NOIDO SNDMIX_RAMPMONOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Mono8BitLinearRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8LINEAR SNDMIX_RAMPMONOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Mono16BitLinearRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16LINEAR SNDMIX_RAMPMONOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Mono8BitSplineRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8SPLINE SNDMIX_RAMPMONOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Mono16BitSplineRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16SPLINE SNDMIX_RAMPMONOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Mono8BitFirFilterRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8FIRFILTER SNDMIX_RAMPMONOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Mono16BitFirFilterRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16FIRFILTER SNDMIX_RAMPMONOVOL END_RAMPMIX_INTERFACE() ////////////////////////////////////////////////////// // Fast mono mix for leftvol=rightvol (1 less imul) BEGIN_MIX_INTERFACE(FastMono8BitMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8NOIDO SNDMIX_STOREFASTMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(FastMono16BitMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16NOIDO SNDMIX_STOREFASTMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(FastMono8BitLinearMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8LINEAR SNDMIX_STOREFASTMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(FastMono16BitLinearMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16LINEAR SNDMIX_STOREFASTMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(FastMono8BitSplineMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8SPLINE SNDMIX_STOREFASTMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(FastMono16BitSplineMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16SPLINE SNDMIX_STOREFASTMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(FastMono8BitFirFilterMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8FIRFILTER SNDMIX_STOREFASTMONOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(FastMono16BitFirFilterMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16FIRFILTER SNDMIX_STOREFASTMONOVOL END_MIX_INTERFACE() // Fast Ramps BEGIN_FASTRAMPMIX_INTERFACE(FastMono8BitRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8NOIDO SNDMIX_RAMPFASTMONOVOL END_FASTRAMPMIX_INTERFACE() BEGIN_FASTRAMPMIX_INTERFACE(FastMono16BitRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16NOIDO SNDMIX_RAMPFASTMONOVOL END_FASTRAMPMIX_INTERFACE() BEGIN_FASTRAMPMIX_INTERFACE(FastMono8BitLinearRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8LINEAR SNDMIX_RAMPFASTMONOVOL END_FASTRAMPMIX_INTERFACE() BEGIN_FASTRAMPMIX_INTERFACE(FastMono16BitLinearRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16LINEAR SNDMIX_RAMPFASTMONOVOL END_FASTRAMPMIX_INTERFACE() BEGIN_FASTRAMPMIX_INTERFACE(FastMono8BitSplineRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8SPLINE SNDMIX_RAMPFASTMONOVOL END_FASTRAMPMIX_INTERFACE() BEGIN_FASTRAMPMIX_INTERFACE(FastMono16BitSplineRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16SPLINE SNDMIX_RAMPFASTMONOVOL END_FASTRAMPMIX_INTERFACE() BEGIN_FASTRAMPMIX_INTERFACE(FastMono8BitFirFilterRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8FIRFILTER SNDMIX_RAMPFASTMONOVOL END_FASTRAMPMIX_INTERFACE() BEGIN_FASTRAMPMIX_INTERFACE(FastMono16BitFirFilterRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16FIRFILTER SNDMIX_RAMPFASTMONOVOL END_FASTRAMPMIX_INTERFACE() ////////////////////////////////////////////////////// // Stereo samples BEGIN_MIX_INTERFACE(Stereo8BitMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8NOIDO SNDMIX_STORESTEREOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Stereo16BitMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16NOIDO SNDMIX_STORESTEREOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Stereo8BitLinearMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8LINEAR SNDMIX_STORESTEREOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Stereo16BitLinearMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16LINEAR SNDMIX_STORESTEREOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Stereo8BitSplineMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8SPLINE SNDMIX_STORESTEREOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Stereo16BitSplineMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16SPLINE SNDMIX_STORESTEREOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Stereo8BitFirFilterMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8FIRFILTER SNDMIX_STORESTEREOVOL END_MIX_INTERFACE() BEGIN_MIX_INTERFACE(Stereo16BitFirFilterMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16FIRFILTER SNDMIX_STORESTEREOVOL END_MIX_INTERFACE() // Volume Ramps BEGIN_RAMPMIX_INTERFACE(Stereo8BitRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8NOIDO SNDMIX_RAMPSTEREOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Stereo16BitRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16NOIDO SNDMIX_RAMPSTEREOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Stereo8BitLinearRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8LINEAR SNDMIX_RAMPSTEREOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Stereo16BitLinearRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16LINEAR SNDMIX_RAMPSTEREOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Stereo8BitSplineRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8SPLINE SNDMIX_RAMPSTEREOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Stereo16BitSplineRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16SPLINE SNDMIX_RAMPSTEREOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Stereo8BitFirFilterRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8FIRFILTER SNDMIX_RAMPSTEREOVOL END_RAMPMIX_INTERFACE() BEGIN_RAMPMIX_INTERFACE(Stereo16BitFirFilterRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16FIRFILTER SNDMIX_RAMPSTEREOVOL END_RAMPMIX_INTERFACE() ////////////////////////////////////////////////////// // Resonant Filter Mix #ifndef NO_FILTER // Mono Filter Mix BEGIN_MIX_FLT_INTERFACE(FilterMono8BitMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8NOIDO SNDMIX_PROCESSFILTER SNDMIX_STOREMONOVOL END_MIX_FLT_INTERFACE() BEGIN_MIX_FLT_INTERFACE(FilterMono16BitMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16NOIDO SNDMIX_PROCESSFILTER SNDMIX_STOREMONOVOL END_MIX_FLT_INTERFACE() BEGIN_MIX_FLT_INTERFACE(FilterMono8BitLinearMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8LINEAR SNDMIX_PROCESSFILTER SNDMIX_STOREMONOVOL END_MIX_FLT_INTERFACE() BEGIN_MIX_FLT_INTERFACE(FilterMono16BitLinearMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16LINEAR SNDMIX_PROCESSFILTER SNDMIX_STOREMONOVOL END_MIX_FLT_INTERFACE() BEGIN_MIX_FLT_INTERFACE(FilterMono8BitSplineMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8SPLINE SNDMIX_PROCESSFILTER SNDMIX_STOREMONOVOL END_MIX_FLT_INTERFACE() BEGIN_MIX_FLT_INTERFACE(FilterMono16BitSplineMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16SPLINE SNDMIX_PROCESSFILTER SNDMIX_STOREMONOVOL END_MIX_FLT_INTERFACE() BEGIN_MIX_FLT_INTERFACE(FilterMono8BitFirFilterMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8FIRFILTER SNDMIX_PROCESSFILTER SNDMIX_STOREMONOVOL END_MIX_FLT_INTERFACE() BEGIN_MIX_FLT_INTERFACE(FilterMono16BitFirFilterMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16FIRFILTER SNDMIX_PROCESSFILTER SNDMIX_STOREMONOVOL END_MIX_FLT_INTERFACE() // Filter + Ramp BEGIN_RAMPMIX_FLT_INTERFACE(FilterMono8BitRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8NOIDO SNDMIX_PROCESSFILTER SNDMIX_RAMPMONOVOL END_RAMPMIX_FLT_INTERFACE() BEGIN_RAMPMIX_FLT_INTERFACE(FilterMono16BitRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16NOIDO SNDMIX_PROCESSFILTER SNDMIX_RAMPMONOVOL END_RAMPMIX_FLT_INTERFACE() BEGIN_RAMPMIX_FLT_INTERFACE(FilterMono8BitLinearRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8LINEAR SNDMIX_PROCESSFILTER SNDMIX_RAMPMONOVOL END_RAMPMIX_FLT_INTERFACE() BEGIN_RAMPMIX_FLT_INTERFACE(FilterMono16BitLinearRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16LINEAR SNDMIX_PROCESSFILTER SNDMIX_RAMPMONOVOL END_RAMPMIX_FLT_INTERFACE() BEGIN_RAMPMIX_FLT_INTERFACE(FilterMono8BitSplineRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8SPLINE SNDMIX_PROCESSFILTER SNDMIX_RAMPMONOVOL END_RAMPMIX_FLT_INTERFACE() BEGIN_RAMPMIX_FLT_INTERFACE(FilterMono16BitSplineRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16SPLINE SNDMIX_PROCESSFILTER SNDMIX_RAMPMONOVOL END_RAMPMIX_FLT_INTERFACE() BEGIN_RAMPMIX_FLT_INTERFACE(FilterMono8BitFirFilterRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETMONOVOL8FIRFILTER SNDMIX_PROCESSFILTER SNDMIX_RAMPMONOVOL END_RAMPMIX_FLT_INTERFACE() BEGIN_RAMPMIX_FLT_INTERFACE(FilterMono16BitFirFilterRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETMONOVOL16FIRFILTER SNDMIX_PROCESSFILTER SNDMIX_RAMPMONOVOL END_RAMPMIX_FLT_INTERFACE() // Stereo Filter Mix BEGIN_MIX_STFLT_INTERFACE(FilterStereo8BitMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8NOIDO SNDMIX_PROCESSSTEREOFILTER SNDMIX_STORESTEREOVOL END_MIX_STFLT_INTERFACE() BEGIN_MIX_STFLT_INTERFACE(FilterStereo16BitMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16NOIDO SNDMIX_PROCESSSTEREOFILTER SNDMIX_STORESTEREOVOL END_MIX_STFLT_INTERFACE() BEGIN_MIX_STFLT_INTERFACE(FilterStereo8BitLinearMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8LINEAR SNDMIX_PROCESSSTEREOFILTER SNDMIX_STORESTEREOVOL END_MIX_STFLT_INTERFACE() BEGIN_MIX_STFLT_INTERFACE(FilterStereo16BitLinearMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16LINEAR SNDMIX_PROCESSSTEREOFILTER SNDMIX_STORESTEREOVOL END_MIX_STFLT_INTERFACE() BEGIN_MIX_STFLT_INTERFACE(FilterStereo8BitSplineMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8SPLINE SNDMIX_PROCESSSTEREOFILTER SNDMIX_STORESTEREOVOL END_MIX_STFLT_INTERFACE() BEGIN_MIX_STFLT_INTERFACE(FilterStereo16BitSplineMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16SPLINE SNDMIX_PROCESSSTEREOFILTER SNDMIX_STORESTEREOVOL END_MIX_STFLT_INTERFACE() BEGIN_MIX_STFLT_INTERFACE(FilterStereo8BitFirFilterMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8FIRFILTER SNDMIX_PROCESSSTEREOFILTER SNDMIX_STORESTEREOVOL END_MIX_STFLT_INTERFACE() BEGIN_MIX_STFLT_INTERFACE(FilterStereo16BitFirFilterMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16FIRFILTER SNDMIX_PROCESSSTEREOFILTER SNDMIX_STORESTEREOVOL END_MIX_STFLT_INTERFACE() // Stereo Filter + Ramp BEGIN_RAMPMIX_STFLT_INTERFACE(FilterStereo8BitRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8NOIDO SNDMIX_PROCESSSTEREOFILTER SNDMIX_RAMPSTEREOVOL END_RAMPMIX_STFLT_INTERFACE() BEGIN_RAMPMIX_STFLT_INTERFACE(FilterStereo16BitRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16NOIDO SNDMIX_PROCESSSTEREOFILTER SNDMIX_RAMPSTEREOVOL END_RAMPMIX_STFLT_INTERFACE() BEGIN_RAMPMIX_STFLT_INTERFACE(FilterStereo8BitLinearRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8LINEAR SNDMIX_PROCESSSTEREOFILTER SNDMIX_RAMPSTEREOVOL END_RAMPMIX_STFLT_INTERFACE() BEGIN_RAMPMIX_STFLT_INTERFACE(FilterStereo16BitLinearRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16LINEAR SNDMIX_PROCESSSTEREOFILTER SNDMIX_RAMPSTEREOVOL END_RAMPMIX_STFLT_INTERFACE() BEGIN_RAMPMIX_STFLT_INTERFACE(FilterStereo8BitSplineRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8SPLINE SNDMIX_PROCESSSTEREOFILTER SNDMIX_RAMPSTEREOVOL END_RAMPMIX_STFLT_INTERFACE() BEGIN_RAMPMIX_STFLT_INTERFACE(FilterStereo16BitSplineRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16SPLINE SNDMIX_PROCESSSTEREOFILTER SNDMIX_RAMPSTEREOVOL END_RAMPMIX_STFLT_INTERFACE() BEGIN_RAMPMIX_STFLT_INTERFACE(FilterStereo8BitFirFilterRampMix) SNDMIX_BEGINSAMPLELOOP8 SNDMIX_GETSTEREOVOL8FIRFILTER SNDMIX_PROCESSSTEREOFILTER SNDMIX_RAMPSTEREOVOL END_RAMPMIX_STFLT_INTERFACE() BEGIN_RAMPMIX_STFLT_INTERFACE(FilterStereo16BitFirFilterRampMix) SNDMIX_BEGINSAMPLELOOP16 SNDMIX_GETSTEREOVOL16FIRFILTER SNDMIX_PROCESSSTEREOFILTER SNDMIX_RAMPSTEREOVOL END_RAMPMIX_STFLT_INTERFACE() #else // Mono #define FilterMono8BitMix Mono8BitMix #define FilterMono16BitMix Mono16BitMix #define FilterMono8BitLinearMix Mono8BitLinearMix #define FilterMono16BitLinearMix Mono16BitLinearMix #define FilterMono8BitSplineMix Mono8BitSplineMix #define FilterMono16BitSplineMix Mono16BitSplineMix #define FilterMono8BitFirFilterMix Mono8BitFirFilterMix #define FilterMono16BitFirFilterMix Mono16BitFirFilterMix #define FilterMono8BitRampMix Mono8BitRampMix #define FilterMono16BitRampMix Mono16BitRampMix #define FilterMono8BitLinearRampMix Mono8BitLinearRampMix #define FilterMono16BitLinearRampMix Mono16BitLinearRampMix #define FilterMono8BitSplineRampMix Mono8BitSplineRampMix #define FilterMono16BitSplineRampMix Mono16BitSplineRampMix #define FilterMono8BitFirFilterRampMix Mono8BitFirFilterRampMix #define FilterMono16BitFirFilterRampMix Mono16BitFirFilterRampMix // Stereo #define FilterStereo8BitMix Stereo8BitMix #define FilterStereo16BitMix Stereo16BitMix #define FilterStereo8BitLinearMix Stereo8BitLinearMix #define FilterStereo16BitLinearMix Stereo16BitLinearMix #define FilterStereo8BitSplineMix Stereo8BitSplineMix #define FilterStereo16BitSplineMix Stereo16BitSplineMix #define FilterStereo8BitFirFilterMix Stereo8BitFirFilterMix #define FilterStereo16BitFirFilterMix Stereo16BitFirFilterMix #define FilterStereo8BitRampMix Stereo8BitRampMix #define FilterStereo16BitRampMix Stereo16BitRampMix #define FilterStereo8BitLinearRampMix Stereo8BitLinearRampMix #define FilterStereo16BitLinearRampMix Stereo16BitLinearRampMix #define FilterStereo8BitSplineRampMix Stereo8BitSplineRampMix #define FilterStereo16BitSplineRampMix Stereo16BitSplineRampMix #define FilterStereo8BitFirFilterRampMix Stereo8BitFirFilterRampMix #define FilterStereo16BitFirFilterRampMix Stereo16BitFirFilterRampMix #endif /////////////////////////////////////////////////////////////////////////////// // // Mix function tables // // // Index is as follow: // [b1-b0] format (8-bit-mono, 16-bit-mono, 8-bit-stereo, 16-bit-stereo) // [b2] ramp // [b3] filter // [b5-b4] src type // #define MIXNDX_16BIT 0x01 #define MIXNDX_STEREO 0x02 #define MIXNDX_RAMP 0x04 #define MIXNDX_FILTER 0x08 #define MIXNDX_LINEARSRC 0x10 #define MIXNDX_SPLINESRC 0x20 #define MIXNDX_FIRSRC 0x30 const LPMIXINTERFACE gpMixFunctionTable[2*2*16] = { // No SRC Mono8BitMix, Mono16BitMix, Stereo8BitMix, Stereo16BitMix, Mono8BitRampMix, Mono16BitRampMix, Stereo8BitRampMix, Stereo16BitRampMix, // No SRC, Filter FilterMono8BitMix, FilterMono16BitMix, FilterStereo8BitMix, FilterStereo16BitMix, FilterMono8BitRampMix, FilterMono16BitRampMix, FilterStereo8BitRampMix, FilterStereo16BitRampMix, // Linear SRC Mono8BitLinearMix, Mono16BitLinearMix, Stereo8BitLinearMix, Stereo16BitLinearMix, Mono8BitLinearRampMix, Mono16BitLinearRampMix, Stereo8BitLinearRampMix,Stereo16BitLinearRampMix, // Linear SRC, Filter FilterMono8BitLinearMix, FilterMono16BitLinearMix, FilterStereo8BitLinearMix, FilterStereo16BitLinearMix, FilterMono8BitLinearRampMix, FilterMono16BitLinearRampMix, FilterStereo8BitLinearRampMix, FilterStereo16BitLinearRampMix, // FirFilter SRC Mono8BitSplineMix, Mono16BitSplineMix, Stereo8BitSplineMix, Stereo16BitSplineMix, Mono8BitSplineRampMix, Mono16BitSplineRampMix, Stereo8BitSplineRampMix,Stereo16BitSplineRampMix, // Spline SRC, Filter FilterMono8BitSplineMix, FilterMono16BitSplineMix, FilterStereo8BitSplineMix, FilterStereo16BitSplineMix, FilterMono8BitSplineRampMix, FilterMono16BitSplineRampMix, FilterStereo8BitSplineRampMix, FilterStereo16BitSplineRampMix, // FirFilter SRC Mono8BitFirFilterMix, Mono16BitFirFilterMix, Stereo8BitFirFilterMix, Stereo16BitFirFilterMix, Mono8BitFirFilterRampMix, Mono16BitFirFilterRampMix, Stereo8BitFirFilterRampMix, Stereo16BitFirFilterRampMix, // FirFilter SRC, Filter FilterMono8BitFirFilterMix, FilterMono16BitFirFilterMix, FilterStereo8BitFirFilterMix, FilterStereo16BitFirFilterMix, FilterMono8BitFirFilterRampMix, FilterMono16BitFirFilterRampMix, FilterStereo8BitFirFilterRampMix, FilterStereo16BitFirFilterRampMix }; const LPMIXINTERFACE gpFastMixFunctionTable[2*2*16] = { // No SRC FastMono8BitMix, FastMono16BitMix, Stereo8BitMix, Stereo16BitMix, FastMono8BitRampMix, FastMono16BitRampMix, Stereo8BitRampMix, Stereo16BitRampMix, // No SRC, Filter FilterMono8BitMix, FilterMono16BitMix, FilterStereo8BitMix, FilterStereo16BitMix, FilterMono8BitRampMix, FilterMono16BitRampMix, FilterStereo8BitRampMix, FilterStereo16BitRampMix, // Linear SRC FastMono8BitLinearMix, FastMono16BitLinearMix, Stereo8BitLinearMix, Stereo16BitLinearMix, FastMono8BitLinearRampMix, FastMono16BitLinearRampMix, Stereo8BitLinearRampMix, Stereo16BitLinearRampMix, // Linear SRC, Filter FilterMono8BitLinearMix, FilterMono16BitLinearMix, FilterStereo8BitLinearMix, FilterStereo16BitLinearMix, FilterMono8BitLinearRampMix, FilterMono16BitLinearRampMix, FilterStereo8BitLinearRampMix, FilterStereo16BitLinearRampMix, // Spline SRC Mono8BitSplineMix, Mono16BitSplineMix, Stereo8BitSplineMix, Stereo16BitSplineMix, Mono8BitSplineRampMix, Mono16BitSplineRampMix, Stereo8BitSplineRampMix, Stereo16BitSplineRampMix, // Spline SRC, Filter FilterMono8BitSplineMix, FilterMono16BitSplineMix, FilterStereo8BitSplineMix, FilterStereo16BitSplineMix, FilterMono8BitSplineRampMix, FilterMono16BitSplineRampMix, FilterStereo8BitSplineRampMix, FilterStereo16BitSplineRampMix, // FirFilter SRC Mono8BitFirFilterMix, Mono16BitFirFilterMix, Stereo8BitFirFilterMix, Stereo16BitFirFilterMix, Mono8BitFirFilterRampMix, Mono16BitFirFilterRampMix, Stereo8BitFirFilterRampMix, Stereo16BitFirFilterRampMix, // FirFilter SRC, Filter FilterMono8BitFirFilterMix, FilterMono16BitFirFilterMix, FilterStereo8BitFirFilterMix, FilterStereo16BitFirFilterMix, FilterMono8BitFirFilterRampMix, FilterMono16BitFirFilterRampMix, FilterStereo8BitFirFilterRampMix, FilterStereo16BitFirFilterRampMix, }; ///////////////////////////////////////////////////////////////////////// static LONG MPPFASTCALL GetSampleCount(MODCHANNEL *pChn, LONG nSamples) //--------------------------------------------------------------------- { LONG nLoopStart = (pChn->dwFlags & CHN_LOOP) ? pChn->nLoopStart : 0; LONG nInc = pChn->nInc; if ((nSamples <= 0) || (!nInc) || (!pChn->nLength)) return 0; // Under zero ? if ((LONG)pChn->nPos < nLoopStart) { if (nInc < 0) { // Invert loop for bidi loops LONG nDelta = ((nLoopStart - pChn->nPos) << 16) - (pChn->nPosLo & 0xffff); pChn->nPos = nLoopStart | (nDelta>>16); pChn->nPosLo = nDelta & 0xffff; if (((LONG)pChn->nPos < nLoopStart) || (pChn->nPos >= (nLoopStart+pChn->nLength)/2)) { pChn->nPos = nLoopStart; pChn->nPosLo = 0; } nInc = -nInc; pChn->nInc = nInc; pChn->dwFlags &= ~(CHN_PINGPONGFLAG); // go forward if ((!(pChn->dwFlags & CHN_LOOP)) || (pChn->nPos >= pChn->nLength)) { pChn->nPos = pChn->nLength; pChn->nPosLo = 0; return 0; } } else { // We probably didn't hit the loop end yet // (first loop), so we do nothing if ((LONG)pChn->nPos < 0) pChn->nPos = 0; } } else // Past the end if (pChn->nPos >= pChn->nLength) { if (!(pChn->dwFlags & CHN_LOOP)) return 0; // not looping -> stop this channel if (pChn->dwFlags & CHN_PINGPONGLOOP) { // Invert loop if (nInc > 0) { nInc = -nInc; pChn->nInc = nInc; } pChn->dwFlags |= CHN_PINGPONGFLAG; // adjust loop position LONG nDeltaHi = (pChn->nPos - pChn->nLength); LONG nDeltaLo = 0x10000 - (pChn->nPosLo & 0xffff); pChn->nPos = pChn->nLength - nDeltaHi - (nDeltaLo>>16); pChn->nPosLo = nDeltaLo & 0xffff; if ((pChn->nPos <= pChn->nLoopStart) || (pChn->nPos >= pChn->nLength)) pChn->nPos = pChn->nLength-1; } else { if (nInc < 0) // This is a bug { nInc = -nInc; pChn->nInc = nInc; } // Restart at loop start pChn->nPos += nLoopStart - pChn->nLength; if ((LONG)pChn->nPos < nLoopStart) pChn->nPos = pChn->nLoopStart; } } LONG nPos = pChn->nPos; // too big increment, and/or too small loop length if (nPos < nLoopStart) { if ((nPos < 0) || (nInc < 0)) return 0; } if ((nPos < 0) || (nPos >= (LONG)pChn->nLength)) return 0; LONG nPosLo = (USHORT)pChn->nPosLo, nSmpCount = nSamples; if (nInc < 0) { LONG nInv = -nInc; LONG maxsamples = 16384 / ((nInv>>16)+1); if (maxsamples < 2) maxsamples = 2; if (nSamples > maxsamples) nSamples = maxsamples; LONG nDeltaHi = (nInv>>16) * (nSamples - 1); LONG nDeltaLo = (nInv&0xffff) * (nSamples - 1); LONG nPosDest = nPos - nDeltaHi + ((nPosLo - nDeltaLo) >> 16); if (nPosDest < nLoopStart) { nSmpCount = (ULONG)(((((LONGLONG)nPos - nLoopStart) << 16) + nPosLo - 1) / nInv) + 1; } } else { LONG maxsamples = 16384 / ((nInc>>16)+1); if (maxsamples < 2) maxsamples = 2; if (nSamples > maxsamples) nSamples = maxsamples; LONG nDeltaHi = (nInc>>16) * (nSamples - 1); LONG nDeltaLo = (nInc&0xffff) * (nSamples - 1); LONG nPosDest = nPos + nDeltaHi + ((nPosLo + nDeltaLo)>>16); if (nPosDest >= (LONG)pChn->nLength) { nSmpCount = (ULONG)(((((LONGLONG)pChn->nLength - nPos) << 16) - nPosLo - 1) / nInc) + 1; } } if (nSmpCount <= 1) return 1; if (nSmpCount > nSamples) return nSamples; return nSmpCount; } UINT CSoundFile::CreateStereoMix(int count) //----------------------------------------- { LPLONG pOfsL, pOfsR; DWORD nchused, nchmixed; if (!count) return 0; #ifndef MODPLUG_FASTSOUNDLIB if (gnChannels > 2) X86_InitMixBuffer(MixRearBuffer, count*2); #endif nchused = nchmixed = 0; for (UINT nChn=0; nChn<m_nMixChannels; nChn++) { const LPMIXINTERFACE *pMixFuncTable; MODCHANNEL * const pChannel = &Chn[ChnMix[nChn]]; UINT nFlags;//, nMasterCh LONG nSmpCount; int nsamples; int *pbuffer; if (!pChannel->pCurrentSample) continue; //nMasterCh = (ChnMix[nChn] < m_nChannels) ? ChnMix[nChn]+1 : pChannel->nMasterChn; pOfsR = &gnDryROfsVol; pOfsL = &gnDryLOfsVol; nFlags = 0; if (pChannel->dwFlags & CHN_16BIT) nFlags |= MIXNDX_16BIT; if (pChannel->dwFlags & CHN_STEREO) nFlags |= MIXNDX_STEREO; #ifndef NO_FILTER if (pChannel->dwFlags & CHN_FILTER) nFlags |= MIXNDX_FILTER; #endif if (!(pChannel->dwFlags & CHN_NOIDO)) { // use hq-fir mixer? if( (gdwSoundSetup & (SNDMIX_HQRESAMPLER|SNDMIX_ULTRAHQSRCMODE)) == (SNDMIX_HQRESAMPLER|SNDMIX_ULTRAHQSRCMODE) ) nFlags += MIXNDX_FIRSRC; else if( (gdwSoundSetup & (SNDMIX_HQRESAMPLER)) == SNDMIX_HQRESAMPLER ) nFlags += MIXNDX_SPLINESRC; else nFlags += MIXNDX_LINEARSRC; // use } if ((nFlags < 0x40) && (pChannel->nLeftVol == pChannel->nRightVol) && ((!pChannel->nRampLength) || (pChannel->nLeftRamp == pChannel->nRightRamp))) { pMixFuncTable = gpFastMixFunctionTable; } else { pMixFuncTable = gpMixFunctionTable; } nsamples = count; #ifndef MODPLUG_NO_REVERB pbuffer = (gdwSoundSetup & SNDMIX_REVERB) ? MixReverbBuffer : MixSoundBuffer; if (pChannel->dwFlags & CHN_NOREVERB) pbuffer = MixSoundBuffer; if (pChannel->dwFlags & CHN_REVERB) pbuffer = MixReverbBuffer; if (pbuffer == MixReverbBuffer) { if (!gnReverbSend) memset(MixReverbBuffer, 0, count * 8); gnReverbSend += count; } #else pbuffer = MixSoundBuffer; #endif nchused++; //////////////////////////////////////////////////// SampleLooping: UINT nrampsamples = nsamples; if (pChannel->nRampLength > 0) { if ((LONG)nrampsamples > pChannel->nRampLength) nrampsamples = pChannel->nRampLength; } if ((nSmpCount = GetSampleCount(pChannel, nrampsamples)) <= 0) { // Stopping the channel pChannel->pCurrentSample = NULL; pChannel->nLength = 0; pChannel->nPos = 0; pChannel->nPosLo = 0; pChannel->nRampLength = 0; X86_EndChannelOfs(pChannel, pbuffer, nsamples); *pOfsR += pChannel->nROfs; *pOfsL += pChannel->nLOfs; pChannel->nROfs = pChannel->nLOfs = 0; pChannel->dwFlags &= ~CHN_PINGPONGFLAG; continue; } // Should we mix this channel ? UINT naddmix; if (((nchmixed >= m_nMaxMixChannels) && (!(gdwSoundSetup & SNDMIX_DIRECTTODISK))) || ((!pChannel->nRampLength) && (!(pChannel->nLeftVol|pChannel->nRightVol)))) { LONG delta = (pChannel->nInc * (LONG)nSmpCount) + (LONG)pChannel->nPosLo; pChannel->nPosLo = delta & 0xFFFF; pChannel->nPos += (delta >> 16); pChannel->nROfs = pChannel->nLOfs = 0; pbuffer += nSmpCount*2; naddmix = 0; } else // Do mixing { // Choose function for mixing LPMIXINTERFACE pMixFunc; pMixFunc = (pChannel->nRampLength) ? pMixFuncTable[nFlags|MIXNDX_RAMP] : pMixFuncTable[nFlags]; int *pbufmax = pbuffer + (nSmpCount*2); pChannel->nROfs = - *(pbufmax-2); pChannel->nLOfs = - *(pbufmax-1); pMixFunc(pChannel, pbuffer, pbufmax); pChannel->nROfs += *(pbufmax-2); pChannel->nLOfs += *(pbufmax-1); pbuffer = pbufmax; naddmix = 1; } nsamples -= nSmpCount; if (pChannel->nRampLength) { pChannel->nRampLength -= nSmpCount; if (pChannel->nRampLength <= 0) { pChannel->nRampLength = 0; pChannel->nRightVol = pChannel->nNewRightVol; pChannel->nLeftVol = pChannel->nNewLeftVol; pChannel->nRightRamp = pChannel->nLeftRamp = 0; if ((pChannel->dwFlags & CHN_NOTEFADE) && (!(pChannel->nFadeOutVol))) { pChannel->nLength = 0; pChannel->pCurrentSample = NULL; } } } if (nsamples > 0) goto SampleLooping; nchmixed += naddmix; } return nchused; } #ifdef _MSC_VER #pragma warning (disable:4100) #endif // Clip and convert to 8 bit #if defined(_MSC_VER) && defined(_M_IX86) __declspec(naked) DWORD MPPASMCALL X86_Convert32To8(LPVOID lp16, int *pBuffer, DWORD lSampleCount, LPLONG lpMin, LPLONG lpMax) //------------------------------------------------------------------------------ { _asm { push ebx push esi push edi mov ebx, 16[esp] // ebx = 8-bit buffer mov esi, 20[esp] // esi = pBuffer mov edi, 24[esp] // edi = lSampleCount mov eax, 28[esp] mov ecx, dword ptr [eax] // ecx = clipmin mov eax, 32[esp] mov edx, dword ptr [eax] // edx = clipmax cliploop: mov eax, dword ptr [esi] inc ebx cdq and edx, (1 << (24-MIXING_ATTENUATION)) - 1 add eax, edx cmp eax, MIXING_CLIPMIN jl cliplow cmp eax, MIXING_CLIPMAX jg cliphigh cmp eax, ecx jl updatemin cmp eax, edx jg updatemax cliprecover: add esi, 4 sar eax, 24-MIXING_ATTENUATION xor eax, 0x80 dec edi mov byte ptr [ebx-1], al jnz cliploop mov eax, 28[esp] mov dword ptr [eax], ecx mov eax, 32[esp] mov dword ptr [eax], edx mov eax, 24[esp] pop edi pop esi pop ebx ret updatemin: mov ecx, eax jmp cliprecover updatemax: mov edx, eax jmp cliprecover cliplow: mov ecx, MIXING_CLIPMIN mov edx, MIXING_CLIPMAX mov eax, MIXING_CLIPMIN jmp cliprecover cliphigh: mov ecx, MIXING_CLIPMIN mov edx, MIXING_CLIPMAX mov eax, MIXING_CLIPMAX jmp cliprecover } } #else //MSC_VER //---GCCFIX: Asm replaced with C function // The C version was written by Rani Assaf <rani@magic.metawire.com>, I believe DWORD MPPASMCALL X86_Convert32To8(LPVOID lp8, int *pBuffer, DWORD lSampleCount, LPLONG lpMin, LPLONG lpMax) { int vumin = *lpMin, vumax = *lpMax; unsigned char *p = (unsigned char *)lp8; for (UINT i=0; i<lSampleCount; i++) { int n = pBuffer[i]; if (n < MIXING_CLIPMIN) n = MIXING_CLIPMIN; else if (n > MIXING_CLIPMAX) n = MIXING_CLIPMAX; if (n < vumin) vumin = n; else if (n > vumax) vumax = n; p[i] = (n >> (24-MIXING_ATTENUATION)) ^ 0x80; // 8-bit unsigned } *lpMin = vumin; *lpMax = vumax; return lSampleCount; } #endif //MSC_VER, else #if defined(_MSC_VER) && defined(_M_IX86) // Clip and convert to 16 bit __declspec(naked) DWORD MPPASMCALL X86_Convert32To16(LPVOID lp16, int *pBuffer, DWORD lSampleCount, LPLONG lpMin, LPLONG lpMax) //------------------------------------------------------------------------------ { _asm { push ebx push esi push edi mov ebx, 16[esp] // ebx = 16-bit buffer mov eax, 28[esp] mov esi, 20[esp] // esi = pBuffer mov ecx, dword ptr [eax] // ecx = clipmin mov edi, 24[esp] // edi = lSampleCount mov eax, 32[esp] push ebp mov ebp, dword ptr [eax] // edx = clipmax cliploop: mov eax, dword ptr [esi] add ebx, 2 cdq and edx, (1 << (16-MIXING_ATTENUATION)) - 1 add esi, 4 add eax, edx cmp eax, MIXING_CLIPMIN jl cliplow cmp eax, MIXING_CLIPMAX jg cliphigh cmp eax, ecx jl updatemin cmp eax, ebp jg updatemax cliprecover: sar eax, 16-MIXING_ATTENUATION dec edi mov word ptr [ebx-2], ax jnz cliploop mov edx, ebp pop ebp mov eax, 28[esp] mov dword ptr [eax], ecx mov eax, 32[esp] mov dword ptr [eax], edx mov eax, 24[esp] pop edi shl eax, 1 pop esi pop ebx ret updatemin: mov ecx, eax jmp cliprecover updatemax: mov ebp, eax jmp cliprecover cliplow: mov ecx, MIXING_CLIPMIN mov ebp, MIXING_CLIPMAX mov eax, MIXING_CLIPMIN jmp cliprecover cliphigh: mov ecx, MIXING_CLIPMIN mov ebp, MIXING_CLIPMAX mov eax, MIXING_CLIPMAX jmp cliprecover } } #else //MSC_VER //---GCCFIX: Asm replaced with C function // The C version was written by Rani Assaf <rani@magic.metawire.com>, I believe DWORD MPPASMCALL X86_Convert32To16(LPVOID lp16, int *pBuffer, DWORD lSampleCount, LPLONG lpMin, LPLONG lpMax) { int vumin = *lpMin, vumax = *lpMax; signed short *p = (signed short *)lp16; for (UINT i=0; i<lSampleCount; i++) { int n = pBuffer[i]; if (n < MIXING_CLIPMIN) n = MIXING_CLIPMIN; else if (n > MIXING_CLIPMAX) n = MIXING_CLIPMAX; if (n < vumin) vumin = n; else if (n > vumax) vumax = n; p[i] = n >> (16-MIXING_ATTENUATION); // 16-bit signed } *lpMin = vumin; *lpMax = vumax; return lSampleCount * 2; } #endif //MSC_VER, else #if defined(_MSC_VER) && defined(_M_IX86) // Clip and convert to 24 bit __declspec(naked) DWORD MPPASMCALL X86_Convert32To24(LPVOID lp16, int *pBuffer, DWORD lSampleCount, LPLONG lpMin, LPLONG lpMax) //------------------------------------------------------------------------------ { _asm { push ebx push esi push edi mov ebx, 16[esp] // ebx = 8-bit buffer mov esi, 20[esp] // esi = pBuffer mov edi, 24[esp] // edi = lSampleCount mov eax, 28[esp] mov ecx, dword ptr [eax] // ecx = clipmin mov eax, 32[esp] push ebp mov edx, dword ptr [eax] // edx = clipmax cliploop: mov eax, dword ptr [esi] mov ebp, eax sar ebp, 31 and ebp, (1 << (8-MIXING_ATTENUATION)) - 1 add eax, ebp cmp eax, MIXING_CLIPMIN jl cliplow cmp eax, MIXING_CLIPMAX jg cliphigh cmp eax, ecx jl updatemin cmp eax, edx jg updatemax cliprecover: add ebx, 3 sar eax, 8-MIXING_ATTENUATION add esi, 4 mov word ptr [ebx-3], ax shr eax, 16 dec edi mov byte ptr [ebx-1], al jnz cliploop pop ebp mov eax, 28[esp] mov dword ptr [eax], ecx mov eax, 32[esp] mov dword ptr [eax], edx mov edx, 24[esp] mov eax, edx pop edi shl eax, 1 pop esi add eax, edx pop ebx ret updatemin: mov ecx, eax jmp cliprecover updatemax: mov edx, eax jmp cliprecover cliplow: mov ecx, MIXING_CLIPMIN mov edx, MIXING_CLIPMAX mov eax, MIXING_CLIPMIN jmp cliprecover cliphigh: mov ecx, MIXING_CLIPMIN mov edx, MIXING_CLIPMAX mov eax, MIXING_CLIPMAX jmp cliprecover } } #else //MSC_VER //---GCCFIX: Asm replaced with C function DWORD MPPASMCALL X86_Convert32To24(LPVOID lp16, int *pBuffer, DWORD lSampleCount, LPLONG lpMin, LPLONG lpMax) { UINT i ; int vumin = *lpMin, vumax = *lpMax; int n,p ; unsigned char* buf = (unsigned char*)lp16 ; for ( i=0; i<lSampleCount; i++) { n = pBuffer[i]; if (n < MIXING_CLIPMIN) n = MIXING_CLIPMIN; else if (n > MIXING_CLIPMAX) n = MIXING_CLIPMAX; if (n < vumin) vumin = n; else if (n > vumax) vumax = n; p = n >> (8-MIXING_ATTENUATION) ; // 24-bit signed #ifdef WORDS_BIGENDIAN buf[i*3+0] = (p >> 16) & 0xFF; buf[i*3+1] = (p >> 8) & 0xFF; buf[i*3+2] = (p >> 0) & 0xFF; #else buf[i*3+0] = (p >> 0) & 0xFF; buf[i*3+1] = (p >> 8) & 0xFF; buf[i*3+2] = (p >> 16) & 0xFF; #endif } *lpMin = vumin; *lpMax = vumax; return lSampleCount * 3; } #endif #if defined(_MSC_VER) && defined(_M_IX86) // Clip and convert to 32 bit __declspec(naked) DWORD MPPASMCALL X86_Convert32To32(LPVOID lp16, int *pBuffer, DWORD lSampleCount, LPLONG lpMin, LPLONG lpMax) //------------------------------------------------------------------------------ { _asm { push ebx push esi push edi mov ebx, 16[esp] // ebx = 32-bit buffer mov esi, 20[esp] // esi = pBuffer mov edi, 24[esp] // edi = lSampleCount mov eax, 28[esp] mov ecx, dword ptr [eax] // ecx = clipmin mov eax, 32[esp] mov edx, dword ptr [eax] // edx = clipmax cliploop: mov eax, dword ptr [esi] add ebx, 4 add esi, 4 cmp eax, MIXING_CLIPMIN jl cliplow cmp eax, MIXING_CLIPMAX jg cliphigh cmp eax, ecx jl updatemin cmp eax, edx jg updatemax cliprecover: shl eax, MIXING_ATTENUATION dec edi mov dword ptr [ebx-4], eax jnz cliploop mov eax, 28[esp] mov dword ptr [eax], ecx mov eax, 32[esp] mov dword ptr [eax], edx mov edx, 24[esp] pop edi mov eax, edx pop esi shl eax, 2 pop ebx ret updatemin: mov ecx, eax jmp cliprecover updatemax: mov edx, eax jmp cliprecover cliplow: mov ecx, MIXING_CLIPMIN mov edx, MIXING_CLIPMAX mov eax, MIXING_CLIPMIN jmp cliprecover cliphigh: mov ecx, MIXING_CLIPMIN mov edx, MIXING_CLIPMAX mov eax, MIXING_CLIPMAX jmp cliprecover } } #else //---GCCFIX: Asm replaced with C function DWORD MPPASMCALL X86_Convert32To32(LPVOID lp16, int *pBuffer, DWORD lSampleCount, LPLONG lpMin, LPLONG lpMax) { UINT i ; int vumin = *lpMin, vumax = *lpMax; int32_t *p = (int32_t *)lp16; for ( i=0; i<lSampleCount; i++) { int n = pBuffer[i]; if (n < MIXING_CLIPMIN) n = MIXING_CLIPMIN; else if (n > MIXING_CLIPMAX) n = MIXING_CLIPMAX; if (n < vumin) vumin = n; else if (n > vumax) vumax = n; p[i] = n << MIXING_ATTENUATION; // 32-bit signed } *lpMin = vumin; *lpMax = vumax; return lSampleCount * 4; } #endif #if defined(_MSC_VER) && defined(_M_IX86) void MPPASMCALL X86_InitMixBuffer(int *pBuffer, UINT nSamples) //------------------------------------------------------------ { _asm { mov ecx, nSamples mov esi, pBuffer xor eax, eax mov edx, ecx shr ecx, 2 and edx, 3 jz unroll4x loop1x: add esi, 4 dec edx mov dword ptr [esi-4], eax jnz loop1x unroll4x: or ecx, ecx jnz loop4x jmp done loop4x: add esi, 16 dec ecx mov dword ptr [esi-16], eax mov dword ptr [esi-12], eax mov dword ptr [esi-8], eax mov dword ptr [esi-4], eax jnz loop4x done:; } } #else //---GCCFIX: Asm replaced with C function // Will fill in later. void MPPASMCALL X86_InitMixBuffer(int *pBuffer, UINT nSamples) { memset(pBuffer, 0, nSamples * sizeof(int)); } #endif #if defined(_MSC_VER) && defined(_M_IX86) __declspec(naked) void MPPASMCALL X86_InterleaveFrontRear(int *pFrontBuf, int *pRearBuf, DWORD nSamples) //------------------------------------------------------------------------------ { _asm { push ebx push ebp push esi push edi mov ecx, 28[esp] // ecx = samplecount mov esi, 20[esp] // esi = front buffer mov edi, 24[esp] // edi = rear buffer lea esi, [esi+ecx*4] // esi = &front[N] lea edi, [edi+ecx*4] // edi = &rear[N] lea ebx, [esi+ecx*4] // ebx = &front[N*2] interleaveloop: mov eax, dword ptr [esi-8] mov edx, dword ptr [esi-4] sub ebx, 16 mov ebp, dword ptr [edi-8] mov dword ptr [ebx], eax mov dword ptr [ebx+4], edx mov eax, dword ptr [edi-4] sub esi, 8 sub edi, 8 dec ecx mov dword ptr [ebx+8], ebp mov dword ptr [ebx+12], eax jnz interleaveloop pop edi pop esi pop ebp pop ebx ret } } #else //---GCCFIX: Asm replaced with C function // Multichannel not supported. void MPPASMCALL X86_InterleaveFrontRear(int *pFrontBuf, int *pRearBuf, DWORD nSamples) { } #endif #if defined(_MSC_VER) && defined(_M_IX86) VOID MPPASMCALL X86_MonoFromStereo(int *pMixBuf, UINT nSamples) //------------------------------------------------------------- { _asm { mov ecx, nSamples mov esi, pMixBuf mov edi, esi stloop: mov eax, dword ptr [esi] mov edx, dword ptr [esi+4] add edi, 4 add esi, 8 add eax, edx sar eax, 1 dec ecx mov dword ptr [edi-4], eax jnz stloop } } #else //---GCCFIX: Asm replaced with C function VOID MPPASMCALL X86_MonoFromStereo(int *pMixBuf, UINT nSamples) { UINT j; for(UINT i = 0; i < nSamples; i++) { j = i << 1; pMixBuf[i] = (pMixBuf[j] + pMixBuf[j + 1]) >> 1; } } #endif #define OFSDECAYSHIFT 8 #define OFSDECAYMASK 0xFF #if defined(_MSC_VER) && defined(_M_IX86) void MPPASMCALL X86_StereoFill(int *pBuffer, UINT nSamples, LPLONG lpROfs, LPLONG lpLOfs) //------------------------------------------------------------------------------ { _asm { mov edi, pBuffer mov ecx, nSamples mov eax, lpROfs mov edx, lpLOfs mov eax, [eax] mov edx, [edx] or ecx, ecx jz fill_loop mov ebx, eax or ebx, edx jz fill_loop ofsloop: mov ebx, eax mov esi, edx neg ebx neg esi sar ebx, 31 sar esi, 31 and ebx, OFSDECAYMASK and esi, OFSDECAYMASK add ebx, eax add esi, edx sar ebx, OFSDECAYSHIFT sar esi, OFSDECAYSHIFT sub eax, ebx sub edx, esi mov ebx, eax or ebx, edx jz fill_loop add edi, 8 dec ecx mov [edi-8], eax mov [edi-4], edx jnz ofsloop fill_loop: mov ebx, ecx and ebx, 3 jz fill4x fill1x: mov [edi], eax mov [edi+4], edx add edi, 8 dec ebx jnz fill1x fill4x: shr ecx, 2 or ecx, ecx jz done fill4xloop: mov [edi], eax mov [edi+4], edx mov [edi+8], eax mov [edi+12], edx add edi, 8*4 dec ecx mov [edi-16], eax mov [edi-12], edx mov [edi-8], eax mov [edi-4], edx jnz fill4xloop done: mov esi, lpROfs mov edi, lpLOfs mov [esi], eax mov [edi], edx } } #else //---GCCFIX: Asm replaced with C function #define OFSDECAYSHIFT 8 #define OFSDECAYMASK 0xFF void MPPASMCALL X86_StereoFill(int *pBuffer, UINT nSamples, LPLONG lpROfs, LPLONG lpLOfs) //---------------------------------------------------------------------------- { int rofs = *lpROfs; int lofs = *lpLOfs; if ((!rofs) && (!lofs)) { X86_InitMixBuffer(pBuffer, nSamples*2); return; } for (UINT i=0; i<nSamples; i++) { int x_r = (rofs + (((-rofs)>>31) & OFSDECAYMASK)) >> OFSDECAYSHIFT; int x_l = (lofs + (((-lofs)>>31) & OFSDECAYMASK)) >> OFSDECAYSHIFT; rofs -= x_r; lofs -= x_l; pBuffer[i*2] = x_r; pBuffer[i*2+1] = x_l; } *lpROfs = rofs; *lpLOfs = lofs; } #endif #if defined(_MSC_VER) && defined(_M_IX86) void MPPASMCALL X86_EndChannelOfs(MODCHANNEL *pChannel, int *pBuffer, UINT nSamples) //------------------------------------------------------------------------------ { _asm { mov esi, pChannel mov edi, pBuffer mov ecx, nSamples mov eax, dword ptr [esi+MODCHANNEL.nROfs] mov edx, dword ptr [esi+MODCHANNEL.nLOfs] or ecx, ecx jz brkloop ofsloop: mov ebx, eax mov esi, edx neg ebx neg esi sar ebx, 31 sar esi, 31 and ebx, OFSDECAYMASK and esi, OFSDECAYMASK add ebx, eax add esi, edx sar ebx, OFSDECAYSHIFT sar esi, OFSDECAYSHIFT sub eax, ebx sub edx, esi mov ebx, eax add dword ptr [edi], eax add dword ptr [edi+4], edx or ebx, edx jz brkloop add edi, 8 dec ecx jnz ofsloop brkloop: mov esi, pChannel mov dword ptr [esi+MODCHANNEL.nROfs], eax mov dword ptr [esi+MODCHANNEL.nLOfs], edx } } #else //---GCCFIX: Asm replaced with C function // Will fill in later. void MPPASMCALL X86_EndChannelOfs(MODCHANNEL *pChannel, int *pBuffer, UINT nSamples) { int rofs = pChannel->nROfs; int lofs = pChannel->nLOfs; if ((!rofs) && (!lofs)) return; for (UINT i=0; i<nSamples; i++) { int x_r = (rofs + (((-rofs)>>31) & OFSDECAYMASK)) >> OFSDECAYSHIFT; int x_l = (lofs + (((-lofs)>>31) & OFSDECAYMASK)) >> OFSDECAYSHIFT; rofs -= x_r; lofs -= x_l; pBuffer[i*2] += x_r; pBuffer[i*2+1] += x_l; } pChannel->nROfs = rofs; pChannel->nLOfs = lofs; } #endif ////////////////////////////////////////////////////////////////////////////////// // Automatic Gain Control #ifndef NO_AGC // Limiter #define MIXING_LIMITMAX (0x08100000) #define MIXING_LIMITMIN (-MIXING_LIMITMAX) #if defined(_MSC_VER) && defined(_M_IX86) __declspec(naked) UINT MPPASMCALL X86_AGC(int *pBuffer, UINT nSamples, UINT nAGC) //------------------------------------------------------------------------------ { __asm { push ebx push ebp push esi push edi mov esi, 20[esp] // esi = pBuffer+i mov ecx, 24[esp] // ecx = i mov edi, 28[esp] // edi = AGC (0..256) agcloop: mov eax, dword ptr [esi] imul edi shrd eax, edx, AGC_PRECISION add esi, 4 cmp eax, MIXING_LIMITMIN jl agcupdate cmp eax, MIXING_LIMITMAX jg agcupdate agcrecover: dec ecx mov dword ptr [esi-4], eax jnz agcloop mov eax, edi pop edi pop esi pop ebp pop ebx ret agcupdate: dec edi jmp agcrecover } } #pragma warning (default:4100) #else // Version for GCC UINT MPPASMCALL X86_AGC(int *pBuffer, UINT nSamples, UINT nAGC) { int x; while(nSamples) { x = ((int64_t)(*pBuffer) * nAGC) >> AGC_PRECISION; if((x < MIXING_LIMITMIN) || (x > MIXING_LIMITMAX)) nAGC--; *pBuffer = x; pBuffer++; nSamples--; } return nAGC; } #endif void CSoundFile::ProcessAGC(int count) //------------------------------------ { static DWORD gAGCRecoverCount = 0; UINT agc = X86_AGC(MixSoundBuffer, count, gnAGC); // Some kind custom law, so that the AGC stays quite stable, but slowly // goes back up if the sound level stays below a level inversely // proportional to the AGC level. (J'me comprends) if ((agc >= gnAGC) && (gnAGC < AGC_UNITY) && (gnVUMeter < (0xFF - (gnAGC >> (AGC_PRECISION-7))) )) { gAGCRecoverCount += count; UINT agctimeout = gdwMixingFreq + gnAGC; if (gnChannels >= 2) agctimeout <<= 1; if (gAGCRecoverCount >= agctimeout) { gAGCRecoverCount = 0; gnAGC++; } } else { gnAGC = agc; gAGCRecoverCount = 0; } } void CSoundFile::ResetAGC() //------------------------- { gnAGC = AGC_UNITY; } #endif // NO_AGC /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (endian and char fixes for PPC) */ //////////////////////////////////////////////////////////// // 669 Composer / UNIS 669 module loader //////////////////////////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" //#pragma warning(disable:4244) typedef struct tagFILEHEADER669 { WORD sig; // 'if' or 'JN' char songmessage[108]; // Song Message BYTE samples; // number of samples (1-64) BYTE patterns; // number of patterns (1-128) BYTE restartpos; BYTE orders[128]; BYTE tempolist[128]; BYTE breaks[128]; } FILEHEADER669; typedef struct tagSAMPLE669 { BYTE filename[13]; BYTE length[4]; // when will somebody think about DWORD align ??? BYTE loopstart[4]; BYTE loopend[4]; } SAMPLE669; static DWORD lengthArrayToDWORD(const BYTE length[4]) { DWORD len = (length[3] << 24) + (length[2] << 16) + (length[1] << 8) + (length[0]); return(len); } BOOL CSoundFile::Read669(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { // BOOL b669Ext; const FILEHEADER669 *pfh = (const FILEHEADER669 *)lpStream; const SAMPLE669 *psmp = (const SAMPLE669 *)(lpStream + 0x1F1); DWORD dwMemPos = 0; if ((!lpStream) || (dwMemLength < sizeof(FILEHEADER669))) return FALSE; if ((bswapLE16(pfh->sig) != 0x6669) && (bswapLE16(pfh->sig) != 0x4E4A)) return FALSE; // b669Ext = (bswapLE16(pfh->sig) == 0x4E4A) ? TRUE : FALSE; if ((!pfh->samples) || (pfh->samples > 64) || (pfh->restartpos >= 128) || (!pfh->patterns) || (pfh->patterns > 128)) return FALSE; DWORD dontfuckwithme = 0x1F1 + pfh->samples * sizeof(SAMPLE669) + pfh->patterns * 0x600; if (dontfuckwithme > dwMemLength) return FALSE; for (UINT ichk=0; ichk<pfh->samples; ichk++) { DWORD len = lengthArrayToDWORD(psmp[ichk].length); dontfuckwithme += len; } if (dontfuckwithme > dwMemLength) return FALSE; // That should be enough checking: this must be a 669 module. m_nType = MOD_TYPE_669; m_dwSongFlags |= SONG_LINEARSLIDES; m_nMinPeriod = 28 << 2; m_nMaxPeriod = 1712 << 3; m_nDefaultTempo = 78; m_nDefaultSpeed = 6; m_nChannels = 8; memcpy(m_szNames[0], pfh->songmessage, 16); m_nSamples = pfh->samples; for (UINT nins=1; nins<=m_nSamples; nins++, psmp++) { DWORD len = lengthArrayToDWORD(psmp->length); DWORD loopstart = lengthArrayToDWORD(psmp->loopstart); DWORD loopend = lengthArrayToDWORD(psmp->loopend); if (len > MAX_SAMPLE_LENGTH) len = MAX_SAMPLE_LENGTH; if ((loopend > len) && (!loopstart)) loopend = 0; if (loopend > len) loopend = len; if (loopstart + 4 >= loopend) loopstart = loopend = 0; Ins[nins].nLength = len; Ins[nins].nLoopStart = loopstart; Ins[nins].nLoopEnd = loopend; if (loopend) Ins[nins].uFlags |= CHN_LOOP; memcpy(m_szNames[nins], psmp->filename, 13); Ins[nins].nVolume = 256; Ins[nins].nGlobalVol = 64; Ins[nins].nPan = 128; } // Song Message m_lpszSongComments = new char[109]; memcpy(m_lpszSongComments, pfh->songmessage, 108); m_lpszSongComments[108] = 0; // Reading Orders memcpy(Order, pfh->orders, 128); m_nRestartPos = pfh->restartpos; if (Order[m_nRestartPos] >= pfh->patterns) m_nRestartPos = 0; // Reading Pattern Break Locations for (UINT npan=0; npan<8; npan++) { ChnSettings[npan].nPan = (npan & 1) ? 0x30 : 0xD0; ChnSettings[npan].nVolume = 64; } // Reading Patterns dwMemPos = 0x1F1 + pfh->samples * 25; for (UINT npat=0; npat<pfh->patterns; npat++) { Patterns[npat] = AllocatePattern(64, m_nChannels); if (!Patterns[npat]) break; PatternSize[npat] = 64; MODCOMMAND *m = Patterns[npat]; const BYTE *p = lpStream + dwMemPos; for (UINT row=0; row<64; row++) { MODCOMMAND *mspeed = m; if ((row == pfh->breaks[npat]) && (row != 63)) { for (UINT i=0; i<8; i++) { m[i].command = CMD_PATTERNBREAK; m[i].param = 0; } } for (UINT n=0; n<8; n++, m++, p+=3) { UINT note = p[0] >> 2; UINT instr = ((p[0] & 0x03) << 4) | (p[1] >> 4); UINT vol = p[1] & 0x0F; if (p[0] < 0xFE) { m->note = note + 37; m->instr = instr + 1; } if (p[0] <= 0xFE) { m->volcmd = VOLCMD_VOLUME; m->vol = (vol << 2) + 2; } if (p[2] != 0xFF) { UINT command = p[2] >> 4; UINT param = p[2] & 0x0F; switch(command) { case 0x00: command = CMD_PORTAMENTOUP; break; case 0x01: command = CMD_PORTAMENTODOWN; break; case 0x02: command = CMD_TONEPORTAMENTO; break; case 0x03: command = CMD_MODCMDEX; param |= 0x50; break; case 0x04: command = CMD_VIBRATO; param |= 0x40; break; case 0x05: if (param) command = CMD_SPEED; else command = 0; break; case 0x06: if (param == 0) { command = CMD_PANNINGSLIDE; param = 0xFE; } else if (param == 1) { command = CMD_PANNINGSLIDE; param = 0xEF; } else command = 0; break; default: command = 0; } if (command) { if (command == CMD_SPEED) mspeed = NULL; m->command = command; m->param = param; } } } if ((!row) && (mspeed)) { for (UINT i=0; i<8; i++) if (!mspeed[i].command) { mspeed[i].command = CMD_SPEED; mspeed[i].param = pfh->tempolist[npat]; break; } } } dwMemPos += 0x600; } // Reading Samples for (UINT n=1; n<=m_nSamples; n++) { UINT len = Ins[n].nLength; if (dwMemPos >= dwMemLength) break; if (len > 4) ReadSample(&Ins[n], RS_PCM8U, (LPSTR)(lpStream+dwMemPos), dwMemLength - dwMemPos); dwMemPos += len; } return TRUE; } /* MikMod Sound System By Jake Stine of Divine Entertainment (1996-2000) Support: If you find problems with this code, send mail to: air@divent.org Distribution / Code rights: Use this source code in any fashion you see fit. Giving me credit where credit is due is optional, depending on your own levels of integrity and honesty. ----------------------------------------- Module: LOAD_ABC ABC module loader. by Peter Grootswagers (2006) <email:pgrootswagers@planet.nl> Portability: All systems - all compilers (hopefully) */ #include <limits.h> #include <stdlib.h> #include <time.h> #include <string.h> #ifdef HAVE_STRINGS_H #include <strings.h> #endif #include <math.h> #include <ctype.h> #ifndef _WIN32 #include <unistd.h> /* sleep() */ #endif //#include "stdafx.h" //#include "sndfile.h" //#include "load_pat.h" #if defined(_MSC_VER) && (_MSC_VER >= 1300) #define putenv _putenv #define strdup _strdup #endif #define MAXABCINCLUDES 8 #define MAXCHORDNAMES 80 #define ABC_ENV_DUMPTRACKS "MMABC_DUMPTRACKS" #define ABC_ENV_NORANDOMPICK "MMABC_NO_RANDOM_PICK" // gchords use tracks with vpos 1 thru 7 // drums use track with vpos 8 // voice chords use vpos 0 and vpos from 11 up #define GCHORDBPOS 1 #define GCHORDFPOS 2 #define GCHORDCPOS 3 #define DRUMPOS 8 #define DRONEPOS1 9 #define DRONEPOS2 10 // in the patterns a whole note at unmodified tempo is 16 rows #define ROWSPERNOTE 16 // a 1/64-th note played in triool equals a 1/96-th note, to be able // to play them and also to play the 1/64-th we need a resolution of 192 // because 2/192 = 1/96 and 3/192 = 1/64 #define RESOLUTION 192 /**********************************************************************/ #pragma pack(1) typedef enum { note, octave, smpno, volume, effect, effoper } ABCEVENT_X_NOTE; typedef enum { none, trill, bow, accent } ABCEVENT_X_EFFECT; typedef enum { cmdflag, command, chordnum, chordnote, chordbase, jumptype } ABCEVENT_X_CMD; typedef enum { cmdsegno = '$', cmdcapo = 'B', cmdchord = 'C', cmdfine = 'F', cmdhide = 'H', cmdjump = 'J', cmdloop = 'L', cmdcoda = 'O', cmdpartbrk = 'P', cmdsync = 'S', cmdtempo = 'T', cmdvariant = 'V', cmdtocoda = 'X' } ABCEVENT_CMD; typedef enum { jumpnormal, jumpfade, jumpdacapo, jumpdcfade, jumpdasegno, jumpdsfade, jumpfine, jumptocoda, jumpvariant, jumpnot } ABCEVENT_JUMPTYPE; typedef struct _ABCEVENT { struct _ABCEVENT *next; uint32_t tracktick; union { uint8_t par[6]; struct { uint8_t flg; uint8_t cmd; uint32_t lpar; // for variant selections, bit pattern }; }; uint8_t part; uint8_t tiednote; } ABCEVENT; typedef struct _ABCTRACK { struct _ABCTRACK *next; ABCEVENT *head; ABCEVENT *tail; ABCEVENT *capostart; ABCEVENT *tienote; int transpose; int octave_shift; uint32_t slidevoltime; // for crescendo and diminuendo int slidevol; // -2:fade away, -1:diminuendo, 0:none, +1:crescendo uint8_t vno; // 0 is track is free for use, from previous song in multi-songbook uint8_t vpos; // 0 is main voice, other is subtrack for gchords, gchords or drumnotes uint8_t tiedvpos; uint8_t mute; uint8_t chan; // 10 is percussion channel, any other is melodic channel uint8_t volume; uint8_t instr; // current instrument for this track uint8_t legato; char v[22]; // first twenty characters are significant } ABCTRACK; typedef struct _ABCMACRO { struct _ABCMACRO *next; char *name; char *subst; char *n; } ABCMACRO; typedef struct _ABCHANDLE { ABCMACRO *macro; ABCMACRO *umacro; ABCTRACK *track; long int pickrandom; unsigned int len; int speed; char *line; char *beatstring; uint8_t beat[4]; // a:first note, b:strong notes, c:weak notes, n:strong note every n char gchord[80]; // last setting for gchord char drum[80]; // last setting for drum char drumins[80]; // last setting for drum char drumvol[80]; // last setting for drum uint32_t barticks; // parse variables, declared here to avoid parameter pollution int abcchordvol, abcchordprog, abcbassvol, abcbassprog; int ktrans; int drumon, gchordon, droneon; int dronegm, dronepitch[2], dronevol[2]; ABCTRACK *tp, *tpc, *tpr; uint32_t tracktime; } ABCHANDLE; #pragma pack() /**********************************************************************/ static int global_voiceno, global_octave_shift, global_tempo_factor, global_tempo_divider; static char global_part; static uint32_t global_songstart; /* Named guitar chords */ static char chordname[MAXCHORDNAMES][8]; static int chordnotes[MAXCHORDNAMES][6]; static int chordlen[MAXCHORDNAMES]; static int chordsnamed = 0; static const char *sig[] = { " C D EF G A Bc d ef g a b", // 7 sharps C# " C D EF G AB c d ef g ab ", // 6 sharps F# " C DE F G AB c de f g ab ", // 5 sharps B " C DE F GA B c de f ga b ", // 4 sharps E " CD E F GA B cd e f ga b ", // 3 sharps A " CD E FG A B cd e fg a b ", // 2 sharps D " C D E FG A Bc d e fg a b", // 1 sharps G " C D EF G A Bc d ef g a b", // 0 sharps C " C D EF G AB c d ef g ab ", // 1 flats F " C DE F G AB c de f g ab ", // 2 flats Bb " C DE F GA B c de f ga b ", // 3 flats Eb " CD E F GA B cd e f ga b ", // 4 flats Ab " CD E FG A B cd e fg a b ", // 5 flats Db "C D E FG A Bc d e fg a b ", // 6 flats Gb "C D EF G A Bc d ef g a b ", // 7 flats Cb // 0123456789012345678901234 }; static const char *keySigs[] = { /* 0....:....1....:....2....:....3....:....4....:....5. */ "7 sharps: C# A#m G#Mix D#Dor E#Phr F#Lyd B#Loc ", "6 sharps: F# D#m C#Mix G#Dor A#Phr BLyd E#Loc ", "5 sharps: B G#m F#Mix C#Dor D#Phr ELyd A#Loc ", "4 sharps: E C#m BMix F#Dor G#Phr ALyd D#Loc ", "3 sharps: A F#m EMix BDor C#Phr DLyd G#Loc ", "2 sharps: D Bm AMix EDor F#Phr GLyd C#Loc ", "1 sharp : G Em DMix ADor BPhr CLyd F#Loc ", "0 sharps: C Am GMix DDor EPhr FLyd BLoc ", "1 flat : F Dm CMix GDor APhr BbLyd ELoc ", "2 flats : Bb Gm FMix CDor DPhr EbLyd ALoc ", "3 flats : Eb Cm BbMix FDor GPhr AbLyd DLoc ", "4 flats : Ab Fm EbMix BbDor CPhr DbLyd GLoc ", "5 flats : Db Bbm AbMix EbDor FPhr GbLyd CLoc ", "6 flats : Gb Ebm DbMix AbDor BbPhr CbLyd FLoc ", "7 flats : Cb Abm GbMix DbDor EbPhr FbLyd BbLoc ", 0 }; // local prototypes static int abc_getnumber(const char *p, int *number); static ABCTRACK *abc_locate_track(ABCHANDLE *h, const char *voice, int pos); static void abc_add_event(ABCHANDLE *h, ABCTRACK *tp, ABCEVENT *e); static void abc_add_setloop(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime); static void abc_add_setjumploop(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime, ABCEVENT_JUMPTYPE j); static uint32_t abc_pattracktime(ABCHANDLE *h, uint32_t tracktime); static int abc_patno(ABCHANDLE *h, uint32_t tracktime); static int abc_isvalidchar(char c) { return(isalpha(c) || isdigit(c) || isspace(c) || c == '%' || c == ':'); } #if 0 static const char *abc_skipspace(const char *p) { while (*p && isspace(*p)) p++; return p; } #endif static void abc_extractkeyvalue(char *key, size_t key_max, char *value, size_t value_max, const char *src) { while (*src && isspace(*src)) src++; size_t key_size; for (key_size = 0; key_size < key_max - 1 && *src;) { if (*src == '=') { src++; break; } key[key_size++] = *src++; } while (key_size > 0 && isspace(key[key_size - 1])) key_size--; key[key_size] = '\0'; while (*src && isspace(*src)) src++; size_t value_size; for (value_size = 0; value_size < value_max - 1 && *src;) value[value_size++] = *src++; while (value_size > 0 && isspace(value[value_size - 1])) value_size--; value[value_size] = '\0'; key[key_max-1] = '\0'; value[value_max-1] = '\0'; } static void abc_message(const char *s1, const char *s2) { char txt[256]; if( strlen(s1) + strlen(s2) > 255 ) return; sprintf(txt, s1, s2); fprintf(stderr, "load_abc > %s\n", txt); } static uint32_t modticks(uint32_t abcticks) { return abcticks / RESOLUTION; } static uint32_t abcticks(uint32_t modticks) { return modticks * RESOLUTION; } static uint32_t notelen_notediv_to_ticks(int speed, int len, int div) { uint32_t u; if (div == 0) return 1; u = (ROWSPERNOTE * RESOLUTION * speed * len * global_tempo_factor) / (div * global_tempo_divider); return u; } static void abc_dumptracks(ABCHANDLE *h, const char *p) { ABCTRACK *t; ABCEVENT *e; int n,pat,row,tck; char nn[3]; if( !h ) return; for( t=h->track; t; t=t->next ) { printf("track %d.%d chan=%d %s\n", (int)(t->vno), (int)(t->vpos), (int)(t->chan), (char *)(t->v)); if( strcmp(p,"nonotes") ) n = 1; else n = 0; for( e=t->head; e; e=e->next ) { tck = modticks(e->tracktick); row = tck / h->speed; pat = row / 64; tck = tck % h->speed; row = row % 64; nn[0] = ( e->tracktick % abcticks(h->speed * 64) ) ? ' ': '-'; if( e->flg == 1 ) { printf(" %6d.%02d.%d%c%c %d.%d %s ", pat, row, tck, nn[0], (int)(e->part), (int)(t->vno), (int)(t->vpos), (char *)(t->v)); if( e->cmd == cmdchord ) { nn[0] = "CCCDDEFFGGAABccddeffggaabb"[e->par[chordnote]]; nn[1] = "b # # # # # # # # # # #"[e->par[chordnote]]; nn[2] = '\0'; if( isspace(nn[1]) ) nn[1] = '\0'; printf("CMD %c: gchord %s%s", (char)(e->cmd), nn, chordname[e->par[chordnum]]); if( e->par[chordbase] != e->par[chordnote] ) { nn[0] = "CCCDDEFFGGAABccddeffggaabb"[e->par[chordbase]]; nn[1] = "b # # # # # # # # # # #"[e->par[chordbase]]; nn[2] = '\0'; printf("/%s", nn); } printf("\n"); } else printf("CMD %c @%p 0x%08lX\n", (char)(e->cmd), e, (unsigned long)(e->lpar)); if( strcmp(p,"nonotes") ) n = 1; else n = 0; } else if( n ) { printf(" %6d.%02d.%d%c%c %d.%d %s ", pat, row, tck, nn[0], e->part, t->vno, t->vpos, t->v); if( e->par[note] ) { nn[0] = "CCCDDEFFGGAABccddeffggaabb"[e->par[note]-23]; nn[1] = "b # # # # # # # # # # #"[e->par[note]-23]; nn[2] = '\0'; } else strcpy(nn,"--"); printf("NOTE %s octave %d inst %s vol %03d\n", nn, e->par[octave], pat_gm_name(pat_smptogm(e->par[smpno])),e->par[volume]); if( strcmp(p,"all") ) n = 0; } } } } // ===================================================================================== static ABCEVENT *abc_new_event(ABCHANDLE *h, uint32_t abctick, const char data[]) // ===================================================================================== { ABCEVENT *retval; int i; retval = (ABCEVENT *)_mm_calloc(h->trackhandle, 1,sizeof(ABCEVENT)); retval->next = NULL; retval->tracktick = abctick; for( i=0; i<6; i++ ) retval->par[i] = data[i]; retval->part = global_part; retval->tiednote = 0; return retval; } // ============================================================================= static ABCEVENT *abc_copy_event(ABCHANDLE *h, ABCEVENT *se) // ============================================================================= { ABCEVENT *e; e = (ABCEVENT *)_mm_calloc(h->trackhandle, 1,sizeof(ABCEVENT)); e->next = NULL; e->tracktick = se->tracktick; e->flg = se->flg; e->cmd = se->cmd; e->lpar = se->lpar; e->part = se->part; return e; } // ============================================================================= static void abc_new_macro(ABCHANDLE *h, const char *m) // ============================================================================= { ABCMACRO *retval; char key[256], value[256]; abc_extractkeyvalue(key, sizeof(key), value, sizeof(value), m); retval = (ABCMACRO *)_mm_calloc(h->macrohandle, 1,sizeof(ABCMACRO)); retval->name = DupStr(h->macrohandle, key, strlen(key)); retval->n = strrchr(retval->name, 'n'); // for transposing macro's retval->subst = DupStr(h->macrohandle, value, strlen(value)); retval->next = h->macro; h->macro = retval; } // ============================================================================= static void abc_new_umacro(ABCHANDLE *h, const char *m) // ============================================================================= { ABCMACRO *retval, *mp; char key[256], value[256]; abc_extractkeyvalue(key, sizeof(key), value, sizeof(value), m); if( strlen(key) > 1 || strchr("~HIJKLMNOPQRSTUVWXY",toupper(key[0])) == 0 ) return; while( char *q = strchr(key, '!') ) *q = '+'; // translate oldstyle to newstyle if( !strcmp(key,"+nil+") ) { // delete a macro mp = NULL; for( retval=h->umacro; retval; retval = retval->next ) { if( retval->name[0] == key[0] ) { // delete this one if( mp ) mp->next = retval->next; else h->umacro = retval->next; _mm_free(h->macrohandle, retval); return; } mp = retval; } return; } retval = (ABCMACRO *)_mm_calloc(h->macrohandle, 1,sizeof(ABCMACRO)); retval->name = DupStr(h->macrohandle, key, 1); retval->subst = DupStr(h->macrohandle, value, strlen(value)); retval->n = 0; retval->next = h->umacro; // by placing it up front we mask out the old macro until we +nil+ it h->umacro = retval; } // ============================================================================= static ABCTRACK *abc_new_track(ABCHANDLE *h, const char *voice, int pos) // ============================================================================= { ABCTRACK *retval; if( !pos ) global_voiceno++; retval = (ABCTRACK *)_mm_calloc(h->trackhandle, 1,sizeof(ABCTRACK)); retval->next = NULL; retval->vno = global_voiceno; retval->vpos = pos; retval->tiedvpos = pos; retval->instr = 1; strncpy(retval->v, voice, 20); retval->v[20] = '\0'; retval->head = NULL; retval->tail = NULL; retval->capostart = NULL; retval->tienote = NULL; retval->mute = 0; retval->chan = 0; retval->transpose = 0; retval->volume = h->track? h->track->volume: 120; retval->slidevoltime = 0; retval->slidevol = 0; retval->legato = 0; return retval; } static int abc_numtracks(ABCHANDLE *h) { int n; ABCTRACK *t; n=0; for( t = h->track; t; t=t->next ) n++; return n; } static int abc_interval(const char *s, const char *d) { const char *p; int i,j,k; int n,oct,m[2]; for( j=0; j<2; j++ ) { if( j ) p = d; else p = s; switch(p[0]) { case '^': n = p[1]; i = 2; break; case '_': n = p[1]; i = 2; break; case '=': n = p[1]; i = 2; break; default: n = p[0]; i = 1; break; } for( k=0; k<25; k++ ) if( n == sig[7][k] ) break; oct = 4; // ABC note pitch C is C4 and pitch c is C5 if( k > 12 ) { oct++; k -= 12; } while( p[i] == ',' || p[i] == '\'' ) { if( p[i] == ',' ) oct--; else oct++; i++; } m[j] = k + 12 * oct; } return m[0] - m[1]; } static int abc_transpose(const char *v) { int i,j,t; const char *m = "B", *mv = ""; t = 0; global_octave_shift = 99; for( ; *v && *v != ']'; v++ ) { if( !strncasecmp(v,"t=",2) ) { v+=2; if( *v=='-' ) { j = -1; v++; } else j = 1; v+=abc_getnumber(v,&i); t += i * j; global_octave_shift = 0; } if( !strncasecmp(v,"octave=",7) ) { v+=7; if( *v=='-' ) { j = -1; v++; } else j = 1; v+=abc_getnumber(v,&i); t += i * j * 12; global_octave_shift = 0; } if( !strncasecmp(v,"transpose=",10) ) { v+=10; if( *v=='-' ) { j = -1; v++; } else j = 1; v+=abc_getnumber(v,&i); t += i * j; global_octave_shift = 0; } if( !strncasecmp(v,"octave=",7) ) { // used in kv304*.abc v+=7; if( *v=='-' ) { j = -1; v++; } else j = 1; v+=abc_getnumber(v,&i); t += i * j * 12; global_octave_shift = 0; } if( !strncasecmp(v,"m=",2) ) { v += 2; mv = v; // get the pitch for the middle staff line while( *v && *v != ' ' && *v != ']' ) v++; global_octave_shift = 0; } if( !strncasecmp(v,"middle=",7) ) { v += 7; mv = v; // get the pitch for the middle staff line while( *v && *v != ' ' && *v != ']' ) v++; global_octave_shift = 0; } if( !strncasecmp(v,"clef=",5) ) v += 5; j = 1; if( !strncasecmp(v,"treble",6) ) { j = 0; v += 6; switch( *v ) { case '1': v++; m = "d"; break; case '2': v++; default: m = "B"; break; case '3': v++; m = "G"; break; case '4': v++; m = "E"; break; case '5': v++; m = "C"; break; } global_octave_shift = 0; } if( j && !strncasecmp(v,"bass",4) ) { j = 0; v += 4; switch( *v ) { case '1': v++; m = "C"; break; case '2': v++; m = "A,"; break; case '3': v++; m = "F,"; break; case '4': v++; default: m = "D,"; break; case '5': v++; m = "B,,"; break; } if( global_octave_shift == 99 ) global_octave_shift = -2; } if( j && !strncasecmp(v,"tenor",5) ) { j = 0; v += 5; switch( *v ) { case '1': v++; m = "G"; break; case '2': v++; m = "E"; break; case '3': v++; m = "C"; break; case '4': v++; default: m = "A,"; break; case '5': v++; m = "F,"; break; } if( global_octave_shift == 99 ) global_octave_shift = 1; } if( j && !strncasecmp(v,"alto",4) ) { j = 0; v += 4; switch( *v ) { case '1': v++; m = "G"; break; case '2': v++; m = "E"; break; case '3': v++; default: m = "C"; break; case '4': v++; m = "A,"; break; case '5': v++; m = "F,"; break; } if( global_octave_shift == 99 ) global_octave_shift = 1; } if( j && strchr("+-",*v) && *v && v[1]=='8' ) { switch(*v) { case '+': t += 12; break; case '-': t -= 12; break; } v += 2; if( !strncasecmp(v,"va",2) ) v += 2; global_octave_shift = 0; j = 0; } if( j ) { while( *v && *v != ' ' && *v != ']' ) v++; } // Already reached the end of the string.. if (!*v) break; } if( strlen(mv) > 0 ) // someone set the middle note t += abc_interval(mv, m); if( global_octave_shift == 99 ) global_octave_shift = 0; return t; } // ============================================================================= static ABCTRACK *abc_locate_track(ABCHANDLE *h, const char *voice, int pos) // ============================================================================= { ABCTRACK *tr, *prev, *trunused; char vc[21]; int i, trans=0, voiceno=0, instrno = 1, channo = 0; for( ; *voice == ' '; voice++ ) ; // skip leading spaces for( i=0; i+1 < (int) sizeof(vc) && *voice && *voice != ']' && *voice != '%' && !isspace(*voice); voice++ ) // can work with inline voice instructions vc[i++] = *voice; vc[i] = '\0'; prev = NULL; trunused = NULL; if( !pos ) trans = abc_transpose(voice); for( tr=h->track; tr; tr=tr->next ) { if( tr->vno == 0 ) { if( !trunused ) trunused = tr; // must reuse mastertrack (h->track) as first } else { if( !strncasecmp(tr->v, vc, 20) ) { if( tr->vpos == pos ) return tr; trans = tr->transpose; global_octave_shift = tr->octave_shift; voiceno = tr->vno; instrno = tr->instr; channo = tr->chan; } } prev = tr; } if( trunused ) { tr = trunused; if( pos ) { tr->vno = voiceno; tr->instr = instrno; tr->chan = channo; } else { global_voiceno++; tr->vno = global_voiceno; tr->instr = 1; tr->chan = 0; } tr->vpos = pos; tr->tiedvpos = pos; strncpy(tr->v, vc, 20); tr->v[20] = '\0'; tr->mute = 0; tr->transpose = trans; tr->octave_shift = global_octave_shift; tr->volume = h->track->volume; tr->tienote = NULL; tr->legato = 0; return tr; } tr = abc_new_track(h, vc, pos); if( pos ) { tr->vno = voiceno; tr->instr = instrno; tr->chan = channo; } tr->transpose = trans; tr->octave_shift = global_octave_shift; if( prev ) prev->next = tr; else h->track = tr; return tr; } // ============================================================================= static ABCTRACK *abc_check_track(ABCHANDLE *h, ABCTRACK *tp) // ============================================================================= { if( !tp ) { tp = abc_locate_track(h, "", 0); // must work for voiceless abc too... tp->transpose = h->ktrans; } return tp; } static void abc_add_capo(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime) { ABCEVENT *e; char d[6]; d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdcapo; e = abc_new_event(h, tracktime, d); tp->capostart = e; abc_add_event(h, tp, e); // do this last (recursion danger) } static void abc_add_segno(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime) { ABCEVENT *e; char d[6]; d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdsegno; e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } static void abc_add_coda(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime) { ABCEVENT *e; char d[6]; d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdcoda; e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } static void abc_add_fine(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime) { ABCEVENT *e; char d[6]; d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdfine; e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } static void abc_add_tocoda(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime) { ABCEVENT *e; char d[6]; d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdtocoda; e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } // first track is dirigent, remove all control events from other tracks // to keep the information where the events should be relative to note events // in the same tick the ticks are octated and four added for note events // the control events that come before the note events get a decremented tick, // those that come after get an incremented tick, for example: // ctrl ctrl note ctrl ctrl note // original: t t t t t+1 t+1 // recoded: 8t+1 8t+2 8t+4 8t+5 8t+11 8t+12 static void abc_remove_unnecessary_events(ABCHANDLE *h) { ABCTRACK *tp,*ptp; ABCEVENT *ep, *el; uint32_t ct, et; int d; ptp = NULL; for( tp=h->track; tp; tp=tp->next ) { el = NULL; ep = tp->head; ct = 0; d = -3; while( ep ) { et = ep->tracktick; ep->tracktick <<= 3; ep->tracktick += 4; if( ep->flg == 1 ) { ep->tracktick += d; d++; if( d == 0 ) d = -1; if( d == 4 ) d = 3; if( tp!=h->track ) ep->cmd = cmdhide; switch( ep->cmd ) { case cmdhide: case cmdsync: if( el ) { el->next = ep->next; if( !el->next ) tp->tail = el; _mm_free(h->trackhandle,ep); ep = el->next; } else { tp->head = ep->next; if( !tp->head ) tp->tail = NULL; _mm_free(h->trackhandle,ep); ep = tp->head; } break; default: el = ep; ep = ep->next; break; } } else { el = ep; ep = ep->next; d = 1; } if( et > ct ) d = -3; ct = et; } if( !tp->head ) { // no need to keep empty tracks... if( ptp ) { ptp->next = tp->next; _mm_free(h->trackhandle,tp); tp = ptp; } else if (tp->next) { h->track = tp->next; _mm_free(h->trackhandle,tp); tp = h->track; } else { break; } } ptp = tp; // remember previous track } } // set ticks back, and handle partbreaks static void abc_retick_events(ABCHANDLE *h) { ABCTRACK *tp; ABCEVENT *ep; uint32_t et, tt=0, at = abcticks(64 * h->speed); for( tp=h->track; tp; tp=tp->next ) { // make ticks relative tt = 0; for( ep=tp->head; ep; ep=ep->next ) { et = ep->tracktick >> 3; ep->tracktick = et - tt; tt = et; } // make ticks absolute again, skipping no-op partbreaks tt = 0; for( ep=tp->head; ep; ep=ep->next ) { ep->tracktick += tt; tt = ep->tracktick; if( ep->flg == 1 && ep->cmd == cmdpartbrk ) { if( tt % at ) { tt += at; tt /= at; tt *= at; ep->tracktick -= abcticks(h->speed); // break plays current row } else ep->cmd = cmdhide; } } } } // make sure every track has the control events it needs, this way it is not // necessary to have redundant +segno+ +D.C.+ etc in the voices, the first voice // is the master, it is pointed to by the member 'track' in the ABCHANDLE static void abc_synchronise_tracks(ABCHANDLE *h) { ABCTRACK *tp; uint32_t tm; // tracktime in master ABCEVENT *em, *es, *et, *ec; // events in master, slave, slave temporary and copied event if( !h || !h->track ) return; abc_remove_unnecessary_events(h); for( tp = h->track->next; tp; tp = tp->next ) { for( em=h->track->head; em; em=em->next ) { if( em->flg == 1 ) { // some kind of control event switch( em->cmd ) { case cmdchord: case cmdhide: case cmdtempo: case cmdsync: break; default: // check to see if copy is necessary ec = abc_copy_event(h, em); tm = em->tracktick; es = tp->head; // allways search from the begin... for( et=es; et && et->tracktick <= tm; et=et->next ) es = et; if( es == NULL || es->tracktick > tm ) { // special case: head of track ec->next = es; tp->head = ec; } else { ec->next = es->next; es->next = ec; } break; } } } } abc_retick_events(h); } static void abc_add_event(ABCHANDLE *h, ABCTRACK *tp, ABCEVENT *e) { if( !tp->capostart ) abc_add_capo(h, tp, global_songstart); if( tp->tail ) { tp->tail->next = e; tp->tail = e; } else { tp->head = e; tp->tail = e; } } static void abc_add_partbreak(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime) { ABCEVENT *e; char d[6]; d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdpartbrk; e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } static void abc_add_tempo_event(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime, int tempo) { ABCEVENT *e; char d[6]; d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdtempo; e = abc_new_event(h, tracktime, d); e->lpar = tempo; abc_add_event(h, tp, e); } static void abc_add_noteoff(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime) { ABCEVENT *e; char d[6]; d[note] = 0; d[octave] = 0; d[smpno] = pat_gmtosmp(tp->instr); d[volume] = 0; d[effect] = 0; d[effoper] = 0; e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } static int abc_dynamic_volume(ABCTRACK *tp, uint32_t tracktime, int vol) { uint32_t slidetime; int voldelta; if( tp->mute ) return 0; if( tp->slidevol == 0 ) return vol; if( tracktime < tp->slidevoltime ) return vol; slidetime = modticks(tracktime - tp->slidevoltime); voldelta = (slidetime * 15) / 64 / 6; // slide from say mf up to f in one pattern's time if( tp->slidevol > -2 && voldelta > 15 ) voldelta = 15; // never to much dynamics if( tp->slidevol > 0 ) vol += voldelta; else vol -= voldelta; if( vol < 2 ) vol = 2; // xmms divides this by 2.... if( vol > 127 ) vol = 127; return vol; } static void abc_track_untie_short_chordnotes(ABCHANDLE *h) { ABCTRACK *tp; int vn; tp = h->tp; vn = tp->vno; for( tp = h->track; tp; tp = tp->next ) if( tp != h->tp && tp->vno == vn && tp->tienote ) { abc_message("short notes in chord can not be tied:\n%s", h->line); tp->tienote = 0; } } static void abc_track_clear_tiednote(ABCHANDLE *h) { ABCTRACK *tp; int vn; tp = h->tp; vn = tp->vno; for( tp = h->track; tp; tp = tp->next ) if( tp->vno == vn ) tp->tienote = 0; } static void abc_track_clear_tiedvpos(ABCHANDLE *h) { ABCTRACK *tp; int vn; tp = h->tp; vn = tp->vno; for( tp = h->track; tp; tp = tp->next ) if( tp->vno == vn ) tp->tiedvpos = tp->vpos; } static ABCTRACK *abc_track_with_note_tied(ABCHANDLE *h, uint32_t tracktime, int n, int oct) { int vn, vp; ABCTRACK *tp; ABCEVENT *e; tp = h->tp; vn = tp->vno; vp = tp->vpos; for( tp = h->track; tp; tp = tp->next ) { if( tp->vno == vn ) { e = tp->tienote; if( e && e->tracktick < tracktime && e->par[octave] == oct && abs(e->par[note] - n) < 3 ) { if( tp->vpos != vp ) tp->tiedvpos = vp; h->tp = tp; return tp; } } } tp = h->tp; vp = tp->tiedvpos; if( tp->vpos != vp ) { // chord note track already returned in previous call for( tp = h->track; tp; tp = tp->next ) { if( tp->vno == vn && tp->vpos == vp ) { tp->tiedvpos = h->tp->vpos; h->tp = tp; return tp; } } } return h->tp; } static int abc_add_noteon(ABCHANDLE *h, int ch, const char *p, uint32_t tracktime, char *barkey, int vol, ABCEVENT_X_EFFECT fx, int fxop) { ABCEVENT *e; ABCTRACK *tp; int i,j,k; int n,oct; char d[6]; tp = h->tp; switch(ch) { case '^': if( p[0] == '^' ) { n = p[1]; i = 2; ch = 'x'; } else { n = p[0]; i = 1; } break; case '_': if( p[0] == '_' ) { n = p[1]; i = 2; ch = 'b'; } else { n = p[0]; i = 1; } break; case '=': n = p[0]; i = 1; break; default: n = ch; i = 0; break; } // nothing good inside - early exit if ( n == 0 ) return 0; for( k=0; k<51; k++ ) { if( n == barkey[k] ) break; } j = k; if( k > 24 ) k -= 25; // had something like A# over Bb key F signature.... if( i ) { // propagate accidentals if necessary // DON'T do redundant accidentals they're always relative to C-scale for( k=0; k<25; k++ ) { if( n == sig[7][k] ) break; } if( k < 25 ) { // only do real notes... switch(ch) { case 'x': k++; case '^': k++; break; case 'b': k--; case '_': k--; break; case '=': break; } if( j < 25 ) // was it not A# over Bb? barkey[j] = ' '; if ( k >= 0 ) barkey[k] = n; } } oct = 3; // ABC note pitch C is C4 and pitch c is C5 if( k < 25 ) { k += tp->transpose; while( k > 12 ) { oct++; k -= 12; } while( k < 0 ) { oct--; k += 12; } d[note] = 23 + k; // C0 is midi notenumber 24 } else d[note] = 0; // someone has doen ^X3 or something like it... while( p[i] && strchr(",'",p[i]) ) { if( p[i]==',' ) oct--; else oct++; i++; tp->octave_shift = 0; // forget we ever had to look at it } if( tp->octave_shift ) tp->transpose += 12 * tp->octave_shift; oct += tp->octave_shift; tp->octave_shift = 0; // after the first note we never have to look at it again if( oct < 0 ) oct = 0; if( oct > 9 ) oct = 9; d[octave] = oct; d[smpno] = pat_gmtosmp(tp->instr); d[volume] = abc_dynamic_volume(tp, tracktime, vol); d[effect] = fx; // effect d[effoper] = fxop; tp = abc_track_with_note_tied(h, tracktime, d[note], oct); if( tp->tienote ) { if( tp->tienote->par[note] != d[note] ) { if( abs(tp->tienote->par[note] - d[note]) < 3 ) { // may be tied over bar symbol, recover local accidental to barkey k = tp->tienote->par[note] - 23 - tp->transpose; while( k < 0 ) k += 12; while( k > 12 ) k -= 12; if( (isupper(n) && barkey[k+12] == ' ') || (islower(n) && barkey[k] == ' ') ) { barkey[j] = ' '; if( isupper(n) ) barkey[k] = n; else barkey[k+12] = n; d[note] = tp->tienote->par[note]; d[octave] = tp->tienote->par[octave]; } } } } if( tp->tienote && tp->tienote->par[note] == d[note] && tp->tienote->par[octave] == d[octave] ) { for( e = tp->tienote; e; e = e->next ) { if( e->par[note] == 0 && e->par[octave] == 0 ) { // undo noteoff e->flg = 1; e->cmd = cmdhide; e->lpar = 0; break; } } tp->tienote->tiednote = 1; // mark him for the pattern writers for( j=i; isdigit(p[j]) || p[j]=='/'; j++ ) ; // look ahead to see if this one is tied too if( p[j] != '-' ) // is this note tied too? tp->tienote = NULL; // if not the tie ends here... return i; } tp->tienote = NULL; if( tp->tail && tp->tail->tracktick == tracktime && tp->tail->par[note] == 0 && tp->tail->par[octave] == 0 ) { for( j=0; j<6; j++ ) tp->tail->par[j] = d[j]; } else { e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } if( i > 0 && p[i-1] == '"' ) { i--; // someone coded a weird note like ^"E" abc_message("strange note encountered scanning %s", h->line); } return i; } static void abc_add_dronenote(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime, int nnum, int vol) { ABCEVENT *e; int j,k; int oct; char d[6]; oct = -1; // ABC note pitch C is C4 and pitch c is C5 k = nnum + 1; while( k > 12 ) { oct++; k -= 12; } while( k < 0 ) { oct--; k += 12; } if( oct < 0 ) oct = 0; d[note] = 23 + k; // C0 is midi notenumber 24 d[octave] = oct; d[smpno] = pat_gmtosmp(tp->instr); d[volume] = abc_dynamic_volume(tp, tracktime, vol); d[effect] = 0; // effect d[effoper] = 0; if( tp->tail && tp->tail->tracktick == tracktime && tp->tail->par[note] == 0 && tp->tail->par[octave] == 0 ) { for( j=0; j<6; j++ ) tp->tail->par[j] = d[j]; } else { e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } } static void abc_add_chordnote(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime, int nnum, int vol) { abc_add_dronenote(h, tp, tracktime, nnum + 23, tp->mute? 0: vol); } static void abc_add_drumnote(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime, int nnum, int vol) { abc_add_dronenote(h, tp, tracktime, nnum, tp->mute? 0: vol); } static void abc_add_variant_start(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime, int n) { ABCEVENT *e; char d[6]; d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdvariant; e = abc_new_event(h, tracktime, d); e->lpar = 1<<n; abc_add_event(h, tp, e); } static void abc_add_variant_choise(ABCTRACK *tp, int n) { tp->tail->lpar |= 1<<n; } static void abc_add_chord(const char *p, ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime) { ABCEVENT *e; char d[6]; char s[8]; int i; const char *n = " C D EF G A Bc d ef g a b"; d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdchord; if( p[0] == '(' ) p++; // chord between parens like: (C) for( i=0; n[i]; i++ ) if( *p == n[i] ) { d[chordnote] = i; break; } if (*p) p++; switch(*p) { case 'b': d[chordnote]--; p++; break; case '#': d[chordnote]++; p++; break; } d[chordbase] = d[chordnote]; for( i=0; i < (int)sizeof(s) - 1 && p[i] && p[i] != '"' && p[i] != '/' && p[i] != '(' && p[i] != ')' && p[i] != ' '; i++ ) s[i] = p[i]; s[i] = '\0'; p = &p[i]; if( *p=='/' ) { p++; for( i=0; n[i]; i++ ) if( *p == n[i] ) { d[chordbase] = i; break; } if (*p) p++; switch(*p) { case 'b': d[chordbase]--; p++; break; case '#': d[chordbase]++; p++; break; } } for( i=0; i<chordsnamed; i++ ) if( !strcmp(s, chordname[i]) ) { d[chordnum] = i; break; } if( i==chordsnamed ) { abc_message("Failure: unrecognized chordname %s",s); return; } e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } static void abc_add_setloop(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime) { ABCEVENT *e; char d[6]; d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdloop; e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } static void abc_fade_track(ABCTRACK *tp, ABCEVENT *e) { while(e) { if( e->flg != 1 && e->par[note] != 0 ) e->par[volume] = abc_dynamic_volume(tp, e->tracktick, e->par[volume]); e = e->next; } } static void abc_add_setjumploop(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime, ABCEVENT_JUMPTYPE j) { ABCEVENT *e; char d[8]; d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdjump; d[jumptype] = j; e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } static void abc_add_sync(ABCHANDLE *h, ABCTRACK *tp, uint32_t tracktime) { ABCEVENT *e; char d[6]; e = tp->tail; if( e && e->tracktick == tracktime ) return; if( e && e->flg == 1 && e->cmd == cmdsync ) { e->tracktick = tracktime; return; } d[0] = d[1] = d[2] = d[3] = d[4] = d[5] = 0; d[cmdflag] = 1; d[command] = cmdsync; e = abc_new_event(h, tracktime, d); abc_add_event(h, tp, e); } static void abc_add_gchord_syncs(ABCHANDLE *h, ABCTRACK *tpc, uint32_t tracktime) { ABCTRACK *tp; int i; for( i = GCHORDBPOS; i < DRUMPOS; i++ ) { tp = abc_locate_track(h, tpc->v, i); abc_add_sync(h,tp,tracktime); } } static void abc_add_drum_sync(ABCHANDLE *h, ABCTRACK *tpr, uint32_t tracktime) { ABCTRACK *tp; tp = abc_locate_track(h, tpr->v, DRUMPOS); abc_add_sync(h,tp,tracktime); } static int abc_getnumber(const char *p, int *number) { int i,h; i = 0; h = 0; while( isdigit(p[i]) ) { if (i < 9) h = 10 * h + p[i] - '0'; i++; } if( i==0 ) *number = 1; else *number = h; return i; } static int abc_getexpr(const char *p, int *number) { int i, term, total; i = 0; while( isspace(p[i]) ) i++; if( p[i] == '(' ) { i += abc_getexpr(p+i+1, number); while( p[i] && (p[i] != ')') ) i++; return i; } i += abc_getnumber(p+i, &total); while( isspace(p[i]) ) i++; while( p[i] == '+' ) { i += 1 + abc_getexpr(p+i+1, &term); total += term; while( isspace(p[i]) ) i++; } *number = total; return i; } static int abc_notelen(const char *p, int *len, int *div) { int i,h,k; i = abc_getnumber(p,len); h = 1; while( p[i] == '/' ) { h *= 2; i++; } if( isdigit(p[i]) ) { h /= 2; i += abc_getnumber(p+i,&k); } else k = 1; *div = h * k; if ( *div > 4096 ) *div = 4096; if ( *div <= 0 ) *div = 1; return i; } static int abc_brokenrithm(const char *p, int *nl, int *nd, int *b, int hornpipe) { switch( *b ) { case '<': *nl *= 3; *nd *= 2; hornpipe = 0; break; case '>': *nd *= 2; hornpipe = 0; break; } *b = *p; switch( *b ) { case '>': *nl *= 3; *nd *= 2; return 1; case '<': *nd *= 2; return 1; default: *b = 0; break; } if( hornpipe ) { // still true then make 1/8 notes broken rithme if( *nl == 1 && *nd == 1 ) { *b = '>'; *nl = 3; *nd = 2; } } return 0; } // put p notes in the time q for the next r notes static int abc_tuplet(int *nl, int *nd, int p, int q, int r) { if( !r ) return 0; *nl *= q; *nd *= p; return r - 1; } // evaluate [Q:"string" n1/m1 n2/m2 n3/m3 n4/m4=bpm "string"] // minimal form [Q:"string"] // most used form [Q: 1/4=120] static int abc_extract_tempo(const char *p, int invoice) { int nl, nd, ns, in, tempo; int nl1=0, nd1, notes, state; const char *q; in = 0; nl = 0; nd = 1; ns = 120; notes = 0; state = 0; for( q=p; *q; q++ ) { if( in ) { if( *q=='"' ) in = 0; } else { if( *q == ']' ) break; switch( *q ) { case '"': in = 1; break; case '/': notes++; state = 1; nl1 = ns; break; case '=': break; default: if( isdigit(*q) ) { if( state ) { q+=abc_getnumber(q,&nd1)-1; state = 0; nl = nl * nd1 + nl1 * nd; nd = nd * nd1; } else q+=abc_getnumber(q,&ns)-1; } break; } } } if( !notes ) { nl = 1; nd = 4; } if( !nd ) tempo = 120; else tempo = ns * nl * 4 / nd; // mod tempo is really BPM where one B is equal to a quartnote if( tempo <= 0 ) tempo = 120; if( invoice ) { nl = global_tempo_factor; nd = global_tempo_divider; } global_tempo_factor = 1; global_tempo_divider = 1; while( tempo/global_tempo_divider > 255 ) global_tempo_divider++; tempo /= global_tempo_divider; while( tempo * global_tempo_factor < 256 ) global_tempo_factor++; global_tempo_factor--; tempo *= global_tempo_factor; if( tempo * 3 < 512 ) { global_tempo_factor *= 3; global_tempo_divider *= 2; tempo = (tempo * 3) / 2; } if( invoice ) { if( nl != global_tempo_factor || nd != global_tempo_divider ) { ns = (tempo * nl * global_tempo_divider) / (nd * global_tempo_factor); if( ns > 31 && ns < 256 ) { tempo = ns; global_tempo_factor = nl; global_tempo_divider = nd; } else abc_message("Failure: inconvenient tempo change in middle of voice (%s)", p); } } return tempo; } static void abc_set_parts(char **d, char *p) { int i,k,m,n; size_t j, size; char *q; if( *d ) free(*d); *d = 0; if( !p ) return; for( i=0; p[i] && p[i] != '%'; i++ ) { if( !strchr("ABCDEFGHIJKLMNOPQRSTUVWXYZ().0123456789 ",p[i]) ) { abc_message("invalid characters in part string scanning P:%s", p); return; } } // decode constructs like "((AB)2.(CD)2)3.(AB)E2" to "ABABCDCDABABCDCDABABCDCDABEE" // first compute needed storage... j=0; k=0; for( i=0; p[i] && p[i] != '%'; i++ ) { if( isupper(p[i]) ) { j++; } if( isdigit(p[i]) ) { n=abc_getnumber(p+i, &k); if( k == 0 ) k = 1; if (k > 1e5 ) k = 1e5; if( p[i-1] == ')' ) j *= k; // never mind multiple parens, just take the worst case else j += k-1; i += n-1; } } // more than 10 million part segments is excessive. size = ( j >= 1e7 )? 1e7 - 1 : j; q = (char *)_mm_calloc(h, size + 1, sizeof(char)); // enough storage for the worst case // now copy bytes from p to *d, taking parens and digits in account j = 0; for( i=0; p[i] && p[i] != '%' && j < size && i < (int)size; i++ ) { if( isdigit(p[i]) || isupper(p[i]) || p[i] == '(' || p[i] == ')' ) { if( p[i] == ')' ) { for( n=j; n > 0 && q[n-1] != '('; n-- ) ; // find open paren in q // q[n+1] to q[j] contains the substring that must be repeated if( n > 0 ) { for( k = n; k<(int)j; k++ ) q[k-1] = q[k]; // shift to the left... j--; } else { abc_message("Warning: Unbalanced right parens in P: definition %s",p); break; } n = j - n + 1; // number of repeatable characters i += abc_getnumber(p+i+1, &k); if ( k > 1e5 ) k = 1e5; while( k-- > 1 && j+n < size ) { for( m=0; m<n; m++ ) { q[j] = q[j-n]; j++; } } continue; } if( isdigit(p[i]) ) { n = abc_getnumber(p+i,&k); i += n - 1; // if nothing is ready to 'repeat', skip it. if (j==0) continue; while( k-- > 1 && j < size ) { q[j] = q[j-1]; j++; } continue; } q[j] = p[i]; j++; } } q[j] = '\0'; // remove any left over parens for( i=0; i<(int)j; i++ ) { if( q[i] == '(' ) { abc_message("Warning: Unbalanced left parens in P: definition %s",p); for( k=i; k<(int)j; k++ ) q[k] = q[k+1]; j--; } } *d = q; } static void abc_appendpart(ABCHANDLE *h, ABCTRACK *tp, uint32_t pt1, uint32_t pt2) { ABCEVENT *e, *ec; uint32_t dt; dt = tp->tail->tracktick - pt1; for( e=tp->head; e && e->tracktick <= pt2; e=e->next ) { if( e->tracktick >= pt1 ) { if( e->flg != 1 || e->cmd == cmdsync || e->cmd == cmdchord ) { if( e != tp->tail ) { // copy this event at tail ec = abc_copy_event(h,e); ec->tracktick += dt; ec->part = '*'; tp->tail->next = ec; tp->tail = ec; } } } } abc_add_sync(h, tp, pt2 + dt); // make sure there is progression... } static uint32_t abc_pattracktime(ABCHANDLE *h, uint32_t tracktime) { ABCEVENT *e; uint32_t dt,et; if(!h || !h->track || !h->track->head ) return 0; uint32_t pt=abcticks(64 * h->speed); dt = 0; for( e=h->track->head; e && e->tracktick <= tracktime; e=e->next ) { if( e->flg == 1 && e->cmd == cmdpartbrk ) { et = e->tracktick + dt; if( et % pt ) { et += pt; et /= pt; et *= pt; dt = et - e->tracktick; } } } return (tracktime + dt); } static int abc_patno(ABCHANDLE *h, uint32_t tracktime) { return modticks(abc_pattracktime(h, tracktime)) / 64 / h->speed; } static void abc_stripoff(ABCHANDLE *h, ABCTRACK *tp, uint32_t tt) { ABCEVENT *e1, *e2; e2 = NULL; for( e1 = tp->head; e1 && e1->tracktick <= tt; e1=e1->next ) e2 = e1; if( e2 ) { e1 = e2->next; tp->tail = e2; e2->next = NULL; } else { e1 = tp->tail; tp->head = NULL; tp->tail = NULL; } while( e1 ) { e2 = e1->next; _mm_free(h->trackhandle,e1); e1 = e2; } } static void abc_keeptiednotes(ABCHANDLE *h, uint32_t fromtime, uint32_t totime) { ABCTRACK *tp; ABCEVENT *e,*n,*f; if( totime <= fromtime ) return; for( tp=h->track; tp; tp=tp->next ) { if( tp->vno ) { // if track is in use... n = NULL; for( e=tp->head; e && e->tracktick < fromtime; e = e->next ) if( e->flg != 1 ) n = e; // remember it when it is a note event if( n && n->tiednote ) { // we've a candidate to tie over the break while( e && e->tracktick < totime ) e=e->next; // skip to other part if( e && e->tracktick == totime ) { // if this is on begin row of this part f = NULL; while( !f && e && e->tracktick == totime ) { if( e->flg != 1 ) f = e; e = e->next; } if( f && f->par[note] ) { // pfoeie, we've found a candidate if( abs(n->par[note] - f->par[note]) < 3 ) { // undo the note on f->flg = 1; f->cmd = cmdhide; f->lpar = 0; } } } } } } } static uint32_t abc_fade_tracks(ABCHANDLE *h, char *abcparts, uint32_t ptt[27]) { ABCTRACK *tp; ABCEVENT *e0; char *p; int vol; uint32_t pt1, pt2; uint32_t tt; tt = h->track->tail->tracktick; for( tp=h->track->next; tp; tp=tp->next ) { if( !tp->tail ) abc_add_sync(h, tp, tt); // no empty tracks please... if( tp->tail->tracktick > tt ) abc_stripoff(h, tp, tt); // should not happen.... if( tp->tail->tracktick < tt ) abc_add_sync(h, tp, tt); } for( tp=h->track; tp; tp=tp->next ) { vol = 127; e0 = tp->tail; if( tp->slidevol != -2 ) { tp->slidevol = -2; tp->slidevoltime = e0->tracktick; } tp->mute = 0; // unmute track for safety, notes in a muted track already have zero volume... while( vol > 5 && tp->slidevoltime != 0) { for( p=abcparts; *p && vol > 5; p++ ) { pt1 = ptt[*p-'A']; pt2 = ptt[*p-'A'+1]; abc_appendpart(h, tp, pt1, pt2); vol = abc_dynamic_volume(tp, tp->tail->tracktick, 127); } } abc_fade_track(tp,e0); } return h->track->tail->tracktick; } static void abc_song_to_parts(ABCHANDLE *h, char **abcparts, BYTE partp[27][2]) { uint32_t starttick; ABCEVENT *e; int i, fading, loop, normal, partno, partsegno, partloop, partcoda, parttocoda, partfine, skip, x, y; int vmask[27],nextp[27]; uint32_t ptt[27]; char buf[256]; // must be enough, mod's cannot handle more than 240 patterns char *pfade; if( !h || !h->track || !h->track->capostart ) return; strcpy(buf,"A"); // initialize our temporary array i = 1; loop = 1; partno = 0; partsegno = 0; partloop = 0; partcoda = -1; parttocoda = -1; partfine = -1; starttick = h->track->capostart->tracktick; memset(ptt, 0, sizeof(ptt)); ptt[0] = starttick; vmask[0] = -1; nextp[0] = 1; for( e=h->track->capostart; e; e=e->next ) { if( e->flg == 1 ) { switch( e->cmd ) { case cmdpartbrk: if( e->tracktick > starttick) { starttick = e->tracktick; // do not make empty parts if( partno < 26 ) { partno++; ptt[partno] = starttick; } if( i < 255 ) buf[i++] = partno+'A'; vmask[partno] = -1; nextp[partno] = partno+1; } break; case cmdloop: partloop = partno; loop = 1; // start counting anew... break; case cmdvariant: vmask[partno] = e->lpar; break; case cmdjump: x = 0; fading = 0; normal = 0; skip = 0; pfade = &buf[i]; switch( e->par[jumptype] ) { case jumpfade: fading = 1; case jumpnormal: normal = 1; x = partloop; loop++; break; case jumpdsfade: fading = 1; case jumpdasegno: x = partsegno; break; case jumpdcfade: fading = 1; case jumpdacapo: x = 0; break; default: // defaults set above. break; } if( vmask[partno] != -1 ) nextp[partno] = x; if( partno < 26 ) ptt[partno+1] = e->tracktick; // for handling ties over breaks while( x <= partno ) { if( skip == 1 && x == partcoda ) skip = 0; y = !skip; if( y ) { if( !normal ) { if( x == partfine ) skip = 2; if( x == parttocoda ) skip = 1; y = !skip; } if( !(vmask[x] & (1<<loop)) ) y = 0; } if( y ) { if( i < 255 ) buf[i++] = x+'A'; if( nextp[x] != x + 1 ) loop++; x = nextp[x]; } else x++; } if( fading && partno < 25 && i < 254 ) { // add single part with fading tracks partno++; ptt[partno] = e->tracktick; buf[i] = '\0'; // close up pfade with zero byte starttick = abc_fade_tracks(h, pfade, ptt); buf[i++] = partno+'A'; partno++; ptt[partno] = starttick; buf[i++] = partno+'A'; // one extra to throw away... e = h->track->tail; // this is the edge of the world captain... } break; case cmdtocoda: parttocoda = partno; break; case cmdcoda: partcoda = partno; break; case cmdfine: partfine = partno; break; case cmdsegno: partsegno = partno; break; } } e->part = partno+'a'; // small caps for generated parts... } i--; // strip off last partno if( partno > 0 ) partno--; buf[i] = '\0'; if( i > 1 ) { for( i=1; buf[i]; i++ ) { if( buf[i] != buf[i-1] + 1 ) { x = buf[i-1] - 'A'; y = buf[i] - 'A'; if (x < 26 && y < 26) abc_keeptiednotes(h, ptt[x+1], ptt[y]); } } } starttick = h->track->tail->tracktick; ptt[partno+1] = starttick; for( i=0; i<=partno; i++ ) { partp[i][0] = abc_patno(h, ptt[i]); partp[i][1] = abc_patno(h, ptt[i+1]); } // calculate end point of last part starttick = abc_pattracktime(h, starttick); if( starttick % abcticks(64 * h->speed) ) partp[partno][1]++; abc_set_parts(abcparts, buf); } // ===================================================================================== static char *abc_fgets(MMFILE *mmfile, char buf[], unsigned int bufsz) // ===================================================================================== { if( mmfeof(mmfile) ) return NULL; mmfgets(buf,bufsz,mmfile); return buf; } // ===================================================================================== static char *abc_fgetbytes(MMFILE *mmfile, char buf[], unsigned int bufsz) // ===================================================================================== { unsigned int i; long pos; if( mmfeof(mmfile) ) return NULL; for( i=0; i<bufsz-2; i++ ) { buf[i] = (char)mmfgetc(mmfile); if( buf[i] == '\n' ) break; if( buf[i] == '\r' ) { pos = mmftell(mmfile); // peek at next char if( mmfgetc(mmfile) != '\n' ) mmfseek(mmfile, pos, SEEK_SET); buf[i] = '\n'; break; } } if( i != bufsz-2 && buf[i] == '\n' ) i++; buf[i] = '\0'; return buf; } static void abc_substitute(ABCHANDLE *h, char *target, char *s) { char *p, *q; int i; int l = strlen(target); int n = strlen(s); if (l <= 0 ||n <= 0 || strstr(s, target) || abs(n-l) > 10e3) return; while ((p=strstr(h->line, target)) != NULL) { if( (i=strlen(h->line)) + n - l >= (int)h->len ) { int reqsize = h->len<<1; while (i + n - l >= reqsize) reqsize = reqsize<<1; h->line = (char *)_mm_recalloc(h->allochandle, h->line, reqsize, sizeof(char)); h->len = reqsize; p=strstr(h->line, target); } if( n > l ) { for( q=&h->line[i]; q>p; q-- ) q[n-l] = q[0]; for( q=s; *q; q++ ) *p++ = *q; } else { strcpy(p,s); for( q=p+l; *q; q++ ) *p++ = *q; } // ensure end of string is initialized *p = 0; } } static void abc_preprocess(ABCHANDLE *h, ABCMACRO *m) { int i, j, k, l, a, b; if( m->n ) { k = m->n - m->name; for( i=0; i<14; i++ ) { char *t = new char[strlen(m->name) + 1]; strcpy(t, m->name); t[k] = "CDEFGABcdefgab"[i]; l = strlen(m->subst); char *s = new char[2 * l + 1]; char *p = s; for( j=0; j<l; j++ ) { a = m->subst[j]; if( a > 'g' && islower(a) ) { b = a - 'n'; a = "CDEFGABCDEFGABcdefgabcdefgabcdefgab"[i+b+7]; *p++ = a; if( i+b < 0 ) *p++ = ','; else if( i+b > 13 ) *p++ = '\''; } else *p++ = a; } *p = '\0'; abc_substitute(h, t, s); delete[] s; delete[] t; } } else abc_substitute(h, m->name, m->subst); } static char *abc_gets(ABCHANDLE *h, MMFILE *mmfile) { int i; ABCMACRO *mp; if( !h->len ) { h->len = 64; // initial line size, adequate for most abc's h->line = (char *)_mm_calloc(h->allochandle, h->len, sizeof(char)); } if( abc_fgetbytes(mmfile, h->line, h->len) ) { while( (i=strlen(h->line)) > (int)(h->len - 3) ) { // line too short, double it h->line = (char *)_mm_recalloc(h->allochandle, h->line, h->len<<1, sizeof(char)); if( h->line[i-1] != '\n' ) abc_fgetbytes(mmfile, &h->line[i], h->len); h->len <<= 1; } h->line[i ? i-1 : 0] = '\0'; // strip off newline / force null termination for( mp=h->macro; mp && mp->name; mp=mp->next ) abc_preprocess(h,mp); return h->line; } return NULL; } static int abc_parse_decorations(ABCHANDLE *h, ABCTRACK *tp, const char *p) { int vol=0; if( !strncmp(p,"mp",2) ) vol = 75; if( !strncmp(p,"mf",2) ) vol = 90; if( !strncmp(p,"sfz",3) ) vol = 100; if( *p == 'p' ) { vol = 60; while( *p && *p++ == 'p' ) vol -= 15; if( vol < 1 ) vol = 1; } if( *p == 'f' ) { vol = 105; while( *p && *p++ == 'f' ) vol += 15; if( vol > 135 ) vol = 127; // ffff if( vol > 127 ) vol = 125; // fff } if( vol ) { tp->volume = vol; if( tp == h->track ) { // copy volume over to all voice tracks for( ; tp; tp=tp->next ) { if( tp->vpos == 0 || tp->vpos > DRONEPOS2 ) tp->volume = vol; } tp = h->track; } } return tp->volume; } // ===================================================================================== BOOL CSoundFile::TestABC(const BYTE *lpStream, DWORD dwMemLength) // ===================================================================================== { char id[128]; int hasText = 0; // scan file for first K: line (last in header) MMFILE mmfile; mmfile.mm = (char *)lpStream; mmfile.sz = dwMemLength; mmfseek(&mmfile,0,SEEK_SET); int ppos = mmfile.pos; while(abc_fgets(&mmfile,id,128)) { if (id[0] == 0 && hasText == 0 && mmfile.pos < ppos + 120) return(0); //probably binary if (id[0] == 0) continue; // blank line. if (!abc_isvalidchar(id[0]) || !abc_isvalidchar(id[1])) { return(0); // probably not an ABC. } if(id[0]=='K' && id[1]==':' && (isalpha(id[2]) || isspace(id[2])) ) return 1; // disable binary error if have any "tag" if((id[0]>='A' && id[0]<='Z') && id[1]==':' && (isalpha(id[2]) || isspace(id[2])) ) hasText = 1; } return 0; } // ===================================================================================== static ABCHANDLE *ABC_Init(void) { static char buf[40]; ABCHANDLE *retval; char *p; retval = (ABCHANDLE *)calloc(1,sizeof(ABCHANDLE)); if( !retval ) return NULL; retval->track = NULL; retval->macro = NULL; retval->umacro = NULL; retval->beatstring = NULL; retval->pickrandom = 0; retval->len = 0; retval->line = NULL; strcpy(retval->gchord, ""); retval->barticks = 0; p = getenv(ABC_ENV_NORANDOMPICK); if( p ) { if( isdigit(*p) ) retval->pickrandom = atoi(p); if( *p == '-' ) { retval->pickrandom = atoi(p+1)-1; // xmms preloads the file sprintf(buf,"%s=-%ld",ABC_ENV_NORANDOMPICK,retval->pickrandom+2); putenv(buf); } } else { srand((unsigned int)time(0)); // initialize random generator with seed retval->pickrandom = 1+(int)(10000.0*rand()/(RAND_MAX+1.0)); // can handle pickin' from songbooks with 10.000 songs sprintf(buf,"%s=-%ld",ABC_ENV_NORANDOMPICK,retval->pickrandom); // xmms preloads the file putenv(buf); } return retval; } static void ABC_CleanupTrackEvents(ABCTRACK *tp) { ABCEVENT *ep, *en; if( tp ) { for( ep=tp->head; ep; ep = en ) { en=ep->next; free(ep); } tp->head = NULL; } } static void ABC_CleanupMacro(ABCMACRO *m) { if( m->name ) free(m->name); if( m->subst ) free(m->subst); free(m); } // ===================================================================================== static void ABC_CleanupTracks(ABCHANDLE *handle) // ===================================================================================== { ABCTRACK *tp, *tn; if(handle) { for( tp=handle->track; tp; tp = tn ) { tn=tp->next; ABC_CleanupTrackEvents(tp); free(tp); } handle->track = NULL; } } // ===================================================================================== static void ABC_CleanupMacros(ABCHANDLE *handle) // ===================================================================================== { ABCMACRO *mp, *mn; if(handle) { for( mp=handle->macro; mp; mp = mn ) { mn=mp->next; ABC_CleanupMacro(mp); } for( mp=handle->umacro; mp; mp = mn ) { mn=mp->next; ABC_CleanupMacro(mp); } handle->macro = NULL; handle->umacro = NULL; } } // ===================================================================================== static void ABC_Cleanup(ABCHANDLE *handle) // ===================================================================================== { if(handle) { ABC_CleanupMacros(handle); ABC_CleanupTracks(handle); if( handle->line ) free(handle->line); if( handle->beatstring ) free(handle->beatstring); free(handle); } } static int abc_is_global_event(ABCEVENT *e) { return e->flg == 1 && (e->cmd == cmdtempo || e->cmd == cmdpartbrk); } static ABCEVENT *abc_next_global(ABCEVENT *e) { for( ; e && !abc_is_global_event(e); e=e->next ) ; return e; } static ABCEVENT *abc_next_note(ABCEVENT *e) { for( ; e && e->flg == 1; e=e->next ) ; return e; } // ============================================================================= static int ABC_ReadPatterns(MODCOMMAND *pattern[], WORD psize[], ABCHANDLE *h, int numpat, int channels) // ===================================================================================== { int pat,row,i,ch,trillbits; BYTE n,ins,vol; ABCTRACK *t; ABCEVENT *e, *en, *ef, *el; uint32_t tt1, tt2; MODCOMMAND *m; int patbrk, tempo; if( numpat > MAX_PATTERNS ) numpat = MAX_PATTERNS; // initialize start points of event list in tracks for( t = h->track; t; t = t->next ) t->capostart = t->head; trillbits = 0; // trill effect admininstration: one bit per channel, max 32 channnels for( pat = 0; pat < numpat; pat++ ) { pattern[pat] = CSoundFile::AllocatePattern(64, channels); if( !pattern[pat] ) return 0; psize[pat] = 64; for( row = 0; row < 64; row++ ) { tt1 = abcticks((pat * 64 + row ) * h->speed); tt2 = tt1 + abcticks(h->speed); ch = 0; tempo = 0; patbrk = 0; if ( h->track ) for( e=abc_next_global(h->track->capostart); e && e->tracktick < tt2; e=abc_next_global(e->next) ) { if( e && e->tracktick >= tt1 ) { // we have a tempo event in this row switch( e->cmd ) { case cmdtempo: tempo = e->lpar; break; case cmdpartbrk: patbrk = 1; break; } } } for( t = h->track; t; t = t->next ) { for( e=abc_next_note(t->capostart); e && e->tracktick < tt1; e=abc_next_note(e->next) ) ; i = 0; ef = NULL; en = e; el = e; for( ; e && e->tracktick < tt2; e=abc_next_note(e->next) ) { // we have a note event in this row t->capostart = e; i++; if( e->par[volume] ) { if( !ef ) ef = e; el = e; } } m = &pattern[pat][row * channels + ch]; m->param = 0; m->command = CMD_NONE; if( i ) { trillbits &= ~(1<<ch); if( i == 1 || ef == el || !ef ) { // only one event in this row if( ef ) e = ef; else e = en; el = t->capostart; i = e->par[note] + ((e->par[octave])*12); if( t->chan == 10 ) { n = pat_gm_drumnote(i) + 23; ins = pat_gmtosmp(pat_gm_drumnr(i)); } else { n = pat_modnote(i); ins = e->par[smpno]; } vol = e->par[volume]/2; if( e->par[volume] > 0 ) { if( e->par[effect] == accent ) vol += vol / 20; if( vol > 64 ) vol = 64; if( el->par[volume] == 0 ) { // note cut m->param = el->tracktick - tt1; m->command = CMD_S3MCMDEX; m->param |= 0xC0; } else { switch( e->par[effect] ) { case trill: m->command = CMD_VIBRATO; m->param = 0xC2; // speed 12 depth 2 trillbits |= (1<<ch); break; case bow: m->command = CMD_XFINEPORTAUPDOWN; m->param |= (e->par[effoper])? 0x12: 0x22; break; default: m->param = modticks(e->tracktick - tt1); if( m->param ) { // note delay m->command = CMD_S3MCMDEX; m->param |= 0xD0; } break; } } } m->instr = ins; m->note = n; // <- normal note m->volcmd = VOLCMD_VOLUME; m->vol = vol; } else { // two notes in one row, use FINEPITCHSLIDE runonce effect // start first note on first tick and framedly runonce on seconds note tick // use volume and instrument of last note if( t->chan == 10 ) { i = el->par[note] + ((el->par[octave])*12); n = pat_gm_drumnote(i) + 23; ins = pat_gmtosmp(pat_gm_drumnr(i)); i = n; // cannot change instrument here.. } else { i = ef->par[note] + ((ef->par[octave])*12); n = pat_modnote(i); ins = el->par[smpno]; i = pat_modnote(el->par[note] + ((el->par[octave])*12)); } vol = el->par[volume]/2; if( vol > 64 ) vol = 64; m->instr = ins; m->note = n; // <- normal note m->volcmd = VOLCMD_VOLUME; m->vol = vol; m->param = ((i > n)?i-n:n-i); if( m->param < 16 ) { if( m->param ) { m->command = CMD_XFINEPORTAUPDOWN; m->param |= (i > n)? 0x10: 0x20; } else { // retrigger same note... m->command = CMD_RETRIG; m->param = modticks(el->tracktick - tt1); } } else m->command = (i > n)? CMD_PORTAMENTOUP: CMD_PORTAMENTODOWN; } } else { // no new notes, keep on trilling... if( trillbits & (1<<ch) ) { m = &pattern[pat][row * channels + ch]; m->command = CMD_VIBRATO; m->param = 0; // inherited from first effect m->instr = 0; m->note = 0; m->volcmd = 0; m->vol = 0; } } if( m->param == 0 && m->command == CMD_NONE ) { if( tempo ) { m->command = CMD_TEMPO; m->param = tempo; tempo = 0; } else { if( patbrk ) { m->command = CMD_PATTERNBREAK; patbrk = 0; } } } ch++; } if( tempo || patbrk ) return 1; } } return 0; } static int ABC_Key(const char *p) { int i,j; char c[8]; const char *q; while( isspace(*p) ) p++; q = p; memset(c, 0, 8); for( i=0; i<8 && *p && *p != ']'; p++ ) { if( isspace(*p) ) { while( isspace(*p) ) p++; if( strncasecmp(p, "min", 3) && strncasecmp(p, "maj", 3) ) break; } c[i] = *p; i++; } if( !strcmp(c,"Hp") || !strcmp(c,"HP") ) // highland pipes strcpy(c,"Bm"); // two sharps at c and f if( !strcasecmp(c+1, "minor") ) i=2; if( !strcasecmp(c+2, "minor") ) i=3; if( !strcasecmp(c+1, "major") ) i=1; if( !strcasecmp(c+2, "major") ) i=2; if( !strcasecmp(c+1, "min") ) i=2; if( !strcasecmp(c+2, "min") ) i=3; if( !strcasecmp(c+1, "maj") ) i=1; if( !strcasecmp(c+2, "maj") ) i=2; for( ; i<6; i++ ) c[i] = ' '; for( i=0; keySigs[i]; i++ ) { for( j=10; j<46; j+=6 ) if( !strncasecmp(keySigs[i]+j, c, 6) ) return i; } abc_message("Failure: Unrecognised K: field %s", q); return 7; } static char *abc_skip_word(char *p) { while( isspace(*p) ) p++; while( *p && !isspace(*p) && *p != ']') p++; while( isspace(*p) ) p++; return p; } static uint32_t abc_tracktime(ABCTRACK *tp) { uint32_t tracktime; if( tp->tail ) tracktime = tp->tail->tracktick; else tracktime = 0; if( tracktime < global_songstart ) tracktime = global_songstart; return tracktime; } static void abc_addchordname(const char *s, int len, const int *notes) // adds chord name and note set to list of known chords { int i, j; if(strlen(s) > 7) { abc_message("Failure: Chord name cannot exceed 7 characters, %s", s); return; } if(len > 6) { abc_message("Failure: Named chord cannot have more than 6 notes, %s", s); return; } for( i=0; i < chordsnamed; i++ ) { if(strcmp(s, chordname[i]) == 0) { /* change chord */ chordlen[i] = len; for(j = 0; j < len; j++) chordnotes[i][j] = notes[j]; return; } } if(chordsnamed > MAXCHORDNAMES - 1) abc_message("Failure: Too many Guitar Chord Names used, %s", s); else { strcpy(chordname[chordsnamed], s); chordlen[chordsnamed] = len; for(j = 0; j < len; j++) chordnotes[chordsnamed][j] = notes[j]; chordsnamed++; } } static void abc_setup_chordnames() // set up named guitar chords { static const int list_Maj[3] = { 0, 4, 7 }; static const int list_m[3] = { 0, 3, 7 }; static const int list_7[4] = { 0, 4, 7, 10 }; static const int list_m7[4] = { 0, 3, 7, 10 }; static const int list_maj7[4] = { 0, 4, 7, 11 }; static const int list_M7[4] = { 0, 4, 7, 11 }; static const int list_6[4] = { 0, 4, 7, 9 }; static const int list_m6[4] = { 0, 3, 7, 9 }; static const int list_aug[3] = { 0, 4, 8 }; static const int list_plus[3] = { 0, 4, 8 }; static const int list_aug7[4] = { 0, 4, 8, 10 }; static const int list_dim[3] = { 0, 3, 6 }; static const int list_dim7[4] = { 0, 3, 6, 9 }; static const int list_9[5] = { 0, 4, 7, 10, 2 }; static const int list_m9[5] = { 0, 3, 7, 10, 2 }; static const int list_maj9[5] = { 0, 4, 7, 11, 2 }; static const int list_M9[5] = { 0, 4, 7, 11, 2 }; static const int list_11[6] = { 0, 4, 7, 10, 2, 5 }; static const int list_dim9[5] = { 0, 4, 7, 10, 13 }; static const int list_sus[3] = { 0, 5, 7 }; static const int list_sus9[3] = { 0, 2, 7 }; static const int list_7sus[4] = { 0, 5, 7, 10 }; static const int list_7sus4[4] = { 0, 5, 7, 10 }; static const int list_7sus9[4] = { 0, 2, 7, 10 }; static const int list_9sus4[5] = { 0, 5, 10, 14, 19 }; static const int list_5[2] = { 0, 7 }; static const int list_13[6] = { 0, 4, 7, 10, 16, 21 }; chordsnamed = 0; abc_addchordname("", 3, list_Maj); abc_addchordname("m", 3, list_m); abc_addchordname("7", 4, list_7); abc_addchordname("m7", 4, list_m7); abc_addchordname("maj7", 4, list_maj7); abc_addchordname("M7", 4, list_M7); abc_addchordname("6", 4, list_6); abc_addchordname("m6", 4, list_m6); abc_addchordname("aug", 3, list_aug); abc_addchordname("+", 3, list_plus); abc_addchordname("aug7", 4, list_aug7); abc_addchordname("7+", 4, list_aug7); abc_addchordname("dim", 3, list_dim); abc_addchordname("dim7", 4, list_dim7); abc_addchordname("9", 5, list_9); abc_addchordname("m9", 5, list_m9); abc_addchordname("maj9", 5, list_maj9); abc_addchordname("M9", 5, list_M9); abc_addchordname("11", 6, list_11); abc_addchordname("dim9", 5, list_dim9); abc_addchordname("sus", 3, list_sus); abc_addchordname("sus9", 3, list_sus9); abc_addchordname("7sus", 4, list_7sus); abc_addchordname("7sus4", 4, list_7sus4); abc_addchordname("7sus9", 4, list_7sus9); abc_addchordname("9sus4", 5, list_9sus4); abc_addchordname("5", 2, list_5); abc_addchordname("13", 6, list_13); } static int abc_MIDI_getnumber(const char *p) { int n; while( isspace(*p) ) p++; abc_getnumber(p, &n); if( n < 0 ) n = 0; if( n > 127 ) n = 127; return n; } static int abc_MIDI_getprog(const char *p) { int n; while( isspace(*p) ) p++; abc_getnumber(p, &n); if( n < 1 ) n = 1; if( n > 128 ) n = 128; return n; } // MIDI drone <instr0> <pitch1> <pitch2> <vel1> <vel2> static void abc_MIDI_drone(const char *p, int *gm, int *ptch, int *vol) { int i; while( isspace(*p) ) p++; p += abc_getnumber(p, &i); i++; // adjust for 1..128 if( i>0 && i < 129 ) *gm = i; else *gm = 71; // bassoon while( isspace(*p) ) p++; p += abc_getnumber(p, &i); if( i>0 && i < 127 ) ptch[0] = i; else ptch[0] = 45; while( isspace(*p) ) p++; p += abc_getnumber(p, &i); if( i>0 && i < 127 ) ptch[1] = i; else ptch[1] = 33; while( isspace(*p) ) p++; p += abc_getnumber(p, &i); if( i>0 && i < 127 ) vol[0] = i; else vol[0] = 80; while( isspace(*p) ) p++; p += abc_getnumber(p, &i); if( i>0 && i < 127 ) vol[1] = i; else vol[1] = 80; } static void abc_chan_to_tracks(ABCHANDLE *h, int tno, int ch) { ABCTRACK *tp; if( tno>0 && tno<33 ) { for( tp=h->track; tp; tp=tp->next ) { if( tp->vno == tno && (tp->vpos < GCHORDBPOS || tp->vpos > DRONEPOS2) ) tp->chan = ch; } } } // %%MIDI channel int1 // channel numbers are 1-16 static void abc_MIDI_channel(const char *p, ABCTRACK *tp, ABCHANDLE *h) { int i1, i2; i1 = tp? tp->vno: 1; for( ; *p && isspace(*p); p++ ) ; if( isdigit(*p) ) { p += abc_getnumber(p, &i2); if( i2 >= 1 && i2 <= 16 ) abc_chan_to_tracks(h, i1, i2); // we start at 1 } } static void abc_instr_to_tracks(ABCHANDLE *h, int tno, int gm) { ABCTRACK *tp; if( tno>0 && tno<33 && gm>0 && gm<129 ) { for( tp=h->track; tp; tp=tp->next ) { if( tp->vno == tno && (tp->vpos < GCHORDBPOS || tp->vpos > DRONEPOS2) ) tp->instr = gm; } } } // %%MIDI program [int1] <int2> // instrument numbers are 0-127 static void abc_MIDI_program(const char *p, ABCTRACK *tp, ABCHANDLE *h) { int i1, i2; i1 = tp? tp->vno: 1; for( ; *p && isspace(*p); p++ ) ; if( isdigit(*p) ) { p += abc_getnumber(p, &i2); for( ; *p && isspace(*p); p++ ) ; if( isdigit(*p) ) { i1 = i2; abc_getnumber(p, &i2); } abc_instr_to_tracks(h, i1, i2 + 1); // we start at 1 } } static void abc_mute_voice(ABCHANDLE *h, ABCTRACK *tp, int m) { ABCTRACK *t; for( t=h->track; t; t=t->next ) { if( t->vno == tp->vno ) t->mute = m; } } // %%MIDI voice [<ID>] [instrument=<integer> [bank=<integer>]] [mute] // instrument numbers are 1-128 static void abc_MIDI_voice(const char *p, ABCTRACK *tp, ABCHANDLE *h) { int i1, i2; for( ; *p && isspace(*p); p++ ) ; if( strncmp(p,"instrument=",11) && strncmp(p,"mute",4) ) { tp = abc_locate_track(h, p, 0); for( ; *p && !isspace(*p); p++ ) ; for( ; *p && isspace(*p); p++ ) ; } i1 = tp? tp->vno: 1; i2 = 0; if( !strncmp(p,"instrument=",11) && isdigit(p[11]) ) { p += 11; p += abc_getnumber(p, &i2); for( ; *p && isspace(*p); p++ ) ; if( !strncmp(p,"bank=",5) && isdigit(p[5]) ) { for( ; *p && !isspace(*p); p++ ) ; for( ; *p && isspace(*p); p++ ) ; } } if( tp ) abc_mute_voice(h,tp,0); if( !strncmp(p,"mute",4) && (p[4]=='\0' || p[4]=='%' || isspace(p[4])) ) { if( tp ) abc_mute_voice(h,tp,1); } abc_instr_to_tracks(h, i1, i2); // starts already at 1 (draft 4.0) } // %%MIDI chordname <string> <int1> <int2> ... <int6> static void abc_MIDI_chordname(const char *p) { char name[20]; int i; for(; *p && isspace(*p); p++) ; i = 0; while ((i < 19) && (*p != ' ') && (*p != '\0')) { name[i] = *p; p = p + 1; i = i + 1; } name[i] = '\0'; if(*p != ' ') { abc_message("Failure: Bad format for chordname command, %s", p); } else { int notes[6]; i = 0; memset(notes, 0, sizeof(notes)); while ((i < 6) && isspace(*p)) { for(; *p && isspace(*p); p++) ; p += abc_getnumber(p, ¬es[i]); i = i + 1; } abc_addchordname(name, i, notes); } } // %%MIDI drum <string> <inst 1> ... <inst n> <vol 1> ... <vol n> // instrument numbers are 0-127 static int abc_MIDI_drum(const char *p, ABCHANDLE *h) { char *q; int i, n, m, len; while( isspace(*p) ) p++; if( !strncmp(p,"on",2) && (isspace(p[2]) || p[2] == '\0') ) return 2; if( !strncmp(p,"off",3) && (isspace(p[3]) || p[3] == '\0') ) return 1; n = 0; len = 0; for( q = h->drum; *p && !isspace(*p); p++ ) { if( !strchr("dz0123456789",*p) ) break; *q++ = *p; len++; if( !isdigit(*p) && len < (int)sizeof(h->drum)-1 ) { if( !isdigit(p[1]) ) { *q++ = '1'; len ++; } n++; // count the silences too.... } if (len >= (int)sizeof(h->drum)-1) { // consume the rest of the input // definitely enough "drum last state" stored. while ( *p && !isspace(*p) ) p++; break; } } *q = '\0'; q = h->drumins; for( i = 0; i<n; i++ ) { if( h->drum[i*2] == 'd' ) { while( *p && isspace(*p) ) p++; if( !isdigit(*p) ) { m = 0; while( *p && !isspace(*p) ) p++; } else p += abc_getnumber(p,&m); q[i] = m + 1; // we start at 1 } else q[i] = 0; } q = h->drumvol; for( i = 0; i<n; i++ ) { if( h->drum[i*2] == 'd' ) { while( *p && isspace(*p) ) p++; if( !isdigit(*p) ) { m = 0; while( *p && !isspace(*p) ) p++; } else p += abc_getnumber(p,&m); q[i] = m; } else q[i] = 0; } return 0; } // %%MIDI gchord <string> static int abc_MIDI_gchord(const char *p, ABCHANDLE *h) { char *q; int len = 0; while( isspace(*p) ) p++; if( !strncmp(p,"on",2) && (isspace(p[2]) || p[2] == '\0') ) return 2; if( !strncmp(p,"off",3) && (isspace(p[3]) || p[3] == '\0') ) return 1; for( q = h->gchord; *p && !isspace(*p); p++ ) { if( !strchr("fbcz0123456789ghijGHIJ",*p) ) break; *q++ = *p; len++; if( !isdigit(*p) && len < (int)sizeof(h->gchord)-1 && !isdigit(p[1]) ) { *q++ = '1'; len ++; } if (len >= (int)sizeof(h->gchord)-1) { // consume the rest of the input // definitely enough "drum last state" stored. while ( *p && !isspace(*p) ) p++; break; } } *q = '\0'; return 0; } static void abc_metric_gchord(ABCHANDLE *h, int mlen, int mdiv) { switch( 16 * mlen + mdiv ) { case 0x24: case 0x44: case 0x22: abc_MIDI_gchord("fzczfzcz", h); break; case 0x64: case 0x32: abc_MIDI_gchord("fzczczfzczcz", h); break; case 0x34: case 0x38: abc_MIDI_gchord("fzczcz", h); break; case 0x68: abc_MIDI_gchord("fzcfzc", h); break; case 0x98: abc_MIDI_gchord("fzcfzcfzc", h); break; case 0xc8: abc_MIDI_gchord("fzcfzcfzcfzc", h); break; default: { int dest = 0; if( mlen % 3 == 0 ) abc_MIDI_gchord("fzcfzcfzcfzcfzcfzcfzcfzcfzc", h); else abc_MIDI_gchord("fzczfzczfzczfzczfzczfzczfzcz", h); if( mdiv == 8 ) dest = mlen*2; else dest = mlen*4; if (dest >= (int)sizeof(h->gchord)) dest = (int)sizeof(h->gchord) - 1; h->gchord[dest] = '\0'; } break; } } static void abc_MIDI_legato(const char *p, ABCTRACK *tp) { for( ; *p && isspace(*p); p++ ) ; if( !strncmp(p,"off",3) ) tp->legato = 0; else tp->legato = 1; } static void abc_M_field(const char *p, int *mlen, int *mdiv) { if( !strncmp(p,"none",4) ) { *mlen = 1; *mdiv = 1; return; } if( !strncmp(p,"C|",2) ) { *mlen = 2; *mdiv = 2; return; } if( *p == 'C' ) { *mlen = 4; *mdiv = 4; return; } p += abc_getexpr(p,mlen); sscanf(p," / %d", mdiv); } static int abc_drum_steps(const char *dch) { const char *p; int i=0; for( p=dch; *p; p++ ) { if( isdigit(*p) ) i += *p - '0';; } return i; } static void abc_add_drum(ABCHANDLE *h, uint32_t tracktime, uint32_t bartime) { ABCEVENT *e; ABCTRACK *tp; uint32_t etime, ctime , rtime, stime; int i, g, steps, gnote, gsteps, nnum; steps = abc_drum_steps(h->drum); ctime = h->barticks; // look up the last event in tpr drumtrack tp = abc_locate_track(h, h->tpr->v, DRUMPOS); e = tp->tail; etime = e? e->tracktick: bartime; if( etime > tracktime ) return; if( etime < bartime ) rtime = h->barticks - ((bartime - etime) % h->barticks); else rtime = (etime - bartime) % h->barticks; stime = ctime*steps; rtime *= steps; rtime += stime; gsteps = strlen(h->drum)/2; g = 0; while( rtime > stime ) { rtime -= ctime*(h->drum[g*2+1] - '0'); if( ++g == gsteps ) g = 0; } stime = (tracktime - etime) * steps; rtime = 0; // if no drumsteps, there is nothing we can do anyway. if( steps == 0 ) return; while( rtime < stime ) { gnote = h->drum[g*2]; i = h->drum[g*2+1] - '0'; if( gnote=='d') { tp->instr = pat_gm_drumnr(h->drumins[g]-1); nnum = pat_gm_drumnote(h->drumins[g]); abc_add_drumnote(h, tp, etime + rtime/steps, nnum, h->drumvol[g]); abc_add_noteoff(h,tp,etime + ( rtime + ctime * i )/steps); } if( ++g == gsteps ) g = 0; rtime += ctime * i; } } static int abc_gchord_steps(const char *gch) { const char *p; int i=0; for( p=gch; *p; p++ ) if( isdigit(*p) ) i += *p - '0'; return i; } static void abc_add_gchord(ABCHANDLE *h, uint32_t tracktime, uint32_t bartime) { ABCEVENT *e, *c; ABCTRACK *tp; uint32_t etime, ctime , rtime, stime, modbarticks; int i, g, steps, gnote, gcnum, gsteps, nnum, glen; // look up the last chord event in tpc c = 0; for( e = h->tpc->head; e; e = e->next ) if( e->flg == 1 && e->cmd == cmdchord ) c = e; if( !c ) return; gcnum = c->par[chordnum]; steps = abc_gchord_steps(h->gchord); ctime = h->barticks; // if chord time is 0, its useless to process further if (!ctime) return; etime = 0; for( i = GCHORDBPOS; i < DRUMPOS; i++ ) { tp = abc_locate_track(h, h->tpc->v, i); e = tp->tail; if( !e ) e = c; stime = e->tracktick; if( stime > etime ) etime = stime; } if( etime > tracktime ) return; modbarticks = h->barticks ? h->barticks : 1; if( etime < bartime ) rtime = h->barticks - ((bartime - etime) % modbarticks); else rtime = (etime - bartime) % modbarticks; stime = ctime * steps; rtime *= steps; rtime += stime; gsteps = strlen(h->gchord); g = 0; while( rtime > stime ) { glen = h->gchord[2*g+1] - '0'; rtime -= ctime * glen; if( ++g == gsteps ) g = 0; } stime = (tracktime - etime) * steps; rtime = 0; while( rtime < stime ) { gnote = h->gchord[2*g]; glen = h->gchord[2*g+1] - '0'; if( ++g == gsteps ) g = 0; switch(gnote) { case 'b': tp = abc_locate_track(h, h->tpc->v, GCHORDFPOS); tp->instr = h->abcbassprog; nnum = c->par[chordnote]+chordnotes[gcnum][0]+24; abc_add_chordnote(h, tp, etime + rtime/steps, nnum, h->abcbassvol); abc_add_noteoff(h,tp,etime + ( rtime + ctime * glen )/steps); case 'c': for( i = 1; i < chordlen[gcnum]; i++ ) { tp = abc_locate_track(h, h->tpc->v, i+GCHORDFPOS); tp->instr = h->abcchordprog; nnum = c->par[chordnote]+chordnotes[gcnum][i]+24; abc_add_chordnote(h, tp, etime + rtime/steps, nnum, h->abcchordvol); abc_add_noteoff(h,tp,etime + ( rtime + ctime * glen )/steps); } rtime += ctime * glen; break; case 'f': tp = abc_locate_track(h, h->tpc->v, GCHORDFPOS); tp->instr = h->abcbassprog; nnum = c->par[chordbase]+12; abc_add_chordnote(h, tp, etime + rtime/steps, nnum, h->abcbassvol); rtime += ctime * glen; abc_add_noteoff(h,tp,etime + rtime/steps); break; case 'g': case 'h': case 'i': case 'j': case 'G': case 'H': case 'I': case 'J': i = toupper(gnote) - 'G'; nnum = 0; if( i < chordlen[gcnum] ) { tp = abc_locate_track(h, h->tpc->v, GCHORDFPOS+i+1); tp->instr = h->abcchordprog; nnum = c->par[chordnote]+chordnotes[gcnum][i]+24; if( isupper(gnote) ) nnum -= 12; abc_add_chordnote(h, tp, etime + rtime/steps, nnum, h->abcchordvol); } rtime += ctime * glen; if( nnum ) abc_add_noteoff(h,tp,etime + rtime/steps); break; case 'z': rtime += ctime * glen; break; } } } // %%MIDI beat a b c n // // controls the way note velocities are selected. The first note in a bar has // velocity a. Other "strong" notes have velocity b and all the rest have velocity // c. a, b and c must be in the range 0-128. The parameter n determines which // notes are "strong". If the time signature is x/y, then each note is given // a position number k = 0, 1, 2 .. x-1 within each bar. Note that the units for // n are not the unit note length. If k is a multiple of n, then the note is // "strong". The volume specifiers !ppp! to !fff! are equivalent to the // following : // // !ppp! = %%MIDI beat 30 20 10 1 // !pp! = %%MIDI beat 45 35 20 1 // !p! = %%MIDI beat 60 50 35 1 // !mp! = %%MIDI beat 75 65 50 1 // !mf! = %%MIDI beat 90 80 65 1 // !f! = %%MIDI beat 105 95 80 1 // !ff! = %%MIDI beat 120 110 95 1 // !fff! = %%MIDI beat 127 125 110 1 static void abc_MIDI_beat(ABCHANDLE *h, const char *p) { int i,j; h->beat[0] = 127; h->beat[1] = 125; h->beat[2] = 110; h->beat[3] = 1; for( j=0; j<4; j++ ) { while( isspace(*p) ) p++; if( *p ) { p += abc_getnumber(p, &i); if( i < 0 ) i = 0; if( i > 127 ) i = 127; h->beat[j] = i; } } if( h->beat[3] == 0 ) h->beat[3] = 1; // BB Ruud says: do not let you make mad } // // %%MIDI beatstring <string of f, m and p> // // This provides an alternative way of specifying where the strong and weak // stresses fall within a bar. 'f' means velocity a (normally strong), 'm' // means velocity b (medium velocity) and 'p' means velocity c (soft velocity). // For example, if the time signature is 7/8 with stresses on the first, fourth // and sixth notes in the bar, we could use the following // // %%MIDI beatstring fppmpmp static void abc_MIDI_beatstring(ABCHANDLE *h, const char *p) { while( isspace(*p) ) p++; if( h->beatstring ) _mm_free(h->allochandle, h->beatstring); if( strlen(p) ) h->beatstring = DupStr(h->allochandle,p,strlen(p)+1); else h->beatstring = NULL; } static int abc_beat_vol(ABCHANDLE *h, int abcvol, int barpos) { int vol; if( h->beatstring ) { vol = (h->beat[2] * 9) / 10; if( barpos < (int)strlen(h->beatstring) ) { switch(h->beatstring[barpos]) { case 'f': vol = h->beat[0]; break; case 'm': vol = h->beat[1]; break; case 'p': vol = h->beat[2]; break; default: break; } } } else { if( (barpos % h->beat[3]) == 0 ) { if( barpos ) vol = h->beat[1]; else vol = h->beat[0]; } else vol = h->beat[2]; } vol *= abcvol; vol /= 128; return vol; } static void abc_init_partpat(BYTE partp[27][2]) { int i; for( i=0; i<27; i++ ) { partp[i][0] = 0xff; partp[i][1] = 0; } } static int abc_partpat_to_orderlist(BYTE partp[27][2], const char *abcparts, ABCHANDLE *h, BYTE **list, int orderlen) { int t, partsused; const char *p; BYTE *orderlist = *list; static int ordersize = 0; if( *list == NULL ) { ordersize = 128; orderlist = (BYTE *)_mm_calloc(h->ho, ordersize, sizeof(BYTE)); *list = orderlist; } if( abcparts ) { partsused = 0; for( p = abcparts; *p; p++ ) { if (*p < 'A' || *p > 'Z') break; for( t = partp[*p - 'A'][0]; t < partp[*p - 'A'][1]; t++ ) { if( orderlen == ordersize ) { ordersize <<= 1; if (ordersize == 0) ordersize = 2; orderlist = (BYTE *)_mm_recalloc(h->ho, orderlist, ordersize, sizeof(BYTE)); *list = orderlist; } orderlist[orderlen] = t; orderlen++; partsused++; } } if( partsused ) return orderlen; } // some fool wrote a P: string in the header but didn't use P: in the body for( t = partp[26][0]; t < partp[26][1]; t++ ) { if( orderlen == ordersize ) { ordersize <<= 1; if (ordersize == 0) ordersize = 2; orderlist = (BYTE *)_mm_recalloc(h->ho, orderlist, ordersize, sizeof(BYTE)); *list = orderlist; } orderlist[orderlen] = t; orderlen++; } return orderlen; } static void abc_globalslide(ABCHANDLE *h, uint32_t tracktime, int slide) { ABCTRACK *tp; ABCEVENT *e; int hslide; hslide = h->track? h->track->slidevol: slide; for( tp=h->track; tp; tp = tp->next ) { if( slide ) { tp->slidevoltime = tracktime; if( slide == 2 ) tp->slidevol = 0; } if( tp->slidevol > -2 && slide < 2 ) tp->slidevol = slide; } if( h->track && h->track->tail && hslide != slide && slide == -2 && h->track->tail->tracktick >= tracktime ) { // need to update jumptypes in mastertrack from tracktime on... for( e=h->track->head; e; e=e->next ) { if( e->flg == 1 && e->cmd == cmdjump && e->tracktick >= tracktime ) { switch( e->par[jumptype] ) { case jumpnormal: case jumpfade: e->par[jumptype] = jumpfade; break; case jumpdacapo: case jumpdcfade: e->par[jumptype] = jumpdcfade; break; case jumpdasegno: case jumpdsfade: e->par[jumptype] = jumpdsfade; break; } } } } } static void abc_recalculate_tracktime(ABCHANDLE *h) { ABCTRACK *ttp; h->tracktime = 0; for( ttp=h->track; ttp; ttp=ttp->next ) if( ttp->tail && ttp->tail->tracktick > h->tracktime ) h->tracktime = ttp->tail->tracktick; } static void abc_MIDI_command(ABCHANDLE *h, char *p, char delim) { int t; // interpret some of the possibilitys if( !strncmp(p,"bassprog",8) && isspace(p[8]) ) h->abcbassprog = abc_MIDI_getprog(p+8)+1; if( !strncmp(p,"bassvol",7) && isspace(p[7]) ) h->abcbassvol = abc_MIDI_getnumber(p+7); if( !strncmp(p,"beat",4) && isspace(p[4]) ) abc_MIDI_beat(h, p+4); if( !strncmp(p,"beatstring",10) && isspace(p[10]) ) abc_MIDI_beatstring(h, p+4); if( !strncmp(p,"chordname",9) && isspace(p[9]) ) abc_MIDI_chordname(p+9); if( !strncmp(p,"chordprog",9) && isspace(p[9]) ) h->abcchordprog = abc_MIDI_getprog(p+9)+1; if( !strncmp(p,"chordvol",8) && isspace(p[8]) ) h->abcchordvol = abc_MIDI_getnumber(p+8); if( !strncmp(p,"drone",5) && isspace(p[5]) ) abc_MIDI_drone(p+5, &h->dronegm, h->dronepitch, h->dronevol); if( !strncmp(p,"droneoff",8) && (p[8]=='\0' || p[8]==delim || isspace(p[8])) ) h->droneon = 0; if( !strncmp(p,"droneon",7) && (p[7]=='\0' || p[7]==delim || isspace(p[7])) ) h->droneon = 1; t = h->drumon; if( !strncmp(p,"drum",4) && isspace(p[4]) ) { h->drumon = abc_MIDI_drum(p+4, h); if( h->drumon ) --h->drumon; else h->drumon = t; } if( !strncmp(p,"drumoff",7) && (p[7]=='\0' || p[7]==delim || isspace(p[7])) ) h->drumon = 0; if( !strncmp(p,"drumon",6) && (p[6]=='\0' || p[6]==delim || isspace(p[6])) ) h->drumon = 1; if( t != h->drumon ) { if( h->drumon && !h->tpr ) h->tpr = h->track; if( h->tpr ) abc_add_drum_sync(h, h->tpr, h->tracktime); // don't start drumming from the beginning of time! if( h->tpr && !h->drumon ) h->tpr = NULL; } t = h->gchordon; if( !strncmp(p,"gchord",6) && (p[6]=='\0' || p[6]==delim || isspace(p[6])) ) { h->gchordon = abc_MIDI_gchord(p+6, h); if( h->gchordon ) --h->gchordon; else h->gchordon = t; } if( !strncmp(p,"gchordoff",9) && (p[9]=='\0' || p[9]==delim || isspace(p[9])) ) h->gchordon = 0; if( !strncmp(p,"gchordon",8) && (p[8]=='\0' || p[8]==delim || isspace(p[8])) ) h->gchordon = 1; if( t != h->gchordon ) { if( h->tpc ) abc_add_gchord_syncs(h, h->tpc, h->tracktime); } if( !strncmp(p,"channel",7) && isspace(p[7]) ) abc_MIDI_channel(p+8, h->tp = abc_check_track(h, h->tp), h); if( !strncmp(p,"program",7) && isspace(p[7]) ) abc_MIDI_program(p+8, h->tp = abc_check_track(h, h->tp), h); if( !strncmp(p,"voice",5) && isspace(p[5]) ) abc_MIDI_voice(p+6, h->tp = abc_check_track(h, h->tp), h); if( !strncmp(p,"legato",6) && (p[6]=='\0' || p[6]==delim || isspace(p[6])) ) abc_MIDI_legato(p+6, h->tp = abc_check_track(h, h->tp)); } // continuate line that ends with a backslash, can't do this in abc_gets because voice lines // can have comment lines in between that must be parsed properly, for example: // [V:1] cdef gabc' |\ << continuation backslash // %%MIDI program 25 // c'bag fedc | // informational lines can have this too, so it is rather convoluted code... static char *abc_continuated(ABCHANDLE *h, MMFILE *mmf, char *p) { char *pm, *p1, *p2 = 0; int continued; pm = p; while( pm[strlen(pm)-1]=='\\' ) { p1 = strdup(pm); if( p2 ) free(p2); continued = 1; while( continued ) { continued = 0; pm = abc_gets(h, mmf); if( !pm ) { abc_message("line not properly continued\n%s", p1); return p1; } while( *pm && isspace(*pm) ) ++pm; if( !strncmp(pm,"%%",2) ) { for( p2 = pm+2; *p2 && isspace(*p2); p2++ ) ; if( !strncmp(p2,"MIDI",4) && (p2[4]=='=' || isspace(p2[4])) ) { for( p2+=5; *p2 && isspace(*p2); p2++ ) ; if( *p2 == '=' ) for( p2+=1; *p2 && isspace(*p2); p2++ ) ; abc_MIDI_command(h,p2,'%'); } continued = 1; } } p2 = (char *)malloc(strlen(p1)+strlen(pm)); if( !p2 ) { abc_message("macro line too long\n%s", p1); return p1; } p1[strlen(p1)-1] = '\0'; // strip off the backslash strcpy(p2,p1); strcat(p2,pm); pm = p2; free(p1); } return pm; } // ===================================================================================== BOOL CSoundFile::ReadABC(const uint8_t *lpStream, DWORD dwMemLength) { static int avoid_reentry = 0; ABCHANDLE *h; uint32_t numpat; MMFILE mm, *mmfile; uint32_t t; char *line, *p, *pp, ch, ch0=0; char barsig[52]; // for propagated accidental key signature within bar char *abcparts; uint8_t partpat[27][2], *orderlist = NULL; int orderlen = 0; enum { NOWHERE, INBETWEEN, INHEAD, INBODY, INSKIPFORX, INSKIPFORQUOTE } abcstate; ABCEVENT_JUMPTYPE j; ABCEVENT_X_EFFECT abceffect; int abceffoper; int abcxcount=0, abcxwanted=0, abcxnumber=1; int abckey, abcrate, abcchord, abcvol, abcbeatvol, abcnoslurs, abcnolegato, abcfermata, abcarpeggio, abcto; int abctempo; int cnotelen=0, cnotediv=0, snotelen, snotediv, mnotelen, mnotediv, notelen, notediv; // c for chords, s for standard L: setting, m for M: barlength int abchornpipe, brokenrithm, tupletp, tupletq, tupletr; int ktempo; uint32_t abcgrace=0, bartime, thistime=0; ABCTRACK *tpd, *ttp; ABCMACRO *mp; int mmsp; MMFILE *mmstack[MAXABCINCLUDES]; if( !TestABC(lpStream, dwMemLength) ) return FALSE; h = ABC_Init(); if( !h ) return FALSE; mmfile = &mm; mm.mm = (char *)lpStream; mm.sz = dwMemLength; mm.pos = 0; while( avoid_reentry ) sleep(1); avoid_reentry = 1; pat_resetsmp(); pat_init_patnames(); m_nDefaultTempo = 0; global_voiceno = 0; abckey = 0; h->tracktime = 0; global_songstart = 0; h->speed = 6; abcrate = 240; global_tempo_factor = 2; global_tempo_divider = 1; abctempo = 0; ktempo = 0; abceffect = none; abceffoper = 0; abcvol = 120; h->abcchordvol = abcvol; h->abcbassvol = abcvol; h->abcchordprog = 25; // acoustic guitar h->abcbassprog = 33; // acoustic bass abcparts = 0; abcnoslurs = 1; abcnolegato = 1; abcfermata = 0; abcarpeggio = 0; abcto = 0; snotelen = 0; snotediv = 0; mnotelen = 1; mnotediv = 1; abchornpipe = 0; brokenrithm = 0; tupletp = 0; tupletq = 0; tupletr = 0; h->ktrans = 0; h->drumon = 0; h->gchordon = 1; h->droneon = 0; h->tracktime = 0; bartime = 0; h->tp = NULL; h->tpc = NULL; h->tpr = NULL; tpd = NULL; h->dronegm = 71; h->dronepitch[0] = 45; h->dronepitch[1] = 33; h->dronevol[0] = 80; h->dronevol[1] = 80; abc_new_umacro(h, "v = +downbow+"); abc_new_umacro(h, "u = +upbow+"); abc_new_umacro(h, "O = +coda+"); abc_new_umacro(h, "S = +segno+"); abc_new_umacro(h, "P = +uppermordent+"); abc_new_umacro(h, "M = +lowermordent+"); abc_new_umacro(h, "L = +emphasis+"); abc_new_umacro(h, "H = +fermata+"); abc_new_umacro(h, "T = +trill+"); abc_new_umacro(h, "~ = +roll+"); abc_setup_chordnames(); abc_init_partpat(partpat); abc_MIDI_beat(h, ""); // reset beat array abc_MIDI_beatstring(h, ""); // reset beatstring mmsp = 1; mmstack[0] = mmfile; mmfseek(mmfile,0,SEEK_SET); abcstate = NOWHERE; if( h->pickrandom ) { abcstate = INSKIPFORX; abcxcount = 0; mmfseek(mmfile,0,SEEK_SET); while ((line=abc_gets(h, mmfile)) != NULL) { for( p=line; isspace(*p); p++ ) ; if( !strncmp(p,"X:",2) ) abcxcount++; } if( abcxcount == 0 ) abcstate = NOWHERE; else abcxwanted = (h->pickrandom - 1) % abcxcount; abcxcount = 0; mmfseek(mmfile,0,SEEK_SET); } while( mmsp > 0 ) { mmsp--; while ((line=abc_gets(h, mmstack[mmsp])) != NULL) { char blankline[3] = "% "; for( p=line; isspace(*p); p++ ) ; switch(abcstate) { case INSKIPFORX: if( !strncmp(p,"X:",2) ) { if( abcxcount++ != abcxwanted ) break; } // fall through case INBETWEEN: if( !strncmp(p,"X:",2) ) { abcstate = INHEAD; memset(m_szNames[0], 0, 32); for( p+=2; isspace(*p); p++ ) ; abcxnumber = atoi(p); abchornpipe = 0; h->droneon = 0; h->dronegm = 71; h->dronepitch[0] = 45; h->dronepitch[1] = 33; h->dronevol[0] = 80; h->dronevol[1] = 80; for( ttp = h->track; ttp; ttp=ttp->next ) { ttp->vno = 0; // mark track unused ttp->capostart = NULL; } h->tp = NULL; // forget old voices h->tpc = NULL; h->tpr = NULL; global_voiceno = 0; abc_set_parts(&abcparts, 0); abcgrace = 0; h->ktrans = 0; ktempo = 0; h->gchordon = 1; h->drumon = 0; global_songstart = h->tracktime; abc_MIDI_beat(h, ""); // reset beat array abc_MIDI_beatstring(h, ""); // reset beatstring strcpy(h->gchord, ""); // reset gchord string abcnolegato = 1; // reset legato switch } break; case NOWHERE: if( p[0] != '\0' && p[1] == ':' ) { abcstate = INHEAD; abc_set_parts(&abcparts, 0); strcpy(h->gchord, ""); if( h->drumon && h->tpr ) abc_add_drum_sync(h, h->tpr, h->tracktime); if( h->tpc && !h->gchordon ) abc_add_gchord_syncs(h, h->tpc, h->tracktime); h->gchordon = 1; h->drumon = 0; } else break; case INHEAD: if( !strncmp(p,"L:",2) ) { sscanf(p+2," %d / %d", &snotelen, &snotediv); break; } if( !strncmp(p,"M:",2) ) { abc_M_field(p+2, &mnotelen, &mnotediv); break; } if( !strncmp(p,"P:",2) ) { abc_set_parts(&abcparts, p+2); break; } if( !strncmp(p,"Q:",2) ) { abctempo = abc_extract_tempo(p+2,0); ktempo = 1; if( h->track ) { // make h->tracktime start of a new age... abc_add_partbreak(h, h->track, h->tracktime); abc_add_tempo_event(h, h->track, h->tracktime, abctempo); } if( m_nDefaultTempo == 0 ) m_nDefaultTempo = abctempo; break; } if( !strncmp(p,"T:",2) ) { char buf[200]; if( strchr(p,'%') ) *strchr(p,'%') = '\0'; for( t=strlen(p)-1; isspace(p[t]); t-- ) p[t]='\0'; for( t=2; isspace(p[t]); t++ ) ; strcpy(buf,m_szNames[0]); if( strlen(buf) ) strcat(buf," "); // add a space // don't go past 200 bytes. strncat(buf, p+t, 200-strlen(buf)-1); if( strlen(buf) > 31 ) buf[31] = '\0'; // chop it of strcpy(m_szNames[0], buf); break; } if( !strncmp(p,"R:",2) ) { for( p+=2; isspace(*p); p++ ) ; if( !strncmp(p,"hornpipe",8) && (isspace(p[8]) || p[8]=='\0') ) abchornpipe = 1; else abchornpipe = 0; break; } if( !strncmp(p,"V:",2) ) { for( t=2; p[t]==' '; t++ ) ; h->tp = abc_locate_track(h, p+t, 0); abcvol = h->tp->volume; abcnolegato = !h->tp->legato; if( !abcnolegato ) abcnoslurs = 0; break; } if( !strncmp(p,"K:",2) ) { abcstate = INBODY; abckey = ABC_Key(p+2); sprintf(barsig, "%s%s", sig[abckey], sig[abckey]); // reset the key signature p = abc_skip_word(p+2); h->ktrans = abc_transpose(p); p = blankline; // force skip rest of line if( snotelen == 0 ) { // calculate default notelen from meter M: if( mnotediv == 0 ) mnotediv = mnotelen = 1; // do'nt get nuked snotelen = 100 * mnotelen / mnotediv; if( snotelen > 74 ) snotediv = 8; else snotediv = 16; snotelen = 1; } abceffect = none; abceffoper = 0; if( !(snotelen == 1 && snotediv == 8) ) abchornpipe = 0; // no matter what they said at R: brokenrithm = 0; global_part = ' '; abcgrace = 0; abcnoslurs = abcnolegato; abcto = 0; h->tpc = NULL; // reset chord track tpd = NULL; // reset drone track h->tpr = NULL; // reset drum track if( !strlen(h->gchord) ) abc_metric_gchord(h, mnotelen, mnotediv); h->barticks = notelen_notediv_to_ticks(h->speed, mnotelen, mnotediv); if( abctempo && !ktempo ) { // did not set tempo in this songpiece so reset to abcrate abctempo = 0; global_tempo_factor = 2; global_tempo_divider = 1; if( h->track ) { // make h->tracktime start of a new age... abc_add_partbreak(h, h->track, h->tracktime); abc_add_tempo_event(h, h->track, h->tracktime, abcrate); } if( m_nDefaultTempo == 0 ) m_nDefaultTempo = abcrate; } abc_init_partpat(partpat); partpat[26][0] = abc_patno(h, h->tracktime); partpat[26][1] = 0; abc_globalslide(h, h->tracktime, 2); // reset all volumeslides break; } if( !strlen(p) ) abcstate = INBETWEEN; break; case INSKIPFORQUOTE: while( *p && *p != '"' ) p++; if( *p == '\0' ) break; abcstate = INBODY; // fall through case INBODY: if( !strlen(p) && h->track ) { // end of this song abcstate = h->pickrandom? INSKIPFORX: INBETWEEN; // last but not least shut off all pending events abc_recalculate_tracktime(h); for( ttp=h->track; ttp; ttp=ttp->next ) abc_add_noteoff(h,ttp,h->tracktime); abc_add_partbreak(h, h->track, h->tracktime); t = abc_patno(h, h->tracktime); if( abc_pattracktime(h, h->tracktime) % abcticks(64 * h->speed) ) t++; if( global_part == ' ' ) { partpat[26][1] = t; if( abcparts ) { for( t=0; t<26; t++ ) if( partpat[t][0] < partpat[t][1] ) break; if( t == 26 ) { abc_message("parts (%s) set but not used", abcparts); abc_set_parts(&abcparts, 0); // forget the parts array } } } else partpat[global_part - 'A'][1] = t; if( !abcparts ) abc_song_to_parts(h, &abcparts, partpat); orderlen = abc_partpat_to_orderlist(partpat, abcparts, h, &orderlist, orderlen); } if( !strncmp(p,"V:",2) ) { for( t=2; p[t]==' '; t++ ) ; h->tp = abc_locate_track(h, p+t, 0); sprintf(barsig, "%s%s", sig[abckey], sig[abckey]); // reset the key signature abcgrace = 0; brokenrithm = 0; h->tracktime = abc_tracktime(h->tp); bartime = h->tracktime; // it is not friendly to break voices in the middle of a track... abcnolegato = !h->tp->legato; if( !abcnolegato ) abcnoslurs = 0; *p = '%'; // make me skip the rest of the line.... } if( !strncmp(p,"K:",2) ) { abckey = ABC_Key(p+2); sprintf(barsig, "%s%s", sig[abckey], sig[abckey]); // reset the key signature p = abc_skip_word(p+2); h->ktrans = abc_transpose(p); p = blankline; // make me skip the rest of the line.... } if( !strncmp(p,"L:",2) ) { sscanf(p+2," %d / %d", &snotelen, &snotediv); *p = '%'; // make me skip the rest of the line.... } if( !strncmp(p,"M:",2) ) { abc_M_field(p+2, &mnotelen, &mnotediv); h->barticks = notelen_notediv_to_ticks(h->speed, mnotelen, mnotediv); *p = '%'; // make me skip the rest of the line.... } if( !strncmp(p,"Q:",2) ) { abctempo = abc_extract_tempo(p+2,ch0=='\\'); if( !h->track ) { h->tp = abc_check_track(h, h->track); h->tp->vno = 0; // mark reuseable (temporarely, until first notes come up) } abc_add_tempo_event(h, h->track, h->tracktime, abctempo); *p = '%'; // make me skip the rest of the line.... } if( !strncmp(p,"T:",2) ) { char buf[200]; if( strchr(p,'%') ) *strchr(p,'%') = '\0'; for( t=strlen(p)-1; isspace(p[t]); t-- ) p[t]='\0'; for( t=2; isspace(p[t]); t++ ) ; strcpy(buf,m_szNames[0]); if( strlen(buf) + strlen(p+t) > 198 ) p[t+198-strlen(buf)] = '\0'; // chop it of if( strlen(buf) ) strcat(buf," "); // add a space strcat(buf, p+t); if( strlen(buf) > 31 ) buf[31] = '\0'; // chop it of strcpy(m_szNames[0], buf); *p = '%'; // make me skip the rest of the line.... } break; } if( !strncmp(p,"m:",2) ) { if( abcstate != INSKIPFORX ) { char *pm = p; if (mmstack[mmsp]->pos < (LONG)dwMemLength) { pm = abc_continuated(h, mmstack[mmsp], p); if (pm+2) abc_new_macro(h, pm+2); } if( pm != p ) { free(pm); if( h->tp ) abcnolegato = !h->tp->legato; if( !abcnolegato ) abcnoslurs = 0; } } // cannot edit p, as it might not exist due to continuated. p = blankline; // skip rest of line } if( !strncmp(p,"U:",2) ) { abc_new_umacro(h, p+2); *p = '%'; // skip rest of line } if( !strncmp(p,"w:",2) ) { // inline lyrics *p = '%'; // skip rest of line } if( !strncmp(p,"W:",2) ) { // lyrics at end of song body *p = '%'; // skip rest of line } if( !strncmp(p,"d:",2) ) { // oldstyle decorations abc_message("warning: old style decorations not handled\n%s", p); *p = '%'; // skip rest of line } if( !strncmp(p,"s:",2) ) { // newstyle decorations (symbols) abc_message("warning: new style decorations not handled\n%s", p); *p = '%'; // skip rest of line } if( !strncmp(p,"I:",2) && abcstate != INSKIPFORX ) { // handle like oldstyle '%%command' lines p[0]= '%'; p[1]= '%'; } if( !strncmp(p,"%%",2) ) { for( p+=2; *p && isspace(*p); p++ ) ; if( !strncmp(p,"abc-include",11) && isspace(p[11]) ) { for( t=12; isspace(p[t]); t++ ) ; if( p[t] ) { mmsp++; if( mmsp == MAXABCINCLUDES ) { mmsp--; abc_message("failure: too many abc-include's, %s", &p[t]); } else { mmstack[mmsp] = mmfopen(&p[t], "r"); if( !mmstack[mmsp] ) { mmsp--; abc_message("failure: abc-include file %s not found", &p[t]); } } } else abc_message("failure: abc-include missing file name, %s", p); } if( !strncmp(p,"MIDI",4) && (p[4]=='=' || isspace(p[4])) && abcstate != INSKIPFORX ) { for( p+=5; *p && isspace(*p); p++ ) ; if( *p == '=' ) for( p+=1; *p && isspace(*p); p++ ) ; abc_MIDI_command(h,p,'%'); if( h->tp ) abcnolegato = !h->tp->legato; if( !abcnolegato ) abcnoslurs = 0; } if(*p) *p = '%'; // skip rest of line } if( abcstate == INBODY ) { if( *p == 'P' && p[1] == ':' ) { // a line with a part indication if( abcparts != NULL ) { // make h->tracktime start of a new age... if( !h->track ) { h->tp = abc_check_track(h, h->track); h->tp->vno = 0; // mark reuseable (temporarely, until first notes come up) } h->tracktime = h->track? abc_tracktime(h->track): 0; // global parts are voice independent abc_add_partbreak(h, h->track, h->tracktime); t = abc_patno(h, h->tracktime); if( global_part == ' ' ) { partpat[26][1] = t; if( abcparts ) { for( t=0; t<26; t++ ) if( partpat[t][0] < partpat[t][1] ) break; if( t == 26 ) { abc_message("parts (%s) set but not used", abcparts); abc_set_parts(&abcparts, 0); // forget the parts array } } } else partpat[global_part - 'A'][1] = t; // give every new coming abcevent the desired part indication while( p[2]==' ' || p[2]=='.' ) p++; // skip blancs and dots if( isupper(p[2]) ) global_part = p[2]; else global_part = ' '; if( global_part == ' ' ) partpat[26][0] = t; else partpat[global_part - 'A'][0] = t; } *p = '%'; // make me skip the rest of the line.... } if( h->droneon && !tpd ) { tpd = h->track; if( tpd ) { tpd = abc_locate_track(h, tpd->v, DRONEPOS1); tpd->instr = h->dronegm; abc_add_dronenote(h, tpd, h->tracktime, h->dronepitch[0], h->dronevol[0]); tpd = abc_locate_track(h, tpd->v, DRONEPOS2); tpd->instr = h->dronegm; abc_add_dronenote(h, tpd, h->tracktime, h->dronepitch[1], h->dronevol[1]); } } if( tpd && !h->droneon ) { tpd = abc_locate_track(h, tpd->v, DRONEPOS1); abc_add_noteoff(h, tpd, h->tracktime); tpd = abc_locate_track(h, tpd->v, DRONEPOS2); abc_add_noteoff(h, tpd, h->tracktime); tpd = NULL; } if( h->drumon && !h->tpr ) { h->tpr = h->track; if( h->tpr ) abc_add_drum_sync(h, h->tpr, h->tracktime); // don't start drumming from the beginning of time! } if( h->tpr && !h->drumon ) h->tpr = NULL; if( *p && *p != '%' ) { // skip uninteresting lines // plough thru the songline gathering mos.... ch0 = ' '; pp = 0; while (*p && (ch = *p++) != '\0') { if( !pp && isalpha(ch) && *p != ':' ) { // maybe a macro for( mp=h->umacro; mp; mp=mp->next ) { if( ch == mp->name[0] ) { pp = p; p = mp->subst; ch = *p; if( ch ) p++; break; } } } switch(ch) { case '%': abcto = 0; while( *p ) p++; break; case '[': // chord follows or some inline field abcto = 0; if( *p=='|' ) break; // [| a thick-thin bar line, loop around and let case '|' handle it if( !strncmp(p,"V:",2) ) { // inline voice change for( t=2; isspace(p[t]); t++ ) ; h->tp = abc_locate_track(h, p+t, 0); for( ; *p && *p != ']'; p++ ) ; abcgrace = 0; brokenrithm = 0; sprintf(barsig, "%s%s", sig[abckey], sig[abckey]); // reset the key signature h->tracktime = abc_tracktime(h->tp); bartime = h->tracktime; // it is not wise to break voices in the middle of a track... abcvol = h->tp->volume; abcnolegato = !h->tp->legato; if( !abcnolegato ) abcnoslurs = 0; break; } if( !strncmp(p,"K:",2) ) { abckey = ABC_Key(p+2); sprintf(barsig, "%s%s", sig[abckey], sig[abckey]); // reset the key signature p = abc_skip_word(p+2); h->ktrans = abc_transpose(p); for( ; *p && *p != ']'; p++ ) ; break; } if( !strncmp(p,"M:",2) ) { abc_M_field(p+2, &mnotelen, &mnotediv); for( ; *p && *p != ']'; p++ ) ; h->barticks = notelen_notediv_to_ticks(h->speed, mnotelen, mnotediv); break; } if( !strncmp(p,"P:",2) ) { // a [P:X] field inline if( abcparts != NULL ) { // make h->tracktime start of a new age... if( h->track ) abc_add_partbreak(h, h->track, h->tracktime); t = abc_patno(h, h->tracktime); if( global_part == ' ' ) partpat[26][1] = t; else partpat[global_part - 'A'][1] = t; // give every new coming abcevent the desired part indication while( isspace(p[2]) || p[2]=='.' ) p++; // skip blancs and dots if( isupper(p[2]) ) global_part = p[2]; else global_part = ' '; if( global_part == ' ' ) partpat[26][0] = t; else partpat[global_part - 'A'][0] = t; } for( ; *p && *p != ']'; p++ ) ; break; } if( !strncmp(p,"Q:",2) ) { abctempo = abc_extract_tempo(p+2,1); for( ; *p && *p != ']'; p++ ) ; if( h->track ) abc_add_tempo_event(h, h->track, h->tracktime, abctempo); break; } if( !strncmp(p,"I:",2) ) { // interpret some of the possibilitys for( p += 2; isspace(*p); p++ ) ; if( !strncmp(p,"MIDI",4) && (p[4]=='=' || isspace(p[4])) ) { // interpret some of the possibilitys for( p += 4; isspace(*p); p++ ) ; if( *p == '=' ) for( p += 1; isspace(*p); p++ ) ; abc_MIDI_command(h, p, ']'); if( h->tp ) abcnolegato = !h->tp->legato; if( !abcnolegato ) abcnoslurs = 0; } for( ; *p && *p != ']'; p++ ) ; // skip rest of inline field } if( *p && p[1] == ':' ) { // some other kind of inline field for( ; *p && *p != ']'; p++ ) ; break; } if( *p && strchr("abcdefgABCDEFG^_=",*p) ) { int cnl[8],cnd[8],vnl,nl0=0,nd0=0,barticks; // for chords with notes of varying length memset(cnl, 0, sizeof(cnl)); memset(cnd, 0, sizeof(cnd)); barticks = notelen_notediv_to_ticks(h->speed,1,mnotediv); if (barticks == 0) barticks = 1; abcchord = 0; vnl = 0; h->tp = abc_check_track(h, h->tp); abc_track_clear_tiedvpos(h); abcbeatvol = abc_beat_vol(h, abcvol, (h->tracktime - bartime)/barticks); while (*p && (ch=*p++) != '\0' && (ch != ']')) { h->tp = abc_locate_track(h, h->tp->v, abcchord? abcchord+DRONEPOS2: 0); p += abc_add_noteon(h, ch, p, h->tracktime, barsig, abcbeatvol, abceffect, abceffoper); p += abc_notelen(p, ¬elen, ¬ediv); if( *p == '-' ) { p++; if( h->tp->tail && h->tp->tail->flg != 1 ) h->tp->tienote = h->tp->tail; } if( abcchord<8 ) { cnl[abcchord] = notelen; cnd[abcchord] = notediv; } if( abcchord==0 ) { cnotelen = notelen; cnotediv = notediv; nl0 = notelen; nd0 = notediv; } else { if( cnotelen != notelen || cnotediv != notediv ) { vnl = 1; // update to longest duration if( cnotelen * notediv < notelen * cnotediv ) { cnotelen = notelen; cnotediv = notediv; abc_track_untie_short_chordnotes(h); } if( cnotelen * notediv > notelen * cnotediv ) { if( h->tp->tienote ) { abc_message("short notes in chord can not be tied:\n%s", h->line); h->tp->tienote = 0; // short chord notes cannot be tied... } } // update to shortest duration if( nl0 * notediv > notelen * nd0 ) { nl0 = notelen; nd0 = notediv; } } } abcchord++; } p += abc_notelen(p, ¬elen, ¬ediv); if( (ch = *p) == '-' ) p++; // tied chord... if( abcarpeggio ) { // update starttime in the noteon events... thistime = notelen_notediv_to_ticks(h->speed, nl0*notelen*snotelen, nd0*notediv*snotediv)/abcchord; if( thistime > abcticks(h->speed) ) thistime = abcticks(h->speed); for( nl0=1; nl0<abcchord; nl0++ ) { h->tp = abc_locate_track(h, h->tp->v, nl0+DRONEPOS2); if( h->tp->tail ) h->tp->tail->tracktick = h->tracktime + thistime * nl0; } } notelen *= cnotelen; notediv *= cnotediv; tupletr = abc_tuplet(¬elen, ¬ediv, tupletp, tupletq, tupletr); while( isspace(*p) ) p++; // allow spacing in broken rithm notation p += abc_brokenrithm(p, ¬elen, ¬ediv, &brokenrithm, abchornpipe); thistime = notelen_notediv_to_ticks(h->speed, notelen*snotelen, notediv*snotediv); if( abcfermata ) { thistime <<= 1; abcfermata = 0; } if( thistime > abcgrace ) { thistime -= abcgrace; abcgrace = 0; } else { abcgrace -= thistime; thistime = abcticks(h->speed); abcgrace += abcticks(h->speed); } h->tracktime += thistime; while( abcchord>0 ) { abcchord--; h->tp = abc_locate_track(h, h->tp->v, abcchord? abcchord+DRONEPOS2: 0); if( vnl && (abcchord < 8) && cnotelen && cnd[abcchord] && (cnl[abcchord] != cnotelen || cnd[abcchord] != cnotediv) ) { abc_add_noteoff(h, h->tp, h->tracktime - thistime + (thistime * cnl[abcchord] * cnotediv)/(cnd[abcchord] * cnotelen) ); } else { if( ch=='-' && h->tp->tail && h->tp->tail->flg != 1 ) h->tp->tienote = h->tp->tail; // copy noteon event to tienote in track if( thistime > abcticks(h->speed) ) abc_add_noteoff(h, h->tp, h->tracktime - abcnoslurs); else abc_add_noteoff(h, h->tp, h->tracktime); } } if( h->gchordon && (h->tp == h->tpc) ) abc_add_gchord(h, h->tracktime, bartime); if( h->drumon && (h->tp == h->tpr) ) abc_add_drum(h, h->tracktime, bartime); abcarpeggio = 0; if( abceffoper != 255 ) abceffect = none; break; } if( isdigit(*p) ) { // different endings in repeats [i,j,n-r,s,... h->tp = abc_check_track(h, h->tp); abc_add_partbreak(h, h->tp, h->tracktime); p += abc_getnumber(p, ¬elen); abc_add_variant_start(h, h->tp, h->tracktime, notelen); while( *p==',' || *p=='-' ) { if( *p==',' ) { p++; p += abc_getnumber(p, ¬elen); abc_add_variant_choise(h->tp, notelen); } else { p++; p += abc_getnumber(p, ¬ediv); while( notelen < notediv ) { notelen++; abc_add_variant_choise(h->tp, notelen); } } } break; } // collect the notes in the chord break; case '(': // slurs follow or some tuplet (duplet, triplet etc.) abcto = 0; if( isdigit(*p) ) { p += abc_getnumber(p,&tupletp); tupletr = tupletp; // ABC draft 2.0 (4.13): if r is not given it defaults to p switch( tupletp ) { // ABC draft 2.0 (4.13): q defaults depending on p and time signature case 2: case 4: case 8: tupletq = 3; break; case 3: case 6: tupletq = 2; break; default: if( snotediv == 8 ) tupletq = 3; else tupletq = 2; break; } if( *p==':' ) { p++; if( isdigit(*p) ) p += abc_getnumber(p,&tupletq); if( *p==':' ) { p++; if( isdigit(*p) ) p += abc_getnumber(p,&tupletr); } } } else abcnoslurs=0; break; case ')': // end of slurs abcto = 0; abcnoslurs = abcnolegato; break; case '{': // grace notes follow { abcto = 0; h->tp = abc_check_track(h, h->tp); abc_track_clear_tiedvpos(h); abcgrace = 0; int barticks = notelen_notediv_to_ticks(h->speed,1,mnotediv); if (barticks == 0) barticks = 1; abcbeatvol = abc_beat_vol(h, abcvol, (h->tracktime - bartime)/barticks); while (*p && (ch=*p++) != '\0' && (ch != '}')) { p += abc_add_noteon(h, ch, p, h->tracktime+abcgrace, barsig, abcbeatvol, none, 0); p += abc_notelen(p, ¬elen, ¬ediv); if( *p=='-' ) { p++; if( h->tp->tail->flg != 1 ) h->tp->tienote = h->tp->tail; } notediv *= 4; // grace notes factor 4 shorter (1/8 => 1/32) abcgrace += notelen_notediv_to_ticks(h->speed, notelen*snotelen, notediv*snotediv); abc_add_noteoff(h, h->tp, h->tracktime + abcgrace); } h->tracktime += abcgrace; abc_add_sync(h, h->tp, h->tracktime); if( h->gchordon && (h->tp == h->tpc) ) abc_add_gchord(h, h->tracktime, bartime); if( h->drumon && (h->tp == h->tpr) ) abc_add_drum(h, h->tracktime, bartime); } break; case '|': // bar symbols abcto = 0; if( h->gchordon && h->tp && (h->tp == h->tpc) ) abc_add_gchord(h, h->tracktime, bartime); if( h->drumon && (h->tp == h->tpr) ) abc_add_drum(h, h->tracktime, bartime); sprintf(barsig, "%s%s", sig[abckey], sig[abckey]); // reset the key signature bartime = h->tracktime; if( h->tp && h->tp->vpos ) h->tp = abc_locate_track(h, h->tp->v, 0); // reset from voice overlay if( isdigit(*p) ) { // different endings in repeats |i,j,n-r,s,... h->tp = abc_check_track(h, h->tp); abc_add_partbreak(h, h->tp, h->tracktime); p += abc_getnumber(p, ¬elen); abc_add_variant_start(h, h->tp, h->tracktime, notelen); while( *p==',' || *p=='-' ) { if( *p==',' ) { p++; p += abc_getnumber(p, ¬elen); abc_add_variant_choise(h->tp, notelen); } else { p++; p += abc_getnumber(p, ¬ediv); while( notelen < notediv ) { notelen++; abc_add_variant_choise(h->tp, notelen); } } } break; } if( *p==':' ) { // repeat start p++; h->tp = abc_check_track(h, h->tp); abc_add_partbreak(h, h->tp, h->tracktime); abc_add_setloop(h, h->tp, h->tracktime); } break; case '&': // voice overlay abcto = 0; h->tracktime = bartime; h->tp = abc_check_track(h, h->tp); t = h->tp->vpos; h->tp = abc_locate_track(h, h->tp->v, t? t+1: DRONEPOS2+1); break; case ']': // staff break, end of song abcto = 0; break; case ':': // repeat jump abcto = 0; h->tp = abc_check_track(h, h->tp); j = (h->tp->slidevol == -2)? jumpfade: jumpnormal; abc_add_setjumploop(h, h->tp, h->tracktime, j); abc_add_partbreak(h, h->tp, h->tracktime); if( *p==':' ) { // repeat start without intermediate bar symbol p++; abc_add_setloop(h, h->tp, h->tracktime); } break; case '"': // chord notation if( !strchr("_^<>@", *p) && !isdigit(*p) ) { // if it's not a annotation string h->tp = abc_check_track(h, h->tp); if( !h->tpc ) h->tpc = abc_locate_track(h, h->tp->v, 0); if( h->tp == h->tpc ) abc_add_chord(p, h, h->tpc, h->tracktime); // only do chords for one voice } abcto = 0; while (*p && (ch=*p++) != '\0' && (ch != '"')) { if( !strncasecmp(p,"fade",4) && h->track && h->track->slidevol > -2 ) abc_globalslide(h, h->tracktime, -2); // set volumeslide to fade away... if( !strncasecmp(p,"to coda",7) ) { h->tp = abc_check_track(h, h->tp); abc_add_partbreak(h, h->tp, h->tracktime); abc_add_tocoda(h, h->tp, h->tracktime); p+=7; abcto = -1; } else if( !isspace(*p) ) abcto = 0; if( !strncasecmp(p,"to",2) && (isspace(p[2]) || p[2] == '"') ) abcto = 1; } if( !ch ) abcstate = INSKIPFORQUOTE; break; case '\\': // skip the rest of this line, should be the end of the line anyway while( *p ) p++; ch = '\\'; // remember for invoice tempo changes.... break; case '!': // line break, or deprecated old style decoration case '+': // decorations new style if( !strncmp(p,"coda",4) && p[4] == ch ) { h->tp = abc_check_track(h, h->tp); if( abcto ) { if( abcto > 0 ) { abc_add_partbreak(h, h->tp, h->tracktime); abc_add_tocoda(h, h->tp, h->tracktime); } } else { abc_add_partbreak(h, h->tp, h->tracktime); abc_add_coda(h, h->tp, h->tracktime); } p += 5; abcto = 0; break; } abcto = 0; if( !strncmp(p,"arpeggio",8) && p[8] == ch ) { abcarpeggio = 1; p += 9; break; } if( !strncmp(p,"crescendo(",10) && p[10] == ch ) { h->tp = abc_check_track(h, h->tp); abc_globalslide(h, h->tracktime, 1); p += 11; break; } if( !strncmp(p,"crescendo)",10) && p[10] == ch ) { h->tp = abc_check_track(h, h->tp); abc_globalslide(h, h->tracktime, 0); p += 11; break; } if( !strncmp(p,"<(",2) && p[2] == ch ) { h->tp = abc_check_track(h, h->tp); abc_globalslide(h, h->tracktime, 1); p += 3; break; } if( !strncmp(p,"<)",2) && p[2] == ch ) { h->tp = abc_check_track(h, h->tp); abc_globalslide(h, h->tracktime, 0); p += 3; break; } if( !strncmp(p,"dimimuendo(",11) && p[11] == ch ) { h->tp = abc_check_track(h, h->tp); abc_globalslide(h, h->tracktime, -1); p += 12; break; } if( !strncmp(p,"diminuendo)",11) && p[11] == ch ) { h->tp = abc_check_track(h, h->tp); abc_globalslide(h, h->tracktime, 0); p += 12; break; } if( !strncmp(p,">(",2) && p[2] == ch ) { h->tp = abc_check_track(h, h->tp); abc_globalslide(h, h->tracktime, -1); p += 3; break; } if( !strncmp(p,">)",2) && p[2] == ch ) { h->tp = abc_check_track(h, h->tp); abc_globalslide(h, h->tracktime, 0); p += 3; break; } if( !strncmp(p,"upbow",5) && p[5] == ch ) { abceffect = bow; abceffoper = 1; p += 6; break; } if( !strncmp(p,"downbow",7) && p[7] == ch ) { abceffect = bow; abceffoper = 0; p += 8; break; } if( !strncmp(p,"trill",5) && p[5] == ch ) { abceffect = trill; abceffoper = 0; p += 6; break; } if( !strncmp(p,"trill(",6) && p[6] == ch ) { abceffect = trill; abceffoper = 255; p += 7; break; } if( !strncmp(p,"trill)",6) && p[6] == ch ) { abceffect = none; abceffoper = 0; p += 7; break; } if( !strncmp(p,"accent",6) && p[6] == ch ) { abceffect = accent; abceffoper = 0; p += 7; break; } if( !strncmp(p,"emphasis",8) && p[8] == ch ) { abceffect = accent; abceffoper = 0; p += 9; break; } if( !strncmp(p,">",1) && p[1] == ch ) { abceffect = accent; abceffoper = 0; p += 2; break; } if( !strncmp(p,"fermata",7) && p[7] == ch ) { abcfermata = 1; p += 8; break; } if( !strncmp(p,"fine",4) && p[4] == ch ) { h->tp = abc_check_track(h, h->tp); abc_add_partbreak(h, h->tp, h->tracktime); abc_add_fine(h, h->tp, h->tracktime); p += 5; break; } if( !strncmp(p,"segno",5) && p[5] == ch ) { h->tp = abc_check_track(h, h->tp); abc_add_partbreak(h, h->tp, h->tracktime); abc_add_segno(h, h->tp, h->tracktime); p += 6; break; } if( !strncmp(p,"tocoda",6) && p[6] == ch ) { h->tp = abc_check_track(h, h->tp); abc_add_partbreak(h, h->tp, h->tracktime); abc_add_tocoda(h, h->tp, h->tracktime); p += 7; break; } if( !strncmp(p,"D.C.",4) && p[4] == ch ) { h->tp = abc_check_track(h, h->tp); j = (h->tp->slidevol == -2)? jumpdcfade: jumpdacapo; abc_add_setjumploop(h, h->tp, h->tracktime, j); abc_add_partbreak(h, h->tp, h->tracktime); p += 5; break; } if( !strncmp(p,"D.S.",4) && p[4] == ch ) { h->tp = abc_check_track(h, h->tp); j = (h->tp->slidevol == -2)? jumpdsfade: jumpdasegno; abc_add_setjumploop(h, h->tp, h->tracktime, j); abc_add_partbreak(h, h->tp, h->tracktime); p += 5; break; } if( !strncmp(p,"dacapo",6) && p[6] == ch ) { h->tp = abc_check_track(h, h->tp); j = (h->tp->slidevol == -2)? jumpdcfade: jumpdacapo; abc_add_setjumploop(h, h->tp, h->tracktime, j); abc_add_partbreak(h, h->tp, h->tracktime); p += 7; break; } if( !strncmp(p,"dacoda",6) && p[6] == ch ) { h->tp = abc_check_track(h, h->tp); j = (h->tp->slidevol == -2)? jumpdcfade: jumpdacapo; abc_add_setjumploop(h, h->tp, h->tracktime, j); abc_add_partbreak(h, h->tp, h->tracktime); p += 7; break; } if( ch == '!' ) { for( t=0; p[t] && strchr("|[:]!",p[t])==0 && !isspace(p[t]); t++ ) ; if( p[t] == '!' ) { // volume and other decorations, deprecated h->tp = abc_check_track(h, h->tp); abcvol = abc_parse_decorations(h, h->tp, p); p = &p[t+1]; } } else { h->tp = abc_check_track(h, h->tp); abcvol = abc_parse_decorations(h, h->tp, p); while (*p && (ch=*p++) != '\0' && (ch != '+')) ; } break; case '`': // back quotes are for readability break; case '.': // staccato marks break; default: // some kinda note must follow if( strchr("abcdefgABCDEFG^_=X",ch) ) { int barticks = notelen_notediv_to_ticks(h->speed, 1, mnotediv); if (barticks == 0) barticks = 1; h->tp = abc_check_track(h, h->tp); abc_track_clear_tiedvpos(h); abcbeatvol = abc_beat_vol(h, abcvol, (h->tracktime - bartime)/barticks); p += abc_add_noteon(h, ch, p, h->tracktime, barsig, abcbeatvol, abceffect, abceffoper); if( abceffoper != 255 ) abceffect = none; p += abc_notelen(p, ¬elen, ¬ediv); if( *p=='-' ) { p++; if( h->tp->tail && h->tp->tail->flg != 1 ) h->tp->tienote = h->tp->tail; } tupletr = abc_tuplet(¬elen, ¬ediv, tupletp, tupletq, tupletr); while( isspace(*p) ) p++; // allow spacing in broken rithm notation p += abc_brokenrithm(p, ¬elen, ¬ediv, &brokenrithm, abchornpipe); thistime = notelen_notediv_to_ticks(h->speed, notelen*snotelen, notediv*snotediv); if( abcfermata ) { thistime <<= 1; abcfermata = 0; } if( thistime > abcgrace ) { thistime -= abcgrace; abcgrace = 0; } else { abcgrace -= thistime; thistime = abcticks(h->speed); abcgrace += abcticks(h->speed); } h->tracktime += thistime; if( thistime > abcticks(h->speed) ) abc_add_noteoff(h, h->tp, h->tracktime - abcnoslurs - (( ch0 == '.')? thistime / 2: 0)); else abc_add_noteoff(h, h->tp, h->tracktime); abc_add_sync(h, h->tp, h->tracktime); if( h->gchordon && (h->tp == h->tpc) ) abc_add_gchord(h, h->tracktime, bartime); if( h->drumon && (h->tp == h->tpr) ) abc_add_drum(h, h->tracktime, bartime); abcarpeggio = 0; break; } if( strchr("zx",ch) ) { h->tp = abc_check_track(h, h->tp); abc_track_clear_tiednote(h); p += abc_notelen(p, ¬elen, ¬ediv); tupletr = abc_tuplet(¬elen, ¬ediv, tupletp, tupletq, tupletr); while( isspace(*p) ) p++; // allow spacing in broken rithm notation p += abc_brokenrithm(p, ¬elen, ¬ediv, &brokenrithm, abchornpipe); thistime = notelen_notediv_to_ticks(h->speed, notelen*snotelen, notediv*snotediv); if( abcfermata ) { thistime <<= 1; abcfermata = 0; } if( thistime > abcgrace ) { thistime -= abcgrace; abcgrace = 0; } else { abcgrace -= thistime; thistime = abcticks(h->speed); abcgrace += abcticks(h->speed); } h->tracktime += thistime; abc_add_sync(h, h->tp, h->tracktime); if( h->gchordon && (h->tp == h->tpc) ) abc_add_gchord(h, h->tracktime, bartime); if( h->drumon && (h->tp == h->tpr) ) abc_add_drum(h, h->tracktime, bartime); abcarpeggio = 0; break; } if( strchr("Z",ch) ) { h->tp = abc_check_track(h, h->tp); abc_track_clear_tiednote(h); p += abc_notelen(p, ¬elen, ¬ediv); thistime = notelen_notediv_to_ticks(h->speed, notelen*mnotelen, notediv*mnotediv); if( abcfermata ) { thistime <<= 1; abcfermata = 0; } if( thistime > abcgrace ) { thistime -= abcgrace; abcgrace = 0; } else { abcgrace -= thistime; thistime = abcticks(h->speed); abcgrace += abcticks(h->speed); } h->tracktime += thistime; sprintf(barsig, "%s%s", sig[abckey], sig[abckey]); // reset the key signature abc_add_sync(h, h->tp, h->tracktime); if( h->gchordon && (h->tp == h->tpc) ) abc_add_gchord(h, h->tracktime, bartime); if( h->drumon && (h->tp == h->tpr) ) abc_add_drum(h, h->tracktime, bartime); abcarpeggio = 0; break; } if( isalpha(ch) && *p==':' ) { // some unprocessed field line? while( *p ) p++; // skip it break; } break; } ch0 = ch; // remember previous char, can be staccato dot... if( pp ) { // did we have a U: macro substitution? if( !*p ) { p = pp; pp = 0; } } } } } } if( mmsp ) mmfclose(mmstack[mmsp]); } ABC_CleanupMacros(h); // we dont need them anymore if( !h->track ) { char buf[11]; sprintf(buf,"%u", abcxnumber); abc_message("abc X:%s has no body", buf); h->track = abc_check_track(h, h->track); // for sanity... } if( abcstate == INBODY ) { // last but not least shut off all pending events abc_recalculate_tracktime(h); for( ttp=h->track; ttp; ttp=ttp->next ) abc_add_noteoff(h,ttp,h->tracktime); abc_add_partbreak(h, h->track, h->tracktime); t = abc_patno(h, h->tracktime); if( abc_pattracktime(h, h->tracktime) % abcticks(64 * h->speed) ) t++; if( global_part == ' ' ) { partpat[26][1] = t; if( abcparts ) { for( t=0; t<26; t++ ) if( partpat[t][0] < partpat[t][1] ) break; if( t == 26 ) { abc_message("parts (%s) set but not used", abcparts); abc_set_parts(&abcparts, 0); // forget the parts array } } } else partpat[global_part - 'A'][1] = t; if( !abcparts ) abc_song_to_parts(h, &abcparts, partpat); orderlen = abc_partpat_to_orderlist(partpat, abcparts, h, &orderlist, orderlen); } abc_synchronise_tracks(h); // distribute all control events abc_recalculate_tracktime(h); /* abctrack: tracktick long note byte octave byte instrument byte effects byte tick = tracktick modulo speed row = (tracktick div speed) modulo 64 pat = (tracktick div speed) div 64 ord = calculated */ if ((p=getenv(ABC_ENV_DUMPTRACKS)) != NULL) { printf("P:%s\n",abcparts); for( t=0; t<26; t++ ) if( partpat[t][1] >= partpat[t][0] ) printf(" %c ",t+'A'); if( partpat[26][1] >= partpat[26][0] ) printf("All"); printf("\n"); for( t=0; t<27; t++ ) if( partpat[t][1] >= partpat[t][0] ) printf("%3d ",partpat[t][0]); printf("\n"); for( t=0; t<27; t++ ) if( partpat[t][1] >= partpat[t][0] ) printf("%3d ",partpat[t][1]); printf("\n"); for( t=0; (int)t<orderlen; t++ ) printf("%3d ",t); printf("\n"); for( t=0; (int)t<orderlen; t++ ) printf("%3d ",orderlist[t]); printf("\n"); abc_dumptracks(h,p); } // set module variables if( abctempo == 0 ) abctempo = abcrate; if( m_nDefaultTempo == 0 ) m_nDefaultTempo = abctempo; m_nType = MOD_TYPE_ABC; numpat = 1+(modticks(h->tracktime) / h->speed / 64); if( numpat > MAX_PATTERNS ) numpat = MAX_PATTERNS; m_nDefaultSpeed = h->speed; m_nChannels = abc_numtracks(h); m_dwSongFlags = SONG_LINEARSLIDES; m_nMinPeriod = 28 << 2; m_nMaxPeriod = 1712 << 3; // orderlist for(t=0; t < (uint32_t)orderlen; t++){ if( t >= MAX_ORDERS ) break; Order[t] = orderlist[t]; } free(orderlist); // get rid of orderlist memory // ============================== // Load the pattern info now! if( ABC_ReadPatterns(Patterns, PatternSize, h, numpat, m_nChannels) ) { // :^( need one more channel to handle the global events ;^b m_nChannels++; h->tp = abc_locate_track(h, "", 99); abc_add_sync(h, h->tp, h->tracktime); for( t=0; t<numpat; t++ ) { FreePattern(Patterns[t]); Patterns[t] = NULL; } ABC_ReadPatterns(Patterns, PatternSize, h, numpat, m_nChannels); } // load instruments after building the patterns (chan == 10 track handling) if( !PAT_Load_Instruments(this) ) { avoid_reentry = 0; return FALSE; } // ============================================================ // set panning positions if( m_nChannels > MAX_BASECHANNELS ) m_nChannels = MAX_BASECHANNELS; for(t=0; t<m_nChannels; t++) { ChnSettings[t].nPan = 0x30+((t+2)%5)*((0xD0 - 0x30)/5); // 0x30 = std s3m val ChnSettings[t].nVolume = 64; } avoid_reentry = 0; // it is safe now, I'm finished abc_set_parts(&abcparts, 0); // free the parts array ABC_Cleanup(h); // we dont need it anymore return 1; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ /////////////////////////////////////////////////// // // AMF module loader // // There is 2 types of AMF files: // - ASYLUM Music Format // - Advanced Music Format(DSM) // /////////////////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" //#define AMFLOG //#pragma warning(disable:4244) #pragma pack(1) typedef struct _AMFFILEHEADER { UCHAR szAMF[3]; UCHAR version; CHAR title[32]; UCHAR numsamples; UCHAR numorders; USHORT numtracks; UCHAR numchannels; } AMFFILEHEADER; typedef struct _AMFSAMPLE { UCHAR type; CHAR samplename[32]; CHAR filename[13]; ULONG offset; ULONG length; USHORT c2spd; UCHAR volume; } AMFSAMPLE; #pragma pack() #ifdef AMFLOG extern void Log(LPCSTR, ...); #endif VOID AMF_Unpack(MODCOMMAND *pPat, const BYTE *pTrack, UINT nRows, UINT nChannels) //------------------------------------------------------------------------------- { UINT lastinstr = 0; UINT nTrkSize = bswapLE16(*(USHORT *)pTrack); nTrkSize += (UINT)pTrack[2] << 16; pTrack += 3; while (nTrkSize--) { UINT row = pTrack[0]; UINT cmd = pTrack[1]; UINT arg = pTrack[2]; if (row >= nRows) break; MODCOMMAND *m = pPat + row * nChannels; if (cmd < 0x7F) // note+vol { m->note = cmd+1; if (!m->instr) m->instr = lastinstr; m->volcmd = VOLCMD_VOLUME; m->vol = arg; } else if (cmd == 0x7F) // duplicate row { signed char rdelta = (signed char)arg; int rowsrc = (int)row + (int)rdelta; if ((rowsrc >= 0) && (rowsrc < (int)nRows)) memcpy(m, &pPat[rowsrc*nChannels],sizeof(pPat[rowsrc*nChannels])); } else if (cmd == 0x80) // instrument { m->instr = arg+1; lastinstr = m->instr; } else if (cmd == 0x83) // volume { m->volcmd = VOLCMD_VOLUME; m->vol = arg; } else // effect { UINT command = cmd & 0x7F; UINT param = arg; switch(command) { // 0x01: Set Speed case 0x01: command = CMD_SPEED; break; // 0x02: Volume Slide // 0x0A: Tone Porta + Vol Slide // 0x0B: Vibrato + Vol Slide case 0x02: command = CMD_VOLUMESLIDE; case 0x0A: if (command == 0x0A) command = CMD_TONEPORTAVOL; case 0x0B: if (command == 0x0B) command = CMD_VIBRATOVOL; if (param & 0x80) param = (-(signed char)param)&0x0F; else param = (param&0x0F)<<4; break; // 0x04: Porta Up/Down case 0x04: if (param & 0x80) { command = CMD_PORTAMENTOUP; param = (-(signed char)param)&0x7F; } else { command = CMD_PORTAMENTODOWN; } break; // 0x06: Tone Portamento case 0x06: command = CMD_TONEPORTAMENTO; break; // 0x07: Tremor case 0x07: command = CMD_TREMOR; break; // 0x08: Arpeggio case 0x08: command = CMD_ARPEGGIO; break; // 0x09: Vibrato case 0x09: command = CMD_VIBRATO; break; // 0x0C: Pattern Break case 0x0C: command = CMD_PATTERNBREAK; break; // 0x0D: Position Jump case 0x0D: command = CMD_POSITIONJUMP; break; // 0x0F: Retrig case 0x0F: command = CMD_RETRIG; break; // 0x10: Offset case 0x10: command = CMD_OFFSET; break; // 0x11: Fine Volume Slide case 0x11: if (param) { command = CMD_VOLUMESLIDE; if (param & 0x80) param = 0xF0|((-(signed char)param)&0x0F); else param = 0x0F|((param&0x0F)<<4); } else command = 0; break; // 0x12: Fine Portamento // 0x16: Extra Fine Portamento case 0x12: case 0x16: if (param) { int mask = (command == 0x16) ? 0xE0 : 0xF0; command = (param & 0x80) ? CMD_PORTAMENTOUP : CMD_PORTAMENTODOWN; if (param & 0x80) param = mask|((-(signed char)param)&0x0F); else param |= mask; } else command = 0; break; // 0x13: Note Delay case 0x13: command = CMD_S3MCMDEX; param = 0xD0|(param & 0x0F); break; // 0x14: Note Cut case 0x14: command = CMD_S3MCMDEX; param = 0xC0|(param & 0x0F); break; // 0x15: Set Tempo case 0x15: command = CMD_TEMPO; break; // 0x17: Panning case 0x17: param = (param+64)&0x7F; if (m->command) { if (!m->volcmd) { m->volcmd = VOLCMD_PANNING; m->vol = param/2; } command = 0; } else { command = CMD_PANNING8; } break; // Unknown effects default: command = param = 0; } if (command) { m->command = command; m->param = param; } } pTrack += 3; } } BOOL CSoundFile::ReadAMF(LPCBYTE lpStream, const DWORD dwMemLength) //----------------------------------------------------------- { const AMFFILEHEADER *pfh = (AMFFILEHEADER *)lpStream; DWORD dwMemPos; if ((!lpStream) || (dwMemLength < 2048)) return FALSE; if ((!strncmp((LPCTSTR)lpStream, "ASYLUM Music Format V1.0", 25)) && (dwMemLength > 4096)) { UINT numorders, numpats, numsamples; dwMemPos = 32; numpats = lpStream[dwMemPos+3]; numorders = lpStream[dwMemPos+4]; numsamples = 64; dwMemPos += 6; if ((!numpats) || (numpats > MAX_PATTERNS) || (!numorders) || (numpats*64*32 + 294 + 37*64 >= dwMemLength)) return FALSE; m_nType = MOD_TYPE_AMF0; m_nChannels = 8; m_nInstruments = 0; m_nSamples = 31; m_nDefaultTempo = 125; m_nDefaultSpeed = 6; for (UINT iOrd=0; iOrd<MAX_ORDERS; iOrd++) { Order[iOrd] = (iOrd < numorders) ? lpStream[dwMemPos+iOrd] : 0xFF; } dwMemPos = 294; // ??? for (UINT iSmp=0; iSmp<numsamples; iSmp++) { MODINSTRUMENT *psmp = &Ins[iSmp+1]; memcpy(m_szNames[iSmp+1], lpStream+dwMemPos, 22); m_szNames[iSmp+1][21] = '\0'; psmp->nFineTune = MOD2XMFineTune(lpStream[dwMemPos+22]); psmp->nVolume = lpStream[dwMemPos+23]; psmp->nGlobalVol = 64; if (psmp->nVolume > 0x40) psmp->nVolume = 0x40; psmp->nVolume <<= 2; psmp->nLength = bswapLE32(*((LPDWORD)(lpStream+dwMemPos+25))); psmp->nLoopStart = bswapLE32(*((LPDWORD)(lpStream+dwMemPos+29))); psmp->nLoopEnd = psmp->nLoopStart + bswapLE32(*((LPDWORD)(lpStream+dwMemPos+33))); if ((psmp->nLoopEnd > psmp->nLoopStart) && (psmp->nLoopEnd <= psmp->nLength)) { psmp->uFlags = CHN_LOOP; } else { psmp->nLoopStart = psmp->nLoopEnd = 0; } if ((psmp->nLength) && (iSmp>31)) m_nSamples = iSmp+1; dwMemPos += 37; } for (UINT iPat=0; iPat<numpats; iPat++) { MODCOMMAND *p = AllocatePattern(64, m_nChannels); if (!p) break; Patterns[iPat] = p; PatternSize[iPat] = 64; const UCHAR *pin = lpStream + dwMemPos; for (UINT i=0; i<8*64; i++) { p->note = 0; if (pin[0]) { p->note = pin[0] + 13; } p->instr = pin[1]; p->command = pin[2]; p->param = pin[3]; if (p->command > 0x0F) { #ifdef AMFLOG Log("0x%02X.0x%02X ?", p->command, p->param); #endif p->command = 0; } ConvertModCommand(p); pin += 4; p++; } dwMemPos += 64*32; } // Read samples for (UINT iData=0; iData<m_nSamples; iData++) { MODINSTRUMENT *psmp = &Ins[iData+1]; if (psmp->nLength) { if (dwMemPos > dwMemLength) return FALSE; dwMemPos += ReadSample(psmp, RS_PCM8S, (LPCSTR)(lpStream+dwMemPos), dwMemLength-dwMemPos); } } return TRUE; } //////////////////////////// // DSM/AMF USHORT *ptracks[MAX_PATTERNS]; DWORD sampleseekpos[MAX_SAMPLES]; if ((pfh->szAMF[0] != 'A') || (pfh->szAMF[1] != 'M') || (pfh->szAMF[2] != 'F') || (pfh->version < 10) || (pfh->version > 14) || (!bswapLE16(pfh->numtracks)) || (!pfh->numorders) || (pfh->numorders > MAX_PATTERNS) || (!pfh->numsamples) || (pfh->numsamples >= MAX_SAMPLES) || (pfh->numchannels < 4) || (pfh->numchannels > 32)) return FALSE; memcpy(m_szNames[0], pfh->title, 32); m_szNames[0][31] = '\0'; dwMemPos = sizeof(AMFFILEHEADER); m_nType = MOD_TYPE_AMF; m_nChannels = pfh->numchannels; m_nSamples = pfh->numsamples; m_nInstruments = 0; // Setup Channel Pan Positions if (pfh->version >= 11) { signed char *panpos = (signed char *)(lpStream + dwMemPos); UINT nchannels = (pfh->version >= 13) ? 32 : 16; for (UINT i=0; i<nchannels; i++) { int pan = (panpos[i] + 64) * 2; if (pan < 0) pan = 0; if (pan > 256) { pan = 128; ChnSettings[i].dwFlags |= CHN_SURROUND; } ChnSettings[i].nPan = pan; } dwMemPos += nchannels; } else { for (UINT i=0; i<16; i++) { ChnSettings[i].nPan = (lpStream[dwMemPos+i] & 1) ? 0x30 : 0xD0; } dwMemPos += 16; } // Get Tempo/Speed m_nDefaultTempo = 125; m_nDefaultSpeed = 6; if (pfh->version >= 13) { if (lpStream[dwMemPos] >= 32) m_nDefaultTempo = lpStream[dwMemPos]; if (lpStream[dwMemPos+1] <= 32) m_nDefaultSpeed = lpStream[dwMemPos+1]; dwMemPos += 2; } // Setup sequence list for (UINT iOrd=0; iOrd<MAX_ORDERS; iOrd++) { if (dwMemPos + 4 > dwMemLength) return TRUE; Order[iOrd] = 0xFF; if (iOrd < pfh->numorders) { Order[iOrd] = iOrd; PatternSize[iOrd] = 64; if (pfh->version >= 14) { if (dwMemPos + m_nChannels * sizeof(USHORT) + 2 > dwMemLength) return FALSE; PatternSize[iOrd] = bswapLE16(*(USHORT *)(lpStream+dwMemPos)); dwMemPos += 2; } else { if (dwMemPos + m_nChannels * sizeof(USHORT) > dwMemLength) return FALSE; } ptracks[iOrd] = (USHORT *)(lpStream+dwMemPos); dwMemPos += m_nChannels * sizeof(USHORT); } } if (dwMemPos + m_nSamples * (sizeof(AMFSAMPLE)+8) > dwMemLength) return TRUE; // Read Samples UINT maxsampleseekpos = 0; for (UINT iIns=0; iIns<m_nSamples; iIns++) { MODINSTRUMENT *pins = &Ins[iIns+1]; const AMFSAMPLE *psh = (AMFSAMPLE *)(lpStream + dwMemPos); dwMemPos += sizeof(AMFSAMPLE); memcpy(m_szNames[iIns+1], psh->samplename, 32); m_szNames[iIns+1][31] = '\0'; memcpy(pins->name, psh->filename, 13); pins->name[12] = '\0'; pins->nLength = bswapLE32(psh->length); pins->nC4Speed = bswapLE16(psh->c2spd); pins->nGlobalVol = 64; pins->nVolume = psh->volume * 4; if (pfh->version >= 11) { pins->nLoopStart = bswapLE32(*(DWORD *)(lpStream+dwMemPos)); pins->nLoopEnd = bswapLE32(*(DWORD *)(lpStream+dwMemPos+4)); dwMemPos += 8; } else { pins->nLoopStart = bswapLE16(*(WORD *)(lpStream+dwMemPos)); pins->nLoopEnd = pins->nLength; dwMemPos += 2; } sampleseekpos[iIns] = 0; if ((psh->type) && (bswapLE32(psh->offset) < dwMemLength-1)) { sampleseekpos[iIns] = bswapLE32(psh->offset); if (bswapLE32(psh->offset) > maxsampleseekpos) maxsampleseekpos = bswapLE32(psh->offset); if ((pins->nLoopEnd > pins->nLoopStart + 2) && (pins->nLoopEnd <= pins->nLength)) pins->uFlags |= CHN_LOOP; } } // Read Track Mapping Table USHORT *pTrackMap = (USHORT *)(lpStream+dwMemPos); UINT realtrackcnt = 0; dwMemPos += pfh->numtracks * sizeof(USHORT); if (dwMemPos >= dwMemLength) return TRUE; for (UINT iTrkMap=0; iTrkMap<pfh->numtracks; iTrkMap++) { if (realtrackcnt < pTrackMap[iTrkMap]) realtrackcnt = pTrackMap[iTrkMap]; } // Store tracks positions BYTE **pTrackData = new BYTE *[realtrackcnt]; memset(pTrackData, 0, sizeof(BYTE *) * realtrackcnt); for (UINT iTrack=0; iTrack<realtrackcnt; iTrack++) if (dwMemPos <= dwMemLength - 3) { UINT nTrkSize = bswapLE16(*(USHORT *)(lpStream+dwMemPos)); nTrkSize += (UINT)lpStream[dwMemPos+2] << 16; if (dwMemPos + nTrkSize * 3 + 3 <= dwMemLength) { pTrackData[iTrack] = (BYTE *)(lpStream + dwMemPos); } dwMemPos += nTrkSize * 3 + 3; } // Create the patterns from the list of tracks for (UINT iPat=0; iPat<pfh->numorders; iPat++) { MODCOMMAND *p = AllocatePattern(PatternSize[iPat], m_nChannels); if (!p) break; Patterns[iPat] = p; for (UINT iChn=0; iChn<m_nChannels; iChn++) { UINT nTrack = bswapLE16(ptracks[iPat][iChn]); if ((nTrack) && (nTrack <= pfh->numtracks)) { UINT realtrk = bswapLE16(pTrackMap[nTrack-1]); if (realtrk) { realtrk--; if ((realtrk < realtrackcnt) && (pTrackData[realtrk])) { AMF_Unpack(p+iChn, pTrackData[realtrk], PatternSize[iPat], m_nChannels); } } } } } delete[] pTrackData; // Read Sample Data for (UINT iSeek=1; iSeek<=maxsampleseekpos; iSeek++) { if (dwMemPos >= dwMemLength) break; for (UINT iSmp=0; iSmp<m_nSamples; iSmp++) if (iSeek == sampleseekpos[iSmp]) { MODINSTRUMENT *pins = &Ins[iSmp+1]; dwMemPos += ReadSample(pins, RS_PCM8U, (LPCSTR)(lpStream+dwMemPos), dwMemLength-dwMemPos); break; } } return TRUE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ ////////////////////////////////////////////// // AMS module loader // ////////////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" //#pragma warning(disable:4244) #pragma pack(1) typedef struct AMSFILEHEADER { char szHeader[7]; // "Extreme" // changed from CHAR BYTE verlo, verhi; // 0x??,0x01 BYTE chncfg; BYTE samples; WORD patterns; WORD orders; BYTE vmidi; WORD extra; } AMSFILEHEADER; typedef struct AMSSAMPLEHEADER { DWORD length; DWORD loopstart; DWORD loopend; BYTE finetune_and_pan; WORD samplerate; // C-2 = 8363 BYTE volume; // 0-127 BYTE infobyte; } AMSSAMPLEHEADER; #pragma pack() static BOOL AMSUnpackCheck(const BYTE *lpStream, DWORD dwMemLength, MODINSTRUMENT *ins); BOOL CSoundFile::ReadAMS(LPCBYTE lpStream, DWORD dwMemLength) //----------------------------------------------------------- { // BYTE pkinf[MAX_SAMPLES]; const AMSFILEHEADER *pfh = (AMSFILEHEADER *)lpStream; DWORD dwMemPos; UINT tmp, tmp2; if ((!lpStream) || (dwMemLength < 1024)) return FALSE; if ((pfh->verhi != 0x01) || (strncmp(pfh->szHeader, "Extreme", 7)) || (!pfh->patterns) || (!pfh->orders) || (!pfh->samples) || (pfh->samples >= MAX_SAMPLES) || (pfh->patterns > MAX_PATTERNS) || (pfh->orders > MAX_ORDERS)) { return ReadAMS2(lpStream, dwMemLength); } dwMemPos = sizeof(AMSFILEHEADER) + pfh->extra; if (dwMemPos + pfh->samples * sizeof(AMSSAMPLEHEADER) + 256 >= dwMemLength) return FALSE; m_nType = MOD_TYPE_AMS; m_nInstruments = 0; m_nChannels = (pfh->chncfg & 0x1F) + 1; m_nSamples = pfh->samples; for (UINT nSmp=1; nSmp<=m_nSamples; nSmp++, dwMemPos += sizeof(AMSSAMPLEHEADER)) { const AMSSAMPLEHEADER *psh = (AMSSAMPLEHEADER *)(lpStream + dwMemPos); MODINSTRUMENT *pins = &Ins[nSmp]; pins->nLength = psh->length; pins->nLoopStart = psh->loopstart; pins->nLoopEnd = psh->loopend; pins->nGlobalVol = 64; pins->nVolume = psh->volume << 1; pins->nC4Speed = psh->samplerate; pins->nPan = (psh->finetune_and_pan & 0xF0); if (pins->nPan < 0x80) pins->nPan += 0x10; pins->nFineTune = MOD2XMFineTune(psh->finetune_and_pan & 0x0F); pins->uFlags = (psh->infobyte & 0x80) ? CHN_16BIT : 0; if ((pins->nLoopEnd <= pins->nLength) && (pins->nLoopStart+4 <= pins->nLoopEnd)) pins->uFlags |= CHN_LOOP; // pkinf[nSmp] = psh->infobyte; } // Read Song Name tmp = lpStream[dwMemPos++]; if (dwMemPos + tmp + 1 >= dwMemLength) return TRUE; tmp2 = (tmp < 32) ? tmp : 31; if (tmp2) memcpy(m_szNames[0], lpStream+dwMemPos, tmp2); m_szNames[0][tmp2] = 0; dwMemPos += tmp; // Read sample names for (UINT sNam=1; sNam<=m_nSamples; sNam++) { if (dwMemPos + 32 >= dwMemLength) return TRUE; tmp = lpStream[dwMemPos++]; tmp2 = (tmp < 32) ? tmp : 31; if (tmp2) memcpy(m_szNames[sNam], lpStream+dwMemPos, tmp2); dwMemPos += tmp; } // Skip Channel names for (UINT cNam=0; cNam<m_nChannels; cNam++) { if (dwMemPos + 32 >= dwMemLength) return TRUE; tmp = lpStream[dwMemPos++]; dwMemPos += tmp; } // Read Pattern Names m_lpszPatternNames = new char[pfh->patterns * 32]; // changed from CHAR if (!m_lpszPatternNames) return TRUE; m_nPatternNames = pfh->patterns; memset(m_lpszPatternNames, 0, m_nPatternNames * 32); for (UINT pNam=0; pNam < m_nPatternNames; pNam++) { if (dwMemPos + 32 >= dwMemLength) return TRUE; tmp = lpStream[dwMemPos++]; tmp2 = (tmp < 32) ? tmp : 31; if (tmp2) memcpy(m_lpszPatternNames+pNam*32, lpStream+dwMemPos, tmp2); dwMemPos += tmp; } // Read Song Comments if (dwMemPos + 2 > dwMemLength) return TRUE; tmp = *((WORD *)(lpStream+dwMemPos)); dwMemPos += 2; if (tmp >= dwMemLength || dwMemPos > dwMemLength - tmp) return TRUE; if (tmp) { m_lpszSongComments = new char[tmp+1]; // changed from CHAR if (!m_lpszSongComments) return TRUE; memset(m_lpszSongComments, 0, tmp+1); memcpy(m_lpszSongComments, lpStream + dwMemPos, tmp); dwMemPos += tmp; } // Read Order List if (2*pfh->orders >= dwMemLength || dwMemPos > dwMemLength - 2*pfh->orders) return TRUE; for (UINT iOrd=0; iOrd<pfh->orders; iOrd++, dwMemPos += 2) { UINT n = *((WORD *)(lpStream+dwMemPos)); Order[iOrd] = (BYTE)n; } // Read Patterns for (UINT iPat=0; iPat<pfh->patterns; iPat++) { if (dwMemPos + 4 >= dwMemLength) return TRUE; UINT len = *((DWORD *)(lpStream + dwMemPos)); dwMemPos += 4; if ((len >= dwMemLength) || (dwMemPos > dwMemLength - len)) return TRUE; PatternSize[iPat] = 64; MODCOMMAND *m = AllocatePattern(PatternSize[iPat], m_nChannels); if (!m) return TRUE; Patterns[iPat] = m; const BYTE *p = lpStream + dwMemPos; UINT row = 0, i = 0; while ((row < PatternSize[iPat]) && (i+2 < len)) { BYTE b0 = p[i++]; BYTE b1 = p[i++]; BYTE b2 = 0; UINT ch = b0 & 0x3F; // Note+Instr if (!(b0 & 0x40)) { if (i+1 > len) break; b2 = p[i++]; if (ch < m_nChannels) { if (b1 & 0x7F) m[ch].note = (b1 & 0x7F) + 25; m[ch].instr = b2; } if (b1 & 0x80) { if (i+1 > len) break; b0 |= 0x40; b1 = p[i++]; } } // Effect if (b0 & 0x40) { anothercommand: if (b1 & 0x40) { if (ch < m_nChannels) { m[ch].volcmd = VOLCMD_VOLUME; m[ch].vol = b1 & 0x3F; } } else { if (i+1 > len) break; b2 = p[i++]; if (ch < m_nChannels) { UINT cmd = b1 & 0x3F; if (cmd == 0x0C) { m[ch].volcmd = VOLCMD_VOLUME; m[ch].vol = b2 >> 1; } else if (cmd == 0x0E) { if (!m[ch].command) { UINT command = CMD_S3MCMDEX; UINT param = b2; switch(param & 0xF0) { case 0x00: if (param & 0x08) { param &= 0x07; param |= 0x90; } else {command=param=0;} break; case 0x10: command = CMD_PORTAMENTOUP; param |= 0xF0; break; case 0x20: command = CMD_PORTAMENTODOWN; param |= 0xF0; break; case 0x30: param = (param & 0x0F) | 0x10; break; case 0x40: param = (param & 0x0F) | 0x30; break; case 0x50: param = (param & 0x0F) | 0x20; break; case 0x60: param = (param & 0x0F) | 0xB0; break; case 0x70: param = (param & 0x0F) | 0x40; break; case 0x90: command = CMD_RETRIG; param &= 0x0F; break; case 0xA0: if (param & 0x0F) { command = CMD_VOLUMESLIDE; param = (param << 4) | 0x0F; } else command=param=0; break; case 0xB0: if (param & 0x0F) { command = CMD_VOLUMESLIDE; param |= 0xF0; } else command=param=0; break; } m[ch].command = command; m[ch].param = param; } } else { m[ch].command = cmd; m[ch].param = b2; ConvertModCommand(&m[ch]); } } } if (b1 & 0x80) { if (i+1 > len) break; b1 = p[i++]; if (i <= len) goto anothercommand; } } if (b0 & 0x80) { row++; m += m_nChannels; } } dwMemPos += len; } // Read Samples for (UINT iSmp=1; iSmp<=m_nSamples; iSmp++) if (Ins[iSmp].nLength) { if (dwMemPos >= dwMemLength - 9) return TRUE; UINT flags = (Ins[iSmp].uFlags & CHN_16BIT) ? RS_AMS16 : RS_AMS8; if (!AMSUnpackCheck(lpStream+dwMemPos, dwMemLength-dwMemPos, &Ins[iSmp])) break; dwMemPos += ReadSample(&Ins[iSmp], flags, (LPCSTR)(lpStream+dwMemPos), dwMemLength-dwMemPos); } return TRUE; } ///////////////////////////////////////////////////////////////////// // AMS 2.2 loader #pragma pack(1) typedef struct AMS2FILEHEADER { DWORD dwHdr1; // AMShdr WORD wHdr2; BYTE b1A; // 0x1A BYTE titlelen; // 30-bytes max CHAR szTitle[30]; // [titlelen] } AMS2FILEHEADER; typedef struct AMS2SONGHEADER { WORD version; BYTE instruments; WORD patterns; WORD orders; WORD bpm; BYTE speed; BYTE channels; BYTE commands; BYTE rows; WORD flags; } AMS2SONGHEADER; typedef struct AMS2INSTRUMENT { BYTE samples; BYTE notemap[NOTE_MAX]; } AMS2INSTRUMENT; typedef struct AMS2ENVELOPE { BYTE speed; BYTE sustain; BYTE loopbegin; BYTE loopend; BYTE points; BYTE info[3]; } AMS2ENVELOPE; typedef struct AMS2SAMPLE { DWORD length; DWORD loopstart; DWORD loopend; WORD frequency; BYTE finetune; WORD c4speed; CHAR transpose; BYTE volume; BYTE flags; } AMS2SAMPLE; #pragma pack() BOOL CSoundFile::ReadAMS2(LPCBYTE lpStream, DWORD dwMemLength) //------------------------------------------------------------ { const AMS2FILEHEADER *pfh = (AMS2FILEHEADER *)lpStream; const AMS2SONGHEADER *psh; DWORD dwMemPos; BYTE smpmap[16]; BYTE packedsamples[MAX_SAMPLES]; if ((pfh->dwHdr1 != 0x68534D41) || (pfh->wHdr2 != 0x7264) || (pfh->b1A != 0x1A) || (pfh->titlelen > 30)) return FALSE; dwMemPos = pfh->titlelen + 8; psh = (AMS2SONGHEADER *)(lpStream + dwMemPos); if (((psh->version & 0xFF00) != 0x0200) || (!psh->instruments) || (psh->instruments >= MAX_INSTRUMENTS) || (!psh->patterns) || (!psh->orders)) return FALSE; dwMemPos += sizeof(AMS2SONGHEADER); if (pfh->titlelen) { memcpy(m_szNames, pfh->szTitle, pfh->titlelen); m_szNames[0][pfh->titlelen] = 0; } m_nType = MOD_TYPE_AMS; m_nChannels = 32; m_nDefaultTempo = psh->bpm >> 8; m_nDefaultSpeed = psh->speed; m_nInstruments = psh->instruments; m_nSamples = 0; if (psh->flags & 0x40) m_dwSongFlags |= SONG_LINEARSLIDES; for (UINT nIns=1; nIns<=m_nInstruments; nIns++) { if (dwMemPos >= dwMemLength) return TRUE; UINT insnamelen = lpStream[dwMemPos]; const CHAR *pinsname = (CHAR *)(lpStream+dwMemPos+1); dwMemPos += insnamelen + 1; const AMS2INSTRUMENT *pins = (AMS2INSTRUMENT *)(lpStream + dwMemPos); dwMemPos += sizeof(AMS2INSTRUMENT); const AMS2ENVELOPE *volenv, *panenv, *pitchenv; if (dwMemPos + sizeof(AMS2ENVELOPE) > dwMemLength) return TRUE; volenv = (AMS2ENVELOPE *)(lpStream+dwMemPos); dwMemPos += 5 + volenv->points*3; if (dwMemPos + sizeof(AMS2ENVELOPE) > dwMemLength) return TRUE; panenv = (AMS2ENVELOPE *)(lpStream+dwMemPos); dwMemPos += 5 + panenv->points*3; if (dwMemPos + sizeof(AMS2ENVELOPE) > dwMemLength) return TRUE; pitchenv = (AMS2ENVELOPE *)(lpStream+dwMemPos); dwMemPos += 5 + pitchenv->points*3; if (dwMemPos >= dwMemLength) return TRUE; INSTRUMENTHEADER *penv = new INSTRUMENTHEADER; if (!penv) return TRUE; memset(smpmap, 0, sizeof(smpmap)); memset(penv, 0, sizeof(INSTRUMENTHEADER)); for (UINT ismpmap=0; ismpmap<pins->samples; ismpmap++) { if ((ismpmap >= 16) || (m_nSamples+1 >= MAX_SAMPLES)) break; m_nSamples++; smpmap[ismpmap] = m_nSamples; } penv->nGlobalVol = 64; penv->nPan = 128; penv->nPPC = 60; Headers[nIns] = penv; if (insnamelen) { if (insnamelen > 31) insnamelen = 31; memcpy(penv->name, pinsname, insnamelen); penv->name[insnamelen] = 0; } for (UINT inotemap=0; inotemap<NOTE_MAX; inotemap++) { penv->NoteMap[inotemap] = inotemap+1; penv->Keyboard[inotemap] = smpmap[pins->notemap[inotemap] & 0x0F]; } // Volume Envelope { UINT pos = 0; penv->nVolEnv = (volenv->points > 16) ? 16 : volenv->points; penv->nVolSustainBegin = penv->nVolSustainEnd = volenv->sustain; penv->nVolLoopStart = volenv->loopbegin; penv->nVolLoopEnd = volenv->loopend; for (UINT i=0; i<penv->nVolEnv; i++) { penv->VolEnv[i] = (BYTE)((volenv->info[i*3+2] & 0x7F) >> 1); pos += volenv->info[i*3] + ((volenv->info[i*3+1] & 1) << 8); penv->VolPoints[i] = (WORD)pos; } } if (dwMemPos + 5 > dwMemLength) return TRUE; penv->nFadeOut = (((lpStream[dwMemPos+2] & 0x0F) << 8) | (lpStream[dwMemPos+1])) << 3; UINT envflags = lpStream[dwMemPos+3]; if (envflags & 0x01) penv->dwFlags |= ENV_VOLLOOP; if (envflags & 0x02) penv->dwFlags |= ENV_VOLSUSTAIN; if (envflags & 0x04) penv->dwFlags |= ENV_VOLUME; dwMemPos += 5; // Read Samples for (UINT ismp=0; ismp<pins->samples; ismp++) { if (dwMemPos + 1 > dwMemLength) return TRUE; MODINSTRUMENT *psmp = ((ismp < 16) && (smpmap[ismp])) ? &Ins[smpmap[ismp]] : NULL; UINT smpnamelen = lpStream[dwMemPos]; if (dwMemPos + smpnamelen + 1 > dwMemLength) return TRUE; if ((psmp) && (smpnamelen) && (smpnamelen <= 22)) { memcpy(m_szNames[smpmap[ismp]], lpStream+dwMemPos+1, smpnamelen); } dwMemPos += smpnamelen + 1; if (dwMemPos + sizeof(AMS2SAMPLE) > dwMemLength) return TRUE; if (psmp) { const AMS2SAMPLE *pams = (AMS2SAMPLE *)(lpStream+dwMemPos); psmp->nGlobalVol = 64; psmp->nPan = 128; psmp->nLength = pams->length; psmp->nLoopStart = pams->loopstart; psmp->nLoopEnd = pams->loopend; psmp->nC4Speed = pams->c4speed; psmp->RelativeTone = pams->transpose; psmp->nVolume = pams->volume / 2; packedsamples[smpmap[ismp]] = pams->flags; if (pams->flags & 0x04) psmp->uFlags |= CHN_16BIT; if (pams->flags & 0x08) psmp->uFlags |= CHN_LOOP; if (pams->flags & 0x10) psmp->uFlags |= CHN_PINGPONGLOOP; } dwMemPos += sizeof(AMS2SAMPLE); } } if (dwMemPos + 256 >= dwMemLength) return TRUE; // Comments { UINT composernamelen = lpStream[dwMemPos]; if (composernamelen) { m_lpszSongComments = new char[composernamelen+1]; // changed from CHAR if (m_lpszSongComments) { memcpy(m_lpszSongComments, lpStream+dwMemPos+1, composernamelen); m_lpszSongComments[composernamelen] = 0; } } dwMemPos += composernamelen + 1; // channel names for (UINT i=0; i<32; i++) { UINT chnnamlen = lpStream[dwMemPos]; if ((chnnamlen) && (chnnamlen < MAX_CHANNELNAME)) { memcpy(ChnSettings[i].szName, lpStream+dwMemPos+1, chnnamlen); } dwMemPos += chnnamlen + 1; if (dwMemPos + chnnamlen + 256 >= dwMemLength) return TRUE; } // packed comments (ignored) UINT songtextlen = *((LPDWORD)(lpStream+dwMemPos)); dwMemPos += songtextlen; if (dwMemPos + 256 >= dwMemLength) return TRUE; } // Order List { for (UINT i=0; i<MAX_ORDERS; i++) { Order[i] = 0xFF; if (dwMemPos + 2 >= dwMemLength) return TRUE; if (i < psh->orders) { Order[i] = lpStream[dwMemPos]; dwMemPos += 2; } } } // Pattern Data for (UINT ipat=0; ipat<psh->patterns; ipat++) { if (dwMemPos+8 >= dwMemLength) return TRUE; UINT packedlen = *((LPDWORD)(lpStream+dwMemPos)); UINT numrows = 1 + (UINT)(lpStream[dwMemPos+4]); //UINT patchn = 1 + (UINT)(lpStream[dwMemPos+5] & 0x1F); //UINT patcmds = 1 + (UINT)(lpStream[dwMemPos+5] >> 5); UINT patnamlen = lpStream[dwMemPos+6]; dwMemPos += 4; if ((ipat < MAX_PATTERNS) && (packedlen < dwMemLength-dwMemPos) && (numrows >= 8)) { if ((patnamlen) && (patnamlen < MAX_PATTERNNAME)) { char s[MAX_PATTERNNAME]; // changed from CHAR memcpy(s, lpStream+dwMemPos+3, patnamlen); s[patnamlen] = 0; SetPatternName(ipat, s); } PatternSize[ipat] = numrows; Patterns[ipat] = AllocatePattern(numrows, m_nChannels); if (!Patterns[ipat]) return TRUE; // Unpack Pattern Data LPCBYTE psrc = lpStream + dwMemPos; UINT pos = 3 + patnamlen; UINT row = 0; while ((pos < packedlen) && (row < numrows)) { MODCOMMAND *m = Patterns[ipat] + row * m_nChannels; UINT byte1 = psrc[pos++]; UINT ch = byte1 & 0x1F; // Read Note + Instr if (!(byte1 & 0x40)) { UINT byte2 = psrc[pos++]; UINT note = byte2 & 0x7F; if (note) m[ch].note = (note > 1) ? (note-1) : 0xFF; m[ch].instr = psrc[pos++]; // Read Effect while (byte2 & 0x80) { byte2 = psrc[pos++]; if (byte2 & 0x40) { m[ch].volcmd = VOLCMD_VOLUME; m[ch].vol = byte2 & 0x3F; } else { UINT command = byte2 & 0x3F; UINT param = psrc[pos++]; if (command == 0x0C) { m[ch].volcmd = VOLCMD_VOLUME; m[ch].vol = param / 2; } else if (command < 0x10) { m[ch].command = command; m[ch].param = param; ConvertModCommand(&m[ch]); } else { // TODO: AMS effects } } } } if (byte1 & 0x80) row++; } } dwMemPos += packedlen; } // Read Samples for (UINT iSmp=1; iSmp<=m_nSamples; iSmp++) if (Ins[iSmp].nLength) { if (dwMemPos >= dwMemLength - 9) return TRUE; UINT flags; if (packedsamples[iSmp] & 0x03) { flags = (Ins[iSmp].uFlags & CHN_16BIT) ? RS_AMS16 : RS_AMS8; if (!AMSUnpackCheck(lpStream+dwMemPos, dwMemLength-dwMemPos, &Ins[iSmp])) break; } else { flags = (Ins[iSmp].uFlags & CHN_16BIT) ? RS_PCM16S : RS_PCM8S; } dwMemPos += ReadSample(&Ins[iSmp], flags, (LPCSTR)(lpStream+dwMemPos), dwMemLength-dwMemPos); } return TRUE; } // Precheck AMS packed sample size to determine whether or not it could fit the actual size. static BOOL AMSUnpackCheck(const BYTE *lpStream, DWORD dwMemLength, MODINSTRUMENT *ins) // ----------------------------------------------------------------------------------- { if (dwMemLength < 9) return FALSE; DWORD packedbytes = *((DWORD *)(lpStream + 4)); DWORD samplebytes = ins->nLength; if (samplebytes > MAX_SAMPLE_LENGTH) samplebytes = MAX_SAMPLE_LENGTH; if (ins->uFlags & CHN_16BIT) samplebytes *= 2; // RLE can pack a run of up to 255 bytes into 3 bytes. DWORD packedmin = (samplebytes * 3) >> 8; if (packedbytes < packedmin) { samplebytes = packedbytes * (255 / 3) + 2; ins->nLength = samplebytes; if (ins->uFlags & CHN_16BIT) ins->nLength >>= 1; } return TRUE; } ///////////////////////////////////////////////////////////////////// // AMS Sample unpacking void AMSUnpack(const char *psrc, UINT inputlen, char *pdest, UINT dmax, char packcharacter) { UINT tmplen = dmax; signed char *amstmp = new signed char[tmplen]; if (!amstmp) return; // Unpack Loop { signed char *p = amstmp; UINT i=0, j=0; while ((i < inputlen) && (j < tmplen)) { signed char ch = psrc[i++]; if (ch == packcharacter) { if (i >= inputlen) break; BYTE ch2 = psrc[i++]; if (ch2) { if (i >= inputlen) break; ch = psrc[i++]; while (ch2--) { p[j++] = ch; if (j >= tmplen) break; } } else p[j++] = packcharacter; } else p[j++] = ch; } if (j < tmplen) { // Truncated or invalid; don't try to unpack this. delete[] amstmp; return; } } // Bit Unpack Loop { signed char *p = amstmp; UINT bitcount = 0x80, dh; UINT k=0; for (UINT i=0; i<dmax; i++) { BYTE al = *p++; dh = 0; for (UINT count=0; count<8; count++) { UINT bl = al & bitcount; bl = ((bl|(bl<<8)) >> ((dh+8-count) & 7)) & 0xFF; bitcount = ((bitcount|(bitcount<<8)) >> 1) & 0xFF; pdest[k++] |= bl; if (k >= dmax) { k = 0; dh++; } } bitcount = ((bitcount|(bitcount<<8)) >> dh) & 0xFF; } } // Delta Unpack { signed char old = 0; for (UINT i=0; i<dmax; i++) { int pos = ((LPBYTE)pdest)[i]; if ((pos != 128) && (pos & 0x80)) pos = -(pos & 0x7F); old -= (signed char)pos; pdest[i] = old; } } delete[] amstmp; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (endian and char fixes for PPC) */ /////////////////////////////////////////////////////////////// // // DigiBooster Pro Module Loader (*.dbm) // // Note: this loader doesn't handle multiple songs // /////////////////////////////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" //#pragma warning(disable:4244) #define DBM_FILE_MAGIC 0x304d4244 #define DBM_ID_NAME 0x454d414e #define DBM_NAMELEN 0x2c000000 #define DBM_ID_INFO 0x4f464e49 #define DBM_INFOLEN 0x0a000000 #define DBM_ID_SONG 0x474e4f53 #define DBM_ID_INST 0x54534e49 #define DBM_ID_VENV 0x564e4556 #define DBM_ID_PATT 0x54544150 #define DBM_ID_SMPL 0x4c504d53 #pragma pack(1) typedef struct DBMFILEHEADER { DWORD dbm_id; // "DBM0" = 0x304d4244 WORD trkver; // Tracker version: 02.15 WORD reserved; DWORD name_id; // "NAME" = 0x454d414e DWORD name_len; // name length: always 44 CHAR songname[44]; DWORD info_id; // "INFO" = 0x4f464e49 DWORD info_len; // 0x0a000000 WORD instruments; WORD samples; WORD songs; WORD patterns; WORD channels; DWORD song_id; // "SONG" = 0x474e4f53 DWORD song_len; CHAR songname2[44]; WORD orders; // WORD orderlist[0]; // orderlist[orders] in words } DBMFILEHEADER; typedef struct DBMINSTRUMENT { CHAR name[30]; WORD sampleno; WORD volume; DWORD finetune; DWORD loopstart; DWORD looplen; WORD panning; WORD flags; } DBMINSTRUMENT; typedef struct DBMENVELOPE { WORD instrument; BYTE flags; BYTE numpoints; BYTE sustain1; BYTE loopbegin; BYTE loopend; BYTE sustain2; WORD volenv[2*32]; } DBMENVELOPE; typedef struct DBMPATTERN { WORD rows; DWORD packedsize; BYTE patterndata[2]; // [packedsize] } DBMPATTERN; typedef struct DBMSAMPLE { DWORD flags; DWORD samplesize; BYTE sampledata[2]; // [samplesize] } DBMSAMPLE; #pragma pack() BOOL CSoundFile::ReadDBM(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { const DBMFILEHEADER *pfh = (DBMFILEHEADER *)lpStream; DWORD dwMemPos; UINT nOrders, nSamples, nInstruments, nPatterns; if ((!lpStream) || (dwMemLength <= sizeof(DBMFILEHEADER)) || (!pfh->channels) || (pfh->dbm_id != bswapLE32(DBM_FILE_MAGIC)) || (!pfh->songs) || (pfh->song_id != bswapLE32(DBM_ID_SONG)) || (pfh->name_id != bswapLE32(DBM_ID_NAME)) || (pfh->name_len != bswapLE32(DBM_NAMELEN)) || (pfh->info_id != bswapLE32(DBM_ID_INFO)) || (pfh->info_len != bswapLE32(DBM_INFOLEN))) return FALSE; dwMemPos = sizeof(DBMFILEHEADER); nOrders = bswapBE16(pfh->orders); if (dwMemPos + 2 * nOrders + 8*3 >= dwMemLength) return FALSE; nInstruments = bswapBE16(pfh->instruments); nSamples = bswapBE16(pfh->samples); nPatterns = bswapBE16(pfh->patterns); m_nType = MOD_TYPE_DBM; m_nChannels = bswapBE16(pfh->channels); if (m_nChannels < 4) m_nChannels = 4; if (m_nChannels > 64) m_nChannels = 64; memcpy(m_szNames[0], (pfh->songname[0]) ? pfh->songname : pfh->songname2, 32); m_szNames[0][31] = 0; for (UINT iOrd=0; iOrd < nOrders; iOrd++) { Order[iOrd] = lpStream[dwMemPos+iOrd*2+1]; if (iOrd >= MAX_ORDERS-2) break; } dwMemPos += 2*nOrders; while (dwMemPos + 10 < dwMemLength) { DWORD chunk_id = ((LPDWORD)(lpStream+dwMemPos))[0]; DWORD chunk_size = bswapBE32(((LPDWORD)(lpStream+dwMemPos))[1]); DWORD chunk_pos; dwMemPos += 8; chunk_pos = dwMemPos; if ((dwMemPos + chunk_size > dwMemLength) || (chunk_size > dwMemLength)) break; dwMemPos += chunk_size; // Instruments if (chunk_id == bswapLE32(DBM_ID_INST)) { // Skip duplicate chunks. if (m_nInstruments) continue; if (nInstruments >= MAX_INSTRUMENTS) nInstruments = MAX_INSTRUMENTS-1; for (UINT iIns=0; iIns<nInstruments; iIns++) { MODINSTRUMENT *psmp; INSTRUMENTHEADER *penv; DBMINSTRUMENT *pih; UINT nsmp; if (chunk_pos + sizeof(DBMINSTRUMENT) > dwMemPos) break; if ((penv = new INSTRUMENTHEADER) == NULL) break; pih = (DBMINSTRUMENT *)(lpStream+chunk_pos); nsmp = bswapBE16(pih->sampleno); psmp = ((nsmp) && (nsmp < MAX_SAMPLES)) ? &Ins[nsmp] : NULL; memset(penv, 0, sizeof(INSTRUMENTHEADER)); memcpy(penv->name, pih->name, 30); if (psmp) { memcpy(m_szNames[nsmp], pih->name, 30); m_szNames[nsmp][30] = 0; } Headers[iIns+1] = penv; penv->nFadeOut = 1024; // ??? penv->nGlobalVol = 64; penv->nPan = bswapBE16(pih->panning); if ((penv->nPan) && (penv->nPan < 256)) penv->dwFlags = ENV_SETPANNING; else penv->nPan = 128; penv->nPPC = 5*12; for (UINT i=0; i<NOTE_MAX; i++) { penv->Keyboard[i] = nsmp; penv->NoteMap[i] = i+1; } // Sample Info if (psmp) { DWORD sflags = bswapBE16(pih->flags); psmp->nVolume = bswapBE16(pih->volume) * 4; if ((!psmp->nVolume) || (psmp->nVolume > 256)) psmp->nVolume = 256; psmp->nGlobalVol = 64; psmp->nC4Speed = bswapBE32(pih->finetune); int f2t = FrequencyToTranspose(psmp->nC4Speed); psmp->RelativeTone = f2t >> 7; psmp->nFineTune = f2t & 0x7F; if ((pih->looplen) && (sflags & 3)) { psmp->nLoopStart = bswapBE32(pih->loopstart); psmp->nLoopEnd = psmp->nLoopStart + bswapBE32(pih->looplen); psmp->uFlags |= CHN_LOOP; psmp->uFlags &= ~CHN_PINGPONGLOOP; if (sflags & 2) psmp->uFlags |= CHN_PINGPONGLOOP; } } chunk_pos += sizeof(DBMINSTRUMENT); m_nInstruments = iIns+1; } } else // Volume Envelopes if (chunk_id == bswapLE32(DBM_ID_VENV)) { UINT nEnvelopes = lpStream[chunk_pos+1]; chunk_pos += 2; for (UINT iEnv=0; iEnv<nEnvelopes; iEnv++) { DBMENVELOPE *peh; UINT nins; if (chunk_pos + sizeof(DBMENVELOPE) > dwMemPos) break; peh = (DBMENVELOPE *)(lpStream+chunk_pos); nins = bswapBE16(peh->instrument); if ((nins) && (nins < MAX_INSTRUMENTS) && (Headers[nins]) && (peh->numpoints)) { INSTRUMENTHEADER *penv = Headers[nins]; if (peh->flags & 1) penv->dwFlags |= ENV_VOLUME; if (peh->flags & 2) penv->dwFlags |= ENV_VOLSUSTAIN; if (peh->flags & 4) penv->dwFlags |= ENV_VOLLOOP; penv->nVolEnv = peh->numpoints + 1; if (penv->nVolEnv > MAX_ENVPOINTS) penv->nVolEnv = MAX_ENVPOINTS; penv->nVolLoopStart = peh->loopbegin; penv->nVolLoopEnd = peh->loopend; penv->nVolSustainBegin = penv->nVolSustainEnd = peh->sustain1; for (UINT i=0; i<penv->nVolEnv; i++) { penv->VolPoints[i] = bswapBE16(peh->volenv[i*2]); penv->VolEnv[i] = (BYTE)bswapBE16(peh->volenv[i*2+1]); } } chunk_pos += sizeof(DBMENVELOPE); } } else // Packed Pattern Data if (chunk_id == bswapLE32(DBM_ID_PATT)) { if (nPatterns > MAX_PATTERNS) nPatterns = MAX_PATTERNS; for (UINT iPat=0; iPat<nPatterns; iPat++) { DBMPATTERN *pph; DWORD pksize; UINT nRows; // Skip duplicate chunks. if (Patterns[iPat]) break; if (chunk_pos + sizeof(DBMPATTERN) > dwMemPos) break; pph = (DBMPATTERN *)(lpStream+chunk_pos); pksize = bswapBE32(pph->packedsize); if ((chunk_pos + pksize + 6 > dwMemPos) || (pksize > dwMemPos)) break; nRows = bswapBE16(pph->rows); if ((nRows >= 4) && (nRows <= 256)) { MODCOMMAND *m = AllocatePattern(nRows, m_nChannels); if (m) { LPBYTE pkdata = (LPBYTE)pph->patterndata; UINT row = 0; UINT i = 0; PatternSize[iPat] = nRows; Patterns[iPat] = m; while ((i+3<pksize) && (row < nRows)) { UINT ch = pkdata[i++]; if (ch) { BYTE b = pkdata[i++]; ch--; if (ch < m_nChannels) { if (b & 0x01) { UINT note = pkdata[i++]; if (note == 0x1F) note = 0xFF; else if ((note) && (note < 0xFE)) { note = ((note >> 4)*12) + (note & 0x0F) + 13; } m[ch].note = note; } if (b & 0x02) m[ch].instr = pkdata[i++]; if (b & 0x3C) { UINT cmd1 = 0xFF, param1 = 0, cmd2 = 0xFF, param2 = 0; if (b & 0x04) cmd1 = (UINT)pkdata[i++]; if (b & 0x08) param1 = pkdata[i++]; if (b & 0x10) cmd2 = (UINT)pkdata[i++]; if (b & 0x20) param2 = pkdata[i++]; if (cmd1 == 0x0C) { m[ch].volcmd = VOLCMD_VOLUME; m[ch].vol = param1; cmd1 = 0xFF; } else if (cmd2 == 0x0C) { m[ch].volcmd = VOLCMD_VOLUME; m[ch].vol = param2; cmd2 = 0xFF; } if ((cmd1 > 0x13) || ((cmd1 >= 0x10) && (cmd2 < 0x10))) { cmd1 = cmd2; param1 = param2; cmd2 = 0xFF; } if (cmd1 <= 0x13) { m[ch].command = cmd1; m[ch].param = param1; ConvertModCommand(&m[ch]); } } } else { if (b & 0x01) i++; if (b & 0x02) i++; if (b & 0x04) i++; if (b & 0x08) i++; if (b & 0x10) i++; if (b & 0x20) i++; } } else { row++; m += m_nChannels; } } } } chunk_pos += 6 + pksize; } } else // Reading Sample Data if (chunk_id == bswapLE32(DBM_ID_SMPL)) { if (nSamples >= MAX_SAMPLES) nSamples = MAX_SAMPLES-1; m_nSamples = nSamples; for (UINT iSmp=1; iSmp<=nSamples; iSmp++) { MODINSTRUMENT *pins; DBMSAMPLE *psh; DWORD samplesize; DWORD sampleflags; if (chunk_pos + sizeof(DBMSAMPLE) >= dwMemPos) break; psh = (DBMSAMPLE *)(lpStream+chunk_pos); chunk_pos += 8; samplesize = bswapBE32(psh->samplesize); sampleflags = bswapBE32(psh->flags); pins = &Ins[iSmp]; pins->nLength = samplesize; if (sampleflags & 2) { pins->uFlags |= CHN_16BIT; samplesize <<= 1; } if ((chunk_pos+samplesize > dwMemPos) || (samplesize > dwMemLength)) break; if (sampleflags & 3) { ReadSample(pins, (pins->uFlags & CHN_16BIT) ? RS_PCM16M : RS_PCM8S, (LPSTR)(psh->sampledata), samplesize); } chunk_pos += samplesize; } } } return TRUE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ /////////////////////////////////////////////////////// // DMF DELUSION DIGITAL MUSIC FILEFORMAT (X-Tracker) // /////////////////////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" //#define DMFLOG //#pragma warning(disable:4244) #pragma pack(1) typedef struct DMFHEADER { DWORD id; // "DDMF" = 0x464d4444 BYTE version; // 4 CHAR trackername[8]; // "XTRACKER" CHAR songname[30]; CHAR composer[20]; BYTE date[3]; } DMFHEADER; typedef struct DMFINFO { DWORD id; // "INFO" DWORD infosize; } DMFINFO; typedef struct DMFSEQU { DWORD id; // "SEQU" DWORD seqsize; WORD loopstart; WORD loopend; WORD sequ[2]; } DMFSEQU; typedef struct DMFPATT { DWORD id; // "PATT" DWORD patsize; WORD numpat; // 1-1024 BYTE tracks; BYTE firstpatinfo; } DMFPATT; typedef struct DMFTRACK { BYTE tracks; BYTE beat; // [hi|lo] -> hi=ticks per beat, lo=beats per measure WORD ticks; // max 512 DWORD jmpsize; } DMFTRACK; typedef struct DMFSMPI { DWORD id; DWORD size; BYTE samples; } DMFSMPI; typedef struct DMFSAMPLE { DWORD len; DWORD loopstart; DWORD loopend; WORD c3speed; BYTE volume; BYTE flags; } DMFSAMPLE; #pragma pack() #ifdef DMFLOG extern void Log(LPCSTR s, ...); #endif BOOL CSoundFile::ReadDMF(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { const DMFHEADER *pfh = (DMFHEADER *)lpStream; const DMFINFO *psi; const DMFPATT *patt; const DMFSEQU *sequ; DWORD dwMemPos; BYTE infobyte[32]; BYTE smplflags[MAX_SAMPLES], hasSMPI = 0, hasSMPD = 0; if ((!lpStream) || (dwMemLength < 1024)) return FALSE; if ((pfh->id != 0x464d4444) || (!pfh->version) || (pfh->version & 0xF0)) return FALSE; dwMemPos = 66; memcpy(m_szNames[0], pfh->songname, 30); m_szNames[0][30] = 0; m_nType = MOD_TYPE_DMF; m_nChannels = 0; #ifdef DMFLOG Log("DMF version %d: \"%s\": %d bytes (0x%04X)\n", pfh->version, m_szNames[0], dwMemLength, dwMemLength); #endif while (dwMemPos < dwMemLength - 7) { DWORD id = *((LPDWORD)(lpStream+dwMemPos)); switch(id) { // "INFO" case 0x4f464e49: // "CMSG" case 0x47534d43: psi = (DMFINFO *)(lpStream+dwMemPos); if (id == 0x47534d43) dwMemPos++; if ((psi->infosize > dwMemLength) || (dwMemPos + 8 > dwMemLength - psi->infosize)) goto dmfexit; if ((psi->infosize >= 8) && (!m_lpszSongComments)) { m_lpszSongComments = new char[psi->infosize]; // changed from CHAR if (m_lpszSongComments) { for (UINT i=0; i<psi->infosize-1; i++) { CHAR c = lpStream[dwMemPos+8+i]; if ((i % 40) == 39) m_lpszSongComments[i] = 0x0d; else m_lpszSongComments[i] = (c < ' ') ? ' ' : c; } m_lpszSongComments[psi->infosize-1] = 0; } } dwMemPos += psi->infosize + 8 - 1; break; // "SEQU" case 0x55514553: sequ = (DMFSEQU *)(lpStream+dwMemPos); if ((sequ->seqsize >= dwMemLength) || (dwMemPos + 8 > dwMemLength - sequ->seqsize)) goto dmfexit; if (sequ->seqsize >= 4) { UINT nseq = (sequ->seqsize - 4) >> 1; if (nseq >= MAX_ORDERS-1) nseq = MAX_ORDERS-1; if (sequ->loopstart < nseq) m_nRestartPos = sequ->loopstart; for (UINT i=0; i<nseq; i++) Order[i] = (BYTE)sequ->sequ[i]; } dwMemPos += sequ->seqsize + 8; break; // "PATT" case 0x54544150: patt = (DMFPATT *)(lpStream+dwMemPos); if ((patt->patsize >= dwMemLength) || (dwMemPos + 8 > dwMemLength - patt->patsize)) goto dmfexit; if (patt->patsize >= 4 && !m_nChannels) { UINT numpat; DWORD dwPos = dwMemPos + 11; numpat = patt->numpat; if (numpat > MAX_PATTERNS) numpat = MAX_PATTERNS; m_nChannels = patt->tracks; if (m_nChannels < patt->firstpatinfo) m_nChannels = patt->firstpatinfo; if (m_nChannels > 32) m_nChannels = 32; if (m_nChannels < 4) m_nChannels = 4; for (UINT npat=0; npat<numpat; npat++) { const DMFTRACK *pt = (DMFTRACK *)(lpStream+dwPos); if (dwPos + 8 >= dwMemLength) break; #ifdef DMFLOG Log("Pattern #%d: %d tracks, %d rows\n", npat, pt->tracks, pt->ticks); #endif UINT tracks = pt->tracks; if (tracks > 32) tracks = 32; UINT ticks = pt->ticks; if (ticks > 256) ticks = 256; if (ticks < 16) ticks = 16; dwPos += 8; if ((pt->jmpsize >= dwMemLength) || (dwPos + 4 > dwMemLength - pt->jmpsize)) break; PatternSize[npat] = (WORD)ticks; MODCOMMAND *m = AllocatePattern(PatternSize[npat], m_nChannels); if (!m) goto dmfexit; Patterns[npat] = m; DWORD d = dwPos; dwPos += pt->jmpsize; UINT ttype = 1; UINT tempo = 125; UINT glbinfobyte = 0; UINT pbeat = (pt->beat & 0xf0) ? pt->beat>>4 : 8; BOOL tempochange = (pt->beat & 0xf0) ? TRUE : FALSE; memset(infobyte, 0, sizeof(infobyte)); for (UINT row=0; row<ticks; row++) { MODCOMMAND *p = &m[row*m_nChannels]; // Parse track global effects if (!glbinfobyte) { if (d+1 > dwPos) break; BYTE info = lpStream[d++]; BYTE infoval = 0; if ((info & 0x80) && (d < dwPos)) glbinfobyte = lpStream[d++]; info &= 0x7f; if ((info) && (d < dwPos)) infoval = lpStream[d++]; switch(info) { case 1: ttype = 0; tempo = infoval; tempochange = TRUE; break; case 2: ttype = 1; tempo = infoval; tempochange = TRUE; break; case 3: pbeat = infoval>>4; tempochange = ttype; break; #ifdef DMFLOG default: if (info) Log("GLB: %02X.%02X\n", info, infoval); #endif } } else { glbinfobyte--; } // Parse channels for (UINT i=0; i<tracks; i++) if (!infobyte[i]) { if (d+1 > dwPos) break; MODCOMMAND cmd = {0,0,0,0,0,0}; BYTE info = lpStream[d++]; if (info & 0x80) { if (d+1 > dwPos) break; infobyte[i] = lpStream[d++]; } // Instrument if (info & 0x40) { if (d+1 > dwPos) break; cmd.instr = lpStream[d++]; } // Note if (info & 0x20) { if (d+1 > dwPos) break; cmd.note = lpStream[d++]; if ((cmd.note) && (cmd.note < 0xfe)) cmd.note &= 0x7f; if ((cmd.note) && (cmd.note < 128)) cmd.note += 24; } // Volume if (info & 0x10) { if (d+1 > dwPos) break; cmd.volcmd = VOLCMD_VOLUME; cmd.vol = (lpStream[d++]+3)>>2; } // Effect 1 if (info & 0x08) { if (d+2 > dwPos) break; BYTE efx = lpStream[d++]; BYTE eval = lpStream[d++]; switch(efx) { // 1: Key Off case 1: if (!cmd.note) cmd.note = 0xFE; break; // 2: Set Loop // 4: Sample Delay case 4: if (eval&0xe0) { cmd.command = CMD_S3MCMDEX; cmd.param = (eval>>5)|0xD0; } break; // 5: Retrig case 5: if (eval&0xe0) { cmd.command = CMD_RETRIG; cmd.param = (eval>>5); } break; // 6: Offset case 6: cmd.command = CMD_OFFSET; cmd.param = eval; break; #ifdef DMFLOG default: Log("FX1: %02X.%02X\n", efx, eval); #endif } } // Effect 2 if (info & 0x04) { if (d+2 > dwPos) break; BYTE efx = lpStream[d++]; BYTE eval = lpStream[d++]; switch(efx) { // 1: Finetune case 1: if (eval&0xf0) { cmd.command = CMD_S3MCMDEX; cmd.param = (eval>>4)|0x20; } break; // 2: Note Delay case 2: if (eval&0xe0) { cmd.command = CMD_S3MCMDEX; cmd.param = (eval>>5)|0xD0; } break; // 3: Arpeggio case 3: if (eval) { cmd.command = CMD_ARPEGGIO; cmd.param = eval; } break; // 4: Portamento Up case 4: cmd.command = CMD_PORTAMENTOUP; cmd.param = (eval >= 0xe0) ? 0xdf : eval; break; // 5: Portamento Down case 5: cmd.command = CMD_PORTAMENTODOWN; cmd.param = (eval >= 0xe0) ? 0xdf : eval; break; // 6: Tone Portamento case 6: cmd.command = CMD_TONEPORTAMENTO; cmd.param = eval; break; // 8: Vibrato case 8: cmd.command = CMD_VIBRATO; cmd.param = eval; break; // 12: Note cut case 12: if (eval & 0xe0) { cmd.command = CMD_S3MCMDEX; cmd.param = (eval>>5)|0xc0; } else if (!cmd.note) { cmd.note = 0xfe; } break; #ifdef DMFLOG default: Log("FX2: %02X.%02X\n", efx, eval); #endif } } // Effect 3 if (info & 0x02) { if (d+2 > dwPos) break; BYTE efx = lpStream[d++]; BYTE eval = lpStream[d++]; switch(efx) { // 1: Vol Slide Up case 1: if (eval == 0xff) break; eval = (eval+3)>>2; if (eval > 0x0f) eval = 0x0f; cmd.command = CMD_VOLUMESLIDE; cmd.param = eval<<4; break; // 2: Vol Slide Down case 2: if (eval == 0xff) break; eval = (eval+3)>>2; if (eval > 0x0f) eval = 0x0f; cmd.command = CMD_VOLUMESLIDE; cmd.param = eval; break; // 7: Set Pan case 7: if (!cmd.volcmd) { cmd.volcmd = VOLCMD_PANNING; cmd.vol = (eval+3)>>2; } else { cmd.command = CMD_PANNING8; cmd.param = eval; } break; // 8: Pan Slide Left case 8: eval = (eval+3)>>2; if (eval > 0x0f) eval = 0x0f; cmd.command = CMD_PANNINGSLIDE; cmd.param = eval<<4; break; // 9: Pan Slide Right case 9: eval = (eval+3)>>2; if (eval > 0x0f) eval = 0x0f; cmd.command = CMD_PANNINGSLIDE; cmd.param = eval; break; #ifdef DMFLOG default: Log("FX3: %02X.%02X\n", efx, eval); #endif } } // Store effect if (i < m_nChannels) p[i] = cmd; if (d > dwPos) { #ifdef DMFLOG Log("Unexpected EOP: row=%d\n", row); #endif break; } } else { infobyte[i]--; } // Find free channel for tempo change if (tempochange) { tempochange = FALSE; UINT speed=6, modtempo=tempo; UINT rpm = ((ttype) && (pbeat)) ? tempo*pbeat : (tempo+1)*15; for (speed=30; speed>1; speed--) { modtempo = rpm*speed/24; if (modtempo <= 200) break; if ((speed < 6) && (modtempo < 256)) break; } #ifdef DMFLOG Log("Tempo change: ttype=%d pbeat=%d tempo=%3d -> speed=%d tempo=%d\n", ttype, pbeat, tempo, speed, modtempo); #endif for (UINT ich=0; ich<m_nChannels; ich++) if (!p[ich].command) { if (speed) { p[ich].command = CMD_SPEED; p[ich].param = (BYTE)speed; speed = 0; } else if ((modtempo >= 32) && (modtempo < 256)) { p[ich].command = CMD_TEMPO; p[ich].param = (BYTE)modtempo; modtempo = 0; } else { break; } } } if (d >= dwPos) break; } #ifdef DMFLOG Log(" %d/%d bytes remaining\n", dwPos-d, pt->jmpsize); #endif if (dwPos + 8 >= dwMemLength) break; } } dwMemPos += patt->patsize + 8; break; // "SMPI": Sample Info case 0x49504d53: { hasSMPI = 1; const DMFSMPI *pds = (DMFSMPI *)(lpStream+dwMemPos); if ((pds->size >= dwMemLength) || (dwMemPos + 8 > dwMemLength - pds->size)) goto dmfexit; if (pds->size >= 1) { DWORD dwPos = dwMemPos + 9; m_nSamples = pds->samples; if (m_nSamples >= MAX_SAMPLES) m_nSamples = MAX_SAMPLES-1; for (UINT iSmp=1; iSmp<=m_nSamples; iSmp++) { if (dwPos >= dwMemPos + pds->size + 8) break; UINT namelen = lpStream[dwPos]; smplflags[iSmp] = 0; if (dwPos+namelen+1+sizeof(DMFSAMPLE) > dwMemPos+pds->size+8) break; if (namelen) { UINT rlen = (namelen < 32) ? namelen : 31; memcpy(m_szNames[iSmp], lpStream+dwPos+1, rlen); m_szNames[iSmp][rlen] = 0; } dwPos += namelen + 1; const DMFSAMPLE *psh = (DMFSAMPLE *)(lpStream+dwPos); MODINSTRUMENT *psmp = &Ins[iSmp]; psmp->nLength = psh->len; psmp->nLoopStart = psh->loopstart; psmp->nLoopEnd = psh->loopend; psmp->nC4Speed = psh->c3speed; psmp->nGlobalVol = 64; psmp->nVolume = (psh->volume) ? ((WORD)psh->volume)+1 : (WORD)256; psmp->uFlags = (psh->flags & 2) ? CHN_16BIT : 0; if (psmp->uFlags & CHN_16BIT) psmp->nLength >>= 1; if (psh->flags & 1) psmp->uFlags |= CHN_LOOP; smplflags[iSmp] = psh->flags; dwPos += (pfh->version < 8) ? 22 : 30; #ifdef DMFLOG Log("SMPI %d/%d: len=%d flags=0x%02X\n", iSmp, m_nSamples, psmp->nLength, psh->flags); #endif } } dwMemPos += pds->size + 8; } break; // "SMPD": Sample Data case 0x44504d53: { DWORD dwPos = dwMemPos + 8; UINT ismpd = 0; for (UINT iSmp=1; iSmp<=m_nSamples && !hasSMPD; iSmp++) { ismpd++; DWORD pksize; if (dwPos + 4 >= dwMemLength) { #ifdef DMFLOG Log("Unexpected EOF at sample %d/%d! (pos=%d)\n", iSmp, m_nSamples, dwPos); #endif break; } pksize = *((LPDWORD)(lpStream+dwPos)); #ifdef DMFLOG Log("sample %d: pos=0x%X pksize=%d ", iSmp, dwPos, pksize); Log("len=%d flags=0x%X [%08X]\n", Ins[iSmp].nLength, smplflags[ismpd], *((LPDWORD)(lpStream+dwPos+4))); #endif dwPos += 4; if (pksize > dwMemLength - dwPos) { #ifdef DMFLOG Log("WARNING: pksize=%d, but only %d bytes left\n", pksize, dwMemLength-dwPos); #endif pksize = dwMemLength - dwPos; } if ((pksize) && (iSmp <= m_nSamples)) { UINT flags = (Ins[iSmp].uFlags & CHN_16BIT) ? RS_PCM16S : RS_PCM8S; if (hasSMPI && smplflags[ismpd] & 4) flags = (Ins[iSmp].uFlags & CHN_16BIT) ? RS_DMF16 : RS_DMF8; ReadSample(&Ins[iSmp], flags, (LPSTR)(lpStream+dwPos), pksize); } dwPos += pksize; } hasSMPD = 1; dwMemPos = dwPos; } break; // "ENDE": end of file case 0x45444e45: goto dmfexit; // Unrecognized id, or "ENDE" field default: dwMemPos += 4; break; } } dmfexit: if (!m_nChannels) { if (!m_nSamples) { m_nType = MOD_TYPE_NONE; return FALSE; } m_nChannels = 4; } return TRUE; } /////////////////////////////////////////////////////////////////////// // DMF Compression #pragma pack(1) typedef struct DMF_HNODE { short int left, right; BYTE value; } DMF_HNODE; typedef struct DMF_HTREE { LPBYTE ibuf, ibufmax; DWORD bitbuf; UINT bitnum; UINT lastnode, nodecount; DMF_HNODE nodes[256]; } DMF_HTREE; #pragma pack() // DMF Huffman ReadBits BYTE DMFReadBits(DMF_HTREE *tree, UINT nbits) //------------------------------------------- { BYTE x = 0, bitv = 1; while (nbits--) { if (tree->bitnum) { tree->bitnum--; } else if (tree->ibuf < tree->ibufmax) { tree->bitbuf = *(tree->ibuf++); tree->bitnum = 7; } if (tree->bitbuf & 1) x |= bitv; bitv <<= 1; tree->bitbuf >>= 1; } return x; } // // tree: [8-bit value][12-bit index][12-bit index] = 32-bit // void DMFNewNode(DMF_HTREE *tree) //------------------------------ { BYTE isleft, isright; UINT actnode; actnode = tree->nodecount; if (actnode > 255) return; tree->nodes[actnode].value = DMFReadBits(tree, 7); isleft = DMFReadBits(tree, 1); isright = DMFReadBits(tree, 1); actnode = tree->lastnode; if (actnode > 255) return; tree->nodecount++; tree->lastnode = tree->nodecount; if (isleft) { tree->nodes[actnode].left = tree->lastnode; DMFNewNode(tree); } else { tree->nodes[actnode].left = -1; } tree->lastnode = tree->nodecount; if (isright) { tree->nodes[actnode].right = tree->lastnode; DMFNewNode(tree); } else { tree->nodes[actnode].right = -1; } } int DMFUnpack(LPBYTE psample, LPBYTE ibuf, LPBYTE ibufmax, UINT maxlen) //---------------------------------------------------------------------- { DMF_HTREE tree; UINT actnode; BYTE value, sign, delta = 0; memset(&tree, 0, sizeof(tree)); tree.ibuf = ibuf; tree.ibufmax = ibufmax; DMFNewNode(&tree); value = 0; if (tree.ibuf >= ibufmax) return tree.ibuf - ibuf; for (UINT i=0; i<maxlen; i++) { if ((tree.ibuf >= tree.ibufmax) && (!tree.bitnum)) { #ifdef DMFLOG Log("DMFUnpack: unexpected EOF at output byte %d / %d\n", i, maxlen); #endif break; } actnode = 0; sign = DMFReadBits(&tree, 1); do { if (DMFReadBits(&tree, 1)) actnode = tree.nodes[actnode].right; else actnode = tree.nodes[actnode].left; if (actnode > 255) break; delta = tree.nodes[actnode].value; if ((tree.ibuf >= tree.ibufmax) && (!tree.bitnum)) break; } while ((tree.nodes[actnode].left >= 0) && (tree.nodes[actnode].right >= 0)); if (sign) delta ^= 0xFF; value += delta; psample[i] = (i) ? value : 0; } #ifdef DMFLOG // Log("DMFUnpack: %d remaining bytes\n", tree.ibufmax-tree.ibuf); #endif return tree.ibuf - ibuf; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ ////////////////////////////////////////////// // DSIK Internal Format (DSM) module loader // ////////////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" #pragma pack(1) #define DSMID_RIFF 0x46464952 // "RIFF" #define DSMID_DSMF 0x464d5344 // "DSMF" #define DSMID_SONG 0x474e4f53 // "SONG" #define DSMID_INST 0x54534e49 // "INST" #define DSMID_PATT 0x54544150 // "PATT" typedef struct DSMNOTE { BYTE note,ins,vol,cmd,inf; } DSMNOTE; typedef struct DSMINST { DWORD id_INST; DWORD inst_len; CHAR filename[13]; BYTE flags; BYTE flags2; BYTE volume; DWORD length; DWORD loopstart; DWORD loopend; DWORD reserved1; WORD c2spd; WORD reserved2; CHAR samplename[28]; } DSMINST; typedef struct DSMFILEHEADER { DWORD id_RIFF; // "RIFF" DWORD riff_len; DWORD id_DSMF; // "DSMF" DWORD id_SONG; // "SONG" DWORD song_len; } DSMFILEHEADER; typedef struct DSMSONG { CHAR songname[28]; WORD reserved1; WORD flags; DWORD reserved2; WORD numord; WORD numsmp; WORD numpat; WORD numtrk; BYTE globalvol; BYTE mastervol; BYTE speed; BYTE bpm; BYTE panpos[16]; BYTE orders[128]; } DSMSONG; typedef struct DSMPATT { DWORD id_PATT; DWORD patt_len; BYTE dummy1; BYTE dummy2; } DSMPATT; #pragma pack() BOOL CSoundFile::ReadDSM(LPCBYTE lpStream, DWORD dwMemLength) //----------------------------------------------------------- { DSMFILEHEADER *pfh = (DSMFILEHEADER *)lpStream; DSMSONG *psong; DWORD dwMemPos; UINT nPat, nSmp; if ((!lpStream) || (dwMemLength < 1024) || (pfh->id_RIFF != DSMID_RIFF) || (pfh->riff_len + 8 > dwMemLength) || (pfh->riff_len < 1024) || (pfh->id_DSMF != DSMID_DSMF) || (pfh->id_SONG != DSMID_SONG) || (pfh->song_len > dwMemLength)) return FALSE; psong = (DSMSONG *)(lpStream + sizeof(DSMFILEHEADER)); dwMemPos = sizeof(DSMFILEHEADER) + pfh->song_len; m_nType = MOD_TYPE_DSM; m_nChannels = psong->numtrk; if (m_nChannels < 4) m_nChannels = 4; if (m_nChannels > 16) m_nChannels = 16; m_nSamples = psong->numsmp; if (m_nSamples >= MAX_SAMPLES) m_nSamples = MAX_SAMPLES - 1; m_nDefaultSpeed = psong->speed; m_nDefaultTempo = psong->bpm; m_nDefaultGlobalVolume = psong->globalvol << 2; if ((!m_nDefaultGlobalVolume) || (m_nDefaultGlobalVolume > 256)) m_nDefaultGlobalVolume = 256; m_nSongPreAmp = psong->mastervol & 0x7F; for (UINT iOrd=0; iOrd<sizeof(psong->orders); iOrd++) { Order[iOrd] = (BYTE)((iOrd < psong->numord) ? psong->orders[iOrd] : 0xFF); } for (UINT iPan=0; iPan<16; iPan++) { ChnSettings[iPan].nPan = 0x80; if (psong->panpos[iPan] <= 0x80) { ChnSettings[iPan].nPan = psong->panpos[iPan] << 1; } } memcpy(m_szNames[0], psong->songname, 28); nPat = 0; nSmp = 1; while (dwMemPos < dwMemLength - 8) { DSMPATT *ppatt = (DSMPATT *)(lpStream + dwMemPos); DSMINST *pins = (DSMINST *)(lpStream+dwMemPos); // Reading Patterns if (ppatt->id_PATT == DSMID_PATT) { dwMemPos += 8; if (dwMemPos + ppatt->patt_len >= dwMemLength) break; DWORD dwPos = dwMemPos; dwMemPos += ppatt->patt_len; MODCOMMAND *m = AllocatePattern(64, m_nChannels); if (!m) break; PatternSize[nPat] = 64; Patterns[nPat] = m; UINT row = 0; while ((row < 64) && (dwPos + 2 <= dwMemPos)) { UINT flag = lpStream[dwPos++]; if (flag) { UINT ch = (flag & 0x0F) % m_nChannels; if (flag & 0x80) { UINT note = lpStream[dwPos++]; if (note) { if (note <= 12*9) note += 12; m[ch].note = (BYTE)note; } } if (flag & 0x40) { m[ch].instr = lpStream[dwPos++]; } if (flag & 0x20) { m[ch].volcmd = VOLCMD_VOLUME; m[ch].vol = lpStream[dwPos++]; } if (flag & 0x10) { UINT command = lpStream[dwPos++]; UINT param = lpStream[dwPos++]; switch(command) { // 4-bit Panning case 0x08: switch(param & 0xF0) { case 0x00: param <<= 4; break; case 0x10: command = 0x0A; param = (param & 0x0F) << 4; break; case 0x20: command = 0x0E; param = (param & 0x0F) | 0xA0; break; case 0x30: command = 0x0E; param = (param & 0x0F) | 0x10; break; case 0x40: command = 0x0E; param = (param & 0x0F) | 0x20; break; default: command = 0; } break; // Portamentos case 0x11: case 0x12: command &= 0x0F; break; // 3D Sound (?) case 0x13: command = 'X' - 55; param = 0x91; break; default: // Volume + Offset (?) command = ((command & 0xF0) == 0x20) ? 0x09 : 0; } m[ch].command = (BYTE)command; m[ch].param = (BYTE)param; if (command) ConvertModCommand(&m[ch]); } } else { m += m_nChannels; row++; } } nPat++; } else // Reading Samples if ((nSmp <= m_nSamples) && (pins->id_INST == DSMID_INST)) { if (dwMemPos + pins->inst_len >= dwMemLength - 8) break; DWORD dwPos = dwMemPos + sizeof(DSMINST); dwMemPos += 8 + pins->inst_len; memcpy(m_szNames[nSmp], pins->samplename, 28); MODINSTRUMENT *psmp = &Ins[nSmp]; memcpy(psmp->name, pins->filename, 13); psmp->nGlobalVol = 64; psmp->nC4Speed = pins->c2spd; psmp->uFlags = (WORD)((pins->flags & 1) ? CHN_LOOP : 0); psmp->nLength = pins->length; psmp->nLoopStart = pins->loopstart; psmp->nLoopEnd = pins->loopend; psmp->nVolume = (WORD)(pins->volume << 2); if (psmp->nVolume > 256) psmp->nVolume = 256; UINT smptype = (pins->flags & 2) ? RS_PCM8S : RS_PCM8U; ReadSample(psmp, smptype, (LPCSTR)(lpStream+dwPos), dwMemLength - dwPos); nSmp++; } else { break; } } return TRUE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ //////////////////////////////////////// // Farandole (FAR) module loader // //////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" //#pragma warning(disable:4244) #define FARFILEMAGIC 0xFE524146 // "FAR" #pragma pack(1) typedef struct FARHEADER1 { DWORD id; // file magic FAR= CHAR songname[40]; // songname CHAR magic2[3]; // 13,10,26 WORD headerlen; // remaining length of header in bytes BYTE version; // 0xD1 BYTE onoff[16]; BYTE edit1[9]; BYTE speed; BYTE panning[16]; BYTE edit2[4]; WORD stlen; } FARHEADER1; typedef struct FARHEADER2 { BYTE orders[256]; BYTE numpat; BYTE snglen; BYTE loopto; WORD patsiz[256]; } FARHEADER2; typedef struct FARSAMPLE { CHAR samplename[32]; DWORD length; BYTE finetune; BYTE volume; DWORD reppos; DWORD repend; BYTE type; BYTE loop; } FARSAMPLE; #pragma pack() BOOL CSoundFile::ReadFAR(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { const FARHEADER1 *pmh1 = (const FARHEADER1 *)lpStream; const FARHEADER2 *pmh2; DWORD dwMemPos = sizeof(FARHEADER1); UINT headerlen, stlen; BYTE samplemap[8]; if ((!lpStream) || (dwMemLength < 1024) || (bswapLE32(pmh1->id) != FARFILEMAGIC) || (pmh1->magic2[0] != 13) || (pmh1->magic2[1] != 10) || (pmh1->magic2[2] != 26)) return FALSE; headerlen = bswapLE16(pmh1->headerlen); stlen = bswapLE16( pmh1->stlen ); if ((headerlen >= dwMemLength) || (dwMemPos + stlen + sizeof(FARHEADER2) >= dwMemLength)) return FALSE; // Globals m_nType = MOD_TYPE_FAR; m_nChannels = 16; m_nInstruments = 0; m_nSamples = 0; m_nSongPreAmp = 0x20; m_nDefaultSpeed = pmh1->speed; m_nDefaultTempo = 80; m_nDefaultGlobalVolume = 256; memcpy(m_szNames[0], pmh1->songname, 32); // Channel Setting for (UINT nchpan=0; nchpan<16; nchpan++) { ChnSettings[nchpan].dwFlags = 0; ChnSettings[nchpan].nPan = ((pmh1->panning[nchpan] & 0x0F) << 4) + 8; ChnSettings[nchpan].nVolume = 64; } // Reading comment if (stlen) { UINT szLen = stlen; if (szLen > dwMemLength - dwMemPos) szLen = dwMemLength - dwMemPos; if ((m_lpszSongComments = new char[szLen + 1]) != NULL) { memcpy(m_lpszSongComments, lpStream+dwMemPos, szLen); m_lpszSongComments[szLen] = 0; } dwMemPos += stlen; } // Reading orders if (sizeof(FARHEADER2) > dwMemLength - dwMemPos) return TRUE; pmh2 = (const FARHEADER2 *)(lpStream + dwMemPos); dwMemPos += sizeof(FARHEADER2); if (dwMemPos >= dwMemLength) return TRUE; for (UINT iorder=0; iorder<MAX_ORDERS; iorder++) { Order[iorder] = (iorder <= pmh2->snglen) ? pmh2->orders[iorder] : 0xFF; } m_nRestartPos = pmh2->loopto; // Reading Patterns dwMemPos += headerlen - (869 + stlen); if (dwMemPos >= dwMemLength) return TRUE; // end byteswap of pattern data WORD *patsiz = (WORD *)pmh2->patsiz; for (UINT ipat=0; ipat<256; ipat++) if (patsiz[ipat]) { UINT patlen = bswapLE16(patsiz[ipat]); if ((ipat >= MAX_PATTERNS) || (patlen < 2)) { dwMemPos += patlen; continue; } if (dwMemPos + patlen >= dwMemLength) return TRUE; UINT max = (patlen - 2) & ~3; UINT rows = (patlen - 2) >> 6; if (!rows) { dwMemPos += patlen; continue; } if (rows > 256) rows = 256; if (rows < 16) rows = 16; if (max > rows*16*4) max = rows*16*4; PatternSize[ipat] = rows; if ((Patterns[ipat] = AllocatePattern(rows, m_nChannels)) == NULL) return TRUE; MODCOMMAND *m = Patterns[ipat]; UINT patbrk = lpStream[dwMemPos]; const BYTE *p = lpStream + dwMemPos + 2; for (UINT len=0; len<max; len += 4, m++) { BYTE note = p[len]; BYTE ins = p[len+1]; BYTE vol = p[len+2]; BYTE eff = p[len+3]; if (note) { m->instr = ins + 1; m->note = note + 36; } if (vol >= 0x01 && vol <= 0x10) { m->volcmd = VOLCMD_VOLUME; m->vol = (vol - 1) << 2; } switch(eff & 0xF0) { // 1.x: Portamento Up case 0x10: m->command = CMD_PORTAMENTOUP; m->param = eff & 0x0F; break; // 2.x: Portamento Down case 0x20: m->command = CMD_PORTAMENTODOWN; m->param = eff & 0x0F; break; // 3.x: Tone-Portamento case 0x30: m->command = CMD_TONEPORTAMENTO; m->param = (eff & 0x0F) << 2; break; // 4.x: Retrigger case 0x40: m->command = CMD_RETRIG; m->param = 6 / (1+(eff&0x0F)) + 1; break; // 5.x: Set Vibrato Depth case 0x50: m->command = CMD_VIBRATO; m->param = (eff & 0x0F); break; // 6.x: Set Vibrato Speed case 0x60: m->command = CMD_VIBRATO; m->param = (eff & 0x0F) << 4; break; // 7.x: Vol Slide Up case 0x70: m->command = CMD_VOLUMESLIDE; m->param = (eff & 0x0F) << 4; break; // 8.x: Vol Slide Down case 0x80: m->command = CMD_VOLUMESLIDE; m->param = (eff & 0x0F); break; // A.x: Port to vol case 0xA0: m->volcmd = VOLCMD_VOLUME; m->vol = ((eff & 0x0F) << 2) + 4; break; // B.x: Set Balance case 0xB0: m->command = CMD_PANNING8; m->param = (eff & 0x0F) << 4; break; // F.x: Set Speed case 0xF0: m->command = CMD_SPEED; m->param = eff & 0x0F; break; default: if ((patbrk) && (patbrk+1 == (len >> 6)) && (patbrk+1 != rows-1)) { m->command = CMD_PATTERNBREAK; patbrk = 0; } } } dwMemPos += patlen; } // Reading samples if (dwMemPos + 8 >= dwMemLength) return TRUE; memcpy(samplemap, lpStream+dwMemPos, 8); dwMemPos += 8; MODINSTRUMENT *pins = &Ins[1]; for (UINT ismp=0; ismp<64; ismp++, pins++) if (samplemap[ismp >> 3] & (1 << (ismp & 7))) { if (dwMemPos + sizeof(FARSAMPLE) > dwMemLength) return TRUE; const FARSAMPLE *pfs = reinterpret_cast<const FARSAMPLE*>(lpStream + dwMemPos); dwMemPos += sizeof(FARSAMPLE); m_nSamples = ismp + 1; memcpy(m_szNames[ismp+1], pfs->samplename, 32); const DWORD length = bswapLE32( pfs->length ) ; /* endian fix - Toad */ pins->nLength = length ; pins->nLoopStart = bswapLE32(pfs->reppos) ; pins->nLoopEnd = bswapLE32(pfs->repend) ; pins->nFineTune = 0; pins->nC4Speed = 8363*2; pins->nGlobalVol = 64; pins->nVolume = pfs->volume << 4; pins->uFlags = 0; if ((pins->nLength > 3) && (dwMemPos + 4 < dwMemLength)) { if (pfs->type & 1) { pins->uFlags |= CHN_16BIT; pins->nLength >>= 1; pins->nLoopStart >>= 1; pins->nLoopEnd >>= 1; } if ((pfs->loop & 8) && (pins->nLoopEnd > 4)) pins->uFlags |= CHN_LOOP; ReadSample(pins, (pins->uFlags & CHN_16BIT) ? RS_PCM16S : RS_PCM8S, (LPSTR)(lpStream+dwMemPos), dwMemLength - dwMemPos); } dwMemPos += length; } return TRUE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (Endian and char fixes for PPC) * Marco Trillo <toad@arsystel.com> (Endian fixes for SaveIT, XM->IT Sample Converter) * */ //#include "stdafx.h" //#include "sndfile.h" //#include "it_defs.h" #ifdef _MSC_VER #pragma warning(disable:4244) #endif BYTE autovibit2xm[8] = { 0, 3, 1, 4, 2, 0, 0, 0 }; BYTE autovibxm2it[8] = { 0, 2, 4, 1, 3, 0, 0, 0 }; ////////////////////////////////////////////////////////// // Impulse Tracker IT file support // for conversion of XM samples // extern WORD XMPeriodTable[96+8]; // extern UINT XMLinearTable[768]; BOOL CSoundFile::ITInstrToMPT(const void *p, INSTRUMENTHEADER *penv, UINT trkvers) //-------------------------------------------------------------------------------- { if (trkvers < 0x0200) { const ITOLDINSTRUMENT *pis = (const ITOLDINSTRUMENT *)p; memcpy(penv->name, pis->name, 26); memcpy(penv->filename, pis->filename, 12); penv->nFadeOut = bswapLE16(pis->fadeout) << 6; penv->nGlobalVol = 64; for (UINT j=0; j<NOTE_MAX; j++) { UINT note = pis->keyboard[j*2]; UINT ins = pis->keyboard[j*2+1]; if (ins < MAX_SAMPLES) penv->Keyboard[j] = ins; if (note < 128) penv->NoteMap[j] = note+1; else if (note >= 0xFE) penv->NoteMap[j] = note; } if (pis->flags & 0x01) penv->dwFlags |= ENV_VOLUME; if (pis->flags & 0x02) penv->dwFlags |= ENV_VOLLOOP; if (pis->flags & 0x04) penv->dwFlags |= ENV_VOLSUSTAIN; penv->nVolLoopStart = pis->vls; penv->nVolLoopEnd = pis->vle; penv->nVolSustainBegin = pis->sls; penv->nVolSustainEnd = pis->sle; penv->nVolEnv = 25; for (UINT ev=0; ev<25; ev++) { if ((penv->VolPoints[ev] = pis->nodes[ev*2]) == 0xFF) { penv->nVolEnv = ev; break; } penv->VolEnv[ev] = pis->nodes[ev*2+1]; } penv->nNNA = pis->nna; penv->nDCT = pis->dnc; penv->nPan = 0x80; } else { const ITINSTRUMENT *pis = (const ITINSTRUMENT *)p; memcpy(penv->name, pis->name, 26); memcpy(penv->filename, pis->filename, 12); penv->nMidiProgram = pis->mpr; penv->nMidiChannel = pis->mch; penv->wMidiBank = bswapLE16(pis->mbank); penv->nFadeOut = bswapLE16(pis->fadeout) << 5; penv->nGlobalVol = pis->gbv >> 1; if (penv->nGlobalVol > 64) penv->nGlobalVol = 64; for (UINT j=0; j<NOTE_MAX; j++) { UINT note = pis->keyboard[j*2]; UINT ins = pis->keyboard[j*2+1]; if (ins < MAX_SAMPLES) penv->Keyboard[j] = ins; if (note < 128) penv->NoteMap[j] = note+1; else if (note >= 0xFE) penv->NoteMap[j] = note; } // Volume Envelope if (pis->volenv.flags & 1) penv->dwFlags |= ENV_VOLUME; if (pis->volenv.flags & 2) penv->dwFlags |= ENV_VOLLOOP; if (pis->volenv.flags & 4) penv->dwFlags |= ENV_VOLSUSTAIN; if (pis->volenv.flags & 8) penv->dwFlags |= ENV_VOLCARRY; penv->nVolEnv = pis->volenv.num; if (penv->nVolEnv > 25) penv->nVolEnv = 25; penv->nVolLoopStart = pis->volenv.lpb; penv->nVolLoopEnd = pis->volenv.lpe; penv->nVolSustainBegin = pis->volenv.slb; penv->nVolSustainEnd = pis->volenv.sle; // Panning Envelope if (pis->panenv.flags & 1) penv->dwFlags |= ENV_PANNING; if (pis->panenv.flags & 2) penv->dwFlags |= ENV_PANLOOP; if (pis->panenv.flags & 4) penv->dwFlags |= ENV_PANSUSTAIN; if (pis->panenv.flags & 8) penv->dwFlags |= ENV_PANCARRY; penv->nPanEnv = pis->panenv.num; if (penv->nPanEnv > 25) penv->nPanEnv = 25; penv->nPanLoopStart = pis->panenv.lpb; penv->nPanLoopEnd = pis->panenv.lpe; penv->nPanSustainBegin = pis->panenv.slb; penv->nPanSustainEnd = pis->panenv.sle; // Pitch Envelope if (pis->pitchenv.flags & 1) penv->dwFlags |= ENV_PITCH; if (pis->pitchenv.flags & 2) penv->dwFlags |= ENV_PITCHLOOP; if (pis->pitchenv.flags & 4) penv->dwFlags |= ENV_PITCHSUSTAIN; if (pis->pitchenv.flags & 8) penv->dwFlags |= ENV_PITCHCARRY; if (pis->pitchenv.flags & 0x80) penv->dwFlags |= ENV_FILTER; penv->nPitchEnv = pis->pitchenv.num; if (penv->nPitchEnv > 25) penv->nPitchEnv = 25; penv->nPitchLoopStart = pis->pitchenv.lpb; penv->nPitchLoopEnd = pis->pitchenv.lpe; penv->nPitchSustainBegin = pis->pitchenv.slb; penv->nPitchSustainEnd = pis->pitchenv.sle; // Envelopes Data for (UINT ev=0; ev<25; ev++) { penv->VolEnv[ev] = pis->volenv.data[ev*3]; penv->VolPoints[ev] = (pis->volenv.data[ev*3+2] << 8) | (pis->volenv.data[ev*3+1]); penv->PanEnv[ev] = pis->panenv.data[ev*3] + 32; penv->PanPoints[ev] = (pis->panenv.data[ev*3+2] << 8) | (pis->panenv.data[ev*3+1]); penv->PitchEnv[ev] = pis->pitchenv.data[ev*3] + 32; penv->PitchPoints[ev] = (pis->pitchenv.data[ev*3+2] << 8) | (pis->pitchenv.data[ev*3+1]); } penv->nNNA = pis->nna; penv->nDCT = pis->dct; penv->nDNA = pis->dca; penv->nPPS = pis->pps; penv->nPPC = pis->ppc; penv->nIFC = pis->ifc; penv->nIFR = pis->ifr; penv->nVolSwing = pis->rv; penv->nPanSwing = pis->rp; penv->nPan = (pis->dfp & 0x7F) << 2; if (penv->nPan > 256) penv->nPan = 128; if (pis->dfp < 0x80) penv->dwFlags |= ENV_SETPANNING; } if ((penv->nVolLoopStart >= 25) || (penv->nVolLoopEnd >= 25)) penv->dwFlags &= ~ENV_VOLLOOP; if ((penv->nVolSustainBegin >= 25) || (penv->nVolSustainEnd >= 25)) penv->dwFlags &= ~ENV_VOLSUSTAIN; return TRUE; } BOOL CSoundFile::ReadIT(const BYTE *lpStream, DWORD dwMemLength) //-------------------------------------------------------------- { DWORD dwMemPos = sizeof(ITFILEHEADER); DWORD inspos[MAX_INSTRUMENTS]; DWORD smppos[MAX_SAMPLES]; DWORD patpos[MAX_PATTERNS]; BYTE chnmask[64];//, channels_used[64] MODCOMMAND lastvalue[64]; UINT j; if ((!lpStream) || (dwMemLength < sizeof(ITFILEHEADER))) return FALSE; ITFILEHEADER pifh = *(ITFILEHEADER *)lpStream; pifh.id = bswapLE32(pifh.id); pifh.reserved1 = bswapLE16(pifh.reserved1); pifh.ordnum = bswapLE16(pifh.ordnum); pifh.insnum = bswapLE16(pifh.insnum); pifh.smpnum = bswapLE16(pifh.smpnum); pifh.patnum = bswapLE16(pifh.patnum); pifh.cwtv = bswapLE16(pifh.cwtv); pifh.cmwt = bswapLE16(pifh.cmwt); pifh.flags = bswapLE16(pifh.flags); pifh.special = bswapLE16(pifh.special); pifh.msglength = bswapLE16(pifh.msglength); pifh.msgoffset = bswapLE32(pifh.msgoffset); pifh.reserved2 = bswapLE32(pifh.reserved2); if ((pifh.id != 0x4D504D49) || (pifh.insnum >= MAX_INSTRUMENTS) || (!pifh.smpnum) || (pifh.smpnum >= MAX_INSTRUMENTS) || (!pifh.ordnum)) return FALSE; if (dwMemPos + pifh.ordnum + pifh.insnum*4 + pifh.smpnum*4 + pifh.patnum*4 > dwMemLength) return FALSE; m_nType = MOD_TYPE_IT; if (pifh.flags & 0x08) m_dwSongFlags |= SONG_LINEARSLIDES; if (pifh.flags & 0x10) m_dwSongFlags |= SONG_ITOLDEFFECTS; if (pifh.flags & 0x20) m_dwSongFlags |= SONG_ITCOMPATMODE; if (pifh.flags & 0x80) m_dwSongFlags |= SONG_EMBEDMIDICFG; if (pifh.flags & 0x1000) m_dwSongFlags |= SONG_EXFILTERRANGE; memcpy(m_szNames[0], pifh.songname, 26); m_szNames[0][26] = 0; // Global Volume if (pifh.globalvol) { m_nDefaultGlobalVolume = pifh.globalvol << 1; if (!m_nDefaultGlobalVolume) m_nDefaultGlobalVolume = 256; if (m_nDefaultGlobalVolume > 256) m_nDefaultGlobalVolume = 256; } if (pifh.speed) m_nDefaultSpeed = pifh.speed; if (pifh.tempo) m_nDefaultTempo = pifh.tempo; m_nSongPreAmp = pifh.mv & 0x7F; // Reading Channels Pan Positions for (int ipan=0; ipan<64; ipan++) if (pifh.chnpan[ipan] != 0xFF) { ChnSettings[ipan].nVolume = pifh.chnvol[ipan]; ChnSettings[ipan].nPan = 128; if (pifh.chnpan[ipan] & 0x80) ChnSettings[ipan].dwFlags |= CHN_MUTE; UINT n = pifh.chnpan[ipan] & 0x7F; if (n <= 64) ChnSettings[ipan].nPan = n << 2; if (n == 100) ChnSettings[ipan].dwFlags |= CHN_SURROUND; } if (m_nChannels < 4) m_nChannels = 4; // Reading Song Message if ((pifh.special & 0x01) && (pifh.msglength) && (pifh.msglength <= dwMemLength) && (pifh.msgoffset < dwMemLength - pifh.msglength)) { m_lpszSongComments = new char[pifh.msglength+1]; if (m_lpszSongComments) { memcpy(m_lpszSongComments, lpStream+pifh.msgoffset, pifh.msglength); m_lpszSongComments[pifh.msglength] = 0; } } // Reading orders UINT nordsize = pifh.ordnum; if (nordsize > MAX_ORDERS) nordsize = MAX_ORDERS; memcpy(Order, lpStream+dwMemPos, nordsize); dwMemPos += pifh.ordnum; // Reading Instrument Offsets memset(inspos, 0, sizeof(inspos)); UINT inspossize = pifh.insnum; if (inspossize > MAX_INSTRUMENTS) inspossize = MAX_INSTRUMENTS; inspossize <<= 2; memcpy(inspos, lpStream+dwMemPos, inspossize); for (j=0; j < (inspossize>>2); j++) { inspos[j] = bswapLE32(inspos[j]); } dwMemPos += pifh.insnum * 4; // Reading Samples Offsets memset(smppos, 0, sizeof(smppos)); UINT smppossize = pifh.smpnum; if (smppossize > MAX_SAMPLES) smppossize = MAX_SAMPLES; smppossize <<= 2; memcpy(smppos, lpStream+dwMemPos, smppossize); for (j=0; j < (smppossize>>2); j++) { smppos[j] = bswapLE32(smppos[j]); } dwMemPos += pifh.smpnum * 4; // Reading Patterns Offsets memset(patpos, 0, sizeof(patpos)); UINT patpossize = pifh.patnum; if (patpossize > MAX_PATTERNS) patpossize = MAX_PATTERNS; patpossize <<= 2; memcpy(patpos, lpStream+dwMemPos, patpossize); for (j=0; j < (patpossize>>2); j++) { patpos[j] = bswapLE32(patpos[j]); } dwMemPos += pifh.patnum * 4; // Reading IT Extra Info if (dwMemPos + 2 < dwMemLength) { UINT nflt = bswapLE16(*((WORD *)(lpStream + dwMemPos))); dwMemPos += 2; if (dwMemPos + nflt * 8 < dwMemLength) dwMemPos += nflt * 8; } // Reading Midi Output & Macros if (m_dwSongFlags & SONG_EMBEDMIDICFG) { if (dwMemPos + sizeof(MODMIDICFG) < dwMemLength) { memcpy(&m_MidiCfg, lpStream+dwMemPos, sizeof(MODMIDICFG)); dwMemPos += sizeof(MODMIDICFG); } } // Read pattern names: "PNAM" if ((dwMemPos + 8 < dwMemLength) && (bswapLE32(*((DWORD *)(lpStream+dwMemPos))) == 0x4d414e50)) { UINT len = bswapLE32(*((DWORD *)(lpStream+dwMemPos+4))); dwMemPos += 8; if ((dwMemPos + len <= dwMemLength) && (len <= MAX_PATTERNS*MAX_PATTERNNAME) && (len >= MAX_PATTERNNAME)) { m_lpszPatternNames = new char[len]; if (m_lpszPatternNames) { m_nPatternNames = len / MAX_PATTERNNAME; memcpy(m_lpszPatternNames, lpStream+dwMemPos, len); } dwMemPos += len; } } // 4-channels minimum m_nChannels = 4; // Read channel names: "CNAM" if ((dwMemPos + 8 < dwMemLength) && (bswapLE32(*((DWORD *)(lpStream+dwMemPos))) == 0x4d414e43)) { UINT len = bswapLE32(*((DWORD *)(lpStream+dwMemPos+4))); dwMemPos += 8; if ((dwMemPos + len <= dwMemLength) && (len <= 64*MAX_CHANNELNAME)) { UINT n = len / MAX_CHANNELNAME; if (n > m_nChannels) m_nChannels = n; for (UINT i=0; i<n; i++) { memcpy(ChnSettings[i].szName, (lpStream+dwMemPos+i*MAX_CHANNELNAME), MAX_CHANNELNAME); ChnSettings[i].szName[MAX_CHANNELNAME-1] = 0; } dwMemPos += len; } } // Read mix plugins information if (dwMemPos + 8 < dwMemLength) { dwMemPos += LoadMixPlugins(lpStream+dwMemPos, dwMemLength-dwMemPos); } // Checking for unused channels UINT npatterns = pifh.patnum; if (npatterns > MAX_PATTERNS) npatterns = MAX_PATTERNS; for (UINT patchk=0; patchk<npatterns; patchk++) { memset(chnmask, 0, sizeof(chnmask)); if ((!patpos[patchk]) || ((DWORD)patpos[patchk] >= dwMemLength - 4)) continue; UINT len = bswapLE16(*((WORD *)(lpStream+patpos[patchk]))); UINT rows = bswapLE16(*((WORD *)(lpStream+patpos[patchk]+2))); if ((rows < 4) || (rows > 256)) continue; if (8+len > dwMemLength || patpos[patchk] > dwMemLength - (8+len)) continue; UINT i = 0; const BYTE *p = lpStream+patpos[patchk]+8; UINT nrow = 0; while (nrow<rows) { if (i >= len) break; BYTE b = p[i++]; if (!b) { nrow++; continue; } UINT ch = b & 0x7F; if (ch) ch = (ch - 1) & 0x3F; if (b & 0x80) { if (i >= len) break; chnmask[ch] = p[i++]; } // Channel used if (chnmask[ch] & 0x0F) { if ((ch >= m_nChannels) && (ch < 64)) m_nChannels = ch+1; } // Note if (chnmask[ch] & 1) i++; // Instrument if (chnmask[ch] & 2) i++; // Volume if (chnmask[ch] & 4) i++; // Effect if (chnmask[ch] & 8) i += 2; if (i >= len) break; } } // Reading Instruments m_nInstruments = 0; if (pifh.flags & 0x04) m_nInstruments = pifh.insnum; if (m_nInstruments >= MAX_INSTRUMENTS) m_nInstruments = MAX_INSTRUMENTS-1; for (UINT nins=0; nins<m_nInstruments; nins++) { if ((inspos[nins] > 0) && dwMemLength > sizeof(ITOLDINSTRUMENT) && (inspos[nins] < dwMemLength - sizeof(ITOLDINSTRUMENT))) { INSTRUMENTHEADER *penv = new INSTRUMENTHEADER; if (!penv) continue; Headers[nins+1] = penv; memset(penv, 0, sizeof(INSTRUMENTHEADER)); ITInstrToMPT(lpStream + inspos[nins], penv, pifh.cmwt); } } // Reading Samples m_nSamples = pifh.smpnum; if (m_nSamples >= MAX_SAMPLES) m_nSamples = MAX_SAMPLES-1; for (UINT nsmp=0; nsmp<pifh.smpnum; nsmp++) if ((smppos[nsmp]) && (smppos[nsmp] <= dwMemLength - sizeof(ITSAMPLESTRUCT))) { ITSAMPLESTRUCT pis = *(ITSAMPLESTRUCT *)(lpStream+smppos[nsmp]); pis.id = bswapLE32(pis.id); pis.length = bswapLE32(pis.length); pis.loopbegin = bswapLE32(pis.loopbegin); pis.loopend = bswapLE32(pis.loopend); pis.C5Speed = bswapLE32(pis.C5Speed); pis.susloopbegin = bswapLE32(pis.susloopbegin); pis.susloopend = bswapLE32(pis.susloopend); pis.samplepointer = bswapLE32(pis.samplepointer); if (pis.id == 0x53504D49) { MODINSTRUMENT *pins = &Ins[nsmp+1]; memcpy(pins->name, pis.filename, 12); pins->uFlags = 0; pins->nLength = 0; pins->nLoopStart = pis.loopbegin; pins->nLoopEnd = pis.loopend; pins->nSustainStart = pis.susloopbegin; pins->nSustainEnd = pis.susloopend; pins->nC4Speed = pis.C5Speed; if (!pins->nC4Speed) pins->nC4Speed = 8363; if (pis.C5Speed < 256) pins->nC4Speed = 256; pins->nVolume = pis.vol << 2; if (pins->nVolume > 256) pins->nVolume = 256; pins->nGlobalVol = pis.gvl; if (pins->nGlobalVol > 64) pins->nGlobalVol = 64; if (pis.flags & 0x10) pins->uFlags |= CHN_LOOP; if (pis.flags & 0x20) pins->uFlags |= CHN_SUSTAINLOOP; if (pis.flags & 0x40) pins->uFlags |= CHN_PINGPONGLOOP; if (pis.flags & 0x80) pins->uFlags |= CHN_PINGPONGSUSTAIN; pins->nPan = (pis.dfp & 0x7F) << 2; if (pins->nPan > 256) pins->nPan = 256; if (pis.dfp & 0x80) pins->uFlags |= CHN_PANNING; pins->nVibType = autovibit2xm[pis.vit & 7]; pins->nVibRate = pis.vis; pins->nVibDepth = pis.vid & 0x7F; pins->nVibSweep = (pis.vir + 3) / 4; if ((pis.samplepointer) && (pis.samplepointer < dwMemLength) && (pis.length)) { pins->nLength = pis.length; if (pins->nLength > MAX_SAMPLE_LENGTH) pins->nLength = MAX_SAMPLE_LENGTH; UINT flags = (pis.cvt & 1) ? RS_PCM8S : RS_PCM8U; if (pis.flags & 2) { flags += 5; pins->uFlags |= CHN_16BIT; // IT 2.14 16-bit packed sample ? if (pis.flags & 8) flags = ((pifh.cmwt >= 0x215) && (pis.cvt & 4)) ? RS_IT21516 : RS_IT21416; if (pis.flags & 4) flags |= RSF_STEREO; } else { if (pis.cvt == 0xFF) flags = RS_ADPCM4; else // IT 2.14 8-bit packed sample ? if (pis.flags & 8) flags = ((pifh.cmwt >= 0x215) && (pis.cvt & 4)) ? RS_IT2158 : RS_IT2148; if (pis.flags & 4) flags |= RSF_STEREO; } ReadSample(&Ins[nsmp+1], flags, (LPSTR)(lpStream+pis.samplepointer), dwMemLength - pis.samplepointer); } } memcpy(m_szNames[nsmp+1], pis.name, 26); } // Reading Patterns for (UINT npat=0; npat<npatterns; npat++) { if ((!patpos[npat]) || ((DWORD)patpos[npat] >= dwMemLength - 4)) { PatternSize[npat] = 64; Patterns[npat] = AllocatePattern(64, m_nChannels); continue; } UINT len = bswapLE16(*((WORD *)(lpStream+patpos[npat]))); UINT rows = bswapLE16(*((WORD *)(lpStream+patpos[npat]+2))); if ((rows < 4) || (rows > 256)) continue; if (8+len > dwMemLength || patpos[npat] > dwMemLength - (8+len)) continue; PatternSize[npat] = rows; if ((Patterns[npat] = AllocatePattern(rows, m_nChannels)) == NULL) continue; memset(lastvalue, 0, sizeof(lastvalue)); memset(chnmask, 0, sizeof(chnmask)); MODCOMMAND *m = Patterns[npat]; UINT i = 0; const BYTE *p = lpStream+patpos[npat]+8; UINT nrow = 0; while (nrow<rows) { if (i >= len) break; BYTE b = p[i++]; if (!b) { nrow++; m+=m_nChannels; continue; } UINT ch = b & 0x7F; if (ch) ch = (ch - 1) & 0x3F; if (b & 0x80) { if (i >= len) break; chnmask[ch] = p[i++]; } if ((chnmask[ch] & 0x10) && (ch < m_nChannels)) { m[ch].note = lastvalue[ch].note; } if ((chnmask[ch] & 0x20) && (ch < m_nChannels)) { m[ch].instr = lastvalue[ch].instr; } if ((chnmask[ch] & 0x40) && (ch < m_nChannels)) { m[ch].volcmd = lastvalue[ch].volcmd; m[ch].vol = lastvalue[ch].vol; } if ((chnmask[ch] & 0x80) && (ch < m_nChannels)) { m[ch].command = lastvalue[ch].command; m[ch].param = lastvalue[ch].param; } if (chnmask[ch] & 1) // Note { if (i >= len) break; UINT note = p[i++]; if (ch < m_nChannels) { if (note < 0x80) note++; m[ch].note = note; lastvalue[ch].note = note; // channels_used[ch] = TRUE; } } if (chnmask[ch] & 2) { if (i >= len) break; UINT instr = p[i++]; if (ch < m_nChannels) { m[ch].instr = instr; lastvalue[ch].instr = instr; } } if (chnmask[ch] & 4) { if (i >= len) break; UINT vol = p[i++]; if (ch < m_nChannels) { // 0-64: Set Volume if (vol <= 64) { m[ch].volcmd = VOLCMD_VOLUME; m[ch].vol = vol; } else // 128-192: Set Panning if ((vol >= 128) && (vol <= 192)) { m[ch].volcmd = VOLCMD_PANNING; m[ch].vol = vol - 128; } else // 65-74: Fine Volume Up if (vol < 75) { m[ch].volcmd = VOLCMD_FINEVOLUP; m[ch].vol = vol - 65; } else // 75-84: Fine Volume Down if (vol < 85) { m[ch].volcmd = VOLCMD_FINEVOLDOWN; m[ch].vol = vol - 75; } else // 85-94: Volume Slide Up if (vol < 95) { m[ch].volcmd = VOLCMD_VOLSLIDEUP; m[ch].vol = vol - 85; } else // 95-104: Volume Slide Down if (vol < 105) { m[ch].volcmd = VOLCMD_VOLSLIDEDOWN; m[ch].vol = vol - 95; } else // 105-114: Pitch Slide Up if (vol < 115) { m[ch].volcmd = VOLCMD_PORTADOWN; m[ch].vol = vol - 105; } else // 115-124: Pitch Slide Down if (vol < 125) { m[ch].volcmd = VOLCMD_PORTAUP; m[ch].vol = vol - 115; } else // 193-202: Portamento To if ((vol >= 193) && (vol <= 202)) { m[ch].volcmd = VOLCMD_TONEPORTAMENTO; m[ch].vol = vol - 193; } else // 203-212: Vibrato if ((vol >= 203) && (vol <= 212)) { m[ch].volcmd = VOLCMD_VIBRATOSPEED; m[ch].vol = vol - 203; } lastvalue[ch].volcmd = m[ch].volcmd; lastvalue[ch].vol = m[ch].vol; } } // Reading command/param if (chnmask[ch] & 8) { if (i > len - 2) break; UINT cmd = p[i++]; UINT param = p[i++]; if (ch < m_nChannels) { if (cmd) { m[ch].command = cmd; m[ch].param = param; S3MConvert(&m[ch], TRUE); lastvalue[ch].command = m[ch].command; lastvalue[ch].param = m[ch].param; } } } } } for (UINT ncu=0; ncu<MAX_BASECHANNELS; ncu++) { if (ncu>=m_nChannels) { ChnSettings[ncu].nVolume = 64; ChnSettings[ncu].dwFlags &= ~CHN_MUTE; } } m_nMinPeriod = 8; m_nMaxPeriod = 0xF000; return TRUE; } #ifndef MODPLUG_NO_FILESAVE //#define SAVEITTIMESTAMP #ifdef _MSC_VER #pragma warning(disable:4100) #endif static inline UINT ConvertVolParam(UINT value) //-------------------------------------------- { return (value > 9) ? 9 : value; } BOOL CSoundFile::SaveIT(LPCSTR lpszFileName, UINT nPacking) //--------------------------------------------------------- { DWORD dwPatNamLen, dwChnNamLen; ITFILEHEADER header, writeheader; ITINSTRUMENT iti, writeiti; ITSAMPLESTRUCT itss; BYTE smpcount[MAX_SAMPLES]; DWORD inspos[MAX_INSTRUMENTS]; DWORD patpos[MAX_PATTERNS]; DWORD smppos[MAX_SAMPLES]; DWORD dwPos = 0, dwHdrPos = 0, dwExtra = 2; WORD patinfo[4]; BYTE chnmask[64]; BYTE buf[512]; MODCOMMAND lastvalue[64]; FILE *f; if ((!lpszFileName) || ((f = fopen(lpszFileName, "wb")) == NULL)) return FALSE; memset(inspos, 0, sizeof(inspos)); memset(patpos, 0, sizeof(patpos)); memset(smppos, 0, sizeof(smppos)); // Writing Header memset(&header, 0, sizeof(header)); dwPatNamLen = 0; dwChnNamLen = 0; header.id = 0x4D504D49; // IMPM lstrcpyn((char *)header.songname, m_szNames[0], 27); header.reserved1 = 0x1004; header.ordnum = 0; while ((header.ordnum < MAX_ORDERS) && (Order[header.ordnum] < 0xFF)) header.ordnum++; if (header.ordnum < MAX_ORDERS) Order[header.ordnum++] = 0xFF; header.insnum = m_nInstruments; header.smpnum = m_nSamples; header.patnum = MAX_PATTERNS; while ((header.patnum > 0) && (!Patterns[header.patnum-1])) header.patnum--; header.cwtv = 0x217; header.cmwt = 0x200; header.flags = 0x0001; header.special = 0x0006; if (m_nInstruments) header.flags |= 0x04; if (m_dwSongFlags & SONG_LINEARSLIDES) header.flags |= 0x08; if (m_dwSongFlags & SONG_ITOLDEFFECTS) header.flags |= 0x10; if (m_dwSongFlags & SONG_ITCOMPATMODE) header.flags |= 0x20; if (m_dwSongFlags & SONG_EXFILTERRANGE) header.flags |= 0x1000; header.globalvol = m_nDefaultGlobalVolume >> 1; header.mv = m_nSongPreAmp; // clip song pre-amp values (between 0x20 and 0x7f) if (header.mv < 0x20) header.mv = 0x20; if (header.mv > 0x7F) header.mv = 0x7F; header.speed = m_nDefaultSpeed; header.tempo = m_nDefaultTempo; header.sep = m_nStereoSeparation; dwHdrPos = sizeof(header) + header.ordnum; // Channel Pan and Volume memset(header.chnpan, 0xFF, 64); memset(header.chnvol, 64, 64); for (UINT ich=0; ich<m_nChannels; ich++) { header.chnpan[ich] = ChnSettings[ich].nPan >> 2; if (ChnSettings[ich].dwFlags & CHN_SURROUND) header.chnpan[ich] = 100; header.chnvol[ich] = ChnSettings[ich].nVolume; if (ChnSettings[ich].dwFlags & CHN_MUTE) header.chnpan[ich] |= 0x80; if (ChnSettings[ich].szName[0]) { dwChnNamLen = (ich+1) * MAX_CHANNELNAME; } } if (dwChnNamLen) dwExtra += dwChnNamLen + 8; #ifdef SAVEITTIMESTAMP dwExtra += 8; // Time Stamp #endif if (m_dwSongFlags & SONG_EMBEDMIDICFG) { header.flags |= 0x80; header.special |= 0x08; dwExtra += sizeof(MODMIDICFG); } // Pattern Names if ((m_nPatternNames) && (m_lpszPatternNames)) { dwPatNamLen = m_nPatternNames * MAX_PATTERNNAME; while ((dwPatNamLen >= MAX_PATTERNNAME) && (!m_lpszPatternNames[dwPatNamLen-MAX_PATTERNNAME])) dwPatNamLen -= MAX_PATTERNNAME; if (dwPatNamLen < MAX_PATTERNNAME) dwPatNamLen = 0; if (dwPatNamLen) dwExtra += dwPatNamLen + 8; } // Mix Plugins dwExtra += SaveMixPlugins(NULL, TRUE); // Comments if (m_lpszSongComments) { header.special |= 1; header.msglength = strlen(m_lpszSongComments)+1; header.msgoffset = dwHdrPos + dwExtra + header.insnum*4 + header.patnum*4 + header.smpnum*4; } // Write file header memcpy(&writeheader, &header, sizeof(header)); // Byteswap header information writeheader.id = bswapLE32(writeheader.id); writeheader.reserved1 = bswapLE16(writeheader.reserved1); writeheader.ordnum = bswapLE16(writeheader.ordnum); writeheader.insnum = bswapLE16(writeheader.insnum); writeheader.smpnum = bswapLE16(writeheader.smpnum); writeheader.patnum = bswapLE16(writeheader.patnum); writeheader.cwtv = bswapLE16(writeheader.cwtv); writeheader.cmwt = bswapLE16(writeheader.cmwt); writeheader.flags = bswapLE16(writeheader.flags); writeheader.special = bswapLE16(writeheader.special); writeheader.msglength = bswapLE16(writeheader.msglength); writeheader.msgoffset = bswapLE32(writeheader.msgoffset); writeheader.reserved2 = bswapLE32(writeheader.reserved2); fwrite(&writeheader, 1, sizeof(writeheader), f); fwrite(Order, 1, header.ordnum, f); if (header.insnum) fwrite(inspos, 4, header.insnum, f); if (header.smpnum) fwrite(smppos, 4, header.smpnum, f); if (header.patnum) fwrite(patpos, 4, header.patnum, f); // Writing editor history information { #ifdef SAVEITTIMESTAMP SYSTEMTIME systime; FILETIME filetime; WORD timestamp[4]; WORD nInfoEx = 1; memset(timestamp, 0, sizeof(timestamp)); fwrite(&nInfoEx, 1, 2, f); GetSystemTime(&systime); SystemTimeToFileTime(&systime, &filetime); FileTimeToDosDateTime(&filetime, ×tamp[0], ×tamp[1]); fwrite(timestamp, 1, 8, f); #else WORD nInfoEx = 0; fwrite(&nInfoEx, 1, 2, f); #endif } // Writing midi cfg if (header.flags & 0x80) { fwrite(&m_MidiCfg, 1, sizeof(MODMIDICFG), f); } // Writing pattern names if (dwPatNamLen) { DWORD d = bswapLE32(0x4d414e50); UINT len= bswapLE32(dwPatNamLen); fwrite(&d, 1, 4, f); fwrite(&len, 1, 4, f); fwrite(m_lpszPatternNames, 1, dwPatNamLen, f); } // Writing channel Names if (dwChnNamLen) { DWORD d = bswapLE32(0x4d414e43); UINT len= bswapLE32(dwChnNamLen); fwrite(&d, 1, 4, f); fwrite(&len, 1, 4, f); UINT nChnNames = dwChnNamLen / MAX_CHANNELNAME; for (UINT inam=0; inam<nChnNames; inam++) { fwrite(ChnSettings[inam].szName, 1, MAX_CHANNELNAME, f); } } // Writing mix plugins info SaveMixPlugins(f, FALSE); // Writing song message dwPos = dwHdrPos + dwExtra + (header.insnum + header.smpnum + header.patnum) * 4; if (header.special & 1) { dwPos += strlen(m_lpszSongComments) + 1; fwrite(m_lpszSongComments, 1, strlen(m_lpszSongComments)+1, f); } // Writing instruments for (UINT nins=1; nins<=header.insnum; nins++) { memset(&iti, 0, sizeof(iti)); iti.id = 0x49504D49; // "IMPI" iti.trkvers = 0x211; if (Headers[nins]) { INSTRUMENTHEADER *penv = Headers[nins]; memset(smpcount, 0, sizeof(smpcount)); memcpy(iti.filename, penv->filename, 12); memcpy(iti.name, penv->name, 26); iti.mbank = penv->wMidiBank; iti.mpr = penv->nMidiProgram; iti.mch = penv->nMidiChannel; iti.nna = penv->nNNA; iti.dct = penv->nDCT; iti.dca = penv->nDNA; iti.fadeout = penv->nFadeOut >> 5; iti.pps = penv->nPPS; iti.ppc = penv->nPPC; iti.gbv = (BYTE)(penv->nGlobalVol << 1); iti.dfp = (BYTE)penv->nPan >> 2; if (!(penv->dwFlags & ENV_SETPANNING)) iti.dfp |= 0x80; iti.rv = penv->nVolSwing; iti.rp = penv->nPanSwing; iti.ifc = penv->nIFC; iti.ifr = penv->nIFR; iti.nos = 0; for (UINT i=0; i<NOTE_MAX; i++) if (penv->Keyboard[i] < MAX_SAMPLES) { UINT smp = penv->Keyboard[i]; if ((smp) && (!smpcount[smp])) { smpcount[smp] = 1; iti.nos++; } iti.keyboard[i*2] = penv->NoteMap[i] - 1; iti.keyboard[i*2+1] = smp; } // Writing Volume envelope if (penv->dwFlags & ENV_VOLUME) iti.volenv.flags |= 0x01; if (penv->dwFlags & ENV_VOLLOOP) iti.volenv.flags |= 0x02; if (penv->dwFlags & ENV_VOLSUSTAIN) iti.volenv.flags |= 0x04; if (penv->dwFlags & ENV_VOLCARRY) iti.volenv.flags |= 0x08; iti.volenv.num = (BYTE)penv->nVolEnv; iti.volenv.lpb = (BYTE)penv->nVolLoopStart; iti.volenv.lpe = (BYTE)penv->nVolLoopEnd; iti.volenv.slb = penv->nVolSustainBegin; iti.volenv.sle = penv->nVolSustainEnd; // Writing Panning envelope if (penv->dwFlags & ENV_PANNING) iti.panenv.flags |= 0x01; if (penv->dwFlags & ENV_PANLOOP) iti.panenv.flags |= 0x02; if (penv->dwFlags & ENV_PANSUSTAIN) iti.panenv.flags |= 0x04; if (penv->dwFlags & ENV_PANCARRY) iti.panenv.flags |= 0x08; iti.panenv.num = (BYTE)penv->nPanEnv; iti.panenv.lpb = (BYTE)penv->nPanLoopStart; iti.panenv.lpe = (BYTE)penv->nPanLoopEnd; iti.panenv.slb = penv->nPanSustainBegin; iti.panenv.sle = penv->nPanSustainEnd; // Writing Pitch Envelope if (penv->dwFlags & ENV_PITCH) iti.pitchenv.flags |= 0x01; if (penv->dwFlags & ENV_PITCHLOOP) iti.pitchenv.flags |= 0x02; if (penv->dwFlags & ENV_PITCHSUSTAIN) iti.pitchenv.flags |= 0x04; if (penv->dwFlags & ENV_PITCHCARRY) iti.pitchenv.flags |= 0x08; if (penv->dwFlags & ENV_FILTER) iti.pitchenv.flags |= 0x80; iti.pitchenv.num = (BYTE)penv->nPitchEnv; iti.pitchenv.lpb = (BYTE)penv->nPitchLoopStart; iti.pitchenv.lpe = (BYTE)penv->nPitchLoopEnd; iti.pitchenv.slb = (BYTE)penv->nPitchSustainBegin; iti.pitchenv.sle = (BYTE)penv->nPitchSustainEnd; // Writing Envelopes data for (UINT ev=0; ev<25; ev++) { iti.volenv.data[ev*3] = penv->VolEnv[ev]; iti.volenv.data[ev*3+1] = penv->VolPoints[ev] & 0xFF; iti.volenv.data[ev*3+2] = penv->VolPoints[ev] >> 8; iti.panenv.data[ev*3] = penv->PanEnv[ev] - 32; iti.panenv.data[ev*3+1] = penv->PanPoints[ev] & 0xFF; iti.panenv.data[ev*3+2] = penv->PanPoints[ev] >> 8; iti.pitchenv.data[ev*3] = penv->PitchEnv[ev] - 32; iti.pitchenv.data[ev*3+1] = penv->PitchPoints[ev] & 0xFF; iti.pitchenv.data[ev*3+2] = penv->PitchPoints[ev] >> 8; } } else // Save Empty Instrument { for (UINT i=0; i<NOTE_MAX; i++) iti.keyboard[i*2] = i; iti.ppc = 5*12; iti.gbv = 128; iti.dfp = 0x20; iti.ifc = 0xFF; } if (!iti.nos) iti.trkvers = 0; // Writing instrument inspos[nins-1] = dwPos; dwPos += sizeof(ITINSTRUMENT); memcpy(&writeiti, &iti, sizeof(ITINSTRUMENT)); writeiti.fadeout = bswapLE16(writeiti.fadeout); writeiti.id = bswapLE32(writeiti.id); writeiti.trkvers = bswapLE16(writeiti.trkvers); writeiti.mbank = bswapLE16(writeiti.mbank); fwrite(&writeiti, 1, sizeof(ITINSTRUMENT), f); } // Writing sample headers memset(&itss, 0, sizeof(itss)); for (UINT hsmp=0; hsmp<header.smpnum; hsmp++) { smppos[hsmp] = dwPos; dwPos += sizeof(ITSAMPLESTRUCT); fwrite(&itss, 1, sizeof(ITSAMPLESTRUCT), f); } // Writing Patterns for (UINT npat=0; npat<header.patnum; npat++) { DWORD dwPatPos = dwPos; UINT len; if (!Patterns[npat]) continue; patpos[npat] = dwPos; patinfo[0] = 0; patinfo[1] = bswapLE16(PatternSize[npat]); patinfo[2] = 0; patinfo[3] = 0; // Check for empty pattern if (PatternSize[npat] == 64) { MODCOMMAND *pzc = Patterns[npat]; UINT iz, nz = PatternSize[npat] * m_nChannels; for (iz=0; iz<nz; iz++) { if ((pzc[iz].note) || (pzc[iz].instr) || (pzc[iz].volcmd) || (pzc[iz].command)) break; } if (iz == nz) { patpos[npat] = 0; continue; } } fwrite(patinfo, 8, 1, f); dwPos += 8; memset(chnmask, 0xFF, sizeof(chnmask)); memset(lastvalue, 0, sizeof(lastvalue)); MODCOMMAND *m = Patterns[npat]; for (UINT row=0; row<PatternSize[npat]; row++) { len = 0; for (UINT ch=0; ch<m_nChannels; ch++, m++) { BYTE b = 0; UINT command = m->command; UINT param = m->param; UINT vol = 0xFF; UINT note = m->note; if (note) b |= 1; if ((note) && (note < 0x80)) note--; // 0xfe->0x80 --Toad if (m->instr) b |= 2; if (m->volcmd) { UINT volcmd = m->volcmd; switch(volcmd) { case VOLCMD_VOLUME: vol = m->vol; if (vol > 64) vol = 64; break; case VOLCMD_PANNING: vol = m->vol + 128; if (vol > 192) vol = 192; break; case VOLCMD_VOLSLIDEUP: vol = 85 + ConvertVolParam(m->vol); break; case VOLCMD_VOLSLIDEDOWN: vol = 95 + ConvertVolParam(m->vol); break; case VOLCMD_FINEVOLUP: vol = 65 + ConvertVolParam(m->vol); break; case VOLCMD_FINEVOLDOWN: vol = 75 + ConvertVolParam(m->vol); break; case VOLCMD_VIBRATOSPEED: vol = 203 + ConvertVolParam(m->vol); break; case VOLCMD_VIBRATO: vol = 203; break; case VOLCMD_TONEPORTAMENTO: vol = 193 + ConvertVolParam(m->vol); break; case VOLCMD_PORTADOWN: vol = 105 + ConvertVolParam(m->vol); break; case VOLCMD_PORTAUP: vol = 115 + ConvertVolParam(m->vol); break; default: vol = 0xFF; } } if (vol != 0xFF) b |= 4; if (command) { S3MSaveConvert(&command, ¶m, TRUE); if (command) b |= 8; } // Packing information if (b) { // Same note ? if (b & 1) { if ((note == lastvalue[ch].note) && (lastvalue[ch].volcmd & 1)) { b &= ~1; b |= 0x10; } else { lastvalue[ch].note = note; lastvalue[ch].volcmd |= 1; } } // Same instrument ? if (b & 2) { if ((m->instr == lastvalue[ch].instr) && (lastvalue[ch].volcmd & 2)) { b &= ~2; b |= 0x20; } else { lastvalue[ch].instr = m->instr; lastvalue[ch].volcmd |= 2; } } // Same volume column byte ? if (b & 4) { if ((vol == lastvalue[ch].vol) && (lastvalue[ch].volcmd & 4)) { b &= ~4; b |= 0x40; } else { lastvalue[ch].vol = vol; lastvalue[ch].volcmd |= 4; } } // Same command / param ? if (b & 8) { if ((command == lastvalue[ch].command) && (param == lastvalue[ch].param) && (lastvalue[ch].volcmd & 8)) { b &= ~8; b |= 0x80; } else { lastvalue[ch].command = command; lastvalue[ch].param = param; lastvalue[ch].volcmd |= 8; } } if (b != chnmask[ch]) { chnmask[ch] = b; buf[len++] = (ch+1) | 0x80; buf[len++] = b; } else { buf[len++] = ch+1; } if (b & 1) buf[len++] = note; if (b & 2) buf[len++] = m->instr; if (b & 4) buf[len++] = vol; if (b & 8) { buf[len++] = command; buf[len++] = param; } } } buf[len++] = 0; dwPos += len; patinfo[0] += len; fwrite(buf, 1, len, f); } fseek(f, dwPatPos, SEEK_SET); patinfo[0] = bswapLE16(patinfo[0]); // byteswap -- Toad fwrite(patinfo, 8, 1, f); fseek(f, dwPos, SEEK_SET); } // Writing Sample Data for (UINT nsmp=1; nsmp<=header.smpnum; nsmp++) { MODINSTRUMENT *psmp = &Ins[nsmp]; memset(&itss, 0, sizeof(itss)); memcpy(itss.filename, psmp->name, 12); memcpy(itss.name, m_szNames[nsmp], 26); itss.id = 0x53504D49; itss.gvl = (BYTE)psmp->nGlobalVol; if (m_nInstruments) { for (UINT iu=1; iu<=m_nInstruments; iu++) if (Headers[iu]) { INSTRUMENTHEADER *penv = Headers[iu]; for (UINT ju=0; ju<128; ju++) if (penv->Keyboard[ju] == nsmp) { itss.flags = 0x01; break; } } } else { itss.flags = 0x01; } if (psmp->uFlags & CHN_LOOP) itss.flags |= 0x10; if (psmp->uFlags & CHN_SUSTAINLOOP) itss.flags |= 0x20; if (psmp->uFlags & CHN_PINGPONGLOOP) itss.flags |= 0x40; if (psmp->uFlags & CHN_PINGPONGSUSTAIN) itss.flags |= 0x80; itss.C5Speed = psmp->nC4Speed; if (!itss.C5Speed) // if no C5Speed assume it is XM Sample { UINT period; /** * C5 note => number 61, but in XM samples: * RealNote = Note + RelativeTone */ period = GetPeriodFromNote(61+psmp->RelativeTone, psmp->nFineTune, 0); if (period) itss.C5Speed = GetFreqFromPeriod(period, 0, 0); /** * If it didn`t work, it may not be a XM file; * so put the default C5Speed, 8363Hz. */ if (!itss.C5Speed) itss.C5Speed = 8363; } itss.length = psmp->nLength; itss.loopbegin = psmp->nLoopStart; itss.loopend = psmp->nLoopEnd; itss.susloopbegin = psmp->nSustainStart; itss.susloopend = psmp->nSustainEnd; itss.vol = psmp->nVolume >> 2; itss.dfp = psmp->nPan >> 2; itss.vit = autovibxm2it[psmp->nVibType & 7]; itss.vis = psmp->nVibRate; itss.vid = psmp->nVibDepth; itss.vir = (psmp->nVibSweep < 64) ? psmp->nVibSweep * 4 : 255; if (psmp->uFlags & CHN_PANNING) itss.dfp |= 0x80; if ((psmp->pSample) && (psmp->nLength)) itss.cvt = 0x01; UINT flags = RS_PCM8S; #ifndef NO_PACKING if (nPacking) { if ((!(psmp->uFlags & (CHN_16BIT|CHN_STEREO))) && (CanPackSample((char *)psmp->pSample, psmp->nLength, nPacking))) { flags = RS_ADPCM4; itss.cvt = 0xFF; } } else #endif // NO_PACKING { if (psmp->uFlags & CHN_STEREO) { flags = RS_STPCM8S; itss.flags |= 0x04; } if (psmp->uFlags & CHN_16BIT) { itss.flags |= 0x02; flags = (psmp->uFlags & CHN_STEREO) ? RS_STPCM16S : RS_PCM16S; } } itss.samplepointer = dwPos; fseek(f, smppos[nsmp-1], SEEK_SET); itss.id = bswapLE32(itss.id); itss.length = bswapLE32(itss.length); itss.loopbegin = bswapLE32(itss.loopbegin); itss.loopend = bswapLE32(itss.loopend); itss.C5Speed = bswapLE32(itss.C5Speed); itss.susloopbegin = bswapLE32(itss.susloopbegin); itss.susloopend = bswapLE32(itss.susloopend); itss.samplepointer = bswapLE32(itss.samplepointer); fwrite(&itss, 1, sizeof(ITSAMPLESTRUCT), f); fseek(f, dwPos, SEEK_SET); if ((psmp->pSample) && (psmp->nLength)) { dwPos += WriteSample(f, psmp, flags); } } // Updating offsets fseek(f, dwHdrPos, SEEK_SET); /* <Toad> Now we can byteswap them ;-) */ UINT WW; UINT WX; WX = (UINT)header.insnum; WX <<= 2; for (WW=0; WW < (WX>>2); WW++) inspos[WW] = bswapLE32(inspos[WW]); WX = (UINT)header.smpnum; WX <<= 2; for (WW=0; WW < (WX>>2); WW++) smppos[WW] = bswapLE32(smppos[WW]); WX=(UINT)header.patnum; WX <<= 2; for (WW=0; WW < (WX>>2); WW++) patpos[WW] = bswapLE32(patpos[WW]); if (header.insnum) fwrite(inspos, 4, header.insnum, f); if (header.smpnum) fwrite(smppos, 4, header.smpnum, f); if (header.patnum) fwrite(patpos, 4, header.patnum, f); fclose(f); return TRUE; } #ifdef _MSC_VER //#pragma warning(default:4100) #endif #endif // MODPLUG_NO_FILESAVE ////////////////////////////////////////////////////////////////////////////// // IT 2.14 compression DWORD ITReadBits(DWORD &bitbuf, UINT &bitnum, LPBYTE &ibuf, LPBYTE ibufend, CHAR n) //----------------------------------------------------------------- { DWORD retval = 0; UINT i = n; // explicit if read 0 bits, then return 0 if (i == 0) return(0); if (n > 0) { do { if (!bitnum) { if (ibuf >= ibufend) return 0; bitbuf = *ibuf++; bitnum = 8; } retval >>= 1; retval |= bitbuf << 31; bitbuf >>= 1; bitnum--; i--; } while (i); i = n; } return (retval >> (32-i)); } #define IT215_SUPPORT DWORD ITUnpack8Bit(signed char *pSample, DWORD dwLen, LPBYTE lpMemFile, DWORD dwMemLength, DWORD channels, BOOL b215) //------------------------------------------------------------------------------------------------------------------- { signed char *pDst = pSample; LPBYTE pSrc = lpMemFile; DWORD writePos = 0; LPBYTE pStop = lpMemFile + dwMemLength; // DWORD wHdr = 0; DWORD wCount = 0; DWORD bitbuf = 0; UINT bitnum = 0; BYTE bLeft = 0, bTemp = 0, bTemp2 = 0; while (dwLen) { if (!wCount) { wCount = 0x8000; // wHdr = bswapLE16(*((LPWORD)pSrc)); pSrc += 2; bLeft = 9; bTemp = bTemp2 = 0; bitbuf = bitnum = 0; } DWORD d = wCount; if (d > dwLen) d = dwLen; // Unpacking DWORD dwPos = 0; do { WORD wBits = (WORD)ITReadBits(bitbuf, bitnum, pSrc, pStop, bLeft); if (bLeft < 7) { DWORD i = 1 << (bLeft-1); DWORD j = wBits & 0xFFFF; if (i != j) goto UnpackByte; wBits = (WORD)(ITReadBits(bitbuf, bitnum, pSrc, pStop, 3) + 1) & 0xFF; bLeft = ((BYTE)wBits < bLeft) ? (BYTE)wBits : (BYTE)((wBits+1) & 0xFF); goto Next; } if (bLeft < 9) { WORD i = (0xFF >> (9 - bLeft)) + 4; WORD j = i - 8; if ((wBits <= j) || (wBits > i)) goto UnpackByte; wBits -= j; bLeft = ((BYTE)(wBits & 0xFF) < bLeft) ? (BYTE)(wBits & 0xFF) : (BYTE)((wBits+1) & 0xFF); goto Next; } if (bLeft >= 10) goto SkipByte; if (wBits >= 256) { bLeft = (BYTE)(wBits + 1) & 0xFF; goto Next; } UnpackByte: if (bLeft < 8) { BYTE shift = 8 - bLeft; signed char c = (signed char)(wBits << shift); c >>= shift; wBits = (WORD)c; } wBits += bTemp; bTemp = (BYTE)wBits; bTemp2 += bTemp; #ifdef IT215_SUPPORT pDst[writePos] = (b215) ? bTemp2 : bTemp; #else pDst[writePos] = bTemp; #endif SkipByte: dwPos++; writePos += channels; Next: if (pSrc >= pStop + 1) return (DWORD)(pSrc - lpMemFile); } while (dwPos < d); // Move On wCount -= d; dwLen -= d; } return (DWORD)(pSrc - lpMemFile); } DWORD ITUnpack16Bit(signed char *pSample, DWORD dwLen, LPBYTE lpMemFile, DWORD dwMemLength, DWORD channels, BOOL b215) //-------------------------------------------------------------------------------------------------------------------- { signed short *pDst = (signed short *)pSample; LPBYTE pSrc = lpMemFile; DWORD writePos = 0; LPBYTE pStop = lpMemFile + dwMemLength; // DWORD wHdr = 0; DWORD wCount = 0; DWORD bitbuf = 0; UINT bitnum = 0; BYTE bLeft = 0; signed short wTemp = 0, wTemp2 = 0; while (dwLen) { if (!wCount) { wCount = 0x4000; // wHdr = bswapLE16(*((LPWORD)pSrc)); pSrc += 2; bLeft = 17; wTemp = wTemp2 = 0; bitbuf = bitnum = 0; } DWORD d = wCount; if (d > dwLen) d = dwLen; // Unpacking DWORD dwPos = 0; do { DWORD dwBits = ITReadBits(bitbuf, bitnum, pSrc, pStop, bLeft); if (bLeft < 7) { DWORD i = 1 << (bLeft-1); DWORD j = dwBits; if (i != j) goto UnpackByte; dwBits = ITReadBits(bitbuf, bitnum, pSrc, pStop, 4) + 1; bLeft = ((BYTE)(dwBits & 0xFF) < bLeft) ? (BYTE)(dwBits & 0xFF) : (BYTE)((dwBits+1) & 0xFF); goto Next; } if (bLeft < 17) { DWORD i = (0xFFFF >> (17 - bLeft)) + 8; DWORD j = (i - 16) & 0xFFFF; if ((dwBits <= j) || (dwBits > (i & 0xFFFF))) goto UnpackByte; dwBits -= j; bLeft = ((BYTE)(dwBits & 0xFF) < bLeft) ? (BYTE)(dwBits & 0xFF) : (BYTE)((dwBits+1) & 0xFF); goto Next; } if (bLeft >= 18) goto SkipByte; if (dwBits >= 0x10000) { bLeft = (BYTE)(dwBits + 1) & 0xFF; goto Next; } UnpackByte: if (bLeft < 16) { BYTE shift = 16 - bLeft; signed short c = (signed short)(dwBits << shift); c >>= shift; dwBits = (DWORD)c; } dwBits += wTemp; wTemp = (signed short)dwBits; wTemp2 += wTemp; #ifdef IT215_SUPPORT pDst[writePos] = (b215) ? wTemp2 : wTemp; #else pDst[writePos] = wTemp; #endif SkipByte: dwPos++; writePos += channels; Next: if (pSrc >= pStop + 1) return (DWORD)(pSrc - lpMemFile); } while (dwPos < d); // Move On wCount -= d; dwLen -= d; if (pSrc >= pStop) break; } return (DWORD)(pSrc - lpMemFile); } UINT CSoundFile::SaveMixPlugins(FILE *f, BOOL bUpdate) //---------------------------------------------------- { DWORD chinfo[64]; CHAR s[32]; DWORD nPluginSize, writeSwapDWORD; SNDMIXPLUGININFO writePluginInfo; UINT nTotalSize = 0; UINT nChInfo = 0; for (UINT i=0; i<MAX_MIXPLUGINS; i++) { PSNDMIXPLUGIN p = &m_MixPlugins[i]; if ((p->Info.dwPluginId1) || (p->Info.dwPluginId2)) { nPluginSize = sizeof(SNDMIXPLUGININFO)+4; // plugininfo+4 (datalen) if ((p->pMixPlugin) && (bUpdate)) { p->pMixPlugin->SaveAllParameters(); } if (p->pPluginData) { nPluginSize += p->nPluginDataSize; } if (f) { s[0] = 'F'; s[1] = 'X'; s[2] = '0' + (i/10); s[3] = '0' + (i%10); fwrite(s, 1, 4, f); writeSwapDWORD = bswapLE32(nPluginSize); fwrite(&writeSwapDWORD, 1, 4, f); // Copy Information To Be Written for ByteSwapping memcpy(&writePluginInfo, &p->Info, sizeof(SNDMIXPLUGININFO)); writePluginInfo.dwPluginId1 = bswapLE32(p->Info.dwPluginId1); writePluginInfo.dwPluginId2 = bswapLE32(p->Info.dwPluginId2); writePluginInfo.dwInputRouting = bswapLE32(p->Info.dwInputRouting); writePluginInfo.dwOutputRouting = bswapLE32(p->Info.dwOutputRouting); for (UINT j=0; j<4; j++) { writePluginInfo.dwReserved[j] = bswapLE32(p->Info.dwReserved[j]); } fwrite(&writePluginInfo, 1, sizeof(SNDMIXPLUGININFO), f); writeSwapDWORD = bswapLE32(m_MixPlugins[i].nPluginDataSize); fwrite(&writeSwapDWORD, 1, 4, f); if (m_MixPlugins[i].pPluginData) { fwrite(m_MixPlugins[i].pPluginData, 1, m_MixPlugins[i].nPluginDataSize, f); } } nTotalSize += nPluginSize + 8; } } for (UINT j=0; j<m_nChannels; j++) { if (j < 64) { if ((chinfo[j] = ChnSettings[j].nMixPlugin) != 0) { nChInfo = j+1; chinfo[j] = bswapLE32(chinfo[j]); // inplace BS } } } if (nChInfo) { if (f) { nPluginSize = bswapLE32(0x58464843); fwrite(&nPluginSize, 1, 4, f); nPluginSize = nChInfo*4; writeSwapDWORD = bswapLE32(nPluginSize); fwrite(&writeSwapDWORD, 1, 4, f); fwrite(chinfo, 1, nPluginSize, f); } nTotalSize += nChInfo*4 + 8; } return nTotalSize; } UINT CSoundFile::LoadMixPlugins(const void *pData, UINT nLen) //----------------------------------------------------------- { const BYTE *p = (const BYTE *)pData; UINT nPos = 0; while (nPos+8 < nLen) { DWORD nPluginSize; UINT nPlugin; nPluginSize = bswapLE32(*(DWORD *)(p+nPos+4)); if (nPluginSize > nLen-nPos-8) break;; if ((bswapLE32(*(DWORD *)(p+nPos))) == 0x58464843) { for (UINT ch=0; ch<64; ch++) if (ch*4 < nPluginSize) { ChnSettings[ch].nMixPlugin = bswapLE32(*(DWORD *)(p+nPos+8+ch*4)); } } else { if ((p[nPos] != 'F') || (p[nPos+1] != 'X') || (p[nPos+2] < '0') || (p[nPos+3] < '0')) { break; } nPlugin = (p[nPos+2]-'0')*10 + (p[nPos+3]-'0'); if ((nPlugin < MAX_MIXPLUGINS) && (nPluginSize >= sizeof(SNDMIXPLUGININFO)+4)) { DWORD dwExtra = bswapLE32(*(DWORD *)(p+nPos+8+sizeof(SNDMIXPLUGININFO))); m_MixPlugins[nPlugin].Info = *(const SNDMIXPLUGININFO *)(p+nPos+8); m_MixPlugins[nPlugin].Info.dwPluginId1 = bswapLE32(m_MixPlugins[nPlugin].Info.dwPluginId1); m_MixPlugins[nPlugin].Info.dwPluginId2 = bswapLE32(m_MixPlugins[nPlugin].Info.dwPluginId2); m_MixPlugins[nPlugin].Info.dwInputRouting = bswapLE32(m_MixPlugins[nPlugin].Info.dwInputRouting); m_MixPlugins[nPlugin].Info.dwOutputRouting = bswapLE32(m_MixPlugins[nPlugin].Info.dwOutputRouting); for (UINT j=0; j<4; j++) { m_MixPlugins[nPlugin].Info.dwReserved[j] = bswapLE32(m_MixPlugins[nPlugin].Info.dwReserved[j]); } if ((dwExtra) && (dwExtra <= nPluginSize-sizeof(SNDMIXPLUGININFO)-4)) { m_MixPlugins[nPlugin].nPluginDataSize = 0; m_MixPlugins[nPlugin].pPluginData = new signed char [dwExtra]; if (m_MixPlugins[nPlugin].pPluginData) { m_MixPlugins[nPlugin].nPluginDataSize = dwExtra; memcpy(m_MixPlugins[nPlugin].pPluginData, p+nPos+8+sizeof(SNDMIXPLUGININFO)+4, dwExtra); } } } } nPos += nPluginSize + 8; } return nPos; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ /////////////////////////////////////////////////// // // J2B module loader // /////////////////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ ////////////////////////////////////////////// // DigiTracker (MDL) module loader // ////////////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" //#pragma warning(disable:4244) typedef struct MDLSONGHEADER { DWORD id; // "DMDL" = 0x4C444D44 BYTE version; } MDLSONGHEADER; typedef struct MDLINFOBLOCK { CHAR songname[32]; CHAR composer[20]; WORD norders; WORD repeatpos; BYTE globalvol; BYTE speed; BYTE tempo; BYTE channelinfo[32]; BYTE seq[256]; } MDLINFOBLOCK; typedef struct MDLPATTERNDATA { BYTE channels; BYTE lastrow; // nrows = lastrow+1 CHAR name[16]; WORD data[1]; } MDLPATTERNDATA; void ConvertMDLCommand(MODCOMMAND *m, UINT eff, UINT data) //-------------------------------------------------------- { UINT command = 0, param = data; switch(eff) { case 0x01: command = CMD_PORTAMENTOUP; break; case 0x02: command = CMD_PORTAMENTODOWN; break; case 0x03: command = CMD_TONEPORTAMENTO; break; case 0x04: command = CMD_VIBRATO; break; case 0x05: command = CMD_ARPEGGIO; break; case 0x07: command = (param < 0x20) ? CMD_SPEED : CMD_TEMPO; break; case 0x08: command = CMD_PANNING8; param <<= 1; break; case 0x0B: command = CMD_POSITIONJUMP; break; case 0x0C: command = CMD_GLOBALVOLUME; break; case 0x0D: command = CMD_PATTERNBREAK; param = (data & 0x0F) + (data>>4)*10; break; case 0x0E: command = CMD_S3MCMDEX; switch(data & 0xF0) { case 0x00: command = 0; break; // What is E0x in MDL (there is a bunch) ? case 0x10: if (param & 0x0F) { param |= 0xF0; command = CMD_PANNINGSLIDE; } else command = 0; break; case 0x20: if (param & 0x0F) { param = (param << 4) | 0x0F; command = CMD_PANNINGSLIDE; } else command = 0; break; case 0x30: param = (data & 0x0F) | 0x10; break; // glissando case 0x40: param = (data & 0x0F) | 0x30; break; // vibrato waveform case 0x60: param = (data & 0x0F) | 0xB0; break; case 0x70: param = (data & 0x0F) | 0x40; break; // tremolo waveform case 0x90: command = CMD_RETRIG; param &= 0x0F; break; case 0xA0: param = (data & 0x0F) << 4; command = CMD_GLOBALVOLSLIDE; break; case 0xB0: param = data & 0x0F; command = CMD_GLOBALVOLSLIDE; break; case 0xF0: param = ((data >> 8) & 0x0F) | 0xA0; break; } break; case 0x0F: command = CMD_SPEED; break; case 0x10: if ((param & 0xF0) != 0xE0) { command = CMD_VOLUMESLIDE; if ((param & 0xF0) == 0xF0) param = ((param << 4) | 0x0F); else param >>= 2; } break; case 0x20: if ((param & 0xF0) != 0xE0) { command = CMD_VOLUMESLIDE; if ((param & 0xF0) != 0xF0) param >>= 2; } break; case 0x30: command = CMD_RETRIG; break; case 0x40: command = CMD_TREMOLO; break; case 0x50: command = CMD_TREMOR; break; case 0xEF: if (param > 0xFF) param = 0xFF; command = CMD_OFFSET; break; } if (command) { m->command = command; m->param = param; } } void UnpackMDLTrack(MODCOMMAND *pat, UINT nChannels, UINT nRows, UINT nTrack, const BYTE *lpTracks, UINT len) //------------------------------------------------------------------------------------------------- { MODCOMMAND cmd, *m = pat; UINT pos = 0, row = 0, i; cmd.note = cmd.instr = 0; cmd.volcmd = cmd.vol = 0; cmd.command = cmd.param = 0; while ((row < nRows) && (pos < len)) { UINT xx; BYTE b = lpTracks[pos++]; xx = b >> 2; switch(b & 0x03) { case 0x01: for (i=0; i<=xx; i++) { if (row) *m = *(m-nChannels); m += nChannels; row++; if (row >= nRows) break; } break; case 0x02: if (xx < row) *m = pat[nChannels*xx]; m += nChannels; row++; break; case 0x03: { cmd.note = (xx & 0x01) ? (pos < len ? lpTracks[pos++] : 0) : 0; cmd.instr = (xx & 0x02) ? (pos < len ? lpTracks[pos++] : 0) : 0; cmd.volcmd = cmd.vol = 0; cmd.command = cmd.param = 0; if ((cmd.note < NOTE_MAX-12) && (cmd.note)) cmd.note += 12; UINT volume = (xx & 0x04) ? (pos < len ? lpTracks[pos++] : 0) : 0; UINT commands = (xx & 0x08) ? (pos < len ? lpTracks[pos++] : 0) : 0; UINT command1 = commands & 0x0F; UINT command2 = commands & 0xF0; UINT param1 = (xx & 0x10) ? (pos < len ? lpTracks[pos++] : 0) : 0; UINT param2 = (xx & 0x20) ? (pos < len ? lpTracks[pos++] : 0) : 0; if ((command1 == 0x0E) && ((param1 & 0xF0) == 0xF0) && (!command2)) { param1 = ((param1 & 0x0F) << 8) | param2; command1 = 0xEF; command2 = param2 = 0; } if (volume) { cmd.volcmd = VOLCMD_VOLUME; cmd.vol = (volume+1) >> 2; } ConvertMDLCommand(&cmd, command1, param1); if ((cmd.command != CMD_SPEED) && (cmd.command != CMD_TEMPO) && (cmd.command != CMD_PATTERNBREAK)) ConvertMDLCommand(&cmd, command2, param2); *m = cmd; m += nChannels; row++; } break; // Empty Slots default: row += xx+1; m += (xx+1)*nChannels; if (row >= nRows) break; } } } BOOL CSoundFile::ReadMDL(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { DWORD dwMemPos, dwPos, blocklen, dwTrackPos; const MDLSONGHEADER *pmsh = (const MDLSONGHEADER *)lpStream; const MDLINFOBLOCK *pmib; UINT i,j, norders = 0, npatterns = 0, ntracks = 0; UINT ninstruments = 0, nsamples = 0; WORD block; WORD patterntracks[MAX_PATTERNS*32]; BYTE smpinfo[MAX_SAMPLES]; BYTE insvolenv[MAX_INSTRUMENTS]; BYTE inspanenv[MAX_INSTRUMENTS]; LPCBYTE pvolenv, ppanenv, ppitchenv; UINT nvolenv, npanenv, npitchenv; if ((!lpStream) || (dwMemLength < 1024)) return FALSE; if ((pmsh->id != 0x4C444D44) || ((pmsh->version & 0xF0) > 0x10)) return FALSE; const UINT hdrLen = (pmsh->version>0)? 59 : 57; memset(patterntracks, 0, sizeof(patterntracks)); memset(smpinfo, 0, sizeof(smpinfo)); memset(insvolenv, 0, sizeof(insvolenv)); memset(inspanenv, 0, sizeof(inspanenv)); dwMemPos = 5; dwTrackPos = 0; pvolenv = ppanenv = ppitchenv = NULL; nvolenv = npanenv = npitchenv = 0; m_nSamples = m_nInstruments = 0; while (dwMemPos+6 < dwMemLength) { const BYTE *pp = lpStream + dwMemPos; block = pp[0] | (pp[1] << 8); blocklen = pp[2] | (pp[3] << 8) | (pp[4] << 16) | (pp[5] << 24); dwMemPos += 6; if (blocklen > dwMemLength - dwMemPos) { if (dwMemPos == 11) return FALSE; break; } switch(block) { // IN: infoblock case 0x4E49: if (blocklen < sizeof(MDLINFOBLOCK)) break; pmib = (const MDLINFOBLOCK *)(lpStream+dwMemPos); memcpy(m_szNames[0], pmib->songname, 32); m_szNames[0][31] = 0; norders = pmib->norders; if (norders > MAX_ORDERS) norders = MAX_ORDERS; if (blocklen < sizeof(MDLINFOBLOCK) + norders - sizeof(pmib->seq)) return FALSE; m_nRestartPos = pmib->repeatpos; m_nDefaultGlobalVolume = pmib->globalvol; m_nDefaultTempo = pmib->tempo; m_nDefaultSpeed = pmib->speed; m_nChannels = 4; for (i=0; i<32; i++) { ChnSettings[i].nVolume = 64; ChnSettings[i].nPan = (pmib->channelinfo[i] & 0x7F) << 1; if (pmib->channelinfo[i] & 0x80) ChnSettings[i].dwFlags |= CHN_MUTE; else m_nChannels = i+1; } for (j=0; j<norders; j++) Order[j] = pmib->seq[j]; break; // ME: song message case 0x454D: if (blocklen) { if (m_lpszSongComments) delete [] m_lpszSongComments; m_lpszSongComments = new char[blocklen]; if (m_lpszSongComments) { memcpy(m_lpszSongComments, lpStream+dwMemPos, blocklen); m_lpszSongComments[blocklen-1] = 0; } } break; // PA: Pattern Data case 0x4150: npatterns = lpStream[dwMemPos]; if (npatterns > MAX_PATTERNS) npatterns = MAX_PATTERNS; dwPos = dwMemPos + 1; for (i=0; i<npatterns; i++) { const BYTE *data; UINT ch; if (pmsh->version == 0) { if (m_nChannels < 32) m_nChannels = 32; ch = 32; } else { if (dwPos+18 >= dwMemLength) break; const MDLPATTERNDATA *pmpd = (const MDLPATTERNDATA *)(lpStream + dwPos); if (pmpd->channels > 32) break; PatternSize[i] = pmpd->lastrow+1; if (m_nChannels < pmpd->channels) m_nChannels = pmpd->channels; ch = pmpd->channels; } if (2 * ch >= dwMemLength - dwPos) break; data = lpStream + dwPos; dwPos += 2 * ch; for (j=0; j<ch && j<m_nChannels; j++, data+=2) { patterntracks[i*32+j] = data[0] | (data[1] << 8); } } break; // TR: Track Data case 0x5254: if (blocklen < 2) break; if (dwTrackPos) break; pp = lpStream + dwMemPos; ntracks = pp[0] | (pp[1] << 8); dwTrackPos = dwMemPos+2; break; // II: Instruments case 0x4949: ninstruments = lpStream[dwMemPos]; dwPos = dwMemPos+1; if (blocklen < sizeof(INSTRUMENTHEADER)*ninstruments + 1) break; for (i=0; i<ninstruments; i++) { UINT nins = lpStream[dwPos]; if ((nins >= MAX_INSTRUMENTS) || (!nins)) break; if (m_nInstruments < nins) m_nInstruments = nins; if (!Headers[nins]) { UINT note = 12; if ((Headers[nins] = new INSTRUMENTHEADER) == NULL) break; INSTRUMENTHEADER *penv = Headers[nins]; memset(penv, 0, sizeof(INSTRUMENTHEADER)); if (dwPos > dwMemLength - 34) break; memcpy(penv->name, lpStream+dwPos+2, 32); penv->nGlobalVol = 64; penv->nPPC = 5*12; if (34 + 14u*lpStream[dwPos+1] > dwMemLength - dwPos) break; for (j=0; j<lpStream[dwPos+1]; j++) { const BYTE *ps = lpStream+dwPos+34+14*j; while ((note < (UINT)(ps[1]+12)) && (note < NOTE_MAX)) { penv->NoteMap[note] = note+1; if (ps[0] < MAX_SAMPLES) { int ismp = ps[0]; penv->Keyboard[note] = ps[0]; Ins[ismp].nVolume = ps[2]; Ins[ismp].nPan = ps[4] << 1; Ins[ismp].nVibType = ps[11]; Ins[ismp].nVibSweep = ps[10]; Ins[ismp].nVibDepth = ps[9]; Ins[ismp].nVibRate = ps[8]; } penv->nFadeOut = (ps[7] << 8) | ps[6]; if (penv->nFadeOut == 0xFFFF) penv->nFadeOut = 0; note++; } // Use volume envelope ? if (ps[3] & 0x80) { penv->dwFlags |= ENV_VOLUME; insvolenv[nins] = (ps[3] & 0x3F) + 1; } // Use panning envelope ? if (ps[5] & 0x80) { penv->dwFlags |= ENV_PANNING; inspanenv[nins] = (ps[5] & 0x3F) + 1; } } } dwPos += 34 + 14*lpStream[dwPos+1]; if (dwPos > dwMemLength - 2) break; } for (j=1; j<=m_nInstruments; j++) if (!Headers[j]) { Headers[j] = new INSTRUMENTHEADER; if (Headers[j]) memset(Headers[j], 0, sizeof(INSTRUMENTHEADER)); } break; // VE: Volume Envelope case 0x4556: if (nvolenv || (nvolenv = lpStream[dwMemPos]) == 0) break; if (dwMemPos + nvolenv*33 + 1 <= dwMemLength) pvolenv = lpStream + dwMemPos + 1; break; // PE: Panning Envelope case 0x4550: if (npanenv || (npanenv = lpStream[dwMemPos]) == 0) break; if (dwMemPos + npanenv*33 + 1 <= dwMemLength) ppanenv = lpStream + dwMemPos + 1; break; // FE: Pitch Envelope case 0x4546: if (npitchenv || (npitchenv = lpStream[dwMemPos]) == 0) break; if (dwMemPos + npitchenv*33 + 1 <= dwMemLength) ppitchenv = lpStream + dwMemPos + 1; break; // IS: Sample Infoblock case 0x5349: nsamples = lpStream[dwMemPos]; i = blocklen / hdrLen; if (i< nsamples) nsamples = i; dwPos = dwMemPos+1; for (i=0; i<nsamples; i++, dwPos += hdrLen) { UINT nins = lpStream[dwPos]; if ((nins >= MAX_SAMPLES) || (!nins)) continue; if (m_nSamples < nins) m_nSamples = nins; MODINSTRUMENT *pins = &Ins[nins]; memcpy(m_szNames[nins], lpStream+dwPos+1, 32); m_szNames[nins][31] = 0; memcpy(pins->name, lpStream+dwPos+33, 8); pp = lpStream + dwPos + 41; pins->nC4Speed = pp[0] | (pp[1] << 8); pp += 2; if (pmsh->version > 0) { pins->nC4Speed |= (pp[0] << 16) | (pp[1] << 24); pp += 2; } pins->nLength = pp[0] | (pp[1] << 8) | (pp[2] << 16) | (pp[3] << 24); pp += 4; pins->nLoopStart = pp[0] | (pp[1] << 8) | (pp[2] << 16) | (pp[3] << 24); pp += 4; pins->nLoopEnd = pins->nLoopStart + (pp[0] | (pp[1] << 8) | (pp[2] << 16) | (pp[3] << 24)); if (pins->nLoopEnd > pins->nLoopStart) pins->uFlags |= CHN_LOOP; pins->nGlobalVol = 64; if (pmsh->version == 0) pins->nVolume = pp[4]; if (lpStream[dwPos+hdrLen-1] & 0x01) { pins->uFlags |= CHN_16BIT; pins->nLength >>= 1; pins->nLoopStart >>= 1; pins->nLoopEnd >>= 1; } if (lpStream[dwPos+hdrLen-1] & 0x02) pins->uFlags |= CHN_PINGPONGLOOP; smpinfo[nins] = (lpStream[dwPos+hdrLen-1] >> 2) & 3; } break; // SA: Sample Data case 0x4153: dwPos = dwMemPos; for (i=1; i<=m_nSamples; i++) if ((Ins[i].nLength) && (!Ins[i].pSample) && (smpinfo[i] != 3) && (dwPos < dwMemLength)) { MODINSTRUMENT *pins = &Ins[i]; UINT flags = (pins->uFlags & CHN_16BIT) ? RS_PCM16S : RS_PCM8S; pp = lpStream + dwPos; if (!smpinfo[i]) { dwPos += ReadSample(pins, flags, (LPCSTR)pp, dwMemLength - dwPos); } else { DWORD dwLen = pp[0] | (pp[1] << 8) | (pp[2] << 16) | (pp[3] << 24); pp += 4; dwPos += 4; if ((dwLen <= dwMemLength) && (dwPos <= dwMemLength - dwLen) && (dwLen > 4)) { flags = (pins->uFlags & CHN_16BIT) ? RS_MDL16 : RS_MDL8; ReadSample(pins, flags, (LPCSTR)pp, dwLen); } dwPos += dwLen; } } break; } dwMemPos += blocklen; } // Unpack Patterns if ((dwTrackPos) && (npatterns) && (m_nChannels) && (ntracks)) { for (UINT ipat=0; ipat<npatterns; ipat++) { if ((Patterns[ipat] = AllocatePattern(PatternSize[ipat], m_nChannels)) == NULL) break; for (UINT chn=0; chn<m_nChannels; chn++) if ((patterntracks[ipat*32+chn]) && (patterntracks[ipat*32+chn] <= ntracks)) { const BYTE *lpTracks = lpStream + dwTrackPos; UINT len = 0; if (dwTrackPos + 2 < dwMemLength) len = lpTracks[0] | (lpTracks[1] << 8); if (len < dwMemLength-dwTrackPos) { MODCOMMAND *m = Patterns[ipat] + chn; UINT nTrack = patterntracks[ipat*32+chn]; lpTracks += 2; for (UINT ntrk=1; ntrk<nTrack && lpTracks < (dwMemLength + lpStream - len - 2); ntrk++) { lpTracks += len; len = lpTracks[0] | (lpTracks[1] << 8); lpTracks += 2; } if ( len > dwMemLength - (lpTracks - lpStream) ) len = 0; UnpackMDLTrack(m, m_nChannels, PatternSize[ipat], nTrack, lpTracks, len); } } } } // Set up envelopes for (UINT iIns=1; iIns<=m_nInstruments; iIns++) if (Headers[iIns]) { INSTRUMENTHEADER *penv = Headers[iIns]; // Setup volume envelope if ((nvolenv) && (pvolenv) && (insvolenv[iIns])) { LPCBYTE pve = pvolenv; for (UINT nve=0; nve<nvolenv; nve++, pve+=33) if (pve[0]+1 == insvolenv[iIns]) { WORD vtick = 1; penv->nVolEnv = 15; for (UINT iv=0; iv<15; iv++) { if (iv) vtick += pve[iv*2+1]; penv->VolPoints[iv] = vtick; penv->VolEnv[iv] = pve[iv*2+2]; if (!pve[iv*2+1]) { penv->nVolEnv = iv+1; break; } } penv->nVolSustainBegin = penv->nVolSustainEnd = pve[31] & 0x0F; if (pve[31] & 0x10) penv->dwFlags |= ENV_VOLSUSTAIN; if (pve[31] & 0x20) penv->dwFlags |= ENV_VOLLOOP; penv->nVolLoopStart = pve[32] & 0x0F; penv->nVolLoopEnd = pve[32] >> 4; } } // Setup panning envelope if ((npanenv) && (ppanenv) && (inspanenv[iIns])) { LPCBYTE ppe = ppanenv; for (UINT npe=0; npe<npanenv; npe++, ppe+=33) if (ppe[0]+1 == inspanenv[iIns]) { WORD vtick = 1; penv->nPanEnv = 15; for (UINT iv=0; iv<15; iv++) { if (iv) vtick += ppe[iv*2+1]; penv->PanPoints[iv] = vtick; penv->PanEnv[iv] = ppe[iv*2+2]; if (!ppe[iv*2+1]) { penv->nPanEnv = iv+1; break; } } if (ppe[31] & 0x10) penv->dwFlags |= ENV_PANSUSTAIN; if (ppe[31] & 0x20) penv->dwFlags |= ENV_PANLOOP; penv->nPanLoopStart = ppe[32] & 0x0F; penv->nPanLoopEnd = ppe[32] >> 4; } } } m_dwSongFlags |= SONG_LINEARSLIDES; m_nType = MOD_TYPE_MDL; return TRUE; } ///////////////////////////////////////////////////////////////////////// // MDL Sample Unpacking // MDL Huffman ReadBits compression WORD MDLReadBits(DWORD &bitbuf, UINT &bitnum, LPBYTE &ibuf, CHAR n) //----------------------------------------------------------------- { WORD v = (WORD)(bitbuf & ((1 << n) - 1) ); bitbuf >>= n; bitnum -= n; if (bitnum <= 24) { bitbuf |= (((DWORD)(*ibuf++)) << bitnum); bitnum += 8; } return v; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (endian and char fixes for PPC) */ //#include "stdafx.h" //#include "sndfile.h" //#define MED_LOG #ifdef MED_LOG extern void Log(LPCSTR s, ...); #endif ////////////////////////////////////////////////////////// // OctaMed MED file support (import only) // // Lookup table for bpm values. static const BYTE bpmvals[10] = { 179,164,152,141,131,123,116,110,104,99 }; // flags #define MMD_FLAG_FILTERON 0x1 #define MMD_FLAG_JUMPINGON 0x2 #define MMD_FLAG_JUMP8TH 0x4 #define MMD_FLAG_INSTRSATT 0x8 // instruments are attached (this is a module) #define MMD_FLAG_VOLHEX 0x10 #define MMD_FLAG_STSLIDE 0x20 // SoundTracker mode for slides #define MMD_FLAG_8CHANNEL 0x40 // OctaMED 8 channel song #define MMD_FLAG_SLOWHQ 0x80 // HQ slows playing speed (V2-V4 compatibility) // flags2 #define MMD_FLAG2_BMASK 0x1F #define MMD_FLAG2_BPM 0x20 #define MMD_FLAG2_MIX 0x80 // uses Mixing (V7+) // flags3: #define MMD_FLAG3_STEREO 0x1 // mixing in Stereo mode #define MMD_FLAG3_FREEPAN 0x2 // free panning #define MMD_FLAG3_GM 0x4 // module designed for GM/XG compatibility // generic MMD tags #define MMDTAG_END 0 #define MMDTAG_PTR 0x80000000 // data needs relocation #define MMDTAG_MUSTKNOW 0x40000000 // loader must fail if this isn't recognized #define MMDTAG_MUSTWARN 0x20000000 // loader must warn if this isn't recognized // ExpData tags // # of effect groups, including the global group (will // override settings in MMDSong struct), default = 1 #define MMDTAG_EXP_NUMFXGROUPS 1 #define MMDTAG_TRK_NAME (MMDTAG_PTR|1) // trackinfo tags #define MMDTAG_TRK_NAMELEN 2 // namelen includes zero term. #define MMDTAG_TRK_FXGROUP 3 // effectinfo tags #define MMDTAG_FX_ECHOTYPE 1 #define MMDTAG_FX_ECHOLEN 2 #define MMDTAG_FX_ECHODEPTH 3 #define MMDTAG_FX_STEREOSEP 4 #define MMDTAG_FX_GROUPNAME (MMDTAG_PTR|5) // the Global Effects group shouldn't have name saved! #define MMDTAG_FX_GRPNAMELEN 6 // namelen includes zero term. #pragma pack(1) typedef struct tagMEDMODULEHEADER { DWORD id; // MMD1-MMD3 DWORD modlen; // Size of file DWORD song; // Position in file for this song WORD psecnum; WORD pseq; DWORD blockarr; // Position in file for blocks DWORD mmdflags; DWORD smplarr; // Position in file for samples DWORD reserved; DWORD expdata; // Absolute offset in file for ExpData (0 if not present) DWORD reserved2; WORD pstate; WORD pblock; WORD pline; WORD pseqnum; WORD actplayline; BYTE counter; BYTE extra_songs; // # of songs - 1 } MEDMODULEHEADER; typedef struct tagMMD0SAMPLE { WORD rep, replen; BYTE midich; BYTE midipreset; BYTE svol; signed char strans; } MMD0SAMPLE; // Sample header is immediately followed by sample data... typedef struct tagMMDSAMPLEHEADER { DWORD length; // length of *one* *unpacked* channel in *bytes* WORD type; // if non-negative // bits 0-3 reserved for multi-octave instruments, not supported on the PC // 0x10: 16 bit (otherwise 8 bit) // 0x20: Stereo (otherwise mono) // 0x40: Uses DeltaCode // 0x80: Packed data // -1: Synth // -2: Hybrid // if type indicates packed data, these fields follow, otherwise we go right to the data WORD packtype; // Only 1 = ADPCM is supported WORD subtype; // Packing subtype // ADPCM subtype // 1: g723_40 // 2: g721 // 3: g723_24 BYTE commonflags; // flags common to all packtypes (none defined so far) BYTE packerflags; // flags for the specific packtype ULONG leftchlen; // packed length of left channel in bytes ULONG rightchlen; // packed length of right channel in bytes (ONLY PRESENT IN STEREO SAMPLES) BYTE SampleData[1]; // Sample Data } MMDSAMPLEHEADER; // MMD0/MMD1 song header typedef struct tagMMD0SONGHEADER { MMD0SAMPLE sample[63]; WORD numblocks; // # of blocks WORD songlen; // # of entries used in playseq BYTE playseq[256]; // Play sequence WORD deftempo; // BPM tempo signed char playtransp; // Play transpose BYTE flags; // 0x10: Hex Volumes | 0x20: ST/NT/PT Slides | 0x40: 8 Channels song BYTE flags2; // [b4-b0]+1: Tempo LPB, 0x20: tempo mode, 0x80: mix_conv=on BYTE tempo2; // tempo TPL BYTE trkvol[16]; // track volumes BYTE mastervol; // master volume BYTE numsamples; // # of samples (max=63) } MMD0SONGHEADER; // MMD2/MMD3 song header typedef struct tagMMD2SONGHEADER { MMD0SAMPLE sample[63]; WORD numblocks; // # of blocks WORD numsections; // # of sections DWORD playseqtable; // filepos of play sequence DWORD sectiontable; // filepos of sections table (WORD array) DWORD trackvols; // filepos of tracks volume (BYTE array) WORD numtracks; // # of tracks (max 64) WORD numpseqs; // # of play sequences DWORD trackpans; // filepos of tracks pan values (BYTE array) LONG flags3; // 0x1:stereo_mix, 0x2:free_panning, 0x4:GM/XG compatibility WORD voladj; // vol_adjust (set to 100 if 0) WORD channels; // # of channels (4 if =0) BYTE mix_echotype; // 1:normal,2:xecho BYTE mix_echodepth; // 1..6 WORD mix_echolen; // > 0 signed char mix_stereosep; // -4..4 BYTE pad0[223]; WORD deftempo; // BPM tempo signed char playtransp; // play transpose BYTE flags; // 0x1:filteron, 0x2:jumpingon, 0x4:jump8th, 0x8:instr_attached, 0x10:hex_vol, 0x20:PT_slides, 0x40:8ch_conv,0x80:hq slows playing speed BYTE flags2; // 0x80:mix_conv=on, [b4-b0]+1:tempo LPB, 0x20:tempo_mode BYTE tempo2; // tempo TPL BYTE pad1[16]; BYTE mastervol; // master volume BYTE numsamples; // # of samples (max 63) } MMD2SONGHEADER; // For MMD0 the note information is held in 3 bytes, byte0, byte1, byte2. For reference we // number the bits in each byte 0..7, where 0 is the low bit. // The note is held as bits 5..0 of byte0 // The instrument is encoded in 6 bits, bits 7 and 6 of byte0 and bits 7,6,5,4 of byte1 // The command number is bits 3,2,1,0 of byte1, command data is in byte2: // For command 0, byte2 represents the second data byte, otherwise byte2 // represents the first data byte. typedef struct tagMMD0BLOCK { BYTE numtracks; BYTE lines; // File value is 1 less than actual, so 0 -> 1 line } MMD0BLOCK; // BYTE data[lines+1][tracks][3]; // For MMD1,MMD2,MMD3 the note information is carried in 4 bytes, byte0, byte1, // byte2 and byte3 // The note is held as byte0 (values above 0x84 are ignored) // The instrument is held as byte1 // The command number is held as byte2, command data is in byte3 // For commands 0 and 0x19 byte3 represents the second data byte, // otherwise byte2 represents the first data byte. typedef struct tagMMD1BLOCK { WORD numtracks; // Number of tracks, may be > 64, but then that data is skipped. WORD lines; // Stored value is 1 less than actual, so 0 -> 1 line DWORD info; // Offset of BlockInfo (if 0, no block_info is present) } MMD1BLOCK; typedef struct tagMMD1BLOCKINFO { DWORD hlmask; // Unimplemented - ignore DWORD blockname; // file offset of block name DWORD blocknamelen; // length of block name (including term. 0) DWORD pagetable; // file offset of command page table DWORD cmdexttable; // file offset of command extension table DWORD reserved[4]; // future expansion } MMD1BLOCKINFO; // A set of play sequences is stored as an array of ULONG files offsets // Each offset points to the play sequence itself. typedef struct tagMMD2PLAYSEQ { CHAR name[32]; DWORD command_offs; // filepos of command table DWORD reserved; WORD length; WORD seq[512]; // skip if > 0x8000 } MMD2PLAYSEQ; // A command table contains commands that effect a particular play sequence // entry. The only commands read in are STOP or POSJUMP, all others are ignored // POSJUMP is presumed to have extra bytes containing a WORD for the position typedef struct tagMMDCOMMAND { WORD offset; // Offset within current sequence entry BYTE cmdnumber; // STOP (537) or POSJUMP (538) (others skipped) BYTE extra_count; BYTE extra_bytes[4];// [extra_count]; } MMDCOMMAND; // Last entry has offset == 0xFFFF, cmd_number == 0 and 0 extrabytes typedef struct tagMMD0EXP { DWORD nextmod; // File offset of next Hdr DWORD exp_smp; // Pointer to extra instrument data WORD s_ext_entries; // Number of extra instrument entries WORD s_ext_entrsz; // Size of extra instrument data DWORD annotxt; DWORD annolen; DWORD iinfo; // Instrument names WORD i_ext_entries; WORD i_ext_entrsz; DWORD jumpmask; DWORD rgbtable; BYTE channelsplit[4]; // Only used if 8ch_conv (extra channel for every nonzero entry) DWORD n_info; DWORD songname; // Song name DWORD songnamelen; DWORD dumps; DWORD mmdinfo; DWORD mmdrexx; DWORD mmdcmd3x; DWORD trackinfo_ofs; // ptr to song->numtracks ptrs to tag lists DWORD effectinfo_ofs; // ptr to group ptrs DWORD tag_end; } MMD0EXP; #pragma pack() static void MedConvert(MODCOMMAND *p, const MMD0SONGHEADER *pmsh) //--------------------------------------------------------------- { UINT command = p->command; UINT param = p->param; switch(command) { case 0x00: if (param) command = CMD_ARPEGGIO; else command = 0; break; case 0x01: command = CMD_PORTAMENTOUP; break; case 0x02: command = CMD_PORTAMENTODOWN; break; case 0x03: command = CMD_TONEPORTAMENTO; break; case 0x04: command = CMD_VIBRATO; break; case 0x05: command = CMD_TONEPORTAVOL; break; case 0x06: command = CMD_VIBRATOVOL; break; case 0x07: command = CMD_TREMOLO; break; case 0x0A: if (param & 0xF0) param &= 0xF0; command = CMD_VOLUMESLIDE; if (!param) command = 0; break; case 0x0B: command = CMD_POSITIONJUMP; break; case 0x0C: command = CMD_VOLUME; if (pmsh->flags & MMD_FLAG_VOLHEX) { if (param < 0x80) { param = (param+1) / 2; } else command = 0; } else { if (param <= 0x99) { param = (param >> 4)*10+((param & 0x0F) % 10); if (param > 64) param = 64; } else command = 0; } break; case 0x09: command = (param < 0x20) ? CMD_SPEED : CMD_TEMPO; break; case 0x0D: if (param & 0xF0) param &= 0xF0; command = CMD_VOLUMESLIDE; if (!param) command = 0; break; case 0x0F: // Set Tempo / Special // F.00 = Pattern Break if (!param) command = CMD_PATTERNBREAK; else // F.01 - F.F0: Set tempo/speed if (param <= 0xF0) { if (pmsh->flags & MMD_FLAG_8CHANNEL) { param = (param > 10) ? 99 : bpmvals[param-1]; } else // F.01 - F.0A: Set Speed if (param <= 0x0A) { command = CMD_SPEED; } else // Old tempo if (!(pmsh->flags2 & MMD_FLAG2_BPM)) { param = _muldiv(param, 5*715909, 2*474326); } // F.0B - F.F0: Set Tempo (assumes LPB=4) if (param > 0x0A) { command = CMD_TEMPO; if (param < 0x21) param = 0x21; if (param > 240) param = 240; } } else switch(param) { // F.F1: Retrig 2x case 0xF1: command = CMD_MODCMDEX; param = 0x93; break; // F.F2: Note Delay 2x case 0xF2: command = CMD_MODCMDEX; param = 0xD3; break; // F.F3: Retrig 3x case 0xF3: command = CMD_MODCMDEX; param = 0x92; break; // F.F4: Note Delay 1/3 case 0xF4: command = CMD_MODCMDEX; param = 0xD2; break; // F.F5: Note Delay 2/3 case 0xF5: command = CMD_MODCMDEX; param = 0xD4; break; // F.F8: Filter Off case 0xF8: command = CMD_MODCMDEX; param = 0x00; break; // F.F9: Filter On case 0xF9: command = CMD_MODCMDEX; param = 0x01; break; // F.FD: Very fast tone-portamento case 0xFD: command = CMD_TONEPORTAMENTO; param = 0xFF; break; // F.FE: End Song case 0xFE: command = CMD_SPEED; param = 0; break; // F.FF: Note Cut case 0xFF: command = CMD_MODCMDEX; param = 0xC0; break; default: #ifdef MED_LOG Log("Unknown Fxx command: cmd=0x%02X param=0x%02X\n", command, param); #endif param = command = 0; } break; // 11.0x: Fine Slide Up case 0x11: command = CMD_MODCMDEX; if (param > 0x0F) param = 0x0F; param |= 0x10; break; // 12.0x: Fine Slide Down case 0x12: command = CMD_MODCMDEX; if (param > 0x0F) param = 0x0F; param |= 0x20; break; // 14.xx: Vibrato case 0x14: command = CMD_VIBRATO; break; // 15.xx: FineTune case 0x15: command = CMD_MODCMDEX; param &= 0x0F; param |= 0x50; break; // 16.xx: Pattern Loop case 0x16: command = CMD_MODCMDEX; if (param > 0x0F) param = 0x0F; param |= 0x60; break; // 18.xx: Note Cut case 0x18: command = CMD_MODCMDEX; if (param > 0x0F) param = 0x0F; param |= 0xC0; break; // 19.xx: Sample Offset case 0x19: command = CMD_OFFSET; break; // 1A.0x: Fine Volume Up case 0x1A: command = CMD_MODCMDEX; if (param > 0x0F) param = 0x0F; param |= 0xA0; break; // 1B.0x: Fine Volume Down case 0x1B: command = CMD_MODCMDEX; if (param > 0x0F) param = 0x0F; param |= 0xB0; break; // 1D.xx: Pattern Break case 0x1D: command = CMD_PATTERNBREAK; break; // 1E.0x: Pattern Delay case 0x1E: command = CMD_MODCMDEX; if (param > 0x0F) param = 0x0F; param |= 0xE0; break; // 1F.xy: Retrig case 0x1F: command = CMD_RETRIG; param &= 0x0F; break; // 2E.xx: set panning case 0x2E: command = CMD_MODCMDEX; param = ((param + 0x10) & 0xFF) >> 1; if (param > 0x0F) param = 0x0F; param |= 0x80; break; default: #ifdef MED_LOG // 0x2E ? Log("Unknown command: cmd=0x%02X param=0x%02X\n", command, param); #endif command = param = 0; } p->command = command; p->param = param; } BOOL CSoundFile::ReadMed(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { const MEDMODULEHEADER *pmmh; const MMD0SONGHEADER *pmsh; const MMD2SONGHEADER *pmsh2; const MMD0EXP *pmex; DWORD dwBlockArr, dwSmplArr, dwExpData, wNumBlocks; LPDWORD pdwTable; CHAR version; UINT deftempo; int playtransp = 0; if ((!lpStream) || (dwMemLength < 0x200)) return FALSE; pmmh = (MEDMODULEHEADER *)lpStream; if (((pmmh->id & 0x00FFFFFF) != 0x444D4D) || (!pmmh->song)) return FALSE; // Check for 'MMDx' DWORD dwSong = bswapBE32(pmmh->song); if ((dwSong >= dwMemLength) || (dwSong + sizeof(MMD0SONGHEADER) >= dwMemLength)) return FALSE; version = (signed char)((pmmh->id >> 24) & 0xFF); if ((version < '0') || (version > '3')) return FALSE; #ifdef MED_LOG Log("\nLoading MMD%c module (flags=0x%02X)...\n", version, bswapBE32(pmmh->mmdflags)); Log(" modlen = %d\n", bswapBE32(pmmh->modlen)); Log(" song = 0x%08X\n", bswapBE32(pmmh->song)); Log(" psecnum = %d\n", bswapBE16(pmmh->psecnum)); Log(" pseq = %d\n", bswapBE16(pmmh->pseq)); Log(" blockarr = 0x%08X\n", bswapBE32(pmmh->blockarr)); Log(" mmdflags = 0x%08X\n", bswapBE32(pmmh->mmdflags)); Log(" smplarr = 0x%08X\n", bswapBE32(pmmh->smplarr)); Log(" reserved = 0x%08X\n", bswapBE32(pmmh->reserved)); Log(" expdata = 0x%08X\n", bswapBE32(pmmh->expdata)); Log(" reserved2= 0x%08X\n", bswapBE32(pmmh->reserved2)); Log(" pstate = %d\n", bswapBE16(pmmh->pstate)); Log(" pblock = %d\n", bswapBE16(pmmh->pblock)); Log(" pline = %d\n", bswapBE16(pmmh->pline)); Log(" pseqnum = %d\n", bswapBE16(pmmh->pseqnum)); Log(" actplayline=%d\n", bswapBE16(pmmh->actplayline)); Log(" counter = %d\n", pmmh->counter); Log(" extra_songs = %d\n", pmmh->extra_songs); Log("\n"); #endif m_nType = MOD_TYPE_MED; m_nSongPreAmp = 0x20; dwBlockArr = bswapBE32(pmmh->blockarr); dwSmplArr = bswapBE32(pmmh->smplarr); dwExpData = bswapBE32(pmmh->expdata); if ((dwExpData) && (dwExpData < dwMemLength - sizeof(MMD0EXP))) pmex = (MMD0EXP *)(lpStream+dwExpData); else pmex = NULL; pmsh = (MMD0SONGHEADER *)(lpStream + dwSong); pmsh2 = (MMD2SONGHEADER *)pmsh; #ifdef MED_LOG if (version < '2') { Log("MMD0 Header:\n"); Log(" numblocks = %d\n", bswapBE16(pmsh->numblocks)); Log(" songlen = %d\n", bswapBE16(pmsh->songlen)); Log(" playseq = "); for (UINT idbg1=0; idbg1<16; idbg1++) Log("%2d, ", pmsh->playseq[idbg1]); Log("...\n"); Log(" deftempo = 0x%04X\n", bswapBE16(pmsh->deftempo)); Log(" playtransp = %d\n", (signed char)pmsh->playtransp); Log(" flags(1,2) = 0x%02X, 0x%02X\n", pmsh->flags, pmsh->flags2); Log(" tempo2 = %d\n", pmsh->tempo2); Log(" trkvol = "); for (UINT idbg2=0; idbg2<16; idbg2++) Log("0x%02X, ", pmsh->trkvol[idbg2]); Log("...\n"); Log(" mastervol = 0x%02X\n", pmsh->mastervol); Log(" numsamples = %d\n", pmsh->numsamples); } else { Log("MMD2 Header:\n"); Log(" numblocks = %d\n", bswapBE16(pmsh2->numblocks)); Log(" numsections= %d\n", bswapBE16(pmsh2->numsections)); Log(" playseqptr = 0x%04X\n", bswapBE32(pmsh2->playseqtable)); Log(" sectionptr = 0x%04X\n", bswapBE32(pmsh2->sectiontable)); Log(" trackvols = 0x%04X\n", bswapBE32(pmsh2->trackvols)); Log(" numtracks = %d\n", bswapBE16(pmsh2->numtracks)); Log(" numpseqs = %d\n", bswapBE16(pmsh2->numpseqs)); Log(" trackpans = 0x%04X\n", bswapBE32(pmsh2->trackpans)); Log(" flags3 = 0x%08X\n", bswapBE32(pmsh2->flags3)); Log(" voladj = %d\n", bswapBE16(pmsh2->voladj)); Log(" channels = %d\n", bswapBE16(pmsh2->channels)); Log(" echotype = %d\n", pmsh2->mix_echotype); Log(" echodepth = %d\n", pmsh2->mix_echodepth); Log(" echolen = %d\n", bswapBE16(pmsh2->mix_echolen)); Log(" stereosep = %d\n", (signed char)pmsh2->mix_stereosep); Log(" deftempo = 0x%04X\n", bswapBE16(pmsh2->deftempo)); Log(" playtransp = %d\n", (signed char)pmsh2->playtransp); Log(" flags(1,2) = 0x%02X, 0x%02X\n", pmsh2->flags, pmsh2->flags2); Log(" tempo2 = %d\n", pmsh2->tempo2); Log(" mastervol = 0x%02X\n", pmsh2->mastervol); Log(" numsamples = %d\n", pmsh->numsamples); } Log("\n"); #endif wNumBlocks = bswapBE16(pmsh->numblocks); m_nChannels = 4; m_nSamples = pmsh->numsamples; if (m_nSamples > 63) m_nSamples = 63; // Tempo m_nDefaultTempo = 125; deftempo = bswapBE16(pmsh->deftempo); if (!deftempo) deftempo = 125; if (pmsh->flags2 & MMD_FLAG2_BPM) { UINT tempo_tpl = (pmsh->flags2 & MMD_FLAG2_BMASK) + 1; if (!tempo_tpl) tempo_tpl = 4; deftempo *= tempo_tpl; deftempo /= 4; #ifdef MED_LOG Log("newtempo: %3d bpm (bpm=%3d lpb=%2d)\n", deftempo, bswapBE16(pmsh->deftempo), (pmsh->flags2 & MMD_FLAG2_BMASK)+1); #endif } else { if (pmsh->flags & MMD_FLAG_8CHANNEL && deftempo > 0 && deftempo <= 10) { deftempo = bpmvals[deftempo-1]; } else { deftempo = _muldiv(deftempo, 5*715909, 2*474326); } #ifdef MED_LOG Log("oldtempo: %3d bpm (bpm=%3d)\n", deftempo, bswapBE16(pmsh->deftempo)); #endif } // Speed m_nDefaultSpeed = pmsh->tempo2; if (!m_nDefaultSpeed) m_nDefaultSpeed = 6; if (deftempo < 0x21) deftempo = 0x21; if (deftempo > 255) { while ((m_nDefaultSpeed > 3) && (deftempo > 260)) { deftempo = (deftempo * (m_nDefaultSpeed - 1)) / m_nDefaultSpeed; m_nDefaultSpeed--; } if (deftempo > 255) deftempo = 255; } m_nDefaultTempo = deftempo; // Reading Samples for (UINT iSHdr=0; iSHdr<m_nSamples; iSHdr++) { MODINSTRUMENT *pins = &Ins[iSHdr+1]; pins->nLoopStart = bswapBE16(pmsh->sample[iSHdr].rep) << 1; pins->nLoopEnd = pins->nLoopStart + (bswapBE16(pmsh->sample[iSHdr].replen) << 1); pins->nVolume = (pmsh->sample[iSHdr].svol << 2); pins->nGlobalVol = 64; if (pins->nVolume > 256) pins->nVolume = 256; pins->RelativeTone = -12 * pmsh->sample[iSHdr].strans; pins->nPan = 128; if (pins->nLoopEnd) pins->uFlags |= CHN_LOOP; } // Common Flags if (!(pmsh->flags & 0x20)) m_dwSongFlags |= SONG_FASTVOLSLIDES; // Reading play sequence if (version < '2') { UINT nbo = pmsh->songlen >> 8; if (nbo >= MAX_ORDERS) nbo = MAX_ORDERS-1; if (!nbo) nbo = 1; memcpy(Order, pmsh->playseq, nbo); playtransp = pmsh->playtransp; } else { UINT nOrders, nSections; UINT nTrks = bswapBE16(pmsh2->numtracks); if ((nTrks >= 4) && (nTrks <= 32)) m_nChannels = nTrks; DWORD playseqtable = bswapBE32(pmsh2->playseqtable); UINT numplayseqs = bswapBE16(pmsh2->numpseqs); if (!numplayseqs) numplayseqs = 1; nOrders = 0; nSections = bswapBE16(pmsh2->numsections); DWORD sectiontable = bswapBE32(pmsh2->sectiontable); if ((!nSections) || (!sectiontable) || (sectiontable >= dwMemLength-2)) nSections = 1; nOrders = 0; for (UINT iSection=0; iSection<nSections; iSection++) { UINT nplayseq = 0; if ((sectiontable) && (sectiontable < dwMemLength-2)) { nplayseq = lpStream[sectiontable+1]; sectiontable += 2; // WORDs } else { nSections = 0; } UINT pseq = 0; if ((playseqtable) && (playseqtable < dwMemLength - 4) && ((nplayseq+1)*4 < dwMemLength - playseqtable)) { pseq = bswapBE32(((LPDWORD)(lpStream+playseqtable))[nplayseq]); } if ((pseq) && dwMemLength > sizeof(MMD2PLAYSEQ) && (pseq < dwMemLength - sizeof(MMD2PLAYSEQ))) { const MMD2PLAYSEQ *pmps = (MMD2PLAYSEQ *)(lpStream + pseq); if (!m_szNames[0][0]) memcpy(m_szNames[0], pmps->name, 31); UINT n = bswapBE16(pmps->length); if (n < (dwMemLength - (pseq + sizeof(*pmps)) + sizeof(pmps->seq)) / sizeof(pmps->seq[0])) { for (UINT i=0; i<n; i++) { UINT seqval = pmps->seq[i] >> 8; if ((seqval < wNumBlocks) && (nOrders < MAX_ORDERS-1)) { Order[nOrders++] = seqval; } } } } } playtransp = pmsh2->playtransp; while (nOrders < MAX_ORDERS) Order[nOrders++] = 0xFF; } // Reading Expansion structure if (pmex) { // Channel Split if ((m_nChannels == 4) && (pmsh->flags & MMD_FLAG_8CHANNEL)) { for (UINT i8ch=0; i8ch<4; i8ch++) { if (pmex->channelsplit[i8ch]) m_nChannels++; } } // Song Comments uint32_t annotxt = bswapBE32(pmex->annotxt); uint32_t annolen = bswapBE32(pmex->annolen); if ((annotxt) && (annolen) && (annotxt + annolen > annotxt) // overflow checks. && (annotxt+annolen <= dwMemLength)) { m_lpszSongComments = new char[annolen+1]; memcpy(m_lpszSongComments, lpStream+annotxt, annolen); m_lpszSongComments[annolen] = 0; } // Song Name uint32_t songname = bswapBE32(pmex->songname); uint32_t songnamelen = bswapBE32(pmex->songnamelen); if ((songname) && (songnamelen) && (songname+songnamelen > songname) && (songname+songnamelen <= dwMemLength)) { if (songnamelen > 31) songnamelen = 31; memcpy(m_szNames[0], lpStream+songname, songnamelen); m_szNames[0][31] = '\0'; } // Sample Names DWORD smpinfoex = bswapBE32(pmex->iinfo); if (smpinfoex) { DWORD iinfoptr = bswapBE32(pmex->iinfo); UINT ientries = bswapBE16(pmex->i_ext_entries); UINT ientrysz = bswapBE16(pmex->i_ext_entrsz); if ((iinfoptr) && (ientrysz < 256) && (ientries*ientrysz < dwMemLength) && (iinfoptr < dwMemLength - (ientries*ientrysz))) { LPCSTR psznames = (LPCSTR)(lpStream + iinfoptr); UINT maxnamelen = ientrysz; // copy a max of 32 bytes. if (maxnamelen > 32) maxnamelen = 32; for (UINT i=0; i<ientries; i++) if (i < m_nSamples) { lstrcpyn(m_szNames[i+1], psznames + i*ientrysz, maxnamelen); m_szNames[i+1][31] = '\0'; } } } // Track Names DWORD trackinfo_ofs = bswapBE32(pmex->trackinfo_ofs); if ((trackinfo_ofs) && (trackinfo_ofs < dwMemLength) && (m_nChannels * 4 < dwMemLength - trackinfo_ofs)) { DWORD *ptrktags = (DWORD *)(lpStream + trackinfo_ofs); for (UINT i=0; i<m_nChannels; i++) { DWORD trknameofs = 0, trknamelen = 0; DWORD trktagofs = bswapBE32(ptrktags[i]); if (trktagofs) { while (trktagofs < dwMemLength - 8) { DWORD ntag = bswapBE32(*(DWORD *)(lpStream + trktagofs)); if (ntag == MMDTAG_END) break; DWORD tagdata = bswapBE32(*(DWORD *)(lpStream + trktagofs + 4)); switch(ntag) { case MMDTAG_TRK_NAMELEN: trknamelen = tagdata; break; case MMDTAG_TRK_NAME: trknameofs = tagdata; break; } trktagofs += 8; } if (trknamelen > MAX_CHANNELNAME) trknamelen = MAX_CHANNELNAME; if ((trknameofs) && (trknamelen < dwMemLength) && (trknameofs < dwMemLength - trknamelen)) { lstrcpyn(ChnSettings[i].szName, (LPCSTR)(lpStream+trknameofs), trknamelen); ChnSettings[i].szName[MAX_CHANNELNAME-1] = '\0'; } } } } } // Reading samples if (dwSmplArr > dwMemLength - 4*m_nSamples) return TRUE; pdwTable = (LPDWORD)(lpStream + dwSmplArr); for (UINT iSmp=0; iSmp<m_nSamples; iSmp++) if (pdwTable[iSmp]) { UINT dwPos = bswapBE32(pdwTable[iSmp]); if ((dwPos >= dwMemLength) || (dwPos + sizeof(MMDSAMPLEHEADER) >= dwMemLength)) continue; MMDSAMPLEHEADER *psdh = (MMDSAMPLEHEADER *)(lpStream + dwPos); UINT len = bswapBE32(psdh->length); #ifdef MED_LOG Log("SampleData %d: stype=0x%02X len=%d\n", iSmp, bswapBE16(psdh->type), len); #endif if ((len > MAX_SAMPLE_LENGTH) || (dwPos + len + 6 > dwMemLength)) len = 0; UINT flags = RS_PCM8S, stype = bswapBE16(psdh->type); LPSTR psdata = (LPSTR)(lpStream + dwPos + 6); UINT bLimit = dwMemLength - dwPos - 6; if (stype & 0x80) { psdata += (stype & 0x20) ? 14 : 6; bLimit -= (stype & 0x20) ? 14 : 6; } else { if (stype & 0x10) { Ins[iSmp+1].uFlags |= CHN_16BIT; len /= 2; flags = (stype & 0x20) ? RS_STPCM16M : RS_PCM16M; } else { flags = (stype & 0x20) ? RS_STPCM8S : RS_PCM8S; } if (stype & 0x20) len /= 2; } Ins[iSmp+1].nLength = len; ReadSample(&Ins[iSmp+1], flags, psdata, bLimit); } // Reading patterns (blocks) if (wNumBlocks > MAX_PATTERNS) wNumBlocks = MAX_PATTERNS; if ((!dwBlockArr) || (dwMemLength < 4*wNumBlocks) || (dwBlockArr > dwMemLength - 4*wNumBlocks)) return TRUE; pdwTable = (LPDWORD)(lpStream + dwBlockArr); playtransp += (version == '3') ? 24 : 48; for (UINT iBlk=0; iBlk<wNumBlocks; iBlk++) { UINT dwPos = bswapBE32(pdwTable[iBlk]); if ((!dwPos) || (dwPos >= dwMemLength) || (dwPos >= dwMemLength - 8)) continue; UINT lines = 64, tracks = 4; if (version == '0') { const MMD0BLOCK *pmb = (const MMD0BLOCK *)(lpStream + dwPos); lines = pmb->lines + 1; tracks = pmb->numtracks; if (!tracks) tracks = m_nChannels; if ((Patterns[iBlk] = AllocatePattern(lines, m_nChannels)) == NULL) continue; PatternSize[iBlk] = lines; MODCOMMAND *p = Patterns[iBlk]; LPBYTE s = (LPBYTE)(lpStream + dwPos + 2); UINT maxlen = tracks*lines*3; if (maxlen + dwPos > dwMemLength - 2) break; for (UINT y=0; y<lines; y++) { for (UINT x=0; x<tracks; x++, s+=3) if (x < m_nChannels) { BYTE note = s[0] & 0x3F; BYTE instr = s[1] >> 4; if (s[0] & 0x80) instr |= 0x10; if (s[0] & 0x40) instr |= 0x20; if ((note) && (note <= 132)) p->note = note + playtransp; p->instr = instr; p->command = s[1] & 0x0F; p->param = s[2]; // if (!iBlk) Log("%02X.%02X.%02X | ", s[0], s[1], s[2]); MedConvert(p, pmsh); p++; } //if (!iBlk) Log("\n"); } } else { const MMD1BLOCK *pmb = (MMD1BLOCK *)(lpStream + dwPos); #ifdef MED_LOG Log("MMD1BLOCK: lines=%2d, tracks=%2d, offset=0x%04X\n", bswapBE16(pmb->lines), bswapBE16(pmb->numtracks), bswapBE32(pmb->info)); #endif const MMD1BLOCKINFO *pbi = NULL; BYTE *pcmdext = NULL; lines = (pmb->lines >> 8) + 1; tracks = pmb->numtracks >> 8; if (!tracks) tracks = m_nChannels; if ((Patterns[iBlk] = AllocatePattern(lines, m_nChannels)) == NULL) continue; PatternSize[iBlk] = (WORD)lines; DWORD dwBlockInfo = bswapBE32(pmb->info); if ((dwBlockInfo) && (dwBlockInfo < dwMemLength - sizeof(MMD1BLOCKINFO))) { pbi = (MMD1BLOCKINFO *)(lpStream + dwBlockInfo); #ifdef MED_LOG Log(" BLOCKINFO: blockname=0x%04X namelen=%d pagetable=0x%04X &cmdexttable=0x%04X\n", bswapBE32(pbi->blockname), bswapBE32(pbi->blocknamelen), bswapBE32(pbi->pagetable), bswapBE32(pbi->cmdexttable)); #endif if ((pbi->blockname) && (pbi->blocknamelen)) { DWORD nameofs = bswapBE32(pbi->blockname); UINT namelen = bswapBE32(pbi->blocknamelen); if ((namelen < dwMemLength) && (nameofs < dwMemLength - namelen)) { // SetPatternName expects a nul-terminated string. char blockname[MAX_PATTERNNAME]; if (namelen >= MAX_PATTERNNAME) namelen = MAX_PATTERNNAME - 1; memcpy(blockname, lpStream + nameofs, namelen); blockname[namelen] = '\0'; SetPatternName(iBlk, blockname); } } if (pbi->cmdexttable) { DWORD cmdexttable = bswapBE32(pbi->cmdexttable); if (cmdexttable < dwMemLength - 4) { cmdexttable = bswapBE32(*(DWORD *)(lpStream + cmdexttable)); if ((cmdexttable) && (cmdexttable <= dwMemLength - lines*tracks)) { pcmdext = (BYTE *)(lpStream + cmdexttable); } } } } MODCOMMAND *p = Patterns[iBlk]; LPBYTE s = (LPBYTE)(lpStream + dwPos + 8); UINT maxlen = tracks*lines*4; if (maxlen + dwPos > dwMemLength - 8) break; for (UINT y=0; y<lines; y++) { for (UINT x=0; x<tracks; x++, s+=4) if (x < m_nChannels) { BYTE note = s[0]; if ((note) && (note <= 132)) { int rnote = note + playtransp; if (rnote < 1) rnote = 1; if (rnote > NOTE_MAX) rnote = NOTE_MAX; p->note = (BYTE)rnote; } p->instr = s[1]; p->command = s[2]; p->param = s[3]; if (pcmdext) p->vol = pcmdext[x]; MedConvert(p, pmsh); p++; } if (pcmdext) pcmdext += tracks; } } } // Setup channel pan positions for (UINT iCh=0; iCh<m_nChannels; iCh++) { ChnSettings[iCh].nPan = (((iCh&3) == 1) || ((iCh&3) == 2)) ? 0xC0 : 0x40; ChnSettings[iCh].nVolume = 64; } return TRUE; } /* MikMod Sound System By Jake Stine of Divine Entertainment (1996-2000) Support: If you find problems with this code, send mail to: air@divent.org Distribution / Code rights: Use this source code in any fashion you see fit. Giving me credit where credit is due is optional, depending on your own levels of integrity and honesty. ----------------------------------------- Module: LOAD_MID MID module loader. by Peter Grootswagers (2006) <email:pgrootswagers@planet.nl> Portability: All systems - all compilers (hopefully) */ #include <stdlib.h> #include <time.h> #include <string.h> #include <math.h> #include <ctype.h> #ifndef _WIN32 #include <unistd.h> /* sleep() */ #endif //#include "stdafx.h" //#include "sndfile.h" #define PAN_LEFT 0x30 #define PAN_RIGHT 0xD0 #define MAX_POLYPHONY 16 // max notes in one midi channel #define MAX_TRACKS (MAX_BASECHANNELS-6) // max mod tracks #define WHEELSHIFT 10 // how many bits the 13bit midi wheel value must shift right //#include "load_pat.h" #define ROWSPERNOTE 16 #define ENV_MMMID_SPEED "MMMID_SPEED" #define ENV_MMMID_DEBUG "MMMID_DEBUG" #define ENV_MMMID_VERBOSE "MMMID_VERBOSE" /**********************************************************************/ typedef enum { mid_none, wheeldown, wheelup, fxbrk, tmpo, fxsync, modwheel, mainvol, prog } MIDEVENT_X_EFFECT; typedef struct _MIDEVENT { struct _MIDEVENT *next; ULONG tracktick; BYTE flg; // 1 = note present BYTE note; BYTE volume; BYTE smpno; BYTE fx; BYTE fxparam; } MIDEVENT; typedef struct _MIDTRACK { struct _MIDTRACK *next; MIDEVENT *head; MIDEVENT *tail; MIDEVENT *workevent; // keeps track of events in track int balance; // last balance on this track ULONG vtracktick; // tracktick of last note event (on or off) BYTE chan; BYTE vpos; // 0xff is track is free for use, otherwise it's the note playing on this track BYTE volume; // last note volume on this track BYTE instr; // current instrument for this track } MIDTRACK; #if defined(_WIN32) && defined(_mm_free) #undef _mm_free #endif #define MMSTREAM FILE #define _mm_fseek(f,pos,whence) fseek(f,pos,whence) #define _mm_read_UBYTES(buf,sz,f) fread(buf,sz,1,f) #define _mm_read_SBYTES(buf,sz,f) fread(buf,sz,1,f) #define DupStr(h,buf,sz) strdup(buf) #define _mm_calloc(h,n,sz) calloc(n,sz) #define _mm_recalloc(h,buf,sz,elsz) realloc(buf,sz) #define _mm_free(h,p) free(p) /**********************************************************************/ typedef struct _MIDHANDLE { const BYTE *mm; unsigned long sz; unsigned long pos; int err; MIDTRACK *track; MIDTRACK *tp; ULONG tracktime; const char *debug; const char *verbose; int speed; int midispeed; int midiformat; int resolution; int miditracks; int divider; int tempo; int percussion; long deltatime; } MIDHANDLE; static void mid_dump_tracks(MIDHANDLE *h) { MIDTRACK *tr; MIDEVENT *e; int t; printf("tracktime = %ld\n", (long)(h->tracktime)); printf("speed = %d\n", h->speed); printf("midispeed = %d\n", h->midispeed); printf("midiformat = %d\n", h->midiformat); printf("resolution = %d\n", h->resolution); printf("miditracks = %d\n", h->miditracks); printf("divider = %d\n", h->divider); printf("tempo = %d\n", h->tempo); printf("percussion = %d\n", h->percussion); printf("deltatime = %ld\n", h->deltatime); t = 0; for( tr=h->track; tr; tr = tr->next ) { t++; printf("TRACK %2d chan=%d note=0x%02x vol=%d pan=0x%02x instr=%d\n", t, tr->chan + 1, tr->vpos, tr->balance, tr->volume, tr->instr); for( e=tr->head; e; e=e->next ) { printf("%2d %6ld %s %3d %3d %3d ", t, (long)(e->tracktick), e->flg? "NOTE": "CTRL", e->note, e->volume, e->smpno); switch( e->fx ) { case fxbrk: printf("fxbrk\n");break; case fxsync: printf("fxsync\n");break; case prog: printf("prog %d\n", e->fxparam);break; case mainvol: printf("mainvol %d\n", e->fxparam);break; case modwheel: printf("modwheel %d\n", e->fxparam);break; case wheeldown: printf("wheeldown %d\n", e->fxparam);break; case wheelup: printf("wheelup %d\n", e->fxparam);break; case tmpo: printf("tmpo %d\n", e->fxparam);break; default: printf("\n");break; } } } } static void mid_message(const char *s1, const char *s2) { char txt[256]; if( strlen(s1) + strlen(s2) > 255 ) return; sprintf(txt, s1, s2); fprintf(stderr, "load_mid > %s\n", txt); } static ULONG miditicks(MIDHANDLE *h, ULONG modtick) { return modtick * h->divider / ROWSPERNOTE / h->speed; } static ULONG modticks(MIDHANDLE *h, ULONG miditick) { return miditick * ROWSPERNOTE * h->speed / h->divider; } static void mid_adjust_for_optimal_tempo(MIDHANDLE *h, int maxtempo) { // the tempo is adjusted so that the maximum tempo is 255 // this way we have the biggest change that very short notes get played // and we make sure the tempo doesn't become too large or too small // if the piece in hand isn't so weird it changes tempo from 20 to 255, that is. // tempo is only registered in first track (h->track) because it is a global event MIDEVENT *e; int d, t; if( maxtempo < 1 ) return; d = h->divider; t = maxtempo; h->divider = (t * d) / 255; while( (h->midispeed = miditicks(h, h->speed)) < h->speed ) { ++t; h->divider = (t * d) / 255; } if( h->verbose && t > maxtempo ) printf("Adjusted maximum tempo from %d to %d to get %d miditicks per patternrow\n", maxtempo, 2 * maxtempo - t, h->midispeed); if( h->track ) { for( e=h->track->head; e; e=e->next ) { if( e->fx == tmpo ) e->fxparam = (255 * e->fxparam ) / t; } } } // ===================================================================================== static MIDEVENT *mid_new_event(MIDHANDLE *h) // ===================================================================================== { MIDEVENT *retval; retval = (MIDEVENT *)_mm_calloc(h->trackhandle, 1,sizeof(MIDEVENT)); retval->next = NULL; retval->tracktick = h->tracktime; retval->flg = 0; retval->note = 0; retval->volume = 0; retval->smpno = 0; retval->fx = mid_none; retval->fxparam = 0; return retval; } // ===================================================================================== static MIDTRACK *mid_new_track(MIDHANDLE *h, int mch, int pos) // ===================================================================================== { MIDTRACK *retval; retval = (MIDTRACK *)_mm_calloc(h->trackhandle, 1,sizeof(MIDTRACK)); retval->next = NULL; retval->vpos = pos; retval->instr = 1; retval->chan = mch; retval->head = NULL; retval->tail = NULL; retval->workevent = NULL; retval->vtracktick = 0; retval->volume = h->track? h->track->volume: 120; retval->balance = 64; return retval; } static int mid_numtracks(MIDHANDLE *h) { int n; MIDTRACK *t; n=0; for( t = h->track; t; t=t->next ) n++; return n; } // find out how many midichannel we have static int mid_numchans(MIDHANDLE *h) { int i,c,n; MIDTRACK *t; c = 0; for( t = h->track; t; t=t->next ) c |= (1<<t->chan); n = 0; for( i=0; i<16; i++ ) if( c & (1<<i) ) n++; return n; } // find out which ordinal a midichannel has static int mid_ordchan(MIDHANDLE *h, int mch) { int i,c,n; MIDTRACK *t; c = 0; for( t = h->track; t; t=t->next ) c |= (1<<t->chan); n = 0; for( i=0; i<mch; i++ ) if( c & (1<<i) ) n++; return n; } static void mid_rewind_tracks(MIDHANDLE *h) { MIDTRACK *tr; h->tracktime = 0; for( tr = h->track; tr; tr = tr->next ) { tr->vpos = 0xff; tr->workevent = tr->head; tr->vtracktick = 0; } } static void mid_update_track(MIDTRACK *tr) { MIDEVENT *e; e = tr->workevent; if( e->flg ) { if( e->volume ) tr->vpos = e->note; else tr->vpos = 0xff; tr->volume = e->volume; tr->vtracktick = e->tracktick; } if( e->fx == prog ) tr->instr = e->fxparam; } static void mid_sync_track(MIDTRACK *tr, ULONG tracktime) { MIDEVENT *e; e = tr->workevent; if( e && e->tracktick > tracktime ) e = tr->head; // start again.... for( ; e && e->tracktick <= tracktime; e=e->next ) { tr->workevent = e; mid_update_track(tr); } } // ===================================================================================== static MIDTRACK *mid_find_track(MIDHANDLE *h, int mch, int pos) // ===================================================================================== { MIDTRACK *tr; for( tr=h->track; tr; tr=tr->next ) { mid_sync_track(tr, h->tracktime); if( tr->chan == mch && tr->vpos == pos ) return tr; } return NULL; } // ===================================================================================== static MIDTRACK *mid_locate_track(MIDHANDLE *h, int mch, int pos) // ===================================================================================== { MIDTRACK *tr, *prev, *trunused; MIDEVENT *e; int instrno = 1; int polyphony; int vol = 0, bal = 0; int numtracks; ULONG tmin; prev = NULL; trunused = NULL; polyphony = 0; numtracks = 0; tmin = h->midispeed; // minimal distance between note events in track // look up track with desired channel and pos (note) for( tr=h->track; tr; tr=tr->next ) { mid_sync_track(tr, h->tracktime); if( tr->chan == mch ) { if( tr->vpos == pos ) return tr; if( tr->vpos == 0xff ) { // check if track with silence is quiet long enough if( h->tracktime > tr->vtracktick + tmin ) trunused = tr; } else vol = tr->volume; instrno = tr->instr; bal = tr->balance; polyphony++; } numtracks++; prev = tr; } if( trunused ) { trunused->vpos = pos; return trunused; } if( polyphony > MAX_POLYPHONY || (polyphony > 0 && numtracks > MAX_TRACKS) ) { // do not use up too much channels for( tr=h->track; tr; tr=tr->next ) { if( tr->chan == mch ) { e = tr->workevent; if (!e) { trunused = tr; break; } if( h->tracktime > e->tracktick + tmin ) { tmin = h->tracktime - e->tracktick; trunused = tr; } } } if( trunused ) { trunused->vpos = pos; return trunused; } } if( numtracks > MAX_TRACKS ) { // we can not allocate new tracks tmin = 0; for( tr=h->track; tr; tr=tr->next ) { if( tr->chan == mch ) { e = tr->workevent; if (!e) { trunused = tr; break; } if( h->tracktime >= e->tracktick + tmin ) { tmin = h->tracktime - e->tracktick; trunused = tr; } } } if( trunused ) { trunused->vpos = pos; return trunused; } tmin = 0; for( tr=h->track; tr; tr=tr->next ) { e = tr->workevent; if (!e) { trunused = tr; break; } if( h->tracktime >= e->tracktick + tmin ) { tmin = h->tracktime - e->tracktick; trunused = tr; } } if( trunused ) { trunused->vpos = pos; trunused->chan = mch; return trunused; } } tr = mid_new_track(h, mch, pos); tr->instr = instrno; tr->volume = vol; tr->balance = bal; if( prev ) prev->next = tr; else h->track = tr; return tr; } static void mid_add_event(MIDHANDLE *h, MIDTRACK *tp, MIDEVENT *e) { MIDEVENT *ew, *ep; ep = NULL; ew = tp->workevent; if( ew && ew->tracktick > e->tracktick ) ew = tp->head; // start again from the beginning... for( ; ew && ew->tracktick <= e->tracktick; ew = ew->next ) { ep = ew; tp->workevent = ew; mid_update_track(tp); } if( ep ) { ep->next = e; e->next = ew; } else { e->next = tp->head; tp->head = e; } if( !e->next ) tp->tail = e; tp->workevent = e; mid_update_track(tp); } static void mid_add_tempo_event(MIDHANDLE *h, int tempo) { MIDEVENT *e; e = mid_new_event(h); e->flg = 0; e->fx = tmpo; e->fxparam = tempo; mid_add_event(h, h->track, e); } static void mid_add_partbreak(MIDHANDLE *h) { MIDEVENT *e; e = mid_new_event(h); e->flg = 0; e->fx = fxbrk; mid_add_event(h, h->track, e); } static void mid_add_noteoff(MIDHANDLE *h, MIDTRACK *tp) { MIDEVENT *e; e = mid_new_event(h); e->flg = 1; e->note = tp->vpos; e->smpno = tp->instr; mid_add_event(h, tp, e); } static void mid_add_noteon(MIDHANDLE *h, MIDTRACK *tp, int n, int vol) { MIDEVENT *e; e = mid_new_event(h); e->flg = 1; e->note = n; e->smpno = tp->instr; e->volume = vol; mid_add_event(h, tp, e); } static BYTE modtremolo(int midimod) { int m; if( midimod == 0 ) return 0; if( midimod > 63 ) { m = (128 - midimod) / 4; if( m==0 ) m = 1; return m|0xf0; // find slide down } m = midimod / 4; if( m==0 ) m = 1; return (m<<4)|0x0f; // find slide up } // ===================================================================================== static void mid_mod_wheel(MIDHANDLE *h, int mch, int mod) // ===================================================================================== { MIDTRACK *tr; MIDEVENT *e; for( tr=h->track; tr; tr=tr->next ) { if( tr->chan == mch ) { mid_sync_track(tr, h->tracktime); if( tr->vpos != 0xff ) { // only on tracks with notes on... e = mid_new_event(h); e->flg = 0; e->fx = modwheel; e->fxparam = modtremolo(mod); mid_add_event(h, tr, e); } } } } // ===================================================================================== static void mid_main_volume(MIDHANDLE *h, int mch, int vol) // ===================================================================================== { MIDTRACK *tr; MIDEVENT *e; for( tr=h->track; tr; tr=tr->next ) { if( tr->chan == mch ) { e = mid_new_event(h); e->flg = 0; e->fx = mainvol; e->fxparam = vol; mid_add_event(h, tr, e); } } } // transform 0..63..127 to left..center..right in 2n+1 areas static int modpan(int midipan, int n) { int npan, area, x; x = 2 * n + 1; area = (midipan * x * (PAN_RIGHT - PAN_LEFT))>>7; npan = (PAN_LEFT * x + area) / x; return npan; } // ===================================================================================== static void mid_pan(MIDHANDLE *h, int mch, int pan) // ===================================================================================== { MIDTRACK *tr; int hits; hits = 0; for( tr=h->track; tr; tr=tr->next ) { if( tr->chan == mch ) { hits++; tr->balance = pan; } } if( !hits ) { tr = mid_locate_track(h, mch, 0xff); tr->balance = pan; } } // ===================================================================================== static void mid_add_program(MIDHANDLE *h, int mch, int pr) // ===================================================================================== { MIDTRACK *tr; MIDEVENT *e; int hits; hits = 0; for( tr=h->track; tr; tr=tr->next ) { if( tr->chan == mch ) { hits++; e = mid_new_event(h); e->flg = 0; e->fx = prog; e->fxparam = pat_gmtosmp(pr + 1); mid_add_event(h, tr, e); } } if( !hits ) { tr = mid_locate_track(h, mch, 0xff); e = mid_new_event(h); e->flg = 0; e->fx = prog; e->fxparam = pat_gmtosmp(pr + 1); mid_add_event(h, tr, e); } } // ===================================================================================== static void mid_all_notes_off(MIDHANDLE *h, int mch) // ===================================================================================== { MIDTRACK *tr; if( h->debug ) printf("%ld %d all notes off\n",(long)(h->tracktime), mch+1); for( tr=h->track; tr; tr=tr->next ) { if( tr->chan == mch || mch == -1 ) { mid_sync_track(tr, h->tracktime); if( tr->vpos != 0xff ) mid_add_noteoff(h, tr); } } } static void mid_add_sync(MIDHANDLE *h, MIDTRACK *tp) { MIDEVENT *e; e = mid_new_event(h); e->flg = 0; e->fx = fxsync; mid_add_event(h, tp, e); } static BYTE mid_to_mod_wheel(unsigned int midwheel) { unsigned int i; if( midwheel == 0 ) return 0; i = midwheel >> WHEELSHIFT; return i+1; } static void mid_add_wheel(MIDHANDLE *h, MIDTRACK *tp, int wheel) { MIDEVENT *e; e = mid_new_event(h); e->flg = 0; if( wheel < 0 ) { e->fx = wheeldown; e->fxparam = mid_to_mod_wheel(-wheel); } else { e->fx = wheelup; e->fxparam = mid_to_mod_wheel(wheel); } mid_add_event(h, tp, e); } static void mid_add_pitchwheel(MIDHANDLE *h, int mch, int wheel) { MIDTRACK *tr; int hits; hits = 0; for( tr=h->track; tr; tr=tr->next ) { if( tr->chan == mch ) { hits++; mid_sync_track(tr, h->tracktime); if( tr->vpos != 0xff ) // only on tracks with notes on... mid_add_wheel(h, tr, wheel); } } if( !hits ) { // special case in midiformat 1 events in first track... tr = mid_locate_track(h, mch, 0xff); mid_add_wheel(h, tr, wheel); } } static uint32_t mid_read_long(MIDHANDLE *h) { BYTE buf[4]; if (h->pos > h->sz - 4) { h->err = EOF; return 0; } memcpy(buf, h->mm + h->pos, 4); h->pos += 4; return (buf[0]<<24)|(buf[1]<<16)|(buf[2]<<8)|buf[3]; } static short int mid_read_short(MIDHANDLE *h) { BYTE buf[2]; if (h->pos > h->sz - 2) { h->err = EOF; return 0; } memcpy(buf, h->mm + h->pos, 2); h->pos += 2; return (buf[0]<<8)|buf[1]; } static BYTE mid_read_byte(MIDHANDLE *h) { if (h->pos >= h->sz) { h->err = EOF; return 0; } return h->mm[h->pos++]; } static unsigned long mid_read_bytes(void *dest, unsigned long sz, MIDHANDLE *h) { if (sz > h->sz || h->pos > h->sz - sz) { h->err = EOF; return 0; } memcpy(dest, h->mm + h->pos, sz); h->pos += sz; return sz; } static int mid_read_delta(MIDHANDLE *h) { BYTE bits; int i, d; d = 0; for( i=0; i<4; ) { bits = mid_read_byte(h); i++; d = (d<<7)|(bits&0x7f); if( !(bits & 0x80) ) break; } h->deltatime = d; return i; } // ===================================================================================== BOOL CSoundFile::TestMID(const BYTE *lpStream, DWORD dwMemLength) // ===================================================================================== { char id[5]; MIDHANDLE h; if (dwMemLength < 14) return FALSE; h.mm = lpStream; h.sz = dwMemLength; h.pos = 0; h.err = 0; mid_read_bytes(id, 4, &h); id[4] = '\0'; return !strcmp(id,"MThd") && mid_read_long(&h) == 6; } // ===================================================================================== static MIDHANDLE *MID_Init(void) { MIDHANDLE *retval; retval = (MIDHANDLE *)calloc(1,sizeof(MIDHANDLE)); if( !retval ) return NULL; retval->track = NULL; retval->percussion = 0; retval->debug = NULL; retval->miditracks = 0; return retval; } static void MID_CleanupTrack(MIDTRACK *tp) { MIDEVENT *ep, *en; if( tp ) { for( ep=tp->head; ep; ep = en ) { en=ep->next; free(ep); } tp->head = NULL; } } // ===================================================================================== static void MID_CleanupTracks(MIDHANDLE *handle) // ===================================================================================== { MIDTRACK *tp, *tn; if(handle) { for( tp=handle->track; tp; tp = tn ) { tn=tp->next; MID_CleanupTrack(tp); free(tp); } handle->track = NULL; } } // ===================================================================================== static void MID_Cleanup(MIDHANDLE *handle) // ===================================================================================== { if(handle) { MID_CleanupTracks(handle); free(handle); handle = 0; } } static int mid_is_global_event(MIDEVENT *e) { return (e->fx == tmpo || e->fx == fxbrk); } static MIDEVENT *mid_next_global(MIDEVENT *e) { for( ; e && !mid_is_global_event(e); e=e->next ) ; return e; } static MIDEVENT *mid_next_fx(MIDEVENT *e) { for( ; e && e->fx == mid_none; e=e->next ) ; return e; } static int mid_is_note_event(MIDEVENT *e) { #ifdef LOOPED_NOTES_OFF return (e->flg == 0); #else if( e->flg == 0 ) return 0; if( e->volume ) return 1; return pat_smplooped(e->smpno); // let non looping samples die out... #endif } static MIDEVENT *mid_next_note(MIDEVENT *e) { for( ; e && !mid_is_note_event(e); e=e->next ) ; return e; } // ===================================================================================== static int MID_ReadPatterns(MODCOMMAND *pattern[], WORD psize[], MIDHANDLE *h, int numpat, int channels) // ===================================================================================== { int pat,row,i,ch; BYTE n,ins,vol; MIDTRACK *t; MIDEVENT *e, *en, *ef, *el; ULONG tt1, tt2; MODCOMMAND *m; int patbrk, tempo; if( numpat > MAX_PATTERNS ) numpat = MAX_PATTERNS; // initialize start points of event list in tracks for( t = h->track; t; t = t->next ) t->workevent = t->head; for( pat = 0; pat < numpat; pat++ ) { pattern[pat] = CSoundFile::AllocatePattern(64, channels); if( !pattern[pat] ) return 0; psize[pat] = 64; for( row = 0; row < 64; row++ ) { tt1 = miditicks(h, (pat * 64 + row ) * h->speed); tt2 = tt1 + h->midispeed; ch = 0; tempo = 0; patbrk = 0; if ( h->track ) for( e=mid_next_global(h->track->workevent); e && e->tracktick < tt2; e=mid_next_global(e->next) ) { if( e && e->tracktick >= tt1 ) { // we have a controller event in this row switch( e->fx ) { case tmpo: tempo = e->fxparam; break; case fxbrk: patbrk = 1; break; } } } for( t = h->track; t; t = t->next ) { m = &pattern[pat][row * channels + ch]; m->param = 0; m->command = CMD_NONE; for( e=mid_next_fx(t->workevent); e && e->tracktick < tt2; e=mid_next_fx(e->next) ) { if( e && e->tracktick >= tt1 ) { // we have a controller event in this row switch( e->fx ) { case modwheel: m->param = e->fxparam; m->command = CMD_VOLUMESLIDE; break; case wheelup: m->param = e->fxparam|0x10; m->command = CMD_XFINEPORTAUPDOWN; break; case wheeldown: m->param = e->fxparam|0x20; m->command = CMD_XFINEPORTAUPDOWN; break; } } } for( e=mid_next_note(t->workevent); e && e->tracktick < tt1; e=mid_next_note(e->next) ) t->workevent = e; i = 0; ef = NULL; en = e; el = e; for( ; e && e->tracktick < tt2; e=mid_next_note(e->next) ) { // we have a note event in this row t->workevent = e; i++; if( e->volume ) { if( !ef ) ef = e; el = e; } } if( i ) { if( i == 1 || ef == el || !ef ) { // only one event in this row or a note on with some note off if( ef ) e = ef; else e = en; el = t->workevent; n = pat_modnote(e->note); ins = e->smpno; if( e->volume == 0 ) { m->param = (BYTE)modticks(h, e->tracktick - tt1); if( m->param ) { // note cut m->command = CMD_S3MCMDEX; m->param |= 0xC0; } else { m->param = 0; m->command = CMD_KEYOFF; } vol = 0; } else { vol = e->volume/2; if( el->volume == 0 ) { m->param = (BYTE)modticks(h, el->tracktick - tt1); if( m->param ) { // note cut m->command = CMD_S3MCMDEX; m->param |= 0xC0; } } else { m->param = (BYTE)modticks(h, e->tracktick - tt1); if( m->param ) { // note delay m->command = CMD_S3MCMDEX; m->param |= 0xD0; } } } m->instr = ins; m->note = n; // <- normal note m->volcmd = VOLCMD_VOLUME; m->vol = vol; } else { // two notes in one row, use FINEPITCHSLIDE runonce effect // start first note on first tick and framedly runonce on seconds note tick // use volume and instrument of last note n = pat_modnote(ef->note); i = pat_modnote(el->note); ins = el->smpno; vol = el->volume/2; if( vol > 64 ) vol = 64; m->instr = ins; m->note = n; // <- normal note m->volcmd = VOLCMD_VOLUME; m->vol = vol; m->param = ((i > n)?i-n:n-i); if( m->param < 16 ) { if( m->param ) { m->command = CMD_XFINEPORTAUPDOWN; m->param |= (i > n)? 0x10: 0x20; } else { // retrigger same note... m->command = CMD_RETRIG; m->param = (BYTE)modticks(h, el->tracktick - tt1); } } else m->command = (i > n)? CMD_PORTAMENTOUP: CMD_PORTAMENTODOWN; } } if( m->param == 0 && m->command == CMD_NONE ) { if( tempo ) { m->command = CMD_TEMPO; m->param = tempo; tempo = 0; } else { if( patbrk ) { m->command = CMD_PATTERNBREAK; patbrk = 0; } } } ch++; } if( tempo || patbrk ) return 1; } } return 0; } static ULONG mid_next_tracktick(MIDEVENT *e) { MIDEVENT *en; en = e->next; if( en ) return en->tracktick; return 0x7fffffff; // practically indefinite } // cut off alle events that follow the given event static void mid_stripoff(MIDTRACK *tp, MIDEVENT *e) { MIDEVENT *ep, *en; for( ep=e->next; ep; ep = en ) { en=ep->next; free(ep); } e->next = NULL; tp->tail = e; tp->workevent = tp->head; mid_sync_track(tp, e->tracktick); } static void mid_notes_to_percussion(MIDTRACK *tp, ULONG adjust, ULONG tmin) { MIDEVENT *e, *lno = 0; int n = 0,v; ULONG ton, toff = 0, tnext; v = 0x7f; // as loud as it gets ton = 0; for( e=tp->head; e; e=e->next ) { if( e->tracktick < adjust ) e->tracktick = 0; else e->tracktick -= adjust; if( e->flg == 1 ) { if( e->volume > 0 ) { n = e->note; e->smpno = pat_gmtosmp(pat_gm_drumnr(n)); e->note = pat_gm_drumnote(n); e->volume = (v * e->volume) / 128; if( v && !e->volume ) e->volume = 1; ton = e->tracktick; } else { toff = ton + tmin; if( toff > e->tracktick ) { tnext = mid_next_tracktick(e); if( toff + tmin < tnext ) e->tracktick = toff; else { if( toff < tnext ) e->tracktick = toff - 1; else e->tracktick = tnext - 1; } } toff = e->tracktick; lno = e; } } else { if( e->fx == mainvol ) { v = e->fxparam; if( !v && ton > toff ) { e->flg = 1; e->volume = 0; e->note = pat_gm_drumnote(n); toff = e->tracktick; lno = e; } } } } if( ton > toff ) { char info[64]; sprintf(info,"%ld > %ld note %d", (long)ton, (long)toff, n); mid_message("drum track ends with note on (%s)", info); } if( lno && lno->next ) mid_stripoff(tp, lno); } static void mid_prog_to_notes(MIDTRACK *tp, ULONG adjust, ULONG tmin) { MIDEVENT *e, *lno = 0; int i = 0, n = 0, v = 0x7f; ULONG ton, toff = 0, tnext; ton = 0; for( e=tp->head; e; e=e->next ) { if( e->tracktick < adjust ) e->tracktick = 0; else e->tracktick -= adjust; if( e->flg == 1 ) { if( !i ) i = pat_gmtosmp(1); // happens in eternal2.mid e->smpno = i; n = e->note; if( e->volume > 0 ) { e->volume = (v * e->volume) / 128; if( v && !e->volume ) e->volume = 1; ton = e->tracktick; } else { toff = ton + tmin; if( toff > e->tracktick ) { tnext = mid_next_tracktick(e); if( toff + tmin < tnext ) e->tracktick = toff; else { if( toff < tnext ) e->tracktick = toff - 1; else e->tracktick = tnext - 1; } } toff = e->tracktick; lno = e; } } else { if( e->fx == prog ) i = e->fxparam; if( e->fx == mainvol ) { v = e->fxparam; if( !v && ton > toff ) { e->flg = 1; e->volume = 0; e->note = n; toff = e->tracktick; lno = e; } } } } if( ton > toff ) { char info[128]; sprintf(info,"channel %d, %ld > %ld note %d", tp->chan + 1, (long)ton, (long)toff, n); mid_message("melody track ends with note on (%s)", info); } if( lno && lno->next ) mid_stripoff(tp, lno); } static int midiword(BYTE *b) { int i; i = (b[0]&0x7f)|((b[1]&0x7f)<<7); return i; } static int midishort(BYTE *b) { return midiword(b) - 0x2000; } ULONG mid_first_noteonevent_tick(MIDEVENT *e) { while( e && (e->flg == 0 || e->volume == 0) ) e=e->next; if( !e ) return 0x7fffffff; return e->tracktick; } // ===================================================================================== BOOL CSoundFile::ReadMID(const BYTE *lpStream, DWORD dwMemLength) { static int avoid_reentry = 0; MIDHANDLE *h; int ch, dmulti, maxtempo, panlow, panhigh, numchans, numtracks; MIDTRACK *ttp; uint32_t t, numpats; char buf[256]; uint32_t miditracklen; BYTE runningstatus; BYTE cmd; BYTE midibyte[2]; long metalen, delta; BYTE *p; while( avoid_reentry ) sleep(1); avoid_reentry = 1; if( !TestMID(lpStream, dwMemLength) ) goto ErrorExit; h = MID_Init(); if( !h ) goto ErrorExit; h->mm = lpStream; h->sz = dwMemLength; h->err = 0; h->debug = getenv(ENV_MMMID_DEBUG); h->verbose = getenv(ENV_MMMID_VERBOSE); pat_resetsmp(); pat_init_patnames(); h->pos = 8; h->midiformat = mid_read_short(h); h->miditracks = mid_read_short(h); h->resolution = mid_read_short(h); if (h->err) goto ErrorCleanup; // at this point the h->pos is positioned at first miditrack if( h->midiformat == 0 ) h->miditracks = 1; if( h->resolution & 0x8000 ) h->divider = ((h->resolution & 0x7f00)>>8)*(h->resolution & 0xff); else h->divider = h->resolution; h->divider <<= 2; // ticks per quartnote ==> ticks per note if (!h->divider) h->divider = 1; h->tempo = 122; m_nDefaultTempo = 0; h->tracktime = 0; h->speed = 6; if (h->miditracks == 0) goto ErrorCleanup; p = (BYTE *)getenv(ENV_MMMID_SPEED); if( p && isdigit(*p) && p[0] != '0' && p[1] == '\0' ) { // transform speed t = *p - '0'; h->speed *= t; h->divider *= t; h->speed /= 6; h->divider /= 6; } // calculate optimal delta multiplier dmulti keeping tempo adjustments // from 10 to 255 in mind (hoping there will be no midi's with tempo's // lower than 10, that is sooo sick...) // this is necessary for the tracks to patterns routine dmulti = 1; maxtempo = h->divider; while( (h->midispeed = miditicks(h, h->speed)) * 10 < 255 * h->speed ) { ++dmulti; h->divider = maxtempo * dmulti; } h->tp = NULL; memset(buf,0,sizeof(buf)); strcpy(m_szNames[0], ""); maxtempo = 0; panlow = 64; panhigh = 64; if( h->verbose ) { printf("Scanning MIDI with format: %d resolution: %d tracks: %d\n", h->midiformat, h->resolution, h->miditracks); } if( h->verbose && dmulti > 1 ) { printf("Multiplying resolution and deltatimes by %d to get %d miditicks per patternrow\n", dmulti, h->midispeed); } for( t=0; t<(uint32_t)h->miditracks; t++ ) { if( h->verbose ) printf("Parsing track %d\n", t+1); if (mid_read_bytes(buf,4,h) < 4) { buf[0] = '\0'; // make sure start is \0 } buf[4] = '\0'; if( strcmp(buf,"MTrk") ) { mid_message("invalid track-chunk '%s' is not 'MTrk'",buf); goto ErrorCleanup; } miditracklen = mid_read_long(h); if (h->err || h->sz < miditracklen) continue; runningstatus = 0; if( t && h->midiformat == 1 ) mid_rewind_tracks(h); // tracks sound simultaneously while( miditracklen > 0 ) { if (h->err) break; miditracklen -= mid_read_delta(h); midibyte[0] = mid_read_byte(h); miditracklen--; if( midibyte[0] & 0x80 ) { runningstatus = midibyte[0]; switch( runningstatus ) { case 0xf1: case 0xf4: case 0xf5: case 0xf6: case 0xf7: case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: break; default: midibyte[0] = mid_read_byte(h); miditracklen--; break; } } h->tracktime += dmulti * h->deltatime; ch = runningstatus & 0x0f; cmd = runningstatus & 0xf0; switch( cmd ) { case 0x80: // note off midibyte[1] = mid_read_byte(h); miditracklen--; ttp = mid_find_track(h, ch, midibyte[0]); if( ttp ) mid_add_noteoff(h, ttp); if( h->debug ) printf("%2d %08ld Note off: ch %d 0x%02x 0x%02x\n", t, (long)(h->tracktime), ch + 1, midibyte[0], midibyte[1]); break; case 0x90: // note on midibyte[1] = mid_read_byte(h); miditracklen--; if( midibyte[1] ) { ttp = mid_locate_track(h, ch, midibyte[0]); mid_add_noteon(h, ttp, midibyte[0], midibyte[1]); if( h->debug ) printf("%2d %08ld Note on: ch %d 0x%02x 0x%02x\n", t, (long)(h->tracktime), ch + 1, midibyte[0], midibyte[1]); } else { ttp = mid_find_track(h, ch, midibyte[0]); if( ttp ) mid_add_noteoff(h, ttp); if( h->debug ) printf("%2d %08ld note off: ch %d 0x%02x\n", t, (long)(h->tracktime), ch + 1, midibyte[0]); } break; case 0xa0: // polyphonic key pressure midibyte[1] = mid_read_byte(h); miditracklen--; if( h->debug ) printf("%2d %08ld polyphonic key pressure: ch %d 0x%02x 0x%02x\n", t, (long)(h->tracktime), ch + 1, midibyte[0], midibyte[1]); break; case 0xb0: // control change midibyte[1] = mid_read_byte(h); miditracklen--; switch(midibyte[0]) { case 0x01: // mod wheel mid_mod_wheel(h, ch, midibyte[1]); break; case 0x07: // main volume mid_main_volume(h, ch, midibyte[1]); break; case 0x0a: // pan if( midibyte[1] < panlow ) panlow = midibyte[1]; if( midibyte[1] > panhigh ) panhigh = midibyte[1]; mid_pan(h, ch, midibyte[1]); break; case 0x0b: // expression break; case 0x7b: if( midibyte[1] == 0x00 ) // all notes off mid_all_notes_off(h, ch); break; default: break; } if( h->debug ) printf("%2d %08ld control change: ch %d 0x%02x 0x%02x\n", t, (long)(h->tracktime), ch + 1, midibyte[0], midibyte[1]); break; case 0xc0: // program change mid_add_program(h, ch, midibyte[0]); if( h->debug ) printf("%2d %08ld program change: ch %d %d\n", t, (long)(h->tracktime), ch + 1, midibyte[0]); break; case 0xd0: // channel pressure if( h->debug ) printf("%2d %08ld channel pressure: ch %d 0x%02x\n", t, (long)(h->tracktime), ch + 1, midibyte[0]); break; case 0xe0: // pitch wheel change midibyte[1] = mid_read_byte(h); miditracklen--; if( h->debug ) printf("%2d %08ld pitch wheel change: ch %d %d\n", t, (long)(h->tracktime), ch + 1, midishort(midibyte)); mid_add_pitchwheel(h, ch, midishort(midibyte)); break; case 0xf0: // system & realtime switch( runningstatus ) { case 0xf0: // sysex if( h->debug ) printf("%2d %08ld sysex: 0x%02x", t, (long)(h->tracktime), midibyte[0]); while( midibyte[0] != 0xf7 ) { midibyte[0] = mid_read_byte(h); if (h->err) break; miditracklen--; if( h->debug ) printf(" %02X", midibyte[0]); } if( h->debug ) printf("\n"); break; case 0xf2: // song position pointer midibyte[1] = mid_read_byte(h); miditracklen--; if( h->debug ) printf("%2d %08ld song position pointer: %d", t, (long)(h->tracktime), midishort(midibyte)); break; case 0xf7: delta = h->deltatime; miditracklen -= mid_read_delta(h); metalen = h->deltatime; if( h->debug ) printf("%2d %08ld sysex continued: %ld", t, (long)(h->tracktime), metalen); while( metalen > 0 ) { midibyte[1] = mid_read_byte(h); if (h->err) break; metalen--; miditracklen--; if( h->debug ) printf(" %02X", midibyte[1]); } h->deltatime = delta; break; case 0xff: // meta event delta = h->deltatime; miditracklen -= mid_read_delta(h); metalen = h->deltatime; if( metalen > 31 ) metalen = 31; if( metalen ) { if (!mid_read_bytes(buf, metalen, h)) break; miditracklen -= metalen; } buf[metalen] = '\0'; metalen = h->deltatime - metalen; while( metalen > 0 ) { midibyte[1] = mid_read_byte(h); if (h->err) break; metalen--; miditracklen--; } h->deltatime = delta; switch( midibyte[0] ) { case 0x03: // type: track name if( h->debug ) printf("%2d %08ld META trackname:%s\n", t, (long)(h->tracktime), buf); if( m_szNames[0][0] == '\0' ) strcpy(m_szNames[0], buf); break; case 0x51: // type: tempo p=(BYTE *)buf; delta = (p[0]<<16)|(p[1]<<8)|p[2]; if( delta ) h->tempo = 60000000 / delta; if( h->debug ) printf("%2d %08ld META tempo:%d\n", t, (long)(h->tracktime), h->tempo); if( m_nDefaultTempo == 0 ) m_nDefaultTempo = h->tempo; else { ttp = h->track; if( !ttp ) mid_locate_track(h, 0, 0xff); mid_add_tempo_event(h,h->tempo); } if( h->tempo > maxtempo ) maxtempo = h->tempo; break; case 0x2f: // type: end of track if( h->debug ) printf("%2d %08ld META end of track\n", t, (long)(h->tracktime)); if( miditracklen > 0 ) { sprintf(buf, "%u", miditracklen); mid_message("Meta event not at end of track, %s bytes left in track", buf); miditracklen = 0; } break; default: if( h->debug ) printf("%2d %08ld META type 0x%02x\n", t, (long)(h->tracktime), midibyte[0]); break; } break; default: if( h->debug ) printf("%2d %08ld System type 0x%02x\n", t, (long)(h->tracktime), midibyte[0]); break; } break; default: // no running status, just skip it... if( h->debug ) printf("%2d %08ld unknown runningstatus: 0x%02x skipped:0x%02x\n", t, (long)(h->tracktime), runningstatus, midibyte[0]); break; } if( miditracklen < 1 && (runningstatus != 0xff || midibyte[0] != 0x2f) ) { delta = h->pos; if (!mid_read_bytes(buf,4,h)) break; buf[4] = '\0'; if( strcmp(buf,"MTrk") ) { miditracklen = 0x7fffffff; mid_message("Meta event not at end of track, %s bytes left in track", "superfluous"); } else mid_message("Meta event not at end of track, %s bytes left in track", "no"); h->pos = delta; } } } if( h->verbose ) printf("Determining percussion channel\n"); // get the lowest event time and the used channels delta = 0x7fffffff; metalen = 0; // use as bit bucket for used channels for( ttp=h->track; ttp; ttp=ttp->next ) { metalen |= (1<<ttp->chan); if( ttp->head ) { ULONG tt; tt = mid_first_noteonevent_tick(ttp->head); if( tt < (ULONG)delta ) delta = tt; } } if( metalen & 0x03ff ) { if( (metalen & 0x0f00) == 0x0400 ) h->percussion = 10; // buggy sng2mid uses channel 10 else h->percussion = 9; } else h->percussion = 15; if( h->verbose ) printf("Percussion channel is %d\nStripping off silences and other optimalisations\n", h->percussion + 1); // last but not least shut off all pending events, transform drumnotes when appropriate // strip off silences at begin and end and get the greatest tracktime h->tracktime = 0; metalen = h->midispeed; for( ttp=h->track; ttp; ttp=ttp->next ) { if( ttp->chan == h->percussion ) mid_notes_to_percussion(ttp, delta, metalen); else mid_prog_to_notes(ttp, delta, metalen); if( ttp->tail && ttp->tail->tracktick > h->tracktime ) h->tracktime = ttp->tail->tracktick; } h->tracktime += h->divider >> 2; // add one quartnote to the song for silence if ( h->track ) mid_add_partbreak(h); if( h->debug ) mid_dump_tracks(h); numchans = mid_numchans(h); if( panlow > 48 || panhigh < 80 ) { for( ttp=h->track; ttp; ttp=ttp->next ) { ttp->balance = ((0x40*numchans+0x80*mid_ordchan(h, ttp->chan))/numchans)&0x7f; } } // set module variables numtracks = mid_numtracks(h); if( m_nDefaultTempo == 0 ) m_nDefaultTempo = h->tempo; if( maxtempo == 0 ) maxtempo = h->tempo; if( maxtempo != 255 ) { if( h->verbose ) printf("Adjusting tempo %d to 255\n", maxtempo); mid_adjust_for_optimal_tempo(h, maxtempo); } if( maxtempo > 0 ) m_nDefaultTempo = (255 * m_nDefaultTempo) / maxtempo; numpats = 1 + (modticks(h, h->tracktime) / h->speed / 64 ); if (numpats > MAX_PATTERNS) numpats = MAX_PATTERNS; if( h->verbose ) printf("Generating %d patterns with speed %d\n", numpats, h->speed); m_nType = MOD_TYPE_MID; m_nDefaultSpeed = h->speed; m_nChannels = numtracks; m_dwSongFlags = SONG_LINEARSLIDES; m_nMinPeriod = 28 << 2; m_nMaxPeriod = 1712 << 3; if (m_nChannels == 0) goto ErrorCleanup; // orderlist for(t=0; t < numpats; t++) Order[t] = t; if( !PAT_Load_Instruments(this) ) goto ErrorCleanup; // ============================== // Load the pattern info now! if( MID_ReadPatterns(Patterns, PatternSize, h, numpats, m_nChannels) ) { // :^( need one more channel to handle the global events ;^b m_nChannels++; h->tp = mid_new_track(h, h->track->chan, 0xff); for( ttp=h->track; ttp->next; ttp=ttp->next ) ; ttp->next = h->tp; mid_add_sync(h, h->tp); for( t=0; t<numpats; t++ ) { FreePattern(Patterns[t]); Patterns[t] = NULL; } MID_ReadPatterns(Patterns, PatternSize, h, numpats, m_nChannels); } // ============================================================ // set panning positions t = 0; for( ttp=h->track; ttp; ttp=ttp->next ) { ChnSettings[t].nPan = modpan(ttp->balance, numchans / 2); ChnSettings[t].nVolume = 64; t++; } if( h->verbose ) printf("Cleanup.\n"); MID_Cleanup(h); // we dont need it anymore avoid_reentry = 0; // it is safe now, I'm finished return TRUE; ErrorCleanup: MID_Cleanup(h); ErrorExit: avoid_reentry = 0; return FALSE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (endian and char fixes for PPC) */ //#include "stdafx.h" //#include "sndfile.h" //#include "tables.h" #ifdef _MSC_VER //#pragma warning(disable:4244) #endif ////////////////////////////////////////////////////////// // ProTracker / NoiseTracker MOD/NST file support void CSoundFile::ConvertModCommand(MODCOMMAND *m) const //----------------------------------------------------- { UINT command = m->command, param = m->param; switch(command) { case 0x00: if (param) command = CMD_ARPEGGIO; break; case 0x01: command = CMD_PORTAMENTOUP; break; case 0x02: command = CMD_PORTAMENTODOWN; break; case 0x03: command = CMD_TONEPORTAMENTO; break; case 0x04: command = CMD_VIBRATO; break; case 0x05: command = CMD_TONEPORTAVOL; if (param & 0xF0) param &= 0xF0; break; case 0x06: command = CMD_VIBRATOVOL; if (param & 0xF0) param &= 0xF0; break; case 0x07: command = CMD_TREMOLO; break; case 0x08: command = CMD_PANNING8; break; case 0x09: command = CMD_OFFSET; break; case 0x0A: command = CMD_VOLUMESLIDE; if (param & 0xF0) param &= 0xF0; break; case 0x0B: command = CMD_POSITIONJUMP; break; case 0x0C: command = CMD_VOLUME; break; case 0x0D: command = CMD_PATTERNBREAK; param = ((param >> 4) * 10) + (param & 0x0F); break; case 0x0E: command = CMD_MODCMDEX; break; case 0x0F: command = (param <= (UINT)((m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) ? 0x1F : 0x20)) ? CMD_SPEED : CMD_TEMPO; if((param == 0xFF) && (m_nSamples == 15)) command = 0; break; // Extension for XM extended effects case 'G' - 55: command = CMD_GLOBALVOLUME; break; case 'H' - 55: command = CMD_GLOBALVOLSLIDE; if (param & 0xF0) param &= 0xF0; break; case 'K' - 55: command = CMD_KEYOFF; break; case 'L' - 55: command = CMD_SETENVPOSITION; break; case 'M' - 55: command = CMD_CHANNELVOLUME; break; case 'N' - 55: command = CMD_CHANNELVOLSLIDE; break; case 'P' - 55: command = CMD_PANNINGSLIDE; if (param & 0xF0) param &= 0xF0; break; case 'R' - 55: command = CMD_RETRIG; break; case 'T' - 55: command = CMD_TREMOR; break; case 'X' - 55: command = CMD_XFINEPORTAUPDOWN; break; case 'Y' - 55: command = CMD_PANBRELLO; break; case 'Z' - 55: command = CMD_MIDI; break; default: command = 0; } m->command = command; m->param = param; } WORD CSoundFile::ModSaveCommand(const MODCOMMAND *m, BOOL bXM) const //------------------------------------------------------------------ { UINT command = m->command & 0x3F, param = m->param; switch(command) { case 0: command = param = 0; break; case CMD_ARPEGGIO: command = 0; break; case CMD_PORTAMENTOUP: if (m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT|MOD_TYPE_STM)) { if ((param & 0xF0) == 0xE0) { command=0x0E; param=((param & 0x0F) >> 2)|0x10; break; } else if ((param & 0xF0) == 0xF0) { command=0x0E; param &= 0x0F; param|=0x10; break; } } command = 0x01; break; case CMD_PORTAMENTODOWN: if (m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT|MOD_TYPE_STM)) { if ((param & 0xF0) == 0xE0) { command=0x0E; param=((param & 0x0F) >> 2)|0x20; break; } else if ((param & 0xF0) == 0xF0) { command=0x0E; param &= 0x0F; param|=0x20; break; } } command = 0x02; break; case CMD_TONEPORTAMENTO: command = 0x03; break; case CMD_VIBRATO: command = 0x04; break; case CMD_TONEPORTAVOL: command = 0x05; break; case CMD_VIBRATOVOL: command = 0x06; break; case CMD_TREMOLO: command = 0x07; break; case CMD_PANNING8: command = 0x08; if (bXM) { if ((m_nType != MOD_TYPE_IT) && (m_nType != MOD_TYPE_XM) && (param <= 0x80)) { param <<= 1; if (param > 255) param = 255; } } else { if ((m_nType == MOD_TYPE_IT) || (m_nType == MOD_TYPE_XM)) param >>= 1; } break; case CMD_OFFSET: command = 0x09; break; case CMD_VOLUMESLIDE: command = 0x0A; break; case CMD_POSITIONJUMP: command = 0x0B; break; case CMD_VOLUME: command = 0x0C; break; case CMD_PATTERNBREAK: command = 0x0D; param = ((param / 10) << 4) | (param % 10); break; case CMD_MODCMDEX: command = 0x0E; break; case CMD_SPEED: command = 0x0F; if (param > 0x20) param = 0x20; break; case CMD_TEMPO: if (param > 0x20) { command = 0x0F; break; } case CMD_GLOBALVOLUME: command = 'G' - 55; break; case CMD_GLOBALVOLSLIDE: command = 'H' - 55; break; case CMD_KEYOFF: command = 'K' - 55; break; case CMD_SETENVPOSITION: command = 'L' - 55; break; case CMD_CHANNELVOLUME: command = 'M' - 55; break; case CMD_CHANNELVOLSLIDE: command = 'N' - 55; break; case CMD_PANNINGSLIDE: command = 'P' - 55; break; case CMD_RETRIG: command = 'R' - 55; break; case CMD_TREMOR: command = 'T' - 55; break; case CMD_XFINEPORTAUPDOWN: command = 'X' - 55; break; case CMD_PANBRELLO: command = 'Y' - 55; break; case CMD_MIDI: command = 'Z' - 55; break; case CMD_S3MCMDEX: switch(param & 0xF0) { case 0x10: command = 0x0E; param = (param & 0x0F) | 0x30; break; case 0x20: command = 0x0E; param = (param & 0x0F) | 0x50; break; case 0x30: command = 0x0E; param = (param & 0x0F) | 0x40; break; case 0x40: command = 0x0E; param = (param & 0x0F) | 0x70; break; case 0x90: command = 'X' - 55; break; case 0xB0: command = 0x0E; param = (param & 0x0F) | 0x60; break; case 0xA0: case 0x50: case 0x70: case 0x60: command = param = 0; break; default: command = 0x0E; break; } break; default: command = param = 0; } return (WORD)((command << 8) | (param)); } #pragma pack(1) typedef struct _MODSAMPLE { CHAR name[22]; WORD length; BYTE finetune; BYTE volume; WORD loopstart; WORD looplen; } MODSAMPLE, *PMODSAMPLE; typedef struct _MODMAGIC { BYTE nOrders; BYTE nRestartPos; BYTE Orders[128]; char Magic[4]; // changed from CHAR } MODMAGIC, *PMODMAGIC; #pragma pack() static BOOL IsValidName(LPCSTR s, int length, CHAR minChar) //----------------------------------------------------------------- { int i, nt; for (i = 0, nt = 0; i < length; i++) { if(s[i]) { if (nt) return FALSE;// garbage after null if (s[i] < minChar) return FALSE;// caller says it's garbage } else if (!nt) nt = i;// found null terminator } return TRUE; } static BOOL IsMagic(LPCSTR s1, LPCSTR s2) { return ((*(DWORD *)s1) == (*(DWORD *)s2)) ? TRUE : FALSE; } BOOL CSoundFile::ReadMod(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { char s[1024]; // changed from CHAR DWORD dwMemPos, dwTotalSampleLen; PMODMAGIC pMagic; UINT nErr; if ((!lpStream) || (dwMemLength < 0x600)) return FALSE; dwMemPos = 20; m_nSamples = 31; m_nChannels = 4; pMagic = (PMODMAGIC)(lpStream+dwMemPos+sizeof(MODSAMPLE)*31); // Check Mod Magic memcpy(s, pMagic->Magic, 4); if ((IsMagic(s, "M.K.")) || (IsMagic(s, "M!K!")) || (IsMagic(s, "M&K!")) || (IsMagic(s, "N.T."))) m_nChannels = 4; else if ((IsMagic(s, "CD81")) || (IsMagic(s, "OKTA"))) m_nChannels = 8; else if (IsMagic(s, "CD61")) m_nChannels = 6; else if ((s[0]=='F') && (s[1]=='L') && (s[2]=='T') && (s[3]>='4') && (s[3]<='9')) m_nChannels = s[3] - '0'; else if ((s[0]>='2') && (s[0]<='9') && (s[1]=='C') && (s[2]=='H') && (s[3]=='N')) m_nChannels = s[0] - '0'; else if ((s[0]=='1') && (s[1]>='0') && (s[1]<='9') && (s[2]=='C') && (s[3]=='H')) m_nChannels = s[1] - '0' + 10; else if ((s[0]=='2') && (s[1]>='0') && (s[1]<='9') && (s[2]=='C') && (s[3]=='H')) m_nChannels = s[1] - '0' + 20; else if ((s[0]=='3') && (s[1]>='0') && (s[1]<='2') && (s[2]=='C') && (s[3]=='H')) m_nChannels = s[1] - '0' + 30; else if ((s[0]=='T') && (s[1]=='D') && (s[2]=='Z') && (s[3]>='4') && (s[3]<='9')) m_nChannels = s[3] - '0'; else if (IsMagic(s,"16CN")) m_nChannels = 16; else if (IsMagic(s,"32CN")) m_nChannels = 32; else { if (!IsValidName((LPCSTR)lpStream, 20, ' ')) return FALSE; m_nSamples = 15; } // Load Samples nErr = 0; dwTotalSampleLen = 0; for (UINT i=1; i<=m_nSamples; i++) { PMODSAMPLE pms = (PMODSAMPLE)(lpStream+dwMemPos); MODINSTRUMENT *psmp = &Ins[i]; UINT loopstart, looplen; if (m_nSamples == 15) { if (!IsValidName((LPCSTR)pms->name, 22, 14)) return FALSE; if (pms->finetune>>4) return FALSE; if (pms->volume > 64) return FALSE; if (bswapBE16(pms->length) > 32768) return FALSE; } memcpy(m_szNames[i], pms->name, 22); m_szNames[i][22] = 0; psmp->uFlags = 0; psmp->nLength = bswapBE16(pms->length)*2; dwTotalSampleLen += psmp->nLength; psmp->nFineTune = MOD2XMFineTune(pms->finetune & 0x0F); psmp->nVolume = 4*pms->volume; if (psmp->nVolume > 256) { psmp->nVolume = 256; nErr++; } psmp->nGlobalVol = 64; psmp->nPan = 128; loopstart = bswapBE16(pms->loopstart)*2; looplen = bswapBE16(pms->looplen)*2; // Fix loops if ((looplen > 2) && (loopstart+looplen > psmp->nLength) && (loopstart/2+looplen <= psmp->nLength)) { loopstart /= 2; } psmp->nLoopStart = loopstart; psmp->nLoopEnd = loopstart + looplen; if (psmp->nLength < 4) psmp->nLength = 0; if (psmp->nLength) { if (psmp->nLoopStart >= psmp->nLength) { psmp->nLoopStart = psmp->nLength-1; } if (psmp->nLoopEnd > psmp->nLength) { psmp->nLoopEnd = psmp->nLength; } if ((psmp->nLoopStart > psmp->nLoopEnd) || (psmp->nLoopEnd <= 8) || (psmp->nLoopEnd - psmp->nLoopStart <= 4)) { psmp->nLoopStart = 0; psmp->nLoopEnd = 0; } if (psmp->nLoopEnd > psmp->nLoopStart) { psmp->uFlags |= CHN_LOOP; } } dwMemPos += sizeof(MODSAMPLE); } if ((m_nSamples == 15) && (dwTotalSampleLen > dwMemLength * 4)) return FALSE; pMagic = (PMODMAGIC)(lpStream+dwMemPos); dwMemPos += sizeof(MODMAGIC); if (m_nSamples == 15) { dwMemPos -= 4; if (pMagic->nOrders > 128) return FALSE; } memset(Order, 0,sizeof(Order)); memcpy(Order, pMagic->Orders, 128); UINT nbp, nbpbuggy, nbpbuggy2, norders; norders = pMagic->nOrders; if ((!norders) || (norders > 0x80)) { norders = 0x80; while ((norders > 1) && (!Order[norders-1])) norders--; } nbpbuggy = 0; nbpbuggy2 = 0; nbp = 0; for (UINT iord=0; iord<128; iord++) { UINT i = Order[iord]; if ((i < 0x80) && (nbp <= i)) { nbp = i+1; if (iord<norders) nbpbuggy = nbp; } if (i >= nbpbuggy2) nbpbuggy2 = i+1; } for (UINT iend=norders; iend<MAX_ORDERS; iend++) Order[iend] = 0xFF; norders--; m_nRestartPos = pMagic->nRestartPos; if (m_nRestartPos >= 0x78) m_nRestartPos = 0; if (m_nRestartPos + 1 >= (UINT)norders) m_nRestartPos = 0; if (!nbp) return FALSE; DWORD dwWowTest = dwTotalSampleLen+dwMemPos; if ((IsMagic(pMagic->Magic, "M.K.")) && (dwWowTest + nbp*8*256 == dwMemLength)) m_nChannels = 8; if ((nbp != nbpbuggy) && (dwWowTest + nbp*m_nChannels*256 != dwMemLength)) { if (dwWowTest + nbpbuggy*m_nChannels*256 == dwMemLength) nbp = nbpbuggy; else nErr += 8; } else if ((nbpbuggy2 > nbp) && (dwWowTest + nbpbuggy2*m_nChannels*256 == dwMemLength)) { nbp = nbpbuggy2; } if ((dwWowTest < 0x600) || (dwWowTest > dwMemLength)) nErr += 8; if ((m_nSamples == 15) && (nErr >= 16)) return FALSE; // Default settings m_nType = MOD_TYPE_MOD; m_nDefaultSpeed = 6; m_nDefaultTempo = 125; m_nMinPeriod = 14 << 2; m_nMaxPeriod = 3424 << 2; memcpy(m_szNames, lpStream, 20); // Setting channels pan for (UINT ich=0; ich<m_nChannels; ich++) { ChnSettings[ich].nVolume = 64; if (gdwSoundSetup & SNDMIX_MAXDEFAULTPAN) ChnSettings[ich].nPan = (((ich&3)==1) || ((ich&3)==2)) ? 256 : 0; else ChnSettings[ich].nPan = (((ich&3)==1) || ((ich&3)==2)) ? 0xC0 : 0x40; } // Reading channels for (UINT ipat=0; ipat<nbp; ipat++) { if (ipat < MAX_PATTERNS) { if ((Patterns[ipat] = AllocatePattern(64, m_nChannels)) == NULL) break; PatternSize[ipat] = 64; if (dwMemPos + m_nChannels*256 >= dwMemLength) break; MODCOMMAND *m = Patterns[ipat]; LPCBYTE p = lpStream + dwMemPos; for (UINT j=m_nChannels*64; j; m++,p+=4,j--) { BYTE A0=p[0], A1=p[1], A2=p[2], A3=p[3]; UINT n = ((((UINT)A0 & 0x0F) << 8) | (A1)); if ((n) && (n != 0xFFF)) m->note = GetNoteFromPeriod(n << 2); m->instr = ((UINT)A2 >> 4) | (A0 & 0x10); m->command = A2 & 0x0F; m->param = A3; if ((m->command) || (m->param)) ConvertModCommand(m); } } dwMemPos += m_nChannels*256; } // Reading instruments DWORD dwErrCheck = 0; for (UINT ismp=1; ismp<=m_nSamples; ismp++) if (Ins[ismp].nLength) { LPSTR p = (LPSTR)(lpStream+dwMemPos); UINT flags = 0; if (dwMemPos + 5 >= dwMemLength) break; if (! strncmp(p, "ADPCM", 5)) { flags = 3; p += 5; dwMemPos += 5; } DWORD dwSize = ReadSample(&Ins[ismp], flags, p, dwMemLength - dwMemPos); if (dwSize) { dwMemPos += dwSize; dwErrCheck++; } } #ifdef MODPLUG_TRACKER return TRUE; #else return (dwErrCheck) ? TRUE : FALSE; #endif } #ifndef MODPLUG_NO_FILESAVE #ifdef _MSC_VER #pragma warning(disable:4100) #endif BOOL CSoundFile::SaveMod(LPCSTR lpszFileName, UINT nPacking) //---------------------------------------------------------- { BYTE insmap[32]; UINT inslen[32]; BYTE bTab[32]; BYTE ord[128]; FILE *f; if ((!m_nChannels) || (!lpszFileName)) return FALSE; if ((f = fopen(lpszFileName, "wb")) == NULL) return FALSE; memset(ord, 0, sizeof(ord)); memset(inslen, 0, sizeof(inslen)); if (m_nInstruments) { memset(insmap, 0, sizeof(insmap)); for (UINT i=1; i<32; i++) if (Headers[i]) { for (UINT j=0; j<128; j++) if (Headers[i]->Keyboard[j]) { insmap[i] = Headers[i]->Keyboard[j]; break; } } } else { for (UINT i=0; i<32; i++) insmap[i] = (BYTE)i; } // Writing song name fwrite(m_szNames, 20, 1, f); // Writing instrument definition for (UINT iins=1; iins<=31; iins++) { MODINSTRUMENT *pins = &Ins[insmap[iins]]; memcpy(bTab, m_szNames[iins],22); inslen[iins] = pins->nLength; if (inslen[iins] > 0x1fff0) inslen[iins] = 0x1fff0; bTab[22] = inslen[iins] >> 9; bTab[23] = inslen[iins] >> 1; if (pins->RelativeTone < 0) bTab[24] = 0x08; else if (pins->RelativeTone > 0) bTab[24] = 0x07; else bTab[24] = (BYTE)XM2MODFineTune(pins->nFineTune); bTab[25] = pins->nVolume >> 2; bTab[26] = pins->nLoopStart >> 9; bTab[27] = pins->nLoopStart >> 1; bTab[28] = (pins->nLoopEnd - pins->nLoopStart) >> 9; bTab[29] = (pins->nLoopEnd - pins->nLoopStart) >> 1; fwrite(bTab, 30, 1, f); } // Writing number of patterns UINT nbp=0, norders=128; for (UINT iord=0; iord<128; iord++) { if (Order[iord] == 0xFF) { norders = iord; break; } if ((Order[iord] < 0x80) && (nbp<=Order[iord])) nbp = Order[iord]+1; } bTab[0] = norders; bTab[1] = m_nRestartPos; fwrite(bTab, 2, 1, f); // Writing pattern list if (norders) memcpy(ord, Order, norders); fwrite(ord, 128, 1, f); // Writing signature char bTab_buf[] = "0CHN"; bTab_buf[0] = m_nChannels + '0'; fwrite(m_nChannels == 4 ? "M.K." : bTab_buf, 4, 1, f); // Writing patterns for (UINT ipat=0; ipat<nbp; ipat++) if (Patterns[ipat]) { BYTE s[64*4]; MODCOMMAND *m = Patterns[ipat]; for (UINT i=0; i<64; i++) if (i < PatternSize[ipat]) { LPBYTE p=s; for (UINT c=0; c<m_nChannels; c++,p+=4,m++) { UINT param = ModSaveCommand(m, FALSE); UINT command = param >> 8; param &= 0xFF; if (command > 0x0F) command = param = 0; if ((m->vol >= 0x10) && (m->vol <= 0x50) && (!command) && (!param)) { command = 0x0C; param = m->vol - 0x10; } UINT period = m->note; if (period) { if (period < 37) period = 37; period -= 37; if (period >= 6*12) period = 6*12-1; period = ProTrackerPeriodTable[period]; } UINT instr = (m->instr > 31) ? 0 : m->instr; p[0] = ((period >> 8) & 0x0F) | (instr & 0x10); p[1] = period & 0xFF; p[2] = ((instr & 0x0F) << 4) | (command & 0x0F); p[3] = param; } fwrite(s, m_nChannels, 4, f); } else { memset(s, 0, m_nChannels*4); fwrite(s, m_nChannels, 4, f); } } // Writing instruments for (UINT ismpd=1; ismpd<=31; ismpd++) if (inslen[ismpd]) { MODINSTRUMENT *pins = &Ins[insmap[ismpd]]; UINT flags = RS_PCM8S; #ifndef NO_PACKING if (!(pins->uFlags & (CHN_16BIT|CHN_STEREO))) { if ((nPacking) && (CanPackSample((char *)pins->pSample, inslen[ismpd], nPacking))) { fwrite("ADPCM", 1, 5, f); flags = RS_ADPCM4; } } #endif WriteSample(f, pins, flags, inslen[ismpd]); } fclose(f); return TRUE; } #ifdef _MSC_VER #pragma warning(default:4100) #endif #endif // MODPLUG_NO_FILESAVE //#include "stdafx.h" //#include "sndfile.h" //#define MT2DEBUG #pragma pack(1) typedef struct _MT2FILEHEADER { DWORD dwMT20; // 0x3032544D "MT20" DWORD dwSpecial; WORD wVersion; CHAR szTrackerName[32]; // "MadTracker 2.0" CHAR szSongName[64]; WORD nOrders; WORD wRestart; WORD wPatterns; WORD wChannels; WORD wSamplesPerTick; BYTE bTicksPerLine; BYTE bLinesPerBeat; DWORD fulFlags; // b0=packed patterns WORD wInstruments; WORD wSamples; BYTE Orders[256]; } MT2FILEHEADER; typedef struct _MT2PATTERN { WORD wLines; DWORD wDataLen; } MT2PATTERN; typedef struct _MT2COMMAND { BYTE note; // 0=nothing, 97=note off BYTE instr; BYTE vol; BYTE pan; BYTE fxcmd; BYTE fxparam1; BYTE fxparam2; } MT2COMMAND; typedef struct _MT2DRUMSDATA { WORD wDrumPatterns; WORD wDrumSamples[8]; BYTE DrumPatternOrder[256]; } MT2DRUMSDATA; typedef struct _MT2AUTOMATION { DWORD dwFlags; DWORD dwEffectId; DWORD nEnvPoints; } MT2AUTOMATION; typedef struct _MT2INSTRUMENT { CHAR szName[32]; DWORD dwDataLen; WORD wSamples; BYTE GroupsMapping[96]; BYTE bVibType; BYTE bVibSweep; BYTE bVibDepth; BYTE bVibRate; WORD wFadeOut; WORD wNNA; WORD wInstrFlags; WORD wEnvFlags1; WORD wEnvFlags2; } MT2INSTRUMENT; typedef struct _MT2ENVELOPE { BYTE nFlags; BYTE nPoints; BYTE nSustainPos; BYTE nLoopStart; BYTE nLoopEnd; BYTE bReserved[3]; BYTE EnvData[64]; } MT2ENVELOPE; typedef struct _MT2SYNTH { BYTE nSynthId; BYTE nFxId; WORD wCutOff; BYTE nResonance; BYTE nAttack; BYTE nDecay; BYTE bReserved[25]; } MT2SYNTH; typedef struct _MT2SAMPLE { CHAR szName[32]; DWORD dwDataLen; DWORD dwLength; DWORD dwFrequency; BYTE nQuality; BYTE nChannels; BYTE nFlags; BYTE nLoop; DWORD dwLoopStart; DWORD dwLoopEnd; WORD wVolume; BYTE nPan; BYTE nBaseNote; WORD wSamplesPerBeat; } MT2SAMPLE; typedef struct _MT2GROUP { BYTE nSmpNo; BYTE nVolume; // 0-128 BYTE nFinePitch; BYTE Reserved[5]; } MT2GROUP; #pragma pack() static int calcNumOnes(int number) { int cnt = 0; while(number) { number &= (number -1); cnt ++; } return(cnt); } static VOID ConvertMT2Command(CSoundFile *that, MODCOMMAND *m, const MT2COMMAND *p) //--------------------------------------------------------------------------- { // Note m->note = 0; if (p->note) m->note = (p->note > 96) ? 0xFF : p->note+12; // Instrument m->instr = p->instr; // Volume Column if ((p->vol >= 0x10) && (p->vol <= 0x90)) { m->volcmd = VOLCMD_VOLUME; m->vol = (p->vol - 0x10) >> 1; } else if ((p->vol >= 0xA0) && (p->vol <= 0xAF)) { m->volcmd = VOLCMD_VOLSLIDEDOWN; m->vol = (p->vol & 0x0f); } else if ((p->vol >= 0xB0) && (p->vol <= 0xBF)) { m->volcmd = VOLCMD_VOLSLIDEUP; m->vol = (p->vol & 0x0f); } else if ((p->vol >= 0xC0) && (p->vol <= 0xCF)) { m->volcmd = VOLCMD_FINEVOLDOWN; m->vol = (p->vol & 0x0f); } else if ((p->vol >= 0xD0) && (p->vol <= 0xDF)) { m->volcmd = VOLCMD_FINEVOLUP; m->vol = (p->vol & 0x0f); } else { m->volcmd = 0; m->vol = 0; } // Effects m->command = 0; m->param = 0; if ((p->fxcmd) || (p->fxparam1) || (p->fxparam2)) { if (!p->fxcmd) { m->command = p->fxparam2; m->param = p->fxparam1; that->ConvertModCommand(m); } else { // TODO: MT2 Effects } } } BOOL CSoundFile::ReadMT2(LPCBYTE lpStream, DWORD dwMemLength) //----------------------------------------------------------- { const MT2FILEHEADER *pfh = (MT2FILEHEADER *)lpStream; DWORD dwMemPos, dwDrumDataPos, dwExtraDataPos; UINT nDrumDataLen, nExtraDataLen; const MT2DRUMSDATA *pdd; const MT2INSTRUMENT *InstrMap[255]; const MT2SAMPLE *SampleMap[256]; if ((!lpStream) || (dwMemLength < sizeof(MT2FILEHEADER) + 4) || (pfh->dwMT20 != 0x3032544D) || (pfh->wVersion < 0x0200) || (pfh->wVersion >= 0x0300) || (pfh->wChannels < 4) || (pfh->wChannels > 64)) return FALSE; pdd = NULL; m_nType = MOD_TYPE_MT2; m_nChannels = pfh->wChannels; m_nRestartPos = pfh->wRestart; m_nDefaultSpeed = pfh->bTicksPerLine; m_nDefaultTempo = 125; if ((pfh->wSamplesPerTick > 100) && (pfh->wSamplesPerTick < 5000)) { m_nDefaultTempo = 110250 / pfh->wSamplesPerTick; } for (UINT iOrd=0; iOrd<MAX_ORDERS; iOrd++) { Order[iOrd] = (BYTE)((iOrd < pfh->nOrders) ? pfh->Orders[iOrd] : 0xFF); } memcpy(m_szNames[0], pfh->szSongName, 32); m_szNames[0][31] = 0; dwMemPos = sizeof(MT2FILEHEADER); if (dwMemPos+2 > dwMemLength) return TRUE; nDrumDataLen = *(WORD *)(lpStream + dwMemPos); dwDrumDataPos = dwMemPos + 2; if (nDrumDataLen >= 2) pdd = (MT2DRUMSDATA *)(lpStream+dwDrumDataPos); dwMemPos += 2 + nDrumDataLen; #ifdef MT2DEBUG Log("MT2 v%03X: \"%s\" (flags=%04X)\n", pfh->wVersion, m_szNames[0], pfh->fulFlags); Log("%d Channels, %d Patterns, %d Instruments, %d Samples\n", pfh->wChannels, pfh->wPatterns, pfh->wInstruments, pfh->wSamples); Log("Drum Data: %d bytes @%04X\n", nDrumDataLen, dwDrumDataPos); #endif if (dwMemPos >= dwMemLength-12) return TRUE; if (!*(DWORD *)(lpStream+dwMemPos)) dwMemPos += 4; if (!*(DWORD *)(lpStream+dwMemPos)) dwMemPos += 4; nExtraDataLen = *(DWORD *)(lpStream+dwMemPos); dwExtraDataPos = dwMemPos + 4; dwMemPos += 4; #ifdef MT2DEBUG Log("Extra Data: %d bytes @%04X\n", nExtraDataLen, dwExtraDataPos); #endif if (dwMemPos + nExtraDataLen >= dwMemLength) return TRUE; while (dwMemPos+8 < dwExtraDataPos + nExtraDataLen) { DWORD dwId = *(DWORD *)(lpStream+dwMemPos); DWORD dwLen = *(DWORD *)(lpStream+dwMemPos+4); dwMemPos += 8; if (dwLen >= dwMemLength || dwMemPos > dwMemLength - dwLen) return TRUE; #ifdef MT2DEBUG CHAR s[5]; memcpy(s, &dwId, 4); s[4] = 0; Log("pos=0x%04X: %s: %d bytes\n", dwMemPos-8, s, dwLen); #endif switch(dwId) { // MSG case 0x0047534D: if ((dwLen > 3) && (!m_lpszSongComments)) { DWORD nTxtLen = dwLen; if (nTxtLen > 32000) nTxtLen = 32000; m_lpszSongComments = new char[nTxtLen]; // changed from CHAR if (m_lpszSongComments) { memcpy(m_lpszSongComments, lpStream+dwMemPos+1, nTxtLen-1); m_lpszSongComments[nTxtLen-1] = 0; } } break; // SUM -> author name (or "Unregistered") // TMAP // TRKS case 0x534b5254: break; } dwMemPos += dwLen; } // Load Patterns dwMemPos = dwExtraDataPos + nExtraDataLen; for (UINT iPat=0; iPat<pfh->wPatterns; iPat++) if (dwMemPos < dwMemLength-6) { const MT2PATTERN *pmp = (MT2PATTERN *)(lpStream+dwMemPos); UINT wDataLen = (pmp->wDataLen + 1) & ~1; dwMemPos += 6; if (dwMemPos > dwMemLength - wDataLen || wDataLen > dwMemLength) break; UINT nLines = pmp->wLines; if ((iPat < MAX_PATTERNS) && (nLines > 0) && (nLines <= 256)) { #ifdef MT2DEBUG Log("Pattern #%d @%04X: %d lines, %d bytes\n", iPat, dwMemPos-6, nLines, pmp->wDataLen); #endif PatternSize[iPat] = nLines; Patterns[iPat] = AllocatePattern(nLines, m_nChannels); if (!Patterns[iPat]) return TRUE; MODCOMMAND *m = Patterns[iPat]; UINT len = wDataLen; if (len <= 4) return TRUE; if (pfh->fulFlags & 1) // Packed Patterns { const BYTE *p = lpStream+dwMemPos; UINT pos = 0, row=0, ch=0; while (pos < len - 4) { MT2COMMAND cmd; UINT infobyte = p[pos++]; UINT rptcount = 0; if (infobyte == 0xff) { if (pos + 2 > len) break; rptcount = p[pos++]; infobyte = p[pos++]; #if 0 Log("(%d.%d) FF(%02X).%02X\n", row, ch, rptcount, infobyte); } else { Log("(%d.%d) %02X\n", row, ch, infobyte); #endif } if (infobyte & 0x7f) { UINT patpos = row*m_nChannels+ch; cmd.note = cmd.instr = cmd.vol = cmd.pan = cmd.fxcmd = cmd.fxparam1 = cmd.fxparam2 = 0; if (pos >= len - calcNumOnes(infobyte & 0x7F)) break; if (infobyte & 1) cmd.note = p[pos++]; if (infobyte & 2) cmd.instr = p[pos++]; if (infobyte & 4) cmd.vol = p[pos++]; if (infobyte & 8) cmd.pan = p[pos++]; if (infobyte & 16) cmd.fxcmd = p[pos++]; if (infobyte & 32) cmd.fxparam1 = p[pos++]; if (infobyte & 64) cmd.fxparam2 = p[pos++]; #ifdef MT2DEBUG if (cmd.fxcmd) { Log("(%d.%d) MT2 FX=%02X.%02X.%02X\n", row, ch, cmd.fxcmd, cmd.fxparam1, cmd.fxparam2); } #endif ConvertMT2Command(this, &m[patpos], &cmd); } row += rptcount+1; while (row >= nLines) { row-=nLines; ch++; } if (ch >= m_nChannels) break; } } else { const MT2COMMAND *p = (MT2COMMAND *)(lpStream+dwMemPos); UINT pos = 0; UINT n = 0; while ((pos + sizeof(MT2COMMAND) <= len) && (n < m_nChannels*nLines)) { ConvertMT2Command(this, m, p); pos += sizeof(MT2COMMAND); n++; p++; m++; } } } dwMemPos += wDataLen; } // Skip Drum Patterns if (pdd) { #ifdef MT2DEBUG Log("%d Drum Patterns at offset 0x%08X\n", pdd->wDrumPatterns, dwMemPos); #endif for (UINT iDrm=0; iDrm<pdd->wDrumPatterns; iDrm++) { if (dwMemPos > dwMemLength-2) return TRUE; UINT nLines = *(WORD *)(lpStream+dwMemPos); #ifdef MT2DEBUG if (nLines != 64) Log("Drum Pattern %d: %d Lines @%04X\n", iDrm, nLines, dwMemPos); #endif dwMemPos += 2 + nLines * 32; } } // Automation if (pfh->fulFlags & 2) { #ifdef MT2DEBUG Log("Automation at offset 0x%08X\n", dwMemPos); #endif UINT nAutoCount = m_nChannels; if (pfh->fulFlags & 0x10) nAutoCount++; // Master Automation if ((pfh->fulFlags & 0x08) && (pdd)) nAutoCount += 8; // Drums Automation nAutoCount *= pfh->wPatterns; for (UINT iAuto=0; iAuto<nAutoCount; iAuto++) { if (dwMemPos+12 >= dwMemLength) return TRUE; const MT2AUTOMATION *pma = (MT2AUTOMATION *)(lpStream+dwMemPos); dwMemPos += (pfh->wVersion <= 0x201) ? 4 : 8; for (UINT iEnv=0; iEnv<14; iEnv++) { if (pma->dwFlags & (1 << iEnv)) { #ifdef MT2DEBUG UINT nPoints = *(DWORD *)(lpStream+dwMemPos); Log(" Env[%d/%d] %04X @%04X: %d points\n", iAuto, nAutoCount, 1 << iEnv, dwMemPos-8, nPoints); #endif dwMemPos += 260; } } } } // Load Instruments #ifdef MT2DEBUG Log("Loading instruments at offset 0x%08X\n", dwMemPos); #endif memset(InstrMap, 0, sizeof(InstrMap)); m_nInstruments = (pfh->wInstruments < MAX_INSTRUMENTS) ? pfh->wInstruments : MAX_INSTRUMENTS-1; for (UINT iIns=1; iIns<=255; iIns++) { if (dwMemPos+36 > dwMemLength) return TRUE; const MT2INSTRUMENT *pmi = (MT2INSTRUMENT *)(lpStream+dwMemPos); INSTRUMENTHEADER *penv = NULL; if (iIns <= m_nInstruments) { penv = new INSTRUMENTHEADER; Headers[iIns] = penv; if (penv) { memset(penv, 0, sizeof(INSTRUMENTHEADER)); memcpy(penv->name, pmi->szName, 32); penv->nGlobalVol = 64; penv->nPan = 128; for (UINT i=0; i<NOTE_MAX; i++) { penv->NoteMap[i] = i+1; } } } #ifdef MT2DEBUG if (iIns <= pfh->wInstruments) Log(" Instrument #%d at offset %04X: %d bytes\n", iIns, dwMemPos, pmi->dwDataLen); #endif if (pmi->dwDataLen > dwMemLength - (dwMemPos+36)) return TRUE; if (pmi->dwDataLen > 0) { if (dwMemPos + sizeof(MT2INSTRUMENT) - 4 > dwMemLength) return TRUE; InstrMap[iIns-1] = pmi; if (penv && pmi->dwDataLen >= sizeof(MT2INSTRUMENT) - 40) { penv->nFadeOut = pmi->wFadeOut; penv->nNNA = pmi->wNNA & 3; penv->nDCT = (pmi->wNNA>>8) & 3; penv->nDNA = (pmi->wNNA>>12) & 3; MT2ENVELOPE *pehdr[4]; WORD *pedata[4]; if (pfh->wVersion <= 0x201) { DWORD dwEnvPos = dwMemPos + sizeof(MT2INSTRUMENT) - 4; if (dwEnvPos + 2*sizeof(MT2ENVELOPE) > dwMemLength) return TRUE; pehdr[0] = (MT2ENVELOPE *)(lpStream+dwEnvPos); pehdr[1] = (MT2ENVELOPE *)(lpStream+dwEnvPos+8); pehdr[2] = pehdr[3] = NULL; pedata[0] = (WORD *)(lpStream+dwEnvPos+16); pedata[1] = (WORD *)(lpStream+dwEnvPos+16+64); pedata[2] = pedata[3] = NULL; } else { DWORD dwEnvPos = dwMemPos + sizeof(MT2INSTRUMENT); if (dwEnvPos > dwMemLength) return TRUE; for (UINT i=0; i<4; i++) { if (pmi->wEnvFlags1 & (1<<i)) { if (dwEnvPos + sizeof(MT2ENVELOPE) > dwMemLength) return TRUE; pehdr[i] = (MT2ENVELOPE *)(lpStream+dwEnvPos); pedata[i] = (WORD *)pehdr[i]->EnvData; dwEnvPos += sizeof(MT2ENVELOPE); } else { pehdr[i] = NULL; pedata[i] = NULL; } } // envelopes exceed file length? if (dwEnvPos > dwMemLength) return TRUE; } // Load envelopes for (UINT iEnv=0; iEnv<4; iEnv++) if (pehdr[iEnv]) { const MT2ENVELOPE *pme = pehdr[iEnv]; WORD *pEnvPoints = NULL; BYTE *pEnvData = NULL; #ifdef MT2DEBUG Log(" Env %d.%d @%04X: %d points\n", iIns, iEnv, (UINT)(((BYTE *)pme)-lpStream), pme->nPoints); #endif switch(iEnv) { // Volume Envelope case 0: if (pme->nFlags & 1) penv->dwFlags |= ENV_VOLUME; if (pme->nFlags & 2) penv->dwFlags |= ENV_VOLSUSTAIN; if (pme->nFlags & 4) penv->dwFlags |= ENV_VOLLOOP; penv->nVolEnv = (pme->nPoints > 16) ? 16 : pme->nPoints; penv->nVolSustainBegin = penv->nVolSustainEnd = pme->nSustainPos; penv->nVolLoopStart = pme->nLoopStart; penv->nVolLoopEnd = pme->nLoopEnd; pEnvPoints = penv->VolPoints; pEnvData = penv->VolEnv; break; // Panning Envelope case 1: if (pme->nFlags & 1) penv->dwFlags |= ENV_PANNING; if (pme->nFlags & 2) penv->dwFlags |= ENV_PANSUSTAIN; if (pme->nFlags & 4) penv->dwFlags |= ENV_PANLOOP; penv->nPanEnv = (pme->nPoints > 16) ? 16 : pme->nPoints; penv->nPanSustainBegin = penv->nPanSustainEnd = pme->nSustainPos; penv->nPanLoopStart = pme->nLoopStart; penv->nPanLoopEnd = pme->nLoopEnd; pEnvPoints = penv->PanPoints; pEnvData = penv->PanEnv; break; // Pitch/Filter envelope default: if (pme->nFlags & 1) penv->dwFlags |= (iEnv==3) ? (ENV_PITCH|ENV_FILTER) : ENV_PITCH; if (pme->nFlags & 2) penv->dwFlags |= ENV_PITCHSUSTAIN; if (pme->nFlags & 4) penv->dwFlags |= ENV_PITCHLOOP; penv->nPitchEnv = (pme->nPoints > 16) ? 16 : pme->nPoints; penv->nPitchSustainBegin = penv->nPitchSustainEnd = pme->nSustainPos; penv->nPitchLoopStart = pme->nLoopStart; penv->nPitchLoopEnd = pme->nLoopEnd; pEnvPoints = penv->PitchPoints; pEnvData = penv->PitchEnv; } // Envelope data if ((pEnvPoints) && (pEnvData) && (pedata[iEnv])) { WORD *psrc = pedata[iEnv]; for (UINT i=0; i<16; i++) { pEnvPoints[i] = psrc[i*2]; pEnvData[i] = (BYTE)psrc[i*2+1]; } } } } dwMemPos += pmi->dwDataLen + 36; if (pfh->wVersion > 0x201) dwMemPos += 4; // ? } else { dwMemPos += 36; } } #ifdef MT2DEBUG Log("Loading samples at offset 0x%08X\n", dwMemPos); #endif memset(SampleMap, 0, sizeof(SampleMap)); m_nSamples = (pfh->wSamples < MAX_SAMPLES) ? pfh->wSamples : MAX_SAMPLES-1; for (UINT iSmp=1; iSmp<=256; iSmp++) { if (dwMemPos > dwMemLength - 36) return TRUE; const MT2SAMPLE *pms = (MT2SAMPLE *)(lpStream+dwMemPos); #ifdef MT2DEBUG if (iSmp <= m_nSamples) Log(" Sample #%d at offset %04X: %d bytes\n", iSmp, dwMemPos, pms->dwDataLen); #endif if (iSmp < MAX_SAMPLES) { memcpy(m_szNames[iSmp], pms->szName, 32); } if (pms->dwDataLen > dwMemLength - (dwMemPos+36)) return TRUE; if (pms->dwDataLen > 0) { SampleMap[iSmp-1] = pms; if (iSmp < MAX_SAMPLES) { MODINSTRUMENT *psmp = &Ins[iSmp]; psmp->nGlobalVol = 64; if (dwMemPos+sizeof(MT2SAMPLE) > dwMemLength) return TRUE; psmp->nVolume = (pms->wVolume >> 7); psmp->nPan = (pms->nPan == 0x80) ? 128 : (pms->nPan^0x80); psmp->nLength = pms->dwLength; psmp->nC4Speed = pms->dwFrequency; psmp->nLoopStart = pms->dwLoopStart; psmp->nLoopEnd = pms->dwLoopEnd; FrequencyToTranspose(psmp); psmp->RelativeTone -= pms->nBaseNote - 49; psmp->nC4Speed = TransposeToFrequency(psmp->RelativeTone, psmp->nFineTune); if (pms->nQuality == 2) { psmp->uFlags |= CHN_16BIT; psmp->nLength >>= 1; } if (pms->nChannels == 2) { psmp->nLength >>= 1; } if (pms->nLoop == 1) psmp->uFlags |= CHN_LOOP; if (pms->nLoop == 2) psmp->uFlags |= CHN_LOOP|CHN_PINGPONGLOOP; } dwMemPos += pms->dwDataLen + 36; } else { dwMemPos += 36; } } #ifdef MT2DEBUG Log("Loading groups at offset 0x%08X\n", dwMemPos); #endif for (UINT iMap=0; iMap<255; iMap++) if (InstrMap[iMap]) { const MT2INSTRUMENT *pmi = InstrMap[iMap]; INSTRUMENTHEADER *penv = NULL; if (iMap<m_nInstruments) penv = Headers[iMap+1]; for (UINT iGrp=0; iGrp<pmi->wSamples; iGrp++) { if (penv && dwMemPos < dwMemLength && dwMemPos < dwMemLength - 8) { const MT2GROUP *pmg = (MT2GROUP *)(lpStream+dwMemPos); for (UINT i=0; i<96; i++) { if (pmi->GroupsMapping[i] == iGrp) { UINT nSmp = pmg->nSmpNo+1; penv->Keyboard[i+12] = (BYTE)nSmp; if (nSmp <= m_nSamples) { Ins[nSmp].nVibType = pmi->bVibType; Ins[nSmp].nVibSweep = pmi->bVibSweep; Ins[nSmp].nVibDepth = pmi->bVibDepth; Ins[nSmp].nVibRate = pmi->bVibRate; } } } } dwMemPos += 8; } } #ifdef MT2DEBUG Log("Loading sample data at offset 0x%08X\n", dwMemPos); #endif for (UINT iData=0; iData<256; iData++) if ((iData < m_nSamples) && (SampleMap[iData])) { const MT2SAMPLE *pms = SampleMap[iData]; MODINSTRUMENT *psmp = &Ins[iData+1]; if (!(pms->nFlags & 5)) { if (psmp->nLength > 0 && dwMemPos < dwMemLength) { #ifdef MT2DEBUG Log(" Reading sample #%d at offset 0x%04X (len=%d)\n", iData+1, dwMemPos, psmp->nLength); #endif UINT rsflags; if (pms->nChannels == 2) rsflags = (psmp->uFlags & CHN_16BIT) ? RS_STPCM16D : RS_STPCM8D; else rsflags = (psmp->uFlags & CHN_16BIT) ? RS_PCM16D : RS_PCM8D; dwMemPos += ReadSample(psmp, rsflags, (LPCSTR)(lpStream+dwMemPos), dwMemLength-dwMemPos); } } else if (dwMemPos < dwMemLength-4) { UINT nNameLen = *(DWORD *)(lpStream+dwMemPos); dwMemPos += nNameLen + 16; } if (dwMemPos >= dwMemLength-4) break; } return TRUE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ //#include "stdafx.h" //#include "sndfile.h" //#pragma warning(disable:4244) ////////////////////////////////////////////////////////// // MTM file support (import only) #pragma pack(1) typedef struct tagMTMSAMPLE { char samplename[22]; // changed from CHAR DWORD length; DWORD reppos; DWORD repend; CHAR finetune; BYTE volume; BYTE attribute; } MTMSAMPLE; typedef struct tagMTMHEADER { char id[4]; // MTM file marker + version // changed from CHAR char songname[20]; // ASCIIZ songname // changed from CHAR WORD numtracks; // number of tracks saved BYTE lastpattern; // last pattern number saved BYTE lastorder; // last order number to play (songlength-1) WORD commentsize; // length of comment field BYTE numsamples; // number of samples saved BYTE attribute; // attribute byte (unused) BYTE beatspertrack; BYTE numchannels; // number of channels used BYTE panpos[32]; // voice pan positions } MTMHEADER; #pragma pack() BOOL CSoundFile::ReadMTM(LPCBYTE lpStream, DWORD dwMemLength) //----------------------------------------------------------- { MTMHEADER *pmh = (MTMHEADER *)lpStream; DWORD dwMemPos = 66; if ((!lpStream) || (dwMemLength < 0x100)) return FALSE; if ((strncmp(pmh->id, "MTM", 3)) || (pmh->numchannels > 32) || (pmh->numsamples >= MAX_SAMPLES) || (!pmh->numsamples) || (!pmh->numtracks) || (!pmh->numchannels) || (!pmh->lastpattern) || (pmh->lastpattern >= MAX_PATTERNS)) return FALSE; strncpy(m_szNames[0], pmh->songname, 20); m_szNames[0][20] = 0; if (dwMemPos + 37*pmh->numsamples + 128 + 192*pmh->numtracks + 64 * (pmh->lastpattern+1) + pmh->commentsize >= dwMemLength) return FALSE; m_nType = MOD_TYPE_MTM; m_nSamples = pmh->numsamples; m_nChannels = pmh->numchannels; // Reading instruments for (UINT i=1; i<=m_nSamples; i++) { MTMSAMPLE *pms = (MTMSAMPLE *)(lpStream + dwMemPos); strncpy(m_szNames[i], pms->samplename, 22); m_szNames[i][22] = 0; Ins[i].nVolume = pms->volume << 2; Ins[i].nGlobalVol = 64; DWORD len = pms->length; if ((len > 4) && (len <= MAX_SAMPLE_LENGTH)) { Ins[i].nLength = len; Ins[i].nLoopStart = pms->reppos; Ins[i].nLoopEnd = pms->repend; if (Ins[i].nLoopEnd > Ins[i].nLength) Ins[i].nLoopEnd = Ins[i].nLength; if (Ins[i].nLoopStart + 4 >= Ins[i].nLoopEnd) Ins[i].nLoopStart = Ins[i].nLoopEnd = 0; if (Ins[i].nLoopEnd) Ins[i].uFlags |= CHN_LOOP; Ins[i].nFineTune = MOD2XMFineTune(pms->finetune); if (pms->attribute & 0x01) { Ins[i].uFlags |= CHN_16BIT; Ins[i].nLength >>= 1; Ins[i].nLoopStart >>= 1; Ins[i].nLoopEnd >>= 1; } Ins[i].nPan = 128; } dwMemPos += 37; } // Setting Channel Pan Position for (UINT ich=0; ich<m_nChannels; ich++) { ChnSettings[ich].nPan = ((pmh->panpos[ich] & 0x0F) << 4) + 8; ChnSettings[ich].nVolume = 64; } // Reading pattern order memcpy(Order, lpStream + dwMemPos, pmh->lastorder+1); dwMemPos += 128; // Reading Patterns LPCBYTE pTracks = lpStream + dwMemPos; dwMemPos += 192 * pmh->numtracks; LPWORD pSeq = (LPWORD)(lpStream + dwMemPos); for (UINT pat=0; pat<=pmh->lastpattern; pat++) { PatternSize[pat] = 64; if ((Patterns[pat] = AllocatePattern(64, m_nChannels)) == NULL) break; for (UINT n=0; n<32; n++) if ((pSeq[n]) && (pSeq[n] <= pmh->numtracks) && (n < m_nChannels)) { LPCBYTE p = pTracks + 192 * (pSeq[n]-1); MODCOMMAND *m = Patterns[pat] + n; for (UINT i=0; i<64; i++, m+=m_nChannels, p+=3) { if (p[0] & 0xFC) m->note = (p[0] >> 2) + 37; m->instr = ((p[0] & 0x03) << 4) | (p[1] >> 4); UINT cmd = p[1] & 0x0F; UINT param = p[2]; if (cmd == 0x0A) { if (param & 0xF0) param &= 0xF0; else param &= 0x0F; } m->command = cmd; m->param = param; if ((cmd) || (param)) ConvertModCommand(m); } } pSeq += 32; } dwMemPos += 64*(pmh->lastpattern+1); if ((pmh->commentsize) && (dwMemPos + pmh->commentsize < dwMemLength)) { UINT n = pmh->commentsize; m_lpszSongComments = new char[n+1]; if (m_lpszSongComments) { memcpy(m_lpszSongComments, lpStream+dwMemPos, n); m_lpszSongComments[n] = 0; for (UINT i=0; i<n; i++) { if (!m_lpszSongComments[i]) { m_lpszSongComments[i] = ((i+1) % 40) ? 0x20 : 0x0D; } } } } dwMemPos += pmh->commentsize; // Reading Samples for (UINT ismp=1; ismp<=m_nSamples; ismp++) { if (dwMemPos >= dwMemLength) break; dwMemPos += ReadSample(&Ins[ismp], (Ins[ismp].uFlags & CHN_16BIT) ? RS_PCM16U : RS_PCM8U, (LPSTR)(lpStream + dwMemPos), dwMemLength - dwMemPos); } m_nMinPeriod = 64; m_nMaxPeriod = 32767; return TRUE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (endian and char fixes for PPC) */ ////////////////////////////////////////////// // Oktalyzer (OKT) module loader // ////////////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" //#pragma warning(disable:4244) #define MAGIC(a,b,c,d) (((a) << 24UL) | ((b) << 16UL) | ((c) << 8UL) | (d)) #pragma pack(1) typedef struct OKTFILEHEADER { DWORD okta; // "OKTA" DWORD song; // "SONG" DWORD cmod; // "CMOD" DWORD cmodlen; BYTE chnsetup[8]; DWORD samp; // "SAMP" DWORD samplen; } OKTFILEHEADER; typedef struct OKTSAMPLE { CHAR name[20]; DWORD length; WORD loopstart; WORD looplen; BYTE pad1; BYTE volume; BYTE pad2; BYTE pad3; } OKTSAMPLE; #pragma pack() static DWORD readBE32(const BYTE *v) { return (v[0] << 24UL) | (v[1] << 16UL) | (v[2] << 8UL) | v[3]; } BOOL CSoundFile::ReadOKT(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { const OKTFILEHEADER *pfh = (OKTFILEHEADER *)lpStream; DWORD dwMemPos = sizeof(OKTFILEHEADER), dwSize; UINT nsamples = 0, norders = 0;//, npatterns = 0 if ((!lpStream) || (dwMemLength < 1024)) return FALSE; if ((bswapBE32(pfh->okta) != MAGIC('O','K','T','A')) || (bswapBE32(pfh->song) != MAGIC('S','O','N','G')) || (bswapBE32(pfh->cmod) != MAGIC('C','M','O','D')) || (bswapBE32(pfh->cmodlen) != 8) || (pfh->chnsetup[0]) || (pfh->chnsetup[2]) || (pfh->chnsetup[4]) || (pfh->chnsetup[6]) || (bswapBE32(pfh->samp) != MAGIC('S','A','M','P'))) return FALSE; m_nType = MOD_TYPE_OKT; m_nChannels = 4 + pfh->chnsetup[1] + pfh->chnsetup[3] + pfh->chnsetup[5] + pfh->chnsetup[7]; if (m_nChannels > MAX_CHANNELS) m_nChannels = MAX_CHANNELS; nsamples = bswapBE32(pfh->samplen) >> 5; m_nSamples = nsamples; if (m_nSamples >= MAX_SAMPLES) m_nSamples = MAX_SAMPLES-1; // Reading samples for (UINT smp=1; smp <= nsamples; smp++) { if (dwMemPos >= dwMemLength - sizeof(OKTSAMPLE)) return TRUE; if (smp < MAX_SAMPLES) { const OKTSAMPLE *psmp = (const OKTSAMPLE *)(lpStream + dwMemPos); MODINSTRUMENT *pins = &Ins[smp]; memcpy(m_szNames[smp], psmp->name, 20); pins->uFlags = 0; pins->nLength = bswapBE32(psmp->length) & ~1; pins->nLoopStart = bswapBE16(psmp->loopstart); pins->nLoopEnd = pins->nLoopStart + bswapBE16(psmp->looplen); if (pins->nLoopStart + 2 < pins->nLoopEnd) pins->uFlags |= CHN_LOOP; pins->nGlobalVol = 64; pins->nVolume = psmp->volume << 2; pins->nC4Speed = 8363; } dwMemPos += sizeof(OKTSAMPLE); } // SPEE if (dwMemPos >= dwMemLength - 12) return TRUE; if (readBE32(lpStream + dwMemPos) == MAGIC('S','P','E','E')) { m_nDefaultSpeed = lpStream[dwMemPos+9]; dwSize = readBE32(lpStream + dwMemPos + 4); if (dwSize > dwMemLength - 8 || dwMemPos > dwMemLength - dwSize - 8) return TRUE; dwMemPos += dwSize + 8; } // SLEN if (dwMemPos + 10 > dwMemLength) return TRUE; if (readBE32(lpStream + dwMemPos) == MAGIC('S','L','E','N')) { // npatterns = lpStream[dwMemPos+9]; dwSize = readBE32(lpStream + dwMemPos + 4); if (dwSize > dwMemLength - 8 || dwMemPos > dwMemLength - dwSize - 8) return TRUE; dwMemPos += dwSize + 8; } // PLEN if (dwMemPos + 10 > dwMemLength) return TRUE; if (readBE32(lpStream + dwMemPos) == MAGIC('P','L','E','N')) { norders = lpStream[dwMemPos+9]; dwSize = readBE32(lpStream + dwMemPos + 4); if (dwSize > dwMemLength - 8 || dwMemPos > dwMemLength - dwSize - 8) return TRUE; dwMemPos += dwSize + 8; } // PATT if (dwMemPos + 8 > dwMemLength) return TRUE; if (readBE32(lpStream + dwMemPos) == MAGIC('P','A','T','T')) { UINT orderlen = norders; if (orderlen >= MAX_ORDERS) orderlen = MAX_ORDERS-1; if (dwMemPos + 8 + orderlen > dwMemLength) return TRUE; for (UINT i=0; i<orderlen; i++) Order[i] = lpStream[dwMemPos+8+i]; for (UINT j=orderlen; j>1; j--) { if (Order[j-1]) break; Order[j-1] = 0xFF; } dwSize = readBE32(lpStream + dwMemPos + 4); if (dwSize > dwMemLength - 8 || dwMemPos > dwMemLength - dwSize - 8) return TRUE; dwMemPos += dwSize + 8; } // PBOD UINT npat = 0; while ((dwMemPos < dwMemLength - 10) && (readBE32(lpStream + dwMemPos) == MAGIC('P','B','O','D'))) { DWORD dwPos = dwMemPos + 10; UINT rows = lpStream[dwMemPos+9]; if (!rows) rows = 64; if (npat < MAX_PATTERNS) { if ((Patterns[npat] = AllocatePattern(rows, m_nChannels)) == NULL) return TRUE; MODCOMMAND *m = Patterns[npat]; PatternSize[npat] = rows; UINT imax = m_nChannels*rows; for (UINT i=0; i<imax; i++, m++, dwPos+=4) { if (dwPos+4 > dwMemLength) break; const BYTE *p = lpStream+dwPos; UINT note = p[0]; if (note) { m->note = note + 48; m->instr = p[1] + 1; } UINT command = p[2]; UINT param = p[3]; m->param = param; switch(command) { // 0: no effect case 0: break; // 1: Portamento Up case 1: case 17: case 30: if (param) m->command = CMD_PORTAMENTOUP; break; // 2: Portamento Down case 2: case 13: case 21: if (param) m->command = CMD_PORTAMENTODOWN; break; // 10: Arpeggio case 10: case 11: case 12: m->command = CMD_ARPEGGIO; break; // 15: Filter case 15: m->command = CMD_MODCMDEX; m->param = param & 0x0F; break; // 25: Position Jump case 25: m->command = CMD_POSITIONJUMP; break; // 28: Set Speed case 28: m->command = CMD_SPEED; break; // 31: Volume Control case 31: if (param <= 0x40) m->command = CMD_VOLUME; else if (param <= 0x50) { m->command = CMD_VOLUMESLIDE; m->param &= 0x0F; if (!m->param) m->param = 0x0F; } else if (param <= 0x60) { m->command = CMD_VOLUMESLIDE; m->param = (param & 0x0F) << 4; if (!m->param) m->param = 0xF0; } else if (param <= 0x70) { m->command = CMD_MODCMDEX; m->param = 0xB0 | (param & 0x0F); if (!(param & 0x0F)) m->param = 0xBF; } else if (param <= 0x80) { m->command = CMD_MODCMDEX; m->param = 0xA0 | (param & 0x0F); if (!(param & 0x0F)) m->param = 0xAF; } break; } } } npat++; dwSize = readBE32(lpStream + dwMemPos + 4); if (dwSize > dwMemLength - 8 || dwMemPos > dwMemLength - dwSize - 8) return TRUE; dwMemPos += dwSize + 8; } // SBOD UINT nsmp = 1; while ((dwMemPos < dwMemLength-10) && (readBE32(lpStream + dwMemPos) == MAGIC('S','B','O','D'))) { if (nsmp < MAX_SAMPLES) ReadSample(&Ins[nsmp], RS_PCM8S, (LPSTR)(lpStream+dwMemPos+8), dwMemLength-dwMemPos-8); nsmp++; dwSize = readBE32(lpStream + dwMemPos + 4); if (dwSize > dwMemLength - 8 || dwMemPos > dwMemLength - dwSize - 8) return TRUE; dwMemPos += dwSize + 8; } return TRUE; } /* MikMod Sound System By Jake Stine of Divine Entertainment (1996-2000) Support: If you find problems with this code, send mail to: air@divent.org Distribution / Code rights: Use this source code in any fashion you see fit. Giving me credit where credit is due is optional, depending on your own levels of integrity and honesty. ----------------------------------------- Module: LOAD_PAT PAT sample loader. by Peter Grootswagers (2006) <email:pgrootswagers@planet.nl> It's primary purpose is loading samples for the .abc and .mid modules Can also be used stand alone, in that case a tune (frere Jacques) is generated using al samples available in the .pat file Portability: All systems - all compilers (hopefully) */ #include <stdlib.h> #include <time.h> #include <string.h> #ifdef HAVE_STRINGS_H #include <strings.h> #endif #include <math.h> #include <ctype.h> #include <limits.h> /* PATH_MAX */ #ifndef _WIN32 #include <unistd.h> /* sleep() */ #endif //#include "stdafx.h" //#include "sndfile.h" #ifndef PATH_MAX #define PATH_MAX 256 #endif //#include "load_pat.h" #if defined(_WIN32)||defined(__OS2__) #define DIRDELIM '\\' #define TIMIDITYCFG "C:\\TIMIDITY\\TIMIDITY.CFG" #define PATHFORPAT "C:\\TIMIDITY\\INSTRUMENTS" #else #define DIRDELIM '/' #define TIMIDITYCFG "/etc/timidity.cfg" /*"/usr/share/timidity/timidity.cfg"*/ #define PATHFORPAT "/usr/share/timidity/instruments" #endif #define PAT_ENV_PATH2CFG "MMPAT_PATH_TO_CFG" // 128 gm and 63 drum #define MAXSMP 191 static char midipat[MAXSMP][PATH_MAX]; static char pathforpat[PATH_MAX]; static char timiditycfg[PATH_MAX]; #pragma pack(1) typedef struct { char header[12]; // ascizz GF1PATCH110 char gravis_id[10]; // allways ID#000002 char description[60]; BYTE instruments; BYTE voices; BYTE channels; WORD waveforms; WORD master_volume; DWORD data_size; char reserved[36]; } PatchHeader; typedef struct { WORD instrument_id; char instrument_name[16]; DWORD instrument_size; BYTE layers; char reserved[40]; } InstrumentHeader; typedef struct { BYTE layer_dup; BYTE layer_id; DWORD layer_size; BYTE samples; char reserved[40]; } LayerHeader; typedef struct { char wave_name[7]; BYTE fractions; DWORD wave_size; DWORD start_loop; DWORD end_loop; WORD sample_rate; DWORD low_frequency ; DWORD high_frequency; DWORD root_frequency; short int tune; BYTE balance; BYTE envelope_rate[6]; BYTE envelope_offset[6]; BYTE tremolo_sweep; BYTE tremolo_rate; BYTE tremolo_depth; BYTE vibrato_sweep; BYTE vibrato_rate; BYTE vibrato_depth; BYTE modes; DWORD scale_frequency; DWORD scale_factor; char reserved[32]; } WaveHeader; // WaveHeader.modes bits #define PAT_16BIT 1 #define PAT_UNSIGNED 2 #define PAT_LOOP 4 #define PAT_PINGPONG 8 #define PAT_BACKWARD 16 #define PAT_SUSTAIN 32 #define PAT_ENVELOPE 64 #define PAT_CLAMPED 128 #define C4SPD 8363 #define C4mHz 523251 #define C4 523.251f #define PI 3.141592653589793f #define OMEGA ((2.0f * PI * C4)/(float)C4SPD) /**********************************************************************/ static BYTE pat_gm_used[MAXSMP]; static BYTE pat_loops[MAXSMP]; /**********************************************************************/ typedef struct _PATHANDLE { char patname[16]; int samples; } PATHANDLE; // local prototypes static int pat_getopt(const char *s, const char *o, int dflt); static void pat_message(const char *s1, const char *s2) { char txt[256]; if( strlen(s1) + strlen(s2) > 255 ) return; sprintf(txt, s1, s2); fprintf(stderr, "load_pat > %s\n", txt); } void pat_resetsmp(void) { int i; for( i=0; i<MAXSMP; i++ ) { pat_loops[i] = 0; pat_gm_used[i] = 0; } } int pat_numsmp() { return strlen((const char *)pat_gm_used); } int pat_numinstr(void) { return strlen((const char *)pat_gm_used); } int pat_smptogm(int smp) { if( smp && smp < MAXSMP && pat_gm_used[smp - 1] < MAXSMP ) return pat_gm_used[smp - 1]; return 1; } int pat_gmtosmp(int gm) { int smp; for( smp=0; pat_gm_used[smp]; smp++ ) if( pat_gm_used[smp] == gm ) return smp+1; if( smp < MAXSMP ) { pat_gm_used[smp] = gm; return smp+1; } return 1; } int pat_smplooped(int smp) { if( smp < MAXSMP ) return pat_loops[smp - 1]; return 1; } const char *pat_gm_name(int gm) { static char buf[40]; if( gm < 1 || gm > MAXSMP ) { sprintf(buf, "invalid gm %d", gm); return buf; } return midipat[gm - 1]; } int pat_gm_drumnr(int n) { if( n < 25 ) return 129; if( n+129-25 < MAXSMP ) return 129+n-25; // timidity.cfg drum patches start at 25 return MAXSMP; } int pat_gm_drumnote(int n) { char *p; p = strchr(midipat[pat_gm_drumnr(n)-1], ':'); if( p ) return pat_getopt(p+1, "note", n); return n; } static float pat_sinus(int i) { float res = sinf(OMEGA * (float)i); return res; } static float pat_square(int i) { float res = 30.0f * sinf(OMEGA * (float)i); if( res > 0.99f ) return 0.99f; if( res < -0.99f ) return -0.99f; return res; } static float pat_sawtooth(int i) { float res = OMEGA * (float)i; while( res > 2 * PI ) res -= 2 * PI; i = 2; if( res > PI ) { res = PI - res; i = -2; } res = (float)i * res / PI; if( res > 0.9f ) return 1.0f - res; if( res < -0.9f ) return 1.0f + res; return res; } typedef float (*PAT_SAMPLE_FUN)(int); static PAT_SAMPLE_FUN pat_fun[] = { pat_sinus, pat_square, pat_sawtooth }; #if defined(_WIN32) && defined(_mm_free) #undef _mm_free #endif #define MMSTREAM FILE #define _mm_fopen(name,mode) fopen(name,mode) #define _mm_fgets(f,buf,sz) fgets(buf,sz,f) #define _mm_fseek(f,pos,whence) fseek(f,pos,whence) #define _mm_ftell(f) ftell(f) #define _mm_read_UBYTES(buf,sz,f) fread(buf,sz,1,f) #define _mm_read_SBYTES(buf,sz,f) fread(buf,sz,1,f) #define _mm_feof(f) feof(f) #define _mm_fclose(f) fclose(f) #define DupStr(h,buf,sz) strdup(buf) #define _mm_calloc(h,n,sz) calloc(n,sz) #define _mm_recalloc(h,buf,sz,elsz) realloc(buf,sz) #define _mm_free(h,p) free(p) long _mm_getfsize(MMSTREAM *mmpat) { long fsize; _mm_fseek(mmpat, 0L, SEEK_END); fsize = _mm_ftell(mmpat); _mm_fseek(mmpat, 0L, SEEK_SET); return(fsize); } void pat_init_patnames(void) { int z, i, nsources, isdrumset, nskip, pfnlen; char *p, *q; char line[PATH_MAX]; char cfgsources[5][PATH_MAX] = {{0}, {0}, {0}, {0}, {0}}; MMSTREAM *mmcfg; strncpy(pathforpat, PATHFORPAT, PATH_MAX); strncpy(timiditycfg, TIMIDITYCFG, PATH_MAX); p = getenv(PAT_ENV_PATH2CFG); if( p ) { strncpy(timiditycfg, p, PATH_MAX - 14); strncpy(pathforpat, p, PATH_MAX - 13); strcat(timiditycfg, "/timidity.cfg"); strcat(pathforpat, "/instruments"); } strncpy(cfgsources[0], timiditycfg, PATH_MAX - 1); cfgsources[0][PATH_MAX - 1] = '\0'; nsources = 1; for( i=0; i<MAXSMP; i++ ) midipat[i][0] = '\0'; for ( z=0; z<5; z++ ) { if (cfgsources[z][0] == 0) continue; mmcfg = _mm_fopen(cfgsources[z],"r"); if( !mmcfg ) { pat_message("can not open %s, use environment variable " PAT_ENV_PATH2CFG " for the directory", cfgsources[z]); } else { // read in bank 0 and drum patches isdrumset = 0; _mm_fgets(mmcfg, line, PATH_MAX); while( !_mm_feof(mmcfg) ) { p = line; while ( isspace(*p) ) p ++; if( isdigit(p[0]) ) { // get pat number i = atoi(p); while ( isdigit(*p) ) p ++; while ( isspace(*p) ) p ++; // get pat file name if( *p && i < MAXSMP && i >= 0 && *p != '#' ) { q = isdrumset ? midipat[pat_gm_drumnr(i)-1] : midipat[i]; pfnlen = 0; while( *p && !isspace(*p) && *p != '#' && pfnlen < 128 ) { pfnlen ++; *q++ = *p++; } if( isblank(*p) && *(p+1) != '#' && pfnlen < 128 ) { *q++ = ':'; pfnlen ++; while( isspace(*p) ) { while( isspace(*p) ) p++; if ( *p == '#' ) { // comment } else while( *p && !isspace(*p) && pfnlen < 128 ) { pfnlen ++; *q++ = *p++; } if( isspace(*p) ) { *q++ = ' '; pfnlen++; } } } *q++ = '\0'; } } else if( !strncmp(p,"bank",4) ) isdrumset = 0; else if( !strncmp(p,"drumset",7) ) isdrumset = 1; else if( !strncmp(p,"soundfont",9) ) { fprintf(stderr, "warning: soundfont directive unsupported!\n"); } else if( !strncmp(p,"dir",3) ) { p += 3; while ( isspace(*p) ) p ++; q = p + strlen(p); if(q > p) { --q; while ( q > p && isspace(*q) ) *(q--) = 0; strncpy(pathforpat, p, PATH_MAX - 1); pathforpat[PATH_MAX - 1] = 0; } } else if( !strncmp(p,"source",6) && nsources < 5 ) { q = cfgsources[nsources]; p += 6; while ( isspace(*p) ) p ++; pfnlen = 0; while ( *p && *p != '#' && !isspace(*p) && pfnlen < 128 ) { pfnlen ++; *q++ = *p++; } *q = 0; // null termination nsources++; } _mm_fgets(mmcfg, line, PATH_MAX); } /* end file parsing */ _mm_fclose(mmcfg); } } q = midipat[0]; nskip = 0; // make all empty patches duplicates the previous valid one. for( i=0; i<MAXSMP; i++ ) { if( midipat[i][0] ) q = midipat[i]; else { if( midipat[i] != q) strcpy(midipat[i], q); if( midipat[i][0] == '\0' ) nskip++; } } if( nskip ) { for( i=MAXSMP; i-- > 0; ) { if( midipat[i][0] ) q = midipat[i]; else if( midipat[i] != q ) strcpy(midipat[i], q); } } } static char *pat_build_path(char *fname, int pat) { char *ps, *p; char *patfile = midipat[pat]; int has_ext = 0, isabspath = (patfile[0] == '/'); if ( isabspath ) patfile ++; ps = strrchr(patfile, ':'); if( ps ) { sprintf(fname, "%s%c%s", isabspath ? "" : pathforpat, DIRDELIM, patfile); strcpy(strrchr(fname, ':'), ".pat"); return ps; } p = strrchr(patfile, '.'); if(p && !strcasecmp(p, ".pat")) has_ext = 1; sprintf(fname, "%s%c%s%s", isabspath ? "" : pathforpat, DIRDELIM, patfile, has_ext ? "" : ".pat"); return 0; } static void pat_read_patname(PATHANDLE *h, MMFILE *mmpat) { InstrumentHeader ih; mmfseek(mmpat,sizeof(PatchHeader), SEEK_SET); mmreadUBYTES((BYTE *)&ih, sizeof(InstrumentHeader), mmpat); strncpy(h->patname, ih.instrument_name, 16); h->patname[15] = '\0'; } static void pat_read_layerheader(MMSTREAM *mmpat, LayerHeader *hl) { _mm_fseek(mmpat,sizeof(PatchHeader)+sizeof(InstrumentHeader), SEEK_SET); _mm_read_UBYTES((BYTE *)hl, sizeof(LayerHeader), mmpat); } static void pat_get_layerheader(MMFILE *mmpat, LayerHeader *hl) { InstrumentHeader ih; mmfseek(mmpat,sizeof(PatchHeader), SEEK_SET); mmreadUBYTES((BYTE *)&ih, sizeof(InstrumentHeader), mmpat); mmreadUBYTES((BYTE *)hl, sizeof(LayerHeader), mmpat); strncpy(hl->reserved, ih.instrument_name, 40); } static int pat_read_numsmp(MMFILE *mmpat) { LayerHeader hl; pat_get_layerheader(mmpat, &hl); return hl.samples; } static void pat_read_waveheader(MMSTREAM *mmpat, WaveHeader *hw, int layer) { long int pos, bestpos=0; LayerHeader hl; ULONG bestfreq, freqdist; int i; // read the very first and maybe only sample pat_read_layerheader(mmpat, &hl); if (hl.samples > MAXSMP) hl.samples = MAXSMP; if( hl.samples > 1 ) { if( layer ) { if( layer > hl.samples ) layer = hl.samples; // you don't fool me.... for( i=1; i<layer; i++ ) { _mm_read_UBYTES((BYTE *)hw, sizeof(WaveHeader), mmpat); _mm_fseek(mmpat, hw->wave_size, SEEK_CUR); } } else { bestfreq = C4mHz * 1000; // big enough for( i=0; i<hl.samples; i++ ) { pos = _mm_ftell(mmpat); _mm_read_UBYTES((BYTE *)hw, sizeof(WaveHeader), mmpat); if( hw->root_frequency > C4mHz ) freqdist = hw->root_frequency - C4mHz; else freqdist = 2 * (C4mHz - hw->root_frequency); if( freqdist < bestfreq ) { bestfreq = freqdist; bestpos = pos; } _mm_fseek(mmpat, hw->wave_size, SEEK_CUR); } // if invalid bestpos, assume the start. if( bestpos < 0 ) bestpos = 0; _mm_fseek(mmpat, bestpos, SEEK_SET); } } _mm_read_UBYTES((BYTE *)hw, sizeof(WaveHeader), mmpat); strncpy(hw->reserved, hl.reserved, 32); hw->reserved[31] = 0; if( hw->start_loop >= hw->wave_size ) { hw->start_loop = 0; hw->end_loop = 0; hw->modes &= ~PAT_LOOP; // mask off loop indicator } if( hw->end_loop > hw->wave_size ) hw->end_loop = hw->wave_size; } static void pat_get_waveheader(MMFILE *mmpat, WaveHeader *hw, int layer) { long int pos, bestpos=0; LayerHeader hl; ULONG bestfreq, freqdist; int i; // read the very first and maybe only sample pat_get_layerheader(mmpat, &hl); if( hl.samples > 1 ) { if( layer ) { if( layer > hl.samples ) layer = hl.samples; // you don't fool me.... for( i=1; i<layer; i++ ) { mmreadUBYTES((BYTE *)hw, sizeof(WaveHeader), mmpat); mmfseek(mmpat, hw->wave_size, SEEK_CUR); if ( mmpat->error ) { hw->wave_size = 0; return; } } } else { bestfreq = C4mHz * 1000; // big enough for( i=0; i<hl.samples; i++ ) { pos = mmftell(mmpat); mmreadUBYTES((BYTE *)hw, sizeof(WaveHeader), mmpat); if( hw->root_frequency > C4mHz ) freqdist = hw->root_frequency - C4mHz; else freqdist = 2 * (C4mHz - hw->root_frequency); if( freqdist < bestfreq ) { bestfreq = freqdist; bestpos = pos; } mmfseek(mmpat, hw->wave_size, SEEK_CUR); } mmfseek(mmpat, bestpos, SEEK_SET); } } mmreadUBYTES((BYTE *)hw, sizeof(WaveHeader), mmpat); if( hw->start_loop >= hw->wave_size ) { hw->start_loop = 0; hw->end_loop = 0; hw->modes &= ~PAT_LOOP; // mask off loop indicator } if( hw->end_loop > hw->wave_size ) hw->end_loop = hw->wave_size; } static int pat_readpat_attr(int pat, WaveHeader *hw, int layer) { char fname[128]; unsigned long fsize; MMSTREAM *mmpat; pat_build_path(fname, pat); mmpat = _mm_fopen(fname, "rb"); if( !mmpat ) return 0; fsize = _mm_getfsize(mmpat); pat_read_waveheader(mmpat, hw, layer); _mm_fclose(mmpat); if (hw->wave_size > fsize) return 0; return 1; } static void pat_amplify(char *b, int num, int amp, int m) { char *pb; BYTE *pu; short int *pi; WORD *pw; int i,n,v; n = num; if( m & PAT_16BIT ) { // 16 bit n >>= 1; if( m & 2 ) { // unsigned pw = (WORD *)b; for( i=0; i<n; i++ ) { v = (((int)(*pw) - 0x8000) * amp) / 100; if( v < -0x8000 ) v = -0x8000; if( v > 0x7fff ) v = 0x7fff; *pw++ = v + 0x8000; } } else { pi = (short int *)b; for( i=0; i<n; i++ ) { v = ((*pi) * amp) / 100; if( v < -0x8000 ) v = -0x8000; if( v > 0x7fff ) v = 0x7fff; *pi++ = v; } } } else { if( m & 2 ) { // unsigned pu = (BYTE *)b; for( i=0; i<n; i++ ) { v = (((int)(*pu) - 0x80) * amp) / 100; if( v < -0x80 ) v = -0x80; if( v > 0x7f ) v = 0x7f; *pu++ = v + 0x80; } } else { pb = (char *)b; for( i=0; i<n; i++ ) { v = ((*pb) * amp) / 100; if( v < -0x80 ) v = -0x80; if( v > 0x7f ) v = 0x7f; *pb++ = v; } } } } static int pat_getopt(const char *s, const char *o, int dflt) { const char *p; if( !s ) return dflt; p = strstr(s,o); if( !p ) return dflt; return atoi(strchr(p,'=')+1); } static void pat_readpat(int pat, char *dest, int num) { static int readlasttime = 0, wavesize = 0; static MMSTREAM *mmpat = 0; static char *opt = 0; int amp; char fname[128]; WaveHeader hw; if( !readlasttime ) { opt=pat_build_path(fname, pat); mmpat = _mm_fopen(fname, "rb"); if( !mmpat ) return; pat_read_waveheader(mmpat, &hw, 0); wavesize = hw.wave_size; } _mm_read_SBYTES(dest, num, mmpat); amp = pat_getopt(opt,"amp",100); if( amp != 100 ) pat_amplify(dest, num, amp, hw.modes); readlasttime += num; if( readlasttime < wavesize ) return; readlasttime = 0; _mm_fclose(mmpat); mmpat = 0; } static BOOL dec_pat_Decompress16Bit(short int *dest, int cbcount, int samplenum) { int i; PAT_SAMPLE_FUN f; if( samplenum < MAXSMP ) pat_readpat(samplenum, (char *)dest, cbcount*2); else { f = pat_fun[(samplenum - MAXSMP) % 3]; for( i=0; i<cbcount; i++ ) dest[i] = (short int)(32000.0*f(i)); } return cbcount; } // convert 8 bit data to 16 bit! // We do the conversion in reverse so that the data we're converting isn't overwritten // by the result. static void pat_blowup_to16bit(short int *dest, int cbcount) { char *s; short int *d; int t; s = (char *)dest; d = dest; s += cbcount; d += cbcount; for(t=0; t<cbcount; t++) { s--; d--; *d = (*s) << 8; } } static BOOL dec_pat_Decompress8Bit(short int *dest, int cbcount, int samplenum) { int i; PAT_SAMPLE_FUN f; if( samplenum < MAXSMP ) { pat_readpat(samplenum, (char *)dest, cbcount); pat_blowup_to16bit(dest, cbcount); } else { f = pat_fun[(samplenum - MAXSMP) % 3]; for( i=0; i<cbcount; i++ ) dest[i] = (short int)(120.0*f(i)) << 8; } return cbcount; } // ===================================================================================== BOOL CSoundFile::TestPAT(const BYTE *lpStream, DWORD dwMemLength) // ===================================================================================== { PatchHeader ph; if( dwMemLength < sizeof(PatchHeader) ) return 0; memcpy((BYTE *)&ph, lpStream, sizeof(PatchHeader)); if( !strcmp(ph.header,"GF1PATCH110") && !strcmp(ph.gravis_id,"ID#000002") ) return 1; return 0; } // ===================================================================================== static PATHANDLE *PAT_Init(void) { return (PATHANDLE *)calloc(1,sizeof(PATHANDLE)); } // ===================================================================================== static void PAT_Cleanup(PATHANDLE *handle) // ===================================================================================== { if(handle) { free(handle); } } static char tune[] = "c d e c|c d e c|e f g..|e f g..|gagfe c|gagfe c|c G c..|c G c..|"; static int pat_note(int abc) { switch( abc ) { case 'C': return 48; case 'D': return 50; case 'E': return 52; case 'F': return 53; case 'G': return 55; case 'A': return 57; case 'B': return 59; case 'c': return 60; case 'd': return 62; case 'e': return 64; case 'f': return 65; case 'g': return 67; case 'a': return 69; case 'b': return 71; default: break; } return 0; } int pat_modnote(int midinote) { int n; n = midinote; n += 13; return n; } // ===================================================================================== static void PAT_ReadPatterns(MODCOMMAND *pattern[], WORD psize[], PATHANDLE *h, int numpat) // ===================================================================================== { int pat,row,i,ch; BYTE n,ins,vol; int t; int tt1, tt2; MODCOMMAND *m; if( numpat > MAX_PATTERNS ) numpat = MAX_PATTERNS; tt2 = (h->samples - 1) * 16 + 128; for( pat = 0; pat < numpat; pat++ ) { pattern[pat] = CSoundFile::AllocatePattern(64, h->samples); if( !pattern[pat] ) return; psize[pat] = 64; for( row = 0; row < 64; row++ ) { tt1 = (pat * 64 + row); for( ch = 0; ch < h->samples; ch++ ) { t = tt1 - ch * 16; m = &pattern[pat][row * h->samples + ch]; m->param = 0; m->command = CMD_NONE; if( t >= 0 ) { i = tt2 - 16 * ((h->samples - 1 - ch) & 3); if( tt1 < i ) { t = t % 64; if( isalpha(tune[t]) ) { n = pat_modnote(pat_note(tune[t])); ins = ch + 1; vol = 40; if( (t % 16) == 0 ) { vol += vol / 10; if( vol > 64 ) vol = 64; } m->instr = ins; m->note = n; // <- normal note m->volcmd = VOLCMD_VOLUME; m->vol = vol; } if( tt1 == i - 1 && ch == 0 && row < 63 ) { m->command = CMD_PATTERNBREAK; } } else { if( tt1 == i ) { m->param = 0; m->command = CMD_KEYOFF; m->volcmd = VOLCMD_VOLUME; m->vol = 0; } } } } } } } // calculate the best speed that approximates the pat root frequency as a C note static ULONG pat_patrate_to_C4SPD(ULONG patRate , ULONG patMilliHz) { ULONG u; double x, y; u = patMilliHz; x = 0.1 * patRate; x = x * C4mHz; y = u * 0.4; x = x / y; u = (ULONG)(x+0.5); return u; } // return relative position in samples for the rate starting with offset start ending with offset end static int pat_envelope_rpos(int rate, int start, int end) { int r, p, t, s; // rate byte is 3 bits exponent and 6 bits increment size // eeiiiiii // every 8 to the power ee the volume is incremented/decremented by iiiiii // Thank you Gravis for this weirdness... r = 3 - ((rate >> 6) & 3) * 3; p = rate & 0x3f; if( !p ) return 0; t = end - start; if( !t ) return 0; if (t < 0) t = -t; s = (t << r)/ p; return s; } static void pat_modenv(WaveHeader *hw, int mpos[6], int mvol[6]) { int i, sum, s; BYTE *prate = hw->envelope_rate, *poffset = hw->envelope_offset; for( i=0; i<6; i++ ) { mpos[i] = 0; mvol[i] = 64; } if( !memcmp(prate, "??????", 6) || poffset[5] >= 100 ) return; // weird rates or high env end volume if( !(hw->modes & PAT_SUSTAIN) ) return; // no sustain thus no need for envelope s = hw->wave_size; if (s == 0) return; if( hw->modes & PAT_16BIT ) s >>= 1; // offsets 0 1 2 3 4 5 are distributed over 0 2 4 6 8 10, the odd numbers are set in between sum = 0; for( i=0; i<6; i++ ) { mvol[i] = poffset[i]; mpos[i] = pat_envelope_rpos(prate[i], i? poffset[i-1]: 0, poffset[i]); sum += mpos[i]; } if( sum == 0 ) return; if( sum > s ) { for( i=0; i<6; i++ ) mpos[i] = (s * mpos[i]) / sum; } for( i=1; i<6; i++ ) mpos[i] += mpos[i-1]; for( i=0; i<6 ; i++ ) { mpos[i] = (256 * mpos[i]) / s; mpos[i]++; if( i > 0 && mpos[i] <= mpos[i-1] ) { if( mvol[i] == mvol[i-1] ) mpos[i] = mpos[i-1]; else mpos[i] = mpos[i-1] + 1; } if( mpos[i] > 256 ) mpos[i] = 256; } mvol[5] = 0; // kill Bill.... } static void pat_setpat_inst(WaveHeader *hw, INSTRUMENTHEADER *d, int smp) { int u, inuse; int envpoint[6], envvolume[6]; d->nMidiProgram = 0; d->nFadeOut = 0; d->nPan = 128; d->nPPC = 5*12; d->dwFlags = 0; if( hw->modes & PAT_ENVELOPE ) d->dwFlags |= ENV_VOLUME; if( hw->modes & PAT_SUSTAIN ) d->dwFlags |= ENV_VOLSUSTAIN; if( (hw->modes & PAT_LOOP) && (hw->start_loop != hw->end_loop) ) d->dwFlags |= ENV_VOLLOOP; d->nVolEnv = 6; //if (!d->nVolEnv) d->dwFlags &= ~ENV_VOLUME; d->nPanEnv = 0; d->nVolSustainBegin = 1; d->nVolSustainEnd = 1; d->nVolLoopStart = 1; d->nVolLoopEnd = 2; d->nPanSustainBegin = 0; d->nPanSustainEnd = 0; d->nPanLoopStart = 0; d->nPanLoopEnd = 0; d->nGlobalVol = 64; pat_modenv(hw, envpoint, envvolume); inuse = 0; for( u=0; u<6; u++) { if( envvolume[u] != 64 ) inuse = 1; d->VolPoints[u] = envpoint[u]; d->VolEnv[u] = envvolume[u]; d->PanPoints[u] = 0; d->PanEnv[u] = 0; if (u) { if (d->VolPoints[u] < d->VolPoints[u-1]) { d->VolPoints[u] &= 0xFF; d->VolPoints[u] += d->VolPoints[u-1] & 0xFF00; if (d->VolPoints[u] < d->VolPoints[u-1]) d->VolPoints[u] += 0x100; } } } if( !inuse ) d->nVolEnv = 0; for( u=0; u<128; u++) { d->NoteMap[u] = u+1; d->Keyboard[u] = smp; } } static void PATinst(INSTRUMENTHEADER *d, int smp, int gm) { WaveHeader hw; if( pat_readpat_attr(gm-1, &hw, 0) ) { pat_setpat_inst(&hw, d, smp); } else { hw.modes = PAT_16BIT|PAT_ENVELOPE|PAT_SUSTAIN|PAT_LOOP; hw.start_loop = 0; hw.end_loop = 30000; hw.wave_size = 30000; // envelope rates and offsets pinched from timidity's acpiano.pat sample no 1 hw.envelope_rate[0] = 0x3f; hw.envelope_rate[1] = 0x3f; hw.envelope_rate[2] = 0x3f; hw.envelope_rate[3] = 0x08|(3<<6); hw.envelope_rate[4] = 0x3f; hw.envelope_rate[5] = 0x3f; hw.envelope_offset[0] = 246; hw.envelope_offset[1] = 246; hw.envelope_offset[2] = 246; hw.envelope_offset[3] = 0; hw.envelope_offset[4] = 0; hw.envelope_offset[5] = 0; strncpy(hw.reserved, midipat[gm-1], sizeof(hw.reserved)); hw.reserved[sizeof(hw.reserved) - 1] = '\0'; pat_setpat_inst(&hw, d, smp); } /* strncpy 0-inits the entire field. */ strncpy((char *)d->name, hw.reserved[0] ? hw.reserved : midipat[gm-1], 32); d->name[31] = '\0'; strncpy((char *)d->filename, midipat[gm-1], 12); d->filename[11] = '\0'; } static void pat_setpat_attr(WaveHeader *hw, MODINSTRUMENT *q) { q->nC4Speed = pat_patrate_to_C4SPD(hw->sample_rate , hw->root_frequency); q->nLength = hw->wave_size; q->nLoopStart = hw->start_loop; q->nLoopEnd = hw->end_loop; q->nVolume = 256; if( hw->modes & PAT_16BIT ) { q->nLength >>= 1; q->nLoopStart >>= 1; q->nLoopEnd >>= 1; } if( hw->modes & PAT_LOOP ) { q->uFlags |= CHN_LOOP; if( hw->modes & PAT_PINGPONG ) q->uFlags |= CHN_PINGPONGSUSTAIN; if( hw->modes & PAT_SUSTAIN ) q->uFlags |= CHN_SUSTAINLOOP; } } // ========================== // Load those darned Samples! static void PATsample(CSoundFile *cs, MODINSTRUMENT *q, int smp, int gm) { WaveHeader hw; char s[PATH_MAX + 32]; sprintf(s, "%d:%s", smp-1, midipat[gm-1]); s[31] = '\0'; #if defined(__GNUC__) && __GNUC__ >= 8 /* GCC's warning is broken and ignores the manual termination in this case. */ #pragma GCC diagnostic ignored "-Wstringop-truncation" #endif /* strncpy 0-inits the entire field. */ strncpy(cs->m_szNames[smp], s, 32); cs->m_szNames[smp][31] = '\0'; q->nGlobalVol = 64; q->nPan = 128; q->uFlags = CHN_16BIT; if( pat_readpat_attr(gm-1, &hw, 0) ) { char *p; pat_setpat_attr(&hw, q); pat_loops[smp-1] = (q->uFlags & CHN_LOOP)? 1: 0; if( hw.modes & PAT_16BIT ) p = (char *)malloc(hw.wave_size); else p = (char *)malloc(hw.wave_size * sizeof(char)*2); if( p ) { if( hw.modes & PAT_16BIT ) { dec_pat_Decompress16Bit((short int *)p, hw.wave_size>>1, gm - 1); cs->ReadSample(q, (hw.modes&PAT_UNSIGNED)?RS_PCM16U:RS_PCM16S, (LPSTR)p, hw.wave_size); } else { dec_pat_Decompress8Bit((short int *)p, hw.wave_size, gm - 1); cs->ReadSample(q, (hw.modes&PAT_UNSIGNED)?RS_PCM16U:RS_PCM16S, (LPSTR)p, hw.wave_size * sizeof(short int)); } free(p); } } else { char *p; q->nC4Speed = C4SPD; q->nLength = 30000; q->nLoopStart = 0; q->nLoopEnd = 30000; q->nVolume = 256; q->uFlags |= CHN_LOOP; q->uFlags |= CHN_16BIT; p = (char *)malloc(q->nLength*sizeof(char)*2); if( p ) { dec_pat_Decompress8Bit((short int *)p, q->nLength, smp + MAXSMP - 1); cs->ReadSample(q, RS_PCM16S, (LPSTR)p, q->nLength*2); free(p); } } } // ===================================================================================== BOOL PAT_Load_Instruments(void *c) { uint32_t t; CSoundFile *of=(CSoundFile *)c; if( !pat_numsmp() ) pat_gmtosmp(1); // make sure there is a sample of->m_nSamples = pat_numsmp() + 1; // xmms modplug does not use slot zero of->m_nInstruments = pat_numinstr() + 1; for(t=1; t<of->m_nInstruments; t++) { // xmms modplug doesn't use slot zero if( (of->Headers[t] = new INSTRUMENTHEADER) == NULL ) return FALSE; memset(of->Headers[t], 0, sizeof(INSTRUMENTHEADER)); PATinst(of->Headers[t], t, pat_smptogm(t)); } for(t=1; t<of->m_nSamples; t++) { // xmms modplug doesn't use slot zero PATsample(of, &of->Ins[t], t, pat_smptogm(t)); } // copy last of the mohicans to entry 0 for XMMS modinfo to work.... t = of->m_nInstruments - 1; if( (of->Headers[0] = new INSTRUMENTHEADER) == NULL ) return FALSE; memcpy(of->Headers[0], of->Headers[t], sizeof(INSTRUMENTHEADER)); memset(of->Headers[0]->name, 0, 32); strncpy((char *)of->Headers[0]->name, "Timidity GM patches", 32); t = of->m_nSamples - 1; memcpy(&of->Ins[0], &of->Ins[t], sizeof(MODINSTRUMENT)); return TRUE; } // ===================================================================================== BOOL CSoundFile::ReadPAT(const BYTE *lpStream, DWORD dwMemLength) { static int avoid_reentry = 0; char buf[60]; int t; PATHANDLE *h; int numpat; MMFILE mm, *mmfile; MODINSTRUMENT *q; INSTRUMENTHEADER *d; if( !TestPAT(lpStream, dwMemLength) ) return FALSE; h = PAT_Init(); if( !h ) return FALSE; mmfile = &mm; mm.mm = (char *)lpStream; mm.sz = dwMemLength; mm.pos = 0; mm.error = 0; while( avoid_reentry ) sleep(1); avoid_reentry = 1; pat_read_patname(h, mmfile); h->samples = pat_read_numsmp(mmfile); if( strlen(h->patname) ) sprintf(buf,"%s canon %d-v (Fr. Jacques)", h->patname, h->samples); else sprintf(buf,"%d-voice canon (Fr. Jacques)", h->samples); if( strlen(buf) > 31 ) buf[31] = '\0'; // chop it of strcpy(m_szNames[0], buf); m_nDefaultTempo = 60; // 120 / 2 t = (h->samples - 1) * 16 + 128; if( t % 64 ) t += 64; t = t / 64; m_nType = MOD_TYPE_PAT; m_nInstruments = h->samples >= MAX_INSTRUMENTS-1 ? MAX_INSTRUMENTS-1 : h->samples + 1; // we know better but use each sample in the pat... m_nSamples = h->samples >= MAX_SAMPLES-1 ? MAX_SAMPLES-1 : h->samples + 1; // xmms modplug does not use slot zero m_nDefaultSpeed = 6; m_nChannels = h->samples; numpat = t; m_dwSongFlags = SONG_LINEARSLIDES; m_nMinPeriod = 28 << 2; m_nMaxPeriod = 1712 << 3; // orderlist for(t=0; t < numpat; t++) Order[t] = t; for(t=1; t<(int)m_nInstruments; t++) { // xmms modplug doesn't use slot zero WaveHeader hw; char s[32]; if( (d = new INSTRUMENTHEADER) == NULL ) { avoid_reentry = 0; return FALSE; } memset(d, 0, sizeof(INSTRUMENTHEADER)); Headers[t] = d; sprintf(s, "%s", h->patname); s[31] = '\0'; memset(d->name, 0, 32); strcpy((char *)d->name, s); s[11] = '\0'; memset(d->filename, 0, 12); strcpy((char *)d->filename, s); pat_get_waveheader(mmfile, &hw, t); pat_setpat_inst(&hw, d, t); } for(t=1; t<(int)m_nSamples; t++) { // xmms modplug doesn't use slot zero WaveHeader hw; char s[32]; char *p; q = &Ins[t]; // we do not use slot zero q->nGlobalVol = 64; q->nPan = 128; q->uFlags = CHN_16BIT; pat_get_waveheader(mmfile, &hw, t); pat_setpat_attr(&hw, q); memset(s,0,32); if( hw.wave_name[0] ) sprintf(s, "%d:%s", t, hw.wave_name); else { if( h->patname[0] ) sprintf(s, "%d:%s", t, h->patname); else sprintf(s, "%d:Untitled GM patch", t); } s[31] = '\0'; memset(m_szNames[t], 0, 32); strcpy(m_szNames[t], s); if ( hw.wave_size == 0 ) p = NULL; else if( hw.modes & PAT_16BIT ) p = (char *)malloc(hw.wave_size); else p = (char *)malloc(hw.wave_size * sizeof(char) * 2); if( p ) { mmreadSBYTES(p, hw.wave_size, mmfile); if( hw.modes & PAT_16BIT ) { ReadSample(q, (hw.modes&PAT_UNSIGNED)?RS_PCM16U:RS_PCM16S, (LPSTR)p, hw.wave_size); } else { pat_blowup_to16bit((short int *)p, hw.wave_size); ReadSample(q, (hw.modes&PAT_UNSIGNED)?RS_PCM16U:RS_PCM16S, (LPSTR)p, hw.wave_size * sizeof(short int)); } free(p); } } // copy last of the mohicans to entry 0 for XMMS modinfo to work.... t = m_nInstruments - 1; if( (Headers[0] = new INSTRUMENTHEADER) == NULL ) { avoid_reentry = 0; return FALSE; } memcpy(Headers[0], Headers[t], sizeof(INSTRUMENTHEADER)); memset(Headers[0]->name, 0, 32); if( h->patname[0] ) strncpy((char *)Headers[0]->name, h->patname, 32); else strncpy((char *)Headers[0]->name, "Timidity GM patch", 32); t = m_nSamples - 1; memcpy(&Ins[0], &Ins[t], sizeof(MODINSTRUMENT)); // ============================== // Load the pattern info now! PAT_ReadPatterns(Patterns, PatternSize, h, numpat); // ============================================================ // set panning positions for(t=0; t<(int)m_nChannels; t++) { ChnSettings[t].nPan = 0x30+((t+2)%5)*((0xD0 - 0x30)/5); // 0x30 = std s3m val ChnSettings[t].nVolume = 64; } avoid_reentry = 0; // it is safe now, I'm finished PAT_Cleanup(h); // we dont need it anymore return 1; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ /////////////////////////////////////////////////// // // PSM module loader // /////////////////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" //#define PSM_LOG #define PSM_ID_NEW 0x204d5350 #define PSM_ID_OLD 0xfe4d5350 #define IFFID_FILE 0x454c4946 #define IFFID_TITL 0x4c544954 #define IFFID_SDFT 0x54464453 #define IFFID_PBOD 0x444f4250 #define IFFID_SONG 0x474e4f53 #define IFFID_PATT 0x54544150 #define IFFID_DSMP 0x504d5344 #define IFFID_OPLH 0x484c504f #pragma pack(1) typedef struct _PSMCHUNK { DWORD id; DWORD len; DWORD listid; } PSMCHUNK; void swap_PSMCHUNK(PSMCHUNK* p){ p->id = bswapLE32(p->id); p->len = bswapLE32(p->len); p->listid = bswapLE32(p->listid); } typedef struct _PSMSONGHDR { CHAR songname[8]; // "MAINSONG" BYTE reserved1; BYTE reserved2; BYTE channels; } PSMSONGHDR; typedef struct _PSMPATTERN { DWORD size; DWORD name; WORD rows; WORD reserved1; BYTE data[4]; } PSMPATTERN; void swap_PSMPATTERN(PSMPATTERN* p){ p->size = bswapLE32(p->size); p->name = bswapLE32(p->name); p->rows = bswapLE16(p->rows); } typedef struct _PSMSAMPLE { BYTE flags; CHAR songname[8]; DWORD smpid; CHAR samplename[34]; DWORD reserved1; BYTE reserved2; BYTE insno; BYTE reserved3; DWORD length; DWORD loopstart; DWORD loopend; WORD reserved4; BYTE defvol; DWORD reserved5; DWORD samplerate; BYTE reserved6[19]; } PSMSAMPLE; #pragma pack() void swap_PSMSAMPLE(PSMSAMPLE* p){ p->smpid = bswapLE32(p->smpid); p->length = bswapLE32(p->length); p->loopstart = bswapLE32(p->loopstart); p->loopend = bswapLE32(p->loopend); p->samplerate = bswapLE32(p->samplerate); } BOOL CSoundFile::ReadPSM(LPCBYTE lpStream, DWORD dwMemLength) //----------------------------------------------------------- { PSMCHUNK pfh; DWORD dwMemPos, dwSongPos; // DWORD smpnames[MAX_SAMPLES]; DWORD patptrs[MAX_PATTERNS]; BYTE samplemap[MAX_SAMPLES]; UINT nPatterns = 0; if (dwMemLength < 256) return FALSE; // Swap chunk pfh = *(const PSMCHUNK *)lpStream; swap_PSMCHUNK(&pfh); // Chunk0: "PSM ",filesize,"FILE" if (pfh.id == PSM_ID_OLD) { #ifdef PSM_LOG Log("Old PSM format not supported\n"); #endif return FALSE; } if ((pfh.id != PSM_ID_NEW) || (pfh.len+12 > dwMemLength) || (pfh.listid != IFFID_FILE)) return FALSE; m_nType = MOD_TYPE_PSM; m_nChannels = 16; m_nSamples = 0; nPatterns = 0; dwMemPos = 12; dwSongPos = 0; for (UINT iChPan=0; iChPan<16; iChPan++) { UINT pan = (((iChPan & 3) == 1) || ((iChPan&3)==2)) ? 0xC0 : 0x40; ChnSettings[iChPan].nPan = pan; } while (dwMemPos+8 < dwMemLength) { PSMCHUNK pchunk = *(const PSMCHUNK *)(lpStream+dwMemPos); swap_PSMCHUNK(&pchunk); if ((pchunk.len >= dwMemLength - 8) || (dwMemPos + pchunk.len + 8 > dwMemLength)) break; dwMemPos += 8; PUCHAR pdata = (PUCHAR)(lpStream+dwMemPos); ULONG len = pchunk.len; if (len) switch(pchunk.id) { // "TITL": Song title case IFFID_TITL: if (!pdata[0]) { pdata++; len--; } memcpy(m_szNames[0], pdata, (len>31) ? 31 : len); m_szNames[0][31] = 0; break; // "PBOD": Pattern case IFFID_PBOD: if ((len >= 12) && (nPatterns < MAX_PATTERNS)) { patptrs[nPatterns++] = dwMemPos-8; } break; // "SONG": Song description case IFFID_SONG: if ((len >= sizeof(PSMSONGHDR)+8) && (!dwSongPos)) { dwSongPos = dwMemPos - 8; } break; // "DSMP": Sample Data case IFFID_DSMP: if ((len >= sizeof(PSMSAMPLE)) && (m_nSamples+1 < MAX_SAMPLES)) { m_nSamples++; MODINSTRUMENT *pins = &Ins[m_nSamples]; PSMSAMPLE psmp = *(PSMSAMPLE *)pdata; swap_PSMSAMPLE(&psmp); // smpnames[m_nSamples] = psmp.smpid; memcpy(m_szNames[m_nSamples], psmp.samplename, 31); m_szNames[m_nSamples][31] = 0; samplemap[m_nSamples-1] = (BYTE)m_nSamples; // Init sample pins->nGlobalVol = 0x40; pins->nC4Speed = psmp.samplerate; pins->nLength = psmp.length; pins->nLoopStart = psmp.loopstart; pins->nLoopEnd = psmp.loopend; pins->nPan = 128; pins->nVolume = (psmp.defvol+1) * 2; pins->uFlags = (psmp.flags & 0x80) ? CHN_LOOP : 0; if (pins->nLoopStart > 0) pins->nLoopStart--; // Point to sample data pdata += 0x60; len -= 0x60; // Load sample data if ((pins->nLength > 3) && (len > 3)) { ReadSample(pins, RS_PCM8D, (LPCSTR)pdata, len); } else { pins->nLength = 0; } } break; #if 0 default: { CHAR s[8], s2[64]; *(DWORD *)s = pchunk.id; s[4] = 0; wsprintf(s2, "%s: %4d bytes @ %4d\n", s, pchunk.len, dwMemPos); OutputDebugString(s2); } #endif } dwMemPos += pchunk.len; } // Step #1: convert song structure const PSMSONGHDR *pSong = (const PSMSONGHDR *)(lpStream+dwSongPos+8); if ((!dwSongPos) || (pSong->channels < 2) || (pSong->channels > 32)) return TRUE; m_nChannels = pSong->channels; // Valid song header -> convert attached chunks { DWORD dwSongEnd = dwSongPos + 8 + *(DWORD *)(lpStream+dwSongPos+4); dwMemPos = dwSongPos + 8 + 11; // sizeof(PSMCHUNK)+sizeof(PSMSONGHDR) while (dwMemPos + 8 < dwSongEnd) { PSMCHUNK pchunk = *(const PSMCHUNK *)(lpStream+dwMemPos); swap_PSMCHUNK(&pchunk); dwMemPos += 8; if ((pchunk.len > dwSongEnd) || (dwMemPos + pchunk.len > dwSongEnd)) break; PUCHAR pdata = (PUCHAR)(lpStream+dwMemPos); ULONG len = pchunk.len; switch(pchunk.id) { case IFFID_OPLH: if (len >= 0x20) { UINT pos = len - 3; while (pos > 5) { BOOL bFound = FALSE; pos -= 5; DWORD dwName = *(DWORD *)(pdata+pos); for (UINT i=0; i<nPatterns; i++) { DWORD dwPatName = ((const PSMPATTERN *)(lpStream+patptrs[i]+8))->name; if (dwName == dwPatName) { bFound = TRUE; break; } } if ((!bFound) && (pdata[pos+1] > 0) && (pdata[pos+1] <= 0x10) && (pdata[pos+3] > 0x40) && (pdata[pos+3] < 0xC0)) { m_nDefaultSpeed = pdata[pos+1]; m_nDefaultTempo = pdata[pos+3]; break; } } UINT iOrd = 0; while ((pos+5<len) && (iOrd < MAX_ORDERS)) { DWORD dwName = *(DWORD *)(pdata+pos); for (UINT i=0; i<nPatterns; i++) { DWORD dwPatName = ((const PSMPATTERN *)(lpStream+patptrs[i]+8))->name; if (dwName == dwPatName) { Order[iOrd++] = i; break; } } pos += 5; } } break; } dwMemPos += pchunk.len; } } // Step #2: convert patterns for (UINT nPat=0; nPat<nPatterns; nPat++) { PSMPATTERN pPsmPat = *(const PSMPATTERN *)(lpStream+patptrs[nPat]+8); swap_PSMPATTERN(&pPsmPat); PSMCHUNK pchunk = *(const PSMCHUNK *)(lpStream+patptrs[nPat]); swap_PSMCHUNK(&pchunk); ULONG len = pchunk.len - 12; UINT nRows = pPsmPat.rows; if (len > pPsmPat.size) len = pPsmPat.size; if ((nRows < 64) || (nRows > 256)) nRows = 64; PatternSize[nPat] = nRows; if ((Patterns[nPat] = AllocatePattern(nRows, m_nChannels)) == NULL) break; MODCOMMAND *m = Patterns[nPat]; const BYTE *p = lpStream + patptrs[nPat] + 20; MODCOMMAND *sp, dummy; UINT pos = 0; UINT row = 0; UINT rowlim; #ifdef PSM_LOG Log("Pattern %d at offset 0x%04X\n", nPat, (DWORD)(p - (BYTE *)lpStream)); #endif UINT flags, ch; rowlim = bswapLE16(pPsmPat.reserved1)-2; while ((row < nRows) && (pos+3 < len)) { if ((pos+1) >= rowlim) { pos = rowlim; rowlim = (((int)p[pos+1])<<8) | ((int)p[pos+0]); m += m_nChannels; row++; rowlim += pos; pos += 2; } if (row >= nRows) continue; flags = p[pos++]; ch = p[pos++]; if (ch >= m_nChannels) { sp = &dummy; } else { sp = &m[ch]; } // Note + Instr if ((flags & 0x80) && (pos+1 < len)) { UINT note = p[pos++]; note = (note>>4)*12+(note&0x0f)+12+1; if (note > 0x80) note = 0; sp->note = note; } if ((flags & 0x40) && (pos+1 < len)) { UINT nins = p[pos++]; if (nins >= m_nSamples) { #ifdef PSM_LOG //if (!nPat) Log("note+ins: %02X.%02X\n", note, nins); if ((!nPat) && (nins >= m_nSamples)) Log("WARNING: invalid instrument number (%d)\n", nins); #endif } else { sp->instr = samplemap[nins]; } } // Volume if ((flags & 0x20) && (pos < len)) { sp->volcmd = VOLCMD_VOLUME; sp->vol = p[pos++] / 2; } // Effect if ((flags & 0x10) && (pos+1 < len)) { UINT command = p[pos++]; UINT param = p[pos++]; // Convert effects switch(command) { // 01: fine volslide up case 0x01: command = CMD_VOLUMESLIDE; param |= 0x0f; if (param == 15) param=31; break; // 02: volslide up case 0x02: command = CMD_VOLUMESLIDE; param>>=1; param<<=4; break; // 03: fine volslide down case 0x03: command = CMD_VOLUMESLIDE; param>>=4; param |= 0xf0; if (param == 240) param=241; break; // 04: fine volslide down case 0x04: command = CMD_VOLUMESLIDE; param>>=4; param |= 0xf0; break; // 0C: portamento up case 0x0C: command = CMD_PORTAMENTOUP; param = (param+1)/2; break; // 0E: portamento down case 0x0E: command = CMD_PORTAMENTODOWN; param = (param+1)/2; break; // 0F: tone portamento case 0x0F: command = CMD_TONEPORTAMENTO; param = param/4; break; // 15: vibrato case 0x15: command = CMD_VIBRATO; break; // 29: sample offset case 0x29: pos += 2; break; // 2A: retrigger note case 0x2A: command = CMD_RETRIG; break; // 33: Position Jump case 0x33: command = CMD_POSITIONJUMP; break; // 34: Pattern break case 0x34: command = CMD_PATTERNBREAK; break; // 3D: speed case 0x3D: command = CMD_SPEED; break; // 3E: tempo case 0x3E: command = CMD_TEMPO; break; // Unknown default: #ifdef PSM_LOG Log("Unknown PSM effect pat=%d row=%d ch=%d: %02X.%02X\n", nPat, row, ch, command, param); #endif command = param = 0; } sp->command = (BYTE)command; sp->param = (BYTE)param; } } #ifdef PSM_LOG if (pos < len) { Log("Pattern %d: %d/%d[%d] rows (%d bytes) -> %d bytes left\n", nPat, row, nRows, pPsmPat.rows, pPsmPat.size, len-pos); } #endif } // Done (finally!) return TRUE; } ////////////////////////////////////////////////////////////// // // PSM Old Format // /* CONST c_PSM_MaxOrder = $FF; c_PSM_MaxSample = $FF; c_PSM_MaxChannel = $0F; TYPE PPSM_Header = ^TPSM_Header; TPSM_Header = RECORD PSM_Sign : ARRAY[01..04] OF CHAR; { PSM + #254 } PSM_SongName : ARRAY[01..58] OF CHAR; PSM_Byte00 : BYTE; PSM_Byte1A : BYTE; PSM_Unknown00 : BYTE; PSM_Unknown01 : BYTE; PSM_Unknown02 : BYTE; PSM_Speed : BYTE; PSM_Tempo : BYTE; PSM_Unknown03 : BYTE; PSM_Unknown04 : WORD; PSM_OrderLength : WORD; PSM_PatternNumber : WORD; PSM_SampleNumber : WORD; PSM_ChannelNumber : WORD; PSM_ChannelUsed : WORD; PSM_OrderPosition : LONGINT; PSM_ChannelSettingPosition : LONGINT; PSM_PatternPosition : LONGINT; PSM_SamplePosition : LONGINT; { *** perhaps there are some more infos in a larger header, but i have not decoded it and so it apears here NOT } END; PPSM_Sample = ^TPSM_Sample; TPSM_Sample = RECORD PSM_SampleFileName : ARRAY[01..12] OF CHAR; PSM_SampleByte00 : BYTE; PSM_SampleName : ARRAY[01..22] OF CHAR; PSM_SampleUnknown00 : ARRAY[01..02] OF BYTE; PSM_SamplePosition : LONGINT; PSM_SampleUnknown01 : ARRAY[01..04] OF BYTE; PSM_SampleNumber : BYTE; PSM_SampleFlags : WORD; PSM_SampleLength : LONGINT; PSM_SampleLoopBegin : LONGINT; PSM_SampleLoopEnd : LONGINT; PSM_Unknown03 : BYTE; PSM_SampleVolume : BYTE; PSM_SampleC5Speed : WORD; END; PPSM_SampleList = ^TPSM_SampleList; TPSM_SampleList = ARRAY[01..c_PSM_MaxSample] OF TPSM_Sample; PPSM_Order = ^TPSM_Order; TPSM_Order = ARRAY[00..c_PSM_MaxOrder] OF BYTE; PPSM_ChannelSettings = ^TPSM_ChannelSettings; TPSM_ChannelSettings = ARRAY[00..c_PSM_MaxChannel] OF BYTE; CONST PSM_NotesInPattern : BYTE = $00; PSM_ChannelInPattern : BYTE = $00; CONST c_PSM_SetSpeed = 60; FUNCTION PSM_Size(FileName : STRING;FilePosition : LONGINT) : LONGINT; BEGIN END; PROCEDURE PSM_UnpackPattern(VAR Source,Destination;PatternLength : WORD); VAR Witz : ARRAY[00..04] OF WORD; I1,I2 : WORD; I3,I4 : WORD; TopicalByte : ^BYTE; Pattern : PUnpackedPattern; ChannelP : BYTE; NoteP : BYTE; InfoByte : BYTE; CodeByte : BYTE; InfoWord : WORD; Effect : BYTE; Opperand : BYTE; Panning : BYTE; Volume : BYTE; PrevInfo : BYTE; InfoIndex : BYTE; BEGIN Pattern := @Destination; TopicalByte := @Source; { *** Initialize patttern } FOR I2 := 0 TO c_Maximum_NoteIndex DO FOR I3 := 0 TO c_Maximum_ChannelIndex DO BEGIN Pattern^[I2,I3,c_Pattern_NoteIndex] := $FF; Pattern^[I2,I3,c_Pattern_SampleIndex] := $00; Pattern^[I2,I3,c_Pattern_VolumeIndex] := $FF; Pattern^[I2,I3,c_Pattern_PanningIndex] := $FF; Pattern^[I2,I3,c_Pattern_EffectIndex] := $00; Pattern^[I2,I3,c_Pattern_OpperandIndex] := $00; END; { *** Byte-pointer on first pattern-entry } ChannelP := $00; NoteP := $00; InfoByte := $00; PrevInfo := $00; InfoIndex := $02; { *** read notes in pattern } PSM_NotesInPattern := TopicalByte^; INC(TopicalByte); DEC(PatternLength); INC(InfoIndex); PSM_ChannelInPattern := TopicalByte^; INC(TopicalByte); DEC(PatternLength); INC(InfoIndex); { *** unpack pattern } WHILE (INTEGER(PatternLength) > 0) AND (NoteP < c_Maximum_NoteIndex) DO BEGIN { *** Read info-byte } InfoByte := TopicalByte^; INC(TopicalByte); DEC(PatternLength); INC(InfoIndex); IF InfoByte <> $00 THEN BEGIN ChannelP := InfoByte AND $0F; IF InfoByte AND 128 = 128 THEN { note and sample } BEGIN { *** read note } CodeByte := TopicalByte^; INC(TopicalByte); DEC(PatternLength); DEC(CodeByte); CodeByte := CodeByte MOD 12 * 16 + CodeByte DIV 12 + 2; Pattern^[NoteP,ChannelP,c_Pattern_NoteIndex] := CodeByte; { *** read sample } CodeByte := TopicalByte^; INC(TopicalByte); DEC(PatternLength); Pattern^[NoteP,ChannelP,c_Pattern_SampleIndex] := CodeByte; END; IF InfoByte AND 64 = 64 THEN { Volume } BEGIN CodeByte := TopicalByte^; INC(TopicalByte); DEC(PatternLength); Pattern^[NoteP,ChannelP,c_Pattern_VolumeIndex] := CodeByte; END; IF InfoByte AND 32 = 32 THEN { effect AND opperand } BEGIN Effect := TopicalByte^; INC(TopicalByte); DEC(PatternLength); Opperand := TopicalByte^; INC(TopicalByte); DEC(PatternLength); CASE Effect OF c_PSM_SetSpeed: BEGIN Effect := c_I_Set_Speed; END; ELSE BEGIN Effect := c_I_NoEffect; Opperand := $00; END; END; Pattern^[NoteP,ChannelP,c_Pattern_EffectIndex] := Effect; Pattern^[NoteP,ChannelP,c_Pattern_OpperandIndex] := Opperand; END; END ELSE INC(NoteP); END; END; PROCEDURE PSM_Load(FileName : STRING;FilePosition : LONGINT;VAR Module : PModule;VAR ErrorCode : WORD); { *** caution : Module has to be inited before!!!! } VAR Header : PPSM_Header; Sample : PPSM_SampleList; Order : PPSM_Order; ChannelSettings : PPSM_ChannelSettings; MultiPurposeBuffer : PByteArray; PatternBuffer : PUnpackedPattern; TopicalParaPointer : WORD; InFile : FILE; I1,I2 : WORD; I3,I4 : WORD; TempW : WORD; TempB : BYTE; TempP : PByteArray; TempI : INTEGER; { *** copy-vars for loop-extension } CopySource : LONGINT; CopyDestination : LONGINT; CopyLength : LONGINT; BEGIN { *** try to open file } ASSIGN(InFile,FileName); {$I-} RESET(InFile,1); {$I+} IF IORESULT <> $00 THEN BEGIN EXIT; END; {$I-} { *** seek start of module } IF FILESIZE(InFile) < FilePosition THEN BEGIN EXIT; END; SEEK(InFile,FilePosition); { *** look for enough memory for temporary variables } IF MEMAVAIL < SIZEOF(TPSM_Header) + SIZEOF(TPSM_SampleList) + SIZEOF(TPSM_Order) + SIZEOF(TPSM_ChannelSettings) + SIZEOF(TByteArray) + SIZEOF(TUnpackedPattern) THEN BEGIN EXIT; END; { *** init dynamic variables } NEW(Header); NEW(Sample); NEW(Order); NEW(ChannelSettings); NEW(MultiPurposeBuffer); NEW(PatternBuffer); { *** read header } BLOCKREAD(InFile,Header^,SIZEOF(TPSM_Header)); { *** test if this is a DSM-file } IF NOT ((Header^.PSM_Sign[1] = 'P') AND (Header^.PSM_Sign[2] = 'S') AND (Header^.PSM_Sign[3] = 'M') AND (Header^.PSM_Sign[4] = #254)) THEN BEGIN ErrorCode := c_NoValidFileFormat; CLOSE(InFile); EXIT; END; { *** read order } SEEK(InFile,FilePosition + Header^.PSM_OrderPosition); BLOCKREAD(InFile,Order^,Header^.PSM_OrderLength); { *** read channelsettings } SEEK(InFile,FilePosition + Header^.PSM_ChannelSettingPosition); BLOCKREAD(InFile,ChannelSettings^,SIZEOF(TPSM_ChannelSettings)); { *** read samplelist } SEEK(InFile,FilePosition + Header^.PSM_SamplePosition); BLOCKREAD(InFile,Sample^,Header^.PSM_SampleNumber * SIZEOF(TPSM_Sample)); { *** copy header to intern NTMIK-structure } Module^.Module_Sign := 'MF'; Module^.Module_FileFormatVersion := $0100; Module^.Module_SampleNumber := Header^.PSM_SampleNumber; Module^.Module_PatternNumber := Header^.PSM_PatternNumber; Module^.Module_OrderLength := Header^.PSM_OrderLength; Module^.Module_ChannelNumber := Header^.PSM_ChannelNumber+1; Module^.Module_Initial_GlobalVolume := 64; Module^.Module_Initial_MasterVolume := $C0; Module^.Module_Initial_Speed := Header^.PSM_Speed; Module^.Module_Initial_Tempo := Header^.PSM_Tempo; { *** paragraph 01 start } Module^.Module_Flags := c_Module_Flags_ZeroVolume * BYTE(1) + c_Module_Flags_Stereo * BYTE(1) + c_Module_Flags_ForceAmigaLimits * BYTE(0) + c_Module_Flags_Panning * BYTE(1) + c_Module_Flags_Surround * BYTE(1) + c_Module_Flags_QualityMixing * BYTE(1) + c_Module_Flags_FastVolumeSlides * BYTE(0) + c_Module_Flags_SpecialCustomData * BYTE(0) + c_Module_Flags_SongName * BYTE(1); I1 := $01; WHILE (Header^.PSM_SongName[I1] > #00) AND (I1 < c_Module_SongNameLength) DO BEGIN Module^.Module_Name[I1] := Header^.PSM_SongName[I1]; INC(I1); END; Module^.Module_Name[c_Module_SongNameLength] := #00; { *** Init channelsettings } FOR I1 := 0 TO c_Maximum_ChannelIndex DO BEGIN IF I1 < Header^.PSM_ChannelUsed THEN BEGIN { *** channel enabled } Module^.Module_ChannelSettingPointer^[I1].ChannelSettings_GlobalVolume := 64; Module^.Module_ChannelSettingPointer^[I1].ChannelSettings_Panning := (ChannelSettings^[I1]) * $08; Module^.Module_ChannelSettingPointer^[I1].ChannelSettings_Code := I1 + $10 * BYTE(ChannelSettings^[I1] > $08) + c_ChannelSettings_Code_ChannelEnabled * BYTE(1) + c_ChannelSettings_Code_ChannelDigital * BYTE(1); Module^.Module_ChannelSettingPointer^[I1].ChannelSettings_Controls := c_ChannelSettings_Controls_EnhancedMode * BYTE(1) + c_ChannelSettings_Controls_SurroundMode * BYTE(0); END ELSE BEGIN { *** channel disabled } Module^.Module_ChannelSettingPointer^[I1].ChannelSettings_GlobalVolume := $00; Module^.Module_ChannelSettingPointer^[I1].ChannelSettings_Panning := $00; Module^.Module_ChannelSettingPointer^[I1].ChannelSettings_Code := $00; Module^.Module_ChannelSettingPointer^[I1].ChannelSettings_Controls := $00; END; END; { *** init and copy order } FILLCHAR(Module^.Module_OrderPointer^,c_Maximum_OrderIndex+1,$FF); MOVE(Order^,Module^.Module_OrderPointer^,Header^.PSM_OrderLength); { *** read pattern } SEEK(InFile,FilePosition + Header^.PSM_PatternPosition); NTMIK_LoaderPatternNumber := Header^.PSM_PatternNumber-1; FOR I1 := 0 TO Header^.PSM_PatternNumber-1 DO BEGIN NTMIK_LoadPatternProcedure; { *** read length } BLOCKREAD(InFile,TempW,2); { *** read pattern } BLOCKREAD(InFile,MultiPurposeBuffer^,TempW-2); { *** unpack pattern and set notes per channel to 64 } PSM_UnpackPattern(MultiPurposeBuffer^,PatternBuffer^,TempW); NTMIK_PackPattern(MultiPurposeBuffer^,PatternBuffer^,PSM_NotesInPattern); TempW := WORD(256) * MultiPurposeBuffer^[01] + MultiPurposeBuffer^[00]; GETMEM(Module^.Module_PatternPointer^[I1],TempW); MOVE(MultiPurposeBuffer^,Module^.Module_PatternPointer^[I1]^,TempW); { *** next pattern } END; { *** read samples } NTMIK_LoaderSampleNumber := Header^.PSM_SampleNumber; FOR I1 := 1 TO Header^.PSM_SampleNumber DO BEGIN NTMIK_LoadSampleProcedure; { *** get index for sample } I3 := Sample^[I1].PSM_SampleNumber; { *** clip PSM-sample } IF Sample^[I1].PSM_SampleLoopEnd > Sample^[I1].PSM_SampleLength THEN Sample^[I1].PSM_SampleLoopEnd := Sample^[I1].PSM_SampleLength; { *** init intern sample } NEW(Module^.Module_SamplePointer^[I3]); FILLCHAR(Module^.Module_SamplePointer^[I3]^,SIZEOF(TSample),$00); FILLCHAR(Module^.Module_SamplePointer^[I3]^.Sample_SampleName,c_Sample_SampleNameLength,#32); FILLCHAR(Module^.Module_SamplePointer^[I3]^.Sample_FileName,c_Sample_FileNameLength,#32); { *** copy informations to intern sample } I2 := $01; WHILE (Sample^[I1].PSM_SampleName[I2] > #00) AND (I2 < c_Sample_SampleNameLength) DO BEGIN Module^.Module_SamplePointer^[I3]^.Sample_SampleName[I2] := Sample^[I1].PSM_SampleName[I2]; INC(I2); END; Module^.Module_SamplePointer^[I3]^.Sample_Sign := 'DF'; Module^.Module_SamplePointer^[I3]^.Sample_FileFormatVersion := $00100; Module^.Module_SamplePointer^[I3]^.Sample_Position := $00000000; Module^.Module_SamplePointer^[I3]^.Sample_Selector := $0000; Module^.Module_SamplePointer^[I3]^.Sample_Volume := Sample^[I1].PSM_SampleVolume; Module^.Module_SamplePointer^[I3]^.Sample_LoopCounter := $00; Module^.Module_SamplePointer^[I3]^.Sample_C5Speed := Sample^[I1].PSM_SampleC5Speed; Module^.Module_SamplePointer^[I3]^.Sample_Length := Sample^[I1].PSM_SampleLength; Module^.Module_SamplePointer^[I3]^.Sample_LoopBegin := Sample^[I1].PSM_SampleLoopBegin; Module^.Module_SamplePointer^[I3]^.Sample_LoopEnd := Sample^[I1].PSM_SampleLoopEnd; { *** now it's time for the flags } Module^.Module_SamplePointer^[I3]^.Sample_Flags := c_Sample_Flags_DigitalSample * BYTE(1) + c_Sample_Flags_8BitSample * BYTE(1) + c_Sample_Flags_UnsignedSampleData * BYTE(1) + c_Sample_Flags_Packed * BYTE(0) + c_Sample_Flags_LoopCounter * BYTE(0) + c_Sample_Flags_SampleName * BYTE(1) + c_Sample_Flags_LoopActive * BYTE(Sample^[I1].PSM_SampleFlags AND (LONGINT(1) SHL 15) = (LONGINT(1) SHL 15)); { *** alloc memory for sample-data } E_Getmem(Module^.Module_SamplePointer^[I3]^.Sample_Selector, Module^.Module_SamplePointer^[I3]^.Sample_Position, Module^.Module_SamplePointer^[I3]^.Sample_Length + c_LoopExtensionSize); { *** read out data } EPT(TempP).p_Selector := Module^.Module_SamplePointer^[I3]^.Sample_Selector; EPT(TempP).p_Offset := $0000; SEEK(InFile,Sample^[I1].PSM_SamplePosition); E_BLOCKREAD(InFile,TempP^,Module^.Module_SamplePointer^[I3]^.Sample_Length); { *** 'coz the samples are signed in a DSM-file -> PC-fy them } IF Module^.Module_SamplePointer^[I3]^.Sample_Length > 4 THEN BEGIN CopyLength := Module^.Module_SamplePointer^[I3]^.Sample_Length; { *** decode sample } ASM DB 066h; MOV CX,WORD PTR CopyLength { *** load sample selector } MOV ES,WORD PTR TempP[00002h] DB 066h; XOR SI,SI DB 066h; XOR DI,DI XOR AH,AH { *** conert all bytes } @@MainLoop: DB 026h; DB 067h; LODSB ADD AL,AH MOV AH,AL DB 067h; STOSB DB 066h; LOOP @@MainLoop END; { *** make samples unsigned } ASM DB 066h; MOV CX,WORD PTR CopyLength { *** load sample selector } MOV ES,WORD PTR TempP[00002h] DB 066h; XOR SI,SI DB 066h; XOR DI,DI { *** conert all bytes } @@MainLoop: DB 026h; DB 067h; LODSB SUB AL,080h DB 067h; STOSB DB 066h; LOOP @@MainLoop END; { *** Create Loop-Extension } IF Module^.Module_SamplePointer^[I3]^.Sample_Flags AND c_Sample_Flags_LoopActive = c_Sample_Flags_LoopActive THEN BEGIN CopySource := Module^.Module_SamplePointer^[I3]^.Sample_LoopBegin; CopyDestination := Module^.Module_SamplePointer^[I3]^.Sample_LoopEnd; CopyLength := CopyDestination - CopySource; ASM { *** load sample-selector } MOV ES,WORD PTR TempP[00002h] DB 066h; MOV DI,WORD PTR CopyDestination { *** calculate number of full sample-loops to copy } XOR DX,DX MOV AX,c_LoopExtensionSize MOV BX,WORD PTR CopyLength DIV BX OR AX,AX JE @@NoFullLoop { *** copy some full-loops (size=bx) } MOV CX,AX @@InnerLoop: PUSH CX DB 066h; MOV SI,WORD PTR CopySource MOV CX,BX DB 0F3h; DB 026h,067h,0A4h { REP MOVS BYTE PTR ES:[EDI],ES:[ESI] } POP CX LOOP @@InnerLoop @@NoFullLoop: { *** calculate number of rest-bytes to copy } DB 066h; MOV SI,WORD PTR CopySource MOV CX,DX DB 0F3h; DB 026h,067h,0A4h { REP MOVS BYTE PTR ES:[EDI],ES:[ESI] } END; END ELSE BEGIN CopyDestination := Module^.Module_SamplePointer^[I3]^.Sample_Length; ASM { *** load sample-selector } MOV ES,WORD PTR TempP[00002h] DB 066h; MOV DI,WORD PTR CopyDestination { *** clear extension } MOV CX,c_LoopExtensionSize MOV AL,080h DB 0F3h; DB 067h,0AAh { REP STOS BYTE PTR ES:[EDI] } END; END; END; { *** next sample } END; { *** init period-ranges } NTMIK_MaximumPeriod := $0000D600 SHR 1; NTMIK_MinimumPeriod := $0000D600 SHR 8; { *** close file } CLOSE(InFile); { *** dispose all dynamic variables } DISPOSE(Header); DISPOSE(Sample); DISPOSE(Order); DISPOSE(ChannelSettings); DISPOSE(MultiPurposeBuffer); DISPOSE(PatternBuffer); { *** set errorcode to noerror } ErrorCode := c_NoError; END; */ /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (endian and char fixes for PPC) */ ////////////////////////////////////////////// // PTM PolyTracker module loader // ////////////////////////////////////////////// //#include "stdafx.h" //#include "sndfile.h" //#pragma warning(disable:4244) #pragma pack(1) typedef struct PTMFILEHEADER { CHAR songname[28]; // name of song, asciiz string CHAR eof; // 26 BYTE version_lo; // 03 version of file, currently 0203h BYTE version_hi; // 02 BYTE reserved1; // reserved, set to 0 WORD norders; // number of orders (0..256) WORD nsamples; // number of instruments (1..255) WORD npatterns; // number of patterns (1..128) WORD nchannels; // number of channels (voices) used (1..32) WORD fileflags; // set to 0 WORD reserved2; // reserved, set to 0 DWORD ptmf_id; // song identification, 'PTMF' or 0x464d5450 BYTE reserved3[16]; // reserved, set to 0 BYTE chnpan[32]; // channel panning settings, 0..15, 0 = left, 7 = middle, 15 = right BYTE orders[256]; // order list, valid entries 0..nOrders-1 WORD patseg[128]; // pattern offsets (*16) } PTMFILEHEADER, *LPPTMFILEHEADER; #define SIZEOF_PTMFILEHEADER 608 typedef struct PTMSAMPLE { BYTE sampletype; // sample type (bit array) CHAR filename[12]; // name of external sample file BYTE volume; // default volume WORD nC4Spd; // C4 speed WORD sampleseg; // sample segment (used internally) WORD fileofs[2]; // offset of sample data WORD length[2]; // sample size (in bytes) WORD loopbeg[2]; // start of loop WORD loopend[2]; // end of loop WORD gusdata[8]; char samplename[28]; // name of sample, asciiz // changed from CHAR DWORD ptms_id; // sample identification, 'PTMS' or 0x534d5450 } PTMSAMPLE; #define SIZEOF_PTMSAMPLE 80 #pragma pack() static uint32_t BS2WORD(uint16_t w[2]) { uint32_t u32 = (w[1] << 16) + w[0]; return(bswapLE32(u32)); } BOOL CSoundFile::ReadPTM(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { DWORD dwMemPos; UINT nOrders; if ((!lpStream) || (dwMemLength < sizeof(PTMFILEHEADER))) return FALSE; PTMFILEHEADER pfh = *(LPPTMFILEHEADER)lpStream; pfh.norders = bswapLE16(pfh.norders); pfh.nsamples = bswapLE16(pfh.nsamples); pfh.npatterns = bswapLE16(pfh.npatterns); pfh.nchannels = bswapLE16(pfh.nchannels); pfh.fileflags = bswapLE16(pfh.fileflags); pfh.reserved2 = bswapLE16(pfh.reserved2); pfh.ptmf_id = bswapLE32(pfh.ptmf_id); for (UINT j=0; j<128; j++) { pfh.patseg[j] = bswapLE16(pfh.patseg[j]); } if ((pfh.ptmf_id != 0x464d5450) || (!pfh.nchannels) || (pfh.nchannels > 32) || (pfh.norders > 256) || (!pfh.norders) || (!pfh.nsamples) || (pfh.nsamples > 255) || (!pfh.npatterns) || (pfh.npatterns > 128) || (SIZEOF_PTMFILEHEADER+pfh.nsamples*SIZEOF_PTMSAMPLE >= (int)dwMemLength)) return FALSE; memcpy(m_szNames[0], pfh.songname, 28); m_szNames[0][28] = 0; m_nType = MOD_TYPE_PTM; m_nChannels = pfh.nchannels; m_nSamples = (pfh.nsamples < MAX_SAMPLES) ? pfh.nsamples : MAX_SAMPLES-1; dwMemPos = SIZEOF_PTMFILEHEADER; nOrders = (pfh.norders < MAX_ORDERS) ? pfh.norders : MAX_ORDERS-1; memcpy(Order, pfh.orders, nOrders); for (UINT ipan=0; ipan<m_nChannels; ipan++) { ChnSettings[ipan].nVolume = 64; ChnSettings[ipan].nPan = ((pfh.chnpan[ipan] & 0x0F) << 4) + 4; } for (UINT ismp=0; ismp<m_nSamples; ismp++, dwMemPos += SIZEOF_PTMSAMPLE) { MODINSTRUMENT *pins = &Ins[ismp+1]; PTMSAMPLE *psmp = (PTMSAMPLE *)(lpStream+dwMemPos); lstrcpyn(m_szNames[ismp+1], psmp->samplename, 28); memcpy(pins->name, psmp->filename, 12); pins->name[12] = 0; pins->nGlobalVol = 64; pins->nPan = 128; pins->nVolume = psmp->volume << 2; pins->nC4Speed = bswapLE16(psmp->nC4Spd) << 1; pins->uFlags = 0; if ((psmp->sampletype & 3) == 1) { UINT smpflg = RS_PCM8D; pins->nLength = BS2WORD(psmp->length); pins->nLoopStart = BS2WORD(psmp->loopbeg); pins->nLoopEnd = BS2WORD(psmp->loopend); DWORD samplepos = BS2WORD(psmp->fileofs); if (psmp->sampletype & 4) pins->uFlags |= CHN_LOOP; if (psmp->sampletype & 8) pins->uFlags |= CHN_PINGPONGLOOP; if (psmp->sampletype & 16) { pins->uFlags |= CHN_16BIT; pins->nLength >>= 1; pins->nLoopStart >>= 1; pins->nLoopEnd >>= 1; smpflg = RS_PTM8DTO16; } if ((pins->nLength) && (samplepos) && (samplepos < dwMemLength)) { ReadSample(pins, smpflg, (LPSTR)(lpStream+samplepos), dwMemLength-samplepos); } } } // Reading Patterns for (UINT ipat=0; ipat<pfh.npatterns; ipat++) { dwMemPos = ((UINT)pfh.patseg[ipat]) << 4; if ((!dwMemPos) || (dwMemPos >= dwMemLength)) continue; PatternSize[ipat] = 64; if ((Patterns[ipat] = AllocatePattern(64, m_nChannels)) == NULL) break; // MODCOMMAND *m = Patterns[ipat]; for (UINT row=0; ((row < 64) && (dwMemPos < dwMemLength)); ) { UINT b = lpStream[dwMemPos++]; if (dwMemPos >= dwMemLength) break; if (b) { UINT nChn = b & 0x1F; MODCOMMAND &selm = m[nChn < m_nChannels ? nChn : 0]; if (b & 0x20) { if (dwMemPos + 2 > dwMemLength) break; selm.note = lpStream[dwMemPos++]; selm.instr = lpStream[dwMemPos++]; } if (b & 0x40) { if (dwMemPos + 2 > dwMemLength) break; selm.command = lpStream[dwMemPos++]; selm.param = lpStream[dwMemPos++]; if ((selm.command == 0x0E) && ((selm.param & 0xF0) == 0x80)) { selm.command = CMD_S3MCMDEX; } else if (selm.command < 0x10) { ConvertModCommand(&selm); } else { switch(selm.command) { case 16: selm.command = CMD_GLOBALVOLUME; break; case 17: selm.command = CMD_RETRIG; break; case 18: selm.command = CMD_FINEVIBRATO; break; default: selm.command = 0; } } } if (b & 0x80) { if (dwMemPos >= dwMemLength) break; selm.volcmd = VOLCMD_VOLUME; selm.vol = lpStream[dwMemPos++]; } } else { row++; m += m_nChannels; } } } return TRUE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (endian and char fixes for PPC) */ //#include "stdafx.h" //#include "sndfile.h" //#include "tables.h" #ifdef _MSC_VER //#pragma warning(disable:4244) #endif ////////////////////////////////////////////////////// // ScreamTracker S3M file support #pragma pack(1) typedef struct tagS3MSAMPLESTRUCT { BYTE type; CHAR dosname[12]; BYTE hmem; WORD memseg; DWORD length; DWORD loopbegin; DWORD loopend; BYTE vol; BYTE bReserved; BYTE pack; BYTE flags; DWORD finetune; DWORD dwReserved; WORD intgp; WORD int512; DWORD lastused; CHAR name[28]; CHAR scrs[4]; } S3MSAMPLESTRUCT; typedef struct tagS3MFILEHEADER { CHAR name[28]; BYTE b1A; BYTE type; WORD reserved1; WORD ordnum; WORD insnum; WORD patnum; WORD flags; WORD cwtv; WORD version; DWORD scrm; // "SCRM" = 0x4D524353 BYTE globalvol; BYTE speed; BYTE tempo; BYTE mastervol; BYTE ultraclicks; BYTE panning_present; BYTE reserved2[8]; WORD special; BYTE channels[32]; } S3MFILEHEADER; #pragma pack() void CSoundFile::S3MConvert(MODCOMMAND *m, BOOL bIT) const //-------------------------------------------------------- { UINT command = m->command; UINT param = m->param; switch (command + 0x40) { case 'A': command = CMD_SPEED; break; case 'B': command = CMD_POSITIONJUMP; break; case 'C': command = CMD_PATTERNBREAK; if (!bIT) param = (param >> 4) * 10 + (param & 0x0F); break; case 'D': command = CMD_VOLUMESLIDE; break; case 'E': command = CMD_PORTAMENTODOWN; break; case 'F': command = CMD_PORTAMENTOUP; break; case 'G': command = CMD_TONEPORTAMENTO; break; case 'H': command = CMD_VIBRATO; break; case 'I': command = CMD_TREMOR; break; case 'J': command = CMD_ARPEGGIO; break; case 'K': command = CMD_VIBRATOVOL; break; case 'L': command = CMD_TONEPORTAVOL; break; case 'M': command = CMD_CHANNELVOLUME; break; case 'N': command = CMD_CHANNELVOLSLIDE; break; case 'O': command = CMD_OFFSET; break; case 'P': command = CMD_PANNINGSLIDE; break; case 'Q': command = CMD_RETRIG; break; case 'R': command = CMD_TREMOLO; break; case 'S': command = CMD_S3MCMDEX; break; case 'T': command = CMD_TEMPO; break; case 'U': command = CMD_FINEVIBRATO; break; case 'V': command = CMD_GLOBALVOLUME; break; case 'W': command = CMD_GLOBALVOLSLIDE; break; case 'X': command = CMD_PANNING8; break; case 'Y': command = CMD_PANBRELLO; break; case 'Z': command = CMD_MIDI; break; case '\\': command = CMD_MIDI; break; default: command = 0; } m->command = command; m->param = param; } void CSoundFile::S3MSaveConvert(UINT *pcmd, UINT *pprm, BOOL bIT) const //--------------------------------------------------------------------- { UINT command = *pcmd; UINT param = *pprm; switch(command) { case CMD_SPEED: command = 'A'; break; case CMD_POSITIONJUMP: command = 'B'; break; case CMD_PATTERNBREAK: command = 'C'; if (!bIT) param = ((param / 10) << 4) + (param % 10); break; case CMD_VOLUMESLIDE: command = 'D'; break; case CMD_PORTAMENTODOWN: command = 'E'; if ((param >= 0xE0) && (m_nType & (MOD_TYPE_MOD|MOD_TYPE_XM))) param = 0xDF; break; case CMD_PORTAMENTOUP: command = 'F'; if ((param >= 0xE0) && (m_nType & (MOD_TYPE_MOD|MOD_TYPE_XM))) param = 0xDF; break; case CMD_TONEPORTAMENTO: command = 'G'; break; case CMD_VIBRATO: command = 'H'; break; case CMD_TREMOR: command = 'I'; break; case CMD_ARPEGGIO: command = 'J'; break; case CMD_VIBRATOVOL: command = 'K'; break; case CMD_TONEPORTAVOL: command = 'L'; break; case CMD_CHANNELVOLUME: command = 'M'; break; case CMD_CHANNELVOLSLIDE: command = 'N'; break; case CMD_OFFSET: command = 'O'; break; case CMD_PANNINGSLIDE: command = 'P'; break; case CMD_RETRIG: command = 'Q'; break; case CMD_TREMOLO: command = 'R'; break; case CMD_S3MCMDEX: command = 'S'; break; case CMD_TEMPO: command = 'T'; break; case CMD_FINEVIBRATO: command = 'U'; break; case CMD_GLOBALVOLUME: command = 'V'; break; case CMD_GLOBALVOLSLIDE: command = 'W'; break; case CMD_PANNING8: command = 'X'; if ((bIT) && (m_nType != MOD_TYPE_IT) && (m_nType != MOD_TYPE_XM)) { if (param == 0xA4) { command = 'S'; param = 0x91; } else if (param <= 0x80) { param <<= 1; if (param > 255) param = 255; } else command = param = 0; } else if ((!bIT) && ((m_nType == MOD_TYPE_IT) || (m_nType == MOD_TYPE_XM))) { param >>= 1; } break; case CMD_PANBRELLO: command = 'Y'; break; case CMD_MIDI: command = 'Z'; break; case CMD_XFINEPORTAUPDOWN: if (param & 0x0F) switch(param & 0xF0) { case 0x10: command = 'F'; param = (param & 0x0F) | 0xE0; break; case 0x20: command = 'E'; param = (param & 0x0F) | 0xE0; break; case 0x90: command = 'S'; break; default: command = param = 0; } else command = param = 0; break; case CMD_MODCMDEX: command = 'S'; switch(param & 0xF0) { case 0x00: command = param = 0; break; case 0x10: command = 'F'; param |= 0xF0; break; case 0x20: command = 'E'; param |= 0xF0; break; case 0x30: param = (param & 0x0F) | 0x10; break; case 0x40: param = (param & 0x0F) | 0x30; break; case 0x50: param = (param & 0x0F) | 0x20; break; case 0x60: param = (param & 0x0F) | 0xB0; break; case 0x70: param = (param & 0x0F) | 0x40; break; case 0x90: command = 'Q'; param &= 0x0F; break; case 0xA0: if (param & 0x0F) { command = 'D'; param = (param << 4) | 0x0F; } else command=param=0; break; case 0xB0: if (param & 0x0F) { command = 'D'; param |= 0xF0; } else command=param=0; break; } break; default: command = param = 0; } command &= ~0x40; *pcmd = command; *pprm = param; } static DWORD boundInput(DWORD input, DWORD smin, DWORD smax) { if (input > smax) input = smax; else if (input < smin) input = 0; return(input); } BOOL CSoundFile::ReadS3M(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { UINT insnum,patnum,nins,npat; DWORD insfile[MAX_SAMPLES]; WORD ptr[256]; DWORD dwMemPos; BYTE insflags[MAX_SAMPLES], inspack[MAX_SAMPLES]; if ((!lpStream) || (dwMemLength <= sizeof(S3MFILEHEADER)+sizeof(S3MSAMPLESTRUCT)+64)) return FALSE; S3MFILEHEADER psfh = *(S3MFILEHEADER *)lpStream; psfh.reserved1 = bswapLE16(psfh.reserved1); psfh.ordnum = bswapLE16(psfh.ordnum); psfh.insnum = bswapLE16(psfh.insnum); psfh.patnum = bswapLE16(psfh.patnum); psfh.flags = bswapLE16(psfh.flags); psfh.cwtv = bswapLE16(psfh.cwtv); psfh.version = bswapLE16(psfh.version); psfh.scrm = bswapLE32(psfh.scrm); psfh.special = bswapLE16(psfh.special); if (psfh.scrm != 0x4D524353) return FALSE; dwMemPos = 0x60; m_nType = MOD_TYPE_S3M; memset(m_szNames,0,sizeof(m_szNames)); memcpy(m_szNames[0], psfh.name, 28); // Speed m_nDefaultSpeed = psfh.speed; if (m_nDefaultSpeed < 1) m_nDefaultSpeed = 6; if (m_nDefaultSpeed > 0x1F) m_nDefaultSpeed = 0x1F; // Tempo m_nDefaultTempo = psfh.tempo; if (m_nDefaultTempo < 40) m_nDefaultTempo = 40; if (m_nDefaultTempo > 240) m_nDefaultTempo = 240; // Global Volume m_nDefaultGlobalVolume = psfh.globalvol << 2; if ((!m_nDefaultGlobalVolume) || (m_nDefaultGlobalVolume > 256)) m_nDefaultGlobalVolume = 256; m_nSongPreAmp = psfh.mastervol & 0x7F; // Channels m_nChannels = 4; for (UINT ich=0; ich<32; ich++) { ChnSettings[ich].nPan = 128; ChnSettings[ich].nVolume = 64; ChnSettings[ich].dwFlags = CHN_MUTE; if (psfh.channels[ich] != 0xFF) { m_nChannels = ich+1; UINT b = psfh.channels[ich] & 0x0F; ChnSettings[ich].nPan = (b & 8) ? 0xC0 : 0x40; ChnSettings[ich].dwFlags = 0; } } if (m_nChannels < 4) m_nChannels = 4; if ((psfh.cwtv < 0x1320) || (psfh.flags & 0x40)) m_dwSongFlags |= SONG_FASTVOLSLIDES; // Reading pattern order UINT iord = psfh.ordnum; if (iord<1) iord = 1; if (iord > MAX_ORDERS) iord = MAX_ORDERS; if (dwMemPos + iord + 1 >= dwMemLength) return FALSE; if (iord) { if (dwMemPos + iord > dwMemLength) return FALSE; memcpy(Order, lpStream+dwMemPos, iord); dwMemPos += iord; } if ((iord & 1) && (lpStream[dwMemPos] == 0xFF)) dwMemPos++; // Reading file pointers insnum = nins = psfh.insnum; if (insnum >= MAX_SAMPLES) insnum = MAX_SAMPLES-1; m_nSamples = insnum; patnum = npat = psfh.patnum; if (patnum > MAX_PATTERNS) patnum = MAX_PATTERNS; memset(ptr, 0, sizeof(ptr)); // Ignore file if it has a corrupted header. if (nins+npat > 256) return FALSE; if (nins+npat) { if (dwMemPos + 2*(nins+npat) >= dwMemLength) return FALSE; memcpy(ptr, lpStream+dwMemPos, 2*(nins+npat)); dwMemPos += 2*(nins+npat); for (UINT j = 0; j < (nins+npat); ++j) { ptr[j] = bswapLE16(ptr[j]); } if (psfh.panning_present == 252) { const BYTE *chnpan = lpStream+dwMemPos; if (dwMemPos > dwMemLength - 32) return FALSE; for (UINT i=0; i<32; i++) if (chnpan[i] & 0x20) { ChnSettings[i].nPan = ((chnpan[i] & 0x0F) << 4) + 8; } } } if (!m_nChannels) return TRUE; // Reading instrument headers memset(insfile, 0, sizeof(insfile)); for (UINT iSmp=1; iSmp<=insnum; iSmp++) { UINT nInd = ((DWORD)ptr[iSmp-1])*16; if ((!nInd) || (nInd + 0x50 > dwMemLength)) { // initialize basic variables. insflags[iSmp-1] = 0; inspack[iSmp-1] = 0; continue; } S3MSAMPLESTRUCT pSmp; memcpy(&pSmp, lpStream+nInd, 0x50); memcpy(Ins[iSmp].name, pSmp.dosname, 12); insflags[iSmp-1] = pSmp.flags; inspack[iSmp-1] = pSmp.pack; memcpy(m_szNames[iSmp], pSmp.name, 28); m_szNames[iSmp][28] = 0; if ((pSmp.type==1) && (pSmp.scrs[2]=='R') && (pSmp.scrs[3]=='S')) { Ins[iSmp].nLength = boundInput(bswapLE32(pSmp.length), 4, MAX_SAMPLE_LENGTH); Ins[iSmp].nLoopStart = boundInput(bswapLE32(pSmp.loopbegin), 4, Ins[iSmp].nLength - 1); Ins[iSmp].nLoopEnd = boundInput(bswapLE32(pSmp.loopend), 4, Ins[iSmp].nLength); Ins[iSmp].nVolume = boundInput(pSmp.vol, 0, 64) << 2; Ins[iSmp].nGlobalVol = 64; if (pSmp.flags&1) Ins[iSmp].uFlags |= CHN_LOOP; UINT j = bswapLE32(pSmp.finetune); if (!j) j = 8363; if (j < 1024) j = 1024; Ins[iSmp].nC4Speed = j; insfile[iSmp] = (pSmp.hmem << 20) + (bswapLE16(pSmp.memseg) << 4); // offset is invalid - ignore this sample. if (insfile[iSmp] > dwMemLength) insfile[iSmp] = 0; else if (insfile[iSmp]) { // ignore duplicate samples. for (int z=iSmp-1; z>=0; z--) if (insfile[iSmp] == insfile[z]) insfile[iSmp] = 0; } if ((Ins[iSmp].nLoopStart >= Ins[iSmp].nLoopEnd) || (Ins[iSmp].nLoopEnd - Ins[iSmp].nLoopStart < 8)) Ins[iSmp].nLoopStart = Ins[iSmp].nLoopEnd = 0; Ins[iSmp].nPan = 0x80; } } // Reading patterns for (UINT iPat=0; iPat<patnum; iPat++) { UINT nInd = ((DWORD)ptr[nins+iPat]) << 4; if (nInd + 0x40 > dwMemLength) continue; WORD len = bswapLE16(*((WORD *)(lpStream+nInd))); nInd += 2; PatternSize[iPat] = 64; if ((!len) || (nInd + len > dwMemLength - 6) || ((Patterns[iPat] = AllocatePattern(64, m_nChannels)) == NULL)) continue; LPBYTE src = (LPBYTE)(lpStream+nInd); // Unpacking pattern MODCOMMAND *p = Patterns[iPat]; UINT row = 0; UINT j = 0; while (j < len) { BYTE b = src[j++]; if (!b) { if (++row >= 64) break; } else { UINT chn = b & 0x1F; if (chn < m_nChannels) { MODCOMMAND *m = &p[row*m_nChannels+chn]; if (b & 0x20) { m->note = src[j++]; if (m->note < 0xF0) m->note = (m->note & 0x0F) + 12*(m->note >> 4) + 13; else if (m->note == 0xFF) m->note = 0; m->instr = src[j++]; } if (b & 0x40) { UINT vol = src[j++]; if ((vol >= 128) && (vol <= 192)) { vol -= 128; m->volcmd = VOLCMD_PANNING; } else { if (vol > 64) vol = 64; m->volcmd = VOLCMD_VOLUME; } m->vol = vol; } if (b & 0x80) { m->command = src[j++]; m->param = src[j++]; if (m->command) S3MConvert(m, FALSE); } } else { if (b & 0x20) j += 2; if (b & 0x40) j++; if (b & 0x80) j += 2; } if (j >= len) break; } } } // Reading samples for (UINT iRaw=1; iRaw<=insnum; iRaw++) if ((Ins[iRaw].nLength) && (insfile[iRaw])) { UINT flags = (psfh.version == 1) ? RS_PCM8S : RS_PCM8U; if (insflags[iRaw-1] & 4) flags += 5; if (insflags[iRaw-1] & 2) flags |= RSF_STEREO; if (inspack[iRaw-1] == 4) flags = RS_ADPCM4; dwMemPos = insfile[iRaw]; if (dwMemPos < dwMemLength) ReadSample(&Ins[iRaw], flags, (LPSTR)(lpStream + dwMemPos), dwMemLength - dwMemPos); } m_nMinPeriod = 64; m_nMaxPeriod = 32767; if (psfh.flags & 0x10) m_dwSongFlags |= SONG_AMIGALIMITS; return TRUE; } #ifndef MODPLUG_NO_FILESAVE #ifdef _MSC_VER #pragma warning(disable:4100) #endif static BYTE S3MFiller[16] = { 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 }; BOOL CSoundFile::SaveS3M(LPCSTR lpszFileName, UINT nPacking) //---------------------------------------------------------- { FILE *f; BYTE header[0x60]; UINT nbo,nbi,nbp,i; WORD patptr[128]; WORD insptr[128]; BYTE buffer[5*1024]; S3MSAMPLESTRUCT insex[128]; if ((!m_nChannels) || (!lpszFileName)) return FALSE; if ((f = fopen(lpszFileName, "wb")) == NULL) return FALSE; // Writing S3M header memset(header, 0, sizeof(header)); memset(insex, 0, sizeof(insex)); memcpy(header, m_szNames[0], 0x1C); header[0x1B] = 0; header[0x1C] = 0x1A; header[0x1D] = 0x10; nbo = (GetNumPatterns() + 15) & 0xF0; if (!nbo) nbo = 16; header[0x20] = nbo & 0xFF; header[0x21] = nbo >> 8; nbi = m_nInstruments; if (!nbi) nbi = m_nSamples; if (nbi > 99) nbi = 99; header[0x22] = nbi & 0xFF; header[0x23] = nbi >> 8; nbp = 0; for (i=0; Patterns[i]; i++) { nbp = i+1; if (nbp >= MAX_PATTERNS) break; } for (i=0; i<MAX_ORDERS; i++) if ((Order[i] < MAX_PATTERNS) && (Order[i] >= nbp)) nbp = Order[i] + 1; header[0x24] = nbp & 0xFF; header[0x25] = nbp >> 8; if (m_dwSongFlags & SONG_FASTVOLSLIDES) header[0x26] |= 0x40; if ((m_nMaxPeriod < 20000) || (m_dwSongFlags & SONG_AMIGALIMITS)) header[0x26] |= 0x10; header[0x28] = 0x20; header[0x29] = 0x13; header[0x2A] = 0x02; // Version = 1 => Signed samples header[0x2B] = 0x00; header[0x2C] = 'S'; header[0x2D] = 'C'; header[0x2E] = 'R'; header[0x2F] = 'M'; header[0x30] = m_nDefaultGlobalVolume >> 2; header[0x31] = m_nDefaultSpeed; header[0x32] = m_nDefaultTempo; header[0x33] = ((m_nSongPreAmp < 0x20) ? 0x20 : m_nSongPreAmp) | 0x80; // Stereo header[0x35] = 0xFC; for (i=0; i<32; i++) { if (i < m_nChannels) { UINT tmp = (i & 0x0F) >> 1; header[0x40+i] = (i & 0x10) | ((i & 1) ? 8+tmp : tmp); } else header[0x40+i] = 0xFF; } fwrite(header, 0x60, 1, f); fwrite(Order, nbo, 1, f); memset(patptr, 0, sizeof(patptr)); memset(insptr, 0, sizeof(insptr)); UINT ofs0 = 0x60 + nbo; UINT ofs1 = ((0x60 + nbo + nbi*2 + nbp*2 + 15) & 0xFFF0) + 0x20; UINT ofs = ofs1; for (i=0; i<nbi; i++) insptr[i] = (WORD)((ofs + i*0x50) / 16); for (i=0; i<nbp; i++) patptr[i] = (WORD)((ofs + nbi*0x50) / 16); fwrite(insptr, nbi, 2, f); fwrite(patptr, nbp, 2, f); if (header[0x35] == 0xFC) { BYTE chnpan[32]; for (i=0; i<32; i++) { chnpan[i] = 0x20 | (ChnSettings[i].nPan >> 4); } fwrite(chnpan, 0x20, 1, f); } if ((nbi*2+nbp*2) & 0x0F) { fwrite(S3MFiller, 0x10 - ((nbi*2+nbp*2) & 0x0F), 1, f); } ofs1 = ftell(f); fwrite(insex, nbi, 0x50, f); // Packing patterns ofs += nbi*0x50; for (i=0; i<nbp; i++) { WORD len = 64; memset(buffer, 0, sizeof(buffer)); patptr[i] = ofs / 16; if (Patterns[i]) { len = 2; MODCOMMAND *p = Patterns[i]; for (int row=0; row<64; row++) if (row < PatternSize[i]) { for (UINT j=0; j<m_nChannels; j++) { UINT b = j; MODCOMMAND *m = &p[row*m_nChannels+j]; UINT note = m->note; UINT volcmd = m->volcmd; UINT vol = m->vol; UINT command = m->command; UINT param = m->param; if ((note) || (m->instr)) b |= 0x20; if (!note) note = 0xFF; else if (note >= 0xFE) note = 0xFE; else if (note < 13) note = 0; else note -= 13; if (note < 0xFE) note = (note % 12) + ((note / 12) << 4); if (command == CMD_VOLUME) { command = 0; if (param > 64) param = 64; volcmd = VOLCMD_VOLUME; vol = param; } if (volcmd == VOLCMD_VOLUME) b |= 0x40; else if (volcmd == VOLCMD_PANNING) { vol |= 0x80; b |= 0x40; } if (command) { S3MSaveConvert(&command, ¶m, FALSE); if (command) b |= 0x80; } if (b & 0xE0) { buffer[len++] = b; if (b & 0x20) { buffer[len++] = note; buffer[len++] = m->instr; } if (b & 0x40) { buffer[len++] = vol; } if (b & 0x80) { buffer[len++] = command; buffer[len++] = param; } if (len > sizeof(buffer) - 20) break; } } buffer[len++] = 0; if (len > sizeof(buffer) - 20) break; } } buffer[0] = (len - 2) & 0xFF; buffer[1] = (len - 2) >> 8; len = (len+15) & (~0x0F); fwrite(buffer, len, 1, f); ofs += len; } // Writing samples for (i=1; i<=nbi; i++) { MODINSTRUMENT *pins = &Ins[i]; if (m_nInstruments) { pins = Ins; if (Headers[i]) { for (UINT j=0; j<128; j++) { UINT n = Headers[i]->Keyboard[j]; if ((n) && (n < MAX_INSTRUMENTS)) { pins = &Ins[n]; break; } } } } memcpy(insex[i-1].dosname, pins->name, 12); memcpy(insex[i-1].name, m_szNames[i], 28); memcpy(insex[i-1].scrs, "SCRS", 4); insex[i-1].hmem = (BYTE)((DWORD)ofs >> 20); insex[i-1].memseg = (WORD)((DWORD)ofs >> 4); if (pins->pSample) { insex[i-1].type = 1; insex[i-1].length = pins->nLength; insex[i-1].loopbegin = pins->nLoopStart; insex[i-1].loopend = pins->nLoopEnd; insex[i-1].vol = pins->nVolume / 4; insex[i-1].flags = (pins->uFlags & CHN_LOOP) ? 1 : 0; if (pins->nC4Speed) insex[i-1].finetune = pins->nC4Speed; else insex[i-1].finetune = TransposeToFrequency(pins->RelativeTone, pins->nFineTune); UINT flags = RS_PCM8U; #ifndef NO_PACKING if (nPacking) { if ((!(pins->uFlags & (CHN_16BIT|CHN_STEREO))) && (CanPackSample((char *)pins->pSample, pins->nLength, nPacking))) { insex[i-1].pack = 4; flags = RS_ADPCM4; } } else #endif // NO_PACKING { if (pins->uFlags & CHN_16BIT) { insex[i-1].flags |= 4; flags = RS_PCM16U; } if (pins->uFlags & CHN_STEREO) { insex[i-1].flags |= 2; flags = (pins->uFlags & CHN_16BIT) ? RS_STPCM16U : RS_STPCM8U; } } DWORD len = WriteSample(f, pins, flags); if (len & 0x0F) { fwrite(S3MFiller, 0x10 - (len & 0x0F), 1, f); } ofs += (len + 15) & (~0x0F); } else { insex[i-1].length = 0; } } // Updating parapointers fseek(f, ofs0, SEEK_SET); fwrite(insptr, nbi, 2, f); fwrite(patptr, nbp, 2, f); fseek(f, ofs1, SEEK_SET); fwrite(insex, 0x50, nbi, f); fclose(f); return TRUE; } #ifdef _MSC_VER #pragma warning(default:4100) #endif #endif // MODPLUG_NO_FILESAVE /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ //#include "stdafx.h" //#include "sndfile.h" //#pragma warning(disable:4244) #pragma pack(1) typedef struct tagSTMNOTE { BYTE note; BYTE insvol; BYTE volcmd; BYTE cmdinf; } STMNOTE; // Raw STM sampleinfo struct: typedef struct tagSTMSAMPLE { CHAR filename[14]; // Can't have long comments - just filename comments :) WORD reserved; // ISA in memory when in ST 2 WORD length; // Sample length WORD loopbeg; // Loop start point WORD loopend; // Loop end point BYTE volume; // Volume BYTE reserved2; // More reserved crap WORD c2spd; // Good old c2spd BYTE reserved3[6]; // Yet more of PSi's reserved crap } STMSAMPLE; // Raw STM header struct: typedef struct tagSTMHEADER { char songname[20]; // changed from CHAR char trackername[8]; // !SCREAM! for ST 2.xx // changed from CHAR CHAR unused; // 0x1A CHAR filetype; // 1=song, 2=module (only 2 is supported, of course) :) CHAR ver_major; // Like 2 CHAR ver_minor; // "ditto" BYTE inittempo; // initspeed= stm inittempo>>4 BYTE numpat; // number of patterns BYTE globalvol; // <- WoW! a RiGHT TRiANGLE =8*) BYTE reserved[13]; // More of PSi's internal crap STMSAMPLE sample[31]; // STM sample data BYTE patorder[128]; // Docs say 64 - actually 128 } STMHEADER; #pragma pack() BOOL CSoundFile::ReadSTM(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { const STMHEADER *phdr = (STMHEADER *)lpStream; DWORD dwMemPos = 0; if ((!lpStream) || (dwMemLength < sizeof(STMHEADER))) return FALSE; if ((phdr->filetype != 2) || (phdr->unused != 0x1A) || ((strncmp(phdr->trackername, "!Scream!", 8)) && (strncmp(phdr->trackername, "BMOD2STM", 8)))) return FALSE; memcpy(m_szNames[0], phdr->songname, 20); // Read STM header m_nType = MOD_TYPE_STM; m_nSamples = 31; m_nChannels = 4; m_nInstruments = 0; m_nMinPeriod = 64; m_nMaxPeriod = 0x7FFF; m_nDefaultSpeed = phdr->inittempo >> 4; if (m_nDefaultSpeed < 1) m_nDefaultSpeed = 1; m_nDefaultTempo = 125; m_nDefaultGlobalVolume = phdr->globalvol << 2; if (m_nDefaultGlobalVolume > 256) m_nDefaultGlobalVolume = 256; memcpy(Order, phdr->patorder, 128); // Setting up channels for (UINT nSet=0; nSet<4; nSet++) { ChnSettings[nSet].dwFlags = 0; ChnSettings[nSet].nVolume = 64; ChnSettings[nSet].nPan = (nSet & 1) ? 0x40 : 0xC0; } // Reading samples for (UINT nIns=0; nIns<31; nIns++) { MODINSTRUMENT *pIns = &Ins[nIns+1]; const STMSAMPLE *pStm = &phdr->sample[nIns]; // STM sample data memcpy(pIns->name, pStm->filename, 13); memcpy(m_szNames[nIns+1], pStm->filename, 12); pIns->nC4Speed = bswapLE16(pStm->c2spd); pIns->nGlobalVol = 64; pIns->nVolume = pStm->volume << 2; if (pIns->nVolume > 256) pIns->nVolume = 256; pIns->nLength = bswapLE16(pStm->length); if ((pIns->nLength < 4) || (!pIns->nVolume)) pIns->nLength = 0; pIns->nLoopStart = bswapLE16(pStm->loopbeg); pIns->nLoopEnd = bswapLE16(pStm->loopend); if ((pIns->nLoopEnd > pIns->nLoopStart) && (pIns->nLoopEnd != 0xFFFF)) pIns->uFlags |= CHN_LOOP; } dwMemPos = sizeof(STMHEADER); for (UINT nOrd=0; nOrd<MAX_ORDERS; nOrd++) if (Order[nOrd] >= 99) Order[nOrd] = 0xFF; UINT nPatterns = phdr->numpat; if (nPatterns > MAX_PATTERNS) nPatterns = MAX_PATTERNS; for (UINT nPat=0; nPat<nPatterns; nPat++) { if (dwMemPos + 64*4*4 > dwMemLength) return TRUE; PatternSize[nPat] = 64; if ((Patterns[nPat] = AllocatePattern(64, m_nChannels)) == NULL) return TRUE; MODCOMMAND *m = Patterns[nPat]; const STMNOTE *p = (const STMNOTE *)(lpStream + dwMemPos); for (UINT n=0; n<64*4; n++, p++, m++) { UINT note,ins,vol,cmd; // extract the various information from the 4 bytes that // make up a single note note = p->note; ins = p->insvol >> 3; vol = (p->insvol & 0x07) + (p->volcmd >> 1); cmd = p->volcmd & 0x0F; if ((ins) && (ins < 32)) m->instr = ins; // special values of [SBYTE0] are handled here -> // we have no idea if these strange values will ever be encountered // but it appears as though stms sound correct. if ((note == 0xFE) || (note == 0xFC)) m->note = 0xFE; else // if note < 251, then all three bytes are stored in the file if (note < 0xFC) m->note = (note >> 4)*12 + (note&0xf) + 37; if (vol <= 64) { m->volcmd = VOLCMD_VOLUME; m->vol = vol; } m->param = p->cmdinf; switch(cmd) { // Axx set speed to xx case 1: m->command = CMD_SPEED; m->param >>= 4; break; // Bxx position jump case 2: m->command = CMD_POSITIONJUMP; break; // Cxx patternbreak to row xx case 3: m->command = CMD_PATTERNBREAK; m->param = (m->param & 0xF0) * 10 + (m->param & 0x0F); break; // Dxy volumeslide case 4: m->command = CMD_VOLUMESLIDE; break; // Exy toneslide down case 5: m->command = CMD_PORTAMENTODOWN; break; // Fxy toneslide up case 6: m->command = CMD_PORTAMENTOUP; break; // Gxx Tone portamento,speed xx case 7: m->command = CMD_TONEPORTAMENTO; break; // Hxy vibrato case 8: m->command = CMD_VIBRATO; break; // Ixy tremor, ontime x, offtime y case 9: m->command = CMD_TREMOR; break; // Jxy arpeggio case 10: m->command = CMD_ARPEGGIO; break; // Kxy Dual command H00 & Dxy case 11: m->command = CMD_VIBRATOVOL; break; // Lxy Dual command G00 & Dxy case 12: m->command = CMD_TONEPORTAVOL; break; // Xxx amiga command 8xx case 0x18: m->command = CMD_PANNING8; break; default: m->command = m->param = 0; } } dwMemPos += 64*4*4; } // Reading Samples for (UINT nSmp=1; nSmp<=31; nSmp++) { MODINSTRUMENT *pIns = &Ins[nSmp]; dwMemPos = (dwMemPos + 15) & (~15); if (pIns->nLength) { UINT nPos = ((UINT)phdr->sample[nSmp-1].reserved) << 4; if ((nPos >= sizeof(STMHEADER)) && (nPos+pIns->nLength <= dwMemLength)) dwMemPos = nPos; if (dwMemPos < dwMemLength) { dwMemPos += ReadSample(pIns, RS_PCM8S, (LPSTR)(lpStream+dwMemPos),dwMemLength-dwMemPos); } } } return TRUE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ //#include "stdafx.h" //#include "sndfile.h" //#pragma warning(disable:4244) #define ULT_16BIT 0x04 #define ULT_LOOP 0x08 #define ULT_BIDI 0x10 #pragma pack(1) // Raw ULT header struct: typedef struct tagULTHEADER { char id[15]; // changed from CHAR char songtitle[32]; // changed from CHAR BYTE reserved; } ULTHEADER; // Raw ULT sampleinfo struct: typedef struct tagULTSAMPLE { CHAR samplename[32]; CHAR dosname[12]; LONG loopstart; LONG loopend; LONG sizestart; LONG sizeend; BYTE volume; BYTE flags; WORD finetune; } ULTSAMPLE; #pragma pack() BOOL CSoundFile::ReadUlt(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { ULTHEADER *pmh = (ULTHEADER *)lpStream; ULTSAMPLE *pus; UINT nos, nop; DWORD dwMemPos = 0; // try to read module header if ((!lpStream) || (dwMemLength < 0x100)) return FALSE; if (strncmp(pmh->id,"MAS_UTrack_V00",14)) return FALSE; // Warning! Not supported ULT format, trying anyway // if ((pmh->id[14] < '1') || (pmh->id[14] > '4')) return FALSE; m_nType = MOD_TYPE_ULT; m_nDefaultSpeed = 6; m_nDefaultTempo = 125; memcpy(m_szNames[0], pmh->songtitle, 32); m_szNames[0][31] = '\0'; // read songtext dwMemPos = sizeof(ULTHEADER); if ((pmh->reserved) && (dwMemPos + pmh->reserved * 32 < dwMemLength)) { UINT len = pmh->reserved * 32; m_lpszSongComments = new char[len + 1 + pmh->reserved]; if (m_lpszSongComments) { for (UINT l=0; l<pmh->reserved; l++) { memcpy(m_lpszSongComments+l*33, lpStream+dwMemPos+l*32, 32); m_lpszSongComments[l*33+32] = 0x0D; } m_lpszSongComments[len] = 0; } dwMemPos += len; } if (dwMemPos >= dwMemLength) return TRUE; nos = lpStream[dwMemPos++]; m_nSamples = nos; if (m_nSamples >= MAX_SAMPLES) m_nSamples = MAX_SAMPLES-1; UINT smpsize = 64; if (pmh->id[14] >= '4') smpsize += 2; if (dwMemPos + nos*smpsize + 256 + 2 > dwMemLength) return TRUE; for (UINT ins=1; ins<=nos; ins++, dwMemPos+=smpsize) if (ins<=m_nSamples) { pus = (ULTSAMPLE *)(lpStream+dwMemPos); MODINSTRUMENT *pins = &Ins[ins]; memcpy(m_szNames[ins], pus->samplename, 32); m_szNames[ins][31] = '\0'; memcpy(pins->name, pus->dosname, 12); pins->nLoopStart = pus->loopstart; pins->nLoopEnd = pus->loopend; pins->nLength = pus->sizeend - pus->sizestart; pins->nVolume = pus->volume; pins->nGlobalVol = 64; pins->nC4Speed = 8363; if (pmh->id[14] >= '4') { pins->nC4Speed = pus->finetune; } if (pus->flags & ULT_LOOP) pins->uFlags |= CHN_LOOP; if (pus->flags & ULT_BIDI) pins->uFlags |= CHN_PINGPONGLOOP; if (pus->flags & ULT_16BIT) { pins->uFlags |= CHN_16BIT; pins->nLoopStart >>= 1; pins->nLoopEnd >>= 1; } } memcpy(Order, lpStream+dwMemPos, 256); dwMemPos += 256; m_nChannels = lpStream[dwMemPos] + 1; nop = lpStream[dwMemPos+1] + 1; dwMemPos += 2; if (m_nChannels > 32) m_nChannels = 32; // Default channel settings for (UINT nSet=0; nSet<m_nChannels; nSet++) { ChnSettings[nSet].nVolume = 64; ChnSettings[nSet].nPan = (nSet & 1) ? 0x40 : 0xC0; } // read pan position table for v1.5 and higher if(pmh->id[14]>='3') { if (dwMemPos + m_nChannels > dwMemLength) return TRUE; for(UINT t=0; t<m_nChannels; t++) { ChnSettings[t].nPan = (lpStream[dwMemPos++] << 4) + 8; if (ChnSettings[t].nPan > 256) ChnSettings[t].nPan = 256; } } // Allocating Patterns for (UINT nAllocPat=0; nAllocPat<nop; nAllocPat++) { if (nAllocPat < MAX_PATTERNS) { PatternSize[nAllocPat] = 64; Patterns[nAllocPat] = AllocatePattern(64, m_nChannels); } } // Reading Patterns for (UINT nChn=0; nChn<m_nChannels; nChn++) { for (UINT nPat=0; nPat<nop; nPat++) { MODCOMMAND *pat = NULL; if (nPat < MAX_PATTERNS) { pat = Patterns[nPat]; if (pat) pat += nChn; } UINT row = 0; while (row < 64) { if (dwMemPos > dwMemLength - 5) return TRUE; UINT rep = 1; UINT note = lpStream[dwMemPos++]; if (note == 0xFC) { rep = lpStream[dwMemPos]; note = lpStream[dwMemPos+1]; dwMemPos += 2; if (dwMemPos > dwMemLength - 4) return TRUE; } UINT instr = lpStream[dwMemPos++]; UINT eff = lpStream[dwMemPos++]; UINT dat1 = lpStream[dwMemPos++]; UINT dat2 = lpStream[dwMemPos++]; UINT cmd1 = eff & 0x0F; UINT cmd2 = eff >> 4; if (cmd1 == 0x0C) dat1 >>= 2; else if (cmd1 == 0x0B) { cmd1 = dat1 = 0; } if (cmd2 == 0x0C) dat2 >>= 2; else if (cmd2 == 0x0B) { cmd2 = dat2 = 0; } while ((rep != 0) && (row < 64)) { if (pat) { pat->instr = instr; if (note) pat->note = note + 36; if (cmd1 | dat1) { if (cmd1 == 0x0C) { pat->volcmd = VOLCMD_VOLUME; pat->vol = dat1; } else { pat->command = cmd1; pat->param = dat1; ConvertModCommand(pat); } } if (cmd2 == 0x0C) { pat->volcmd = VOLCMD_VOLUME; pat->vol = dat2; } else if ((cmd2 | dat2) && (!pat->command)) { pat->command = cmd2; pat->param = dat2; ConvertModCommand(pat); } pat += m_nChannels; } row++; rep--; } } } } // Reading Instruments for (UINT smp=1; smp<=m_nSamples; smp++) if (Ins[smp].nLength) { if (dwMemPos >= dwMemLength) return TRUE; UINT flags = (Ins[smp].uFlags & CHN_16BIT) ? RS_PCM16S : RS_PCM8S; dwMemPos += ReadSample(&Ins[smp], flags, (LPSTR)(lpStream+dwMemPos), dwMemLength - dwMemPos); } return TRUE; } /* * This source code is public domain. * * Epic Games Unreal UMX container loading for libmodplug * Written by O. Sezer <sezero@users.sourceforge.net> * UPKG parsing partially based on Unreal Media Ripper (UMR) v0.3 * by Andy Ward <wardwh@swbell.net>, with additional updates * by O. Sezer - see git repo at https://github.com/sezero/umr.git * Retrieves the offset, size and object type directly from umx. */ //#include "stdafx.h" //#include "sndfile.h" typedef LONG fci_t; /* FCompactIndex */ #define UPKG_HDR_TAG 0x9e2a83c1 struct _genhist { /* for upkg versions >= 68 */ LONG export_count; LONG name_count; }; struct upkg_hdr { DWORD tag; /* UPKG_HDR_TAG */ LONG file_version; DWORD pkg_flags; LONG name_count; /* number of names in name table (>= 0) */ LONG name_offset; /* offset to name table (>= 0) */ LONG export_count; /* num. exports in export table (>= 0) */ LONG export_offset; /* offset to export table (>= 0) */ LONG import_count; /* num. imports in export table (>= 0) */ LONG import_offset; /* offset to import table (>= 0) */ /* number of GUIDs in heritage table (>= 1) and table's offset: * only with versions < 68. */ LONG heritage_count; LONG heritage_offset; /* with versions >= 68: a GUID, a dword for generation count * and export_count and name_count dwords for each generation: */ DWORD guid[4]; LONG generation_count; #define UPKG_HDR_SIZE 64 /* 64 bytes up until here */ /*struct _genhist *gen;*/ }; #define UMUSIC_IT 0 #define UMUSIC_S3M 1 #define UMUSIC_XM 2 #define UMUSIC_MOD 3 #define UMUSIC_WAV 4 #define UMUSIC_MP2 5 static const char *mustype[] = { "IT", "S3M", "XM", "MOD", NULL }; /* decode an FCompactIndex. * original documentation by Tim Sweeney was at * http://unreal.epicgames.com/Packages.htm * also see Unreal Wiki: * http://wiki.beyondunreal.com/Legacy:Package_File_Format/Data_Details */ static fci_t get_fci (const char *in, int *pos) { LONG a; int size; size = 1; a = in[0] & 0x3f; if (in[0] & 0x40) { size++; a |= (in[1] & 0x7f) << 6; if (in[1] & 0x80) { size++; a |= (in[2] & 0x7f) << 13; if (in[2] & 0x80) { size++; a |= (in[3] & 0x7f) << 20; if (in[3] & 0x80) { size++; a |= (in[4] & 0x3f) << 27; } } } } if (in[0] & 0x80) a = -a; *pos += size; return a; } static int get_objtype (const BYTE *membase, LONG memlen, LONG ofs, int type) { if (type == UMUSIC_IT) { _retry: if (memcmp(membase + ofs, "IMPM", 4) == 0) return UMUSIC_IT; return -1; } if (type == UMUSIC_XM) { if (memcmp(membase + ofs, "Extended Module: ", 17) != 0) return -1; if (*(membase + ofs + 37) != 0x1a) return -1; return UMUSIC_XM; } if (type == UMUSIC_S3M) { if (memcmp(membase + ofs + 44, "SCRM", 4) == 0) return UMUSIC_S3M; /*return -1;*/ /* SpaceMarines.umx and Starseek.umx from Return to NaPali * report as "s3m" whereas the actual music format is "it" */ goto _retry; } if (type == UMUSIC_MOD) { membase += ofs + 1080; if (memcmp(membase, "M.K.", 4) == 0 || memcmp(membase, "M!K!", 4) == 0) return UMUSIC_MOD; return -1; } return -1; } static int read_export (const BYTE *membase, LONG memlen, const struct upkg_hdr *hdr, LONG *ofs, LONG *objsize) { char buf[40]; int idx = 0, t; memcpy(buf, membase + *ofs, 40); if (hdr->file_version < 40) idx += 8; /* 00 00 00 00 00 00 00 00 */ if (hdr->file_version < 60) idx += 16; /* 81 00 00 00 00 00 FF FF FF FF FF FF FF FF 00 00 */ get_fci(&buf[idx], &idx); /* skip junk */ t = get_fci(&buf[idx], &idx); /* type_name */ if (hdr->file_version > 61) idx += 4; /* skip export size */ *objsize = get_fci(&buf[idx], &idx); *ofs += idx; /* offset for real data */ return t; /* return type_name index */ } static int read_typname(const BYTE *membase, LONG memlen, const struct upkg_hdr *hdr, int idx, char *out) { int i, s; long l, ofs, siz; char buf[64]; if (idx >= hdr->name_count) return -1; memset(buf, 0, 64); for (i = 0, l = 0; i <= idx; i++) { if ((ofs = hdr->name_offset + l) >= memlen) return -1; if ((siz = memlen - ofs) > 63) siz = 63; memcpy(buf, membase + ofs, siz); if (hdr->file_version >= 64) { s = *(signed char *)buf; /* numchars *including* terminator */ if (s <= 0) return -1; l += s + 5; /* 1 for buf[0], 4 for int32_t name_flags */ } else { l += (long)strlen(buf); l += 5; /* 1 for terminator, 4 for int32_t name_flags */ } } strcpy(out, (hdr->file_version >= 64)? &buf[1] : buf); return 0; } static void umx_strupr(char *str) { while (*str) { if (*str >= 'a' && *str <= 'z') { *str -= ('a' - 'A'); } str++; } } static int probe_umx (const BYTE *membase, LONG memlen, const struct upkg_hdr *hdr, LONG *ofs, LONG *objsize) { int i, idx, t; LONG s, pos; char buf[64]; if (hdr->name_offset >= memlen || hdr->export_offset >= memlen || hdr->import_offset >= memlen) { return -1; } /* Find the offset and size of the first IT, S3M or XM * by parsing the exports table. The umx files should * have only one export. Kran32.umx from Unreal has two, * but both pointing to the same music. */ s = memlen - hdr->export_offset; if (s <= 0) return -1; if (s > 64) s = 64; memcpy(buf, membase + hdr->export_offset, s); for (; s < 64; ++s) buf[s] = 0x0; /* really? */ idx = 0; get_fci(&buf[idx], &idx); /* skip class_index */ get_fci(&buf[idx], &idx); /* skip super_index */ if (hdr->file_version >= 60) idx += 4; /* skip int32 package_index */ get_fci(&buf[idx], &idx); /* skip object_name */ idx += 4; /* skip int32 object_flags */ s = get_fci(&buf[idx], &idx); /* get serial_size */ if (s <= 0) return -1; pos = get_fci(&buf[idx],&idx); /* get serial_offset */ if (pos < 0 || pos > memlen - 40) return -1; if ((t = read_export(membase, memlen, hdr, &pos, &s)) < 0) return -1; if (s <= 0 || s > memlen - pos) return -1; if (read_typname(membase, memlen, hdr, t, buf) < 0) return -1; umx_strupr(buf); for (i = 0; mustype[i] != NULL; i++) { if (!strcmp(buf, mustype[i])) { t = i; break; } } if (mustype[i] == NULL) return -1; if ((t = get_objtype(membase, memlen, pos, t)) < 0) return -1; *ofs = pos; *objsize = s; return t; } static int probe_header (void *header) { struct upkg_hdr *hdr; unsigned char *p; DWORD *swp; int i; /* byte swap the header - all members are 32 bit LE values */ p = (unsigned char *) header; swp = (DWORD *) header; for (i = 0; i < UPKG_HDR_SIZE/4; i++, p += 4) { swp[i] = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); } hdr = (struct upkg_hdr *) header; if (hdr->tag != UPKG_HDR_TAG) { return -1; } if (hdr->name_count < 0 || hdr->export_count < 0 || hdr->import_count < 0 || hdr->name_offset < 36 || hdr->export_offset < 36 || hdr->import_offset < 36 ) { return -1; } #if 1 /* no need being overzealous */ return 0; #else switch (hdr->file_version) { case 35: case 37: /* Unreal beta - */ case 40: case 41: /* 1998 */ case 61:/* Unreal */ case 62:/* Unreal Tournament */ case 63:/* Return to NaPali */ case 64:/* Unreal Tournament */ case 66:/* Unreal Tournament */ case 68:/* Unreal Tournament */ case 69:/* Tactical Ops */ case 83:/* Mobile Forces */ return 0; } return -1;/* Unknown upkg version for an UMX */ #endif /* #if 0 */ } static int process_upkg (const BYTE *membase, LONG memlen, LONG *ofs, LONG *objsize) { char header[UPKG_HDR_SIZE]; memcpy(header, membase, UPKG_HDR_SIZE); if (probe_header(header) < 0) return -1; return probe_umx(membase, memlen, (struct upkg_hdr *)header, ofs, objsize); } BOOL CSoundFile::ReadUMX(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { int type; LONG ofs = 0, size = 0; if (!lpStream || dwMemLength < 0x800 || dwMemLength > 0x7fffffff) return FALSE; type = process_upkg(lpStream, (LONG)dwMemLength, &ofs, &size); if (type < 0) return FALSE; // Rip Mods from UMX switch (type) { case UMUSIC_IT: return ReadIT(lpStream + ofs, size); case UMUSIC_S3M: return ReadS3M(lpStream + ofs, size); case UMUSIC_XM: return ReadXM(lpStream + ofs, size); case UMUSIC_MOD: return ReadMod(lpStream + ofs, size); } return FALSE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ //#include "stdafx.h" //#include "sndfile.h" #ifndef WAVE_FORMAT_EXTENSIBLE #define WAVE_FORMAT_EXTENSIBLE 0xFFFE #endif ///////////////////////////////////////////////////////////// // WAV file support BOOL CSoundFile::ReadWav(const BYTE *lpStream, DWORD dwMemLength) //--------------------------------------------------------------- { DWORD dwMemPos = 0; const WAVEFILEHEADER *phdr = (WAVEFILEHEADER *)lpStream; const WAVEFORMATHEADER *pfmt = (WAVEFORMATHEADER *)(lpStream + sizeof(WAVEFILEHEADER)); if ((!lpStream) || (dwMemLength < sizeof(WAVEFILEHEADER)+sizeof(WAVEFORMATHEADER))) return FALSE; if ((phdr->id_RIFF != IFFID_RIFF) || (phdr->id_WAVE != IFFID_WAVE) || (pfmt->id_fmt != IFFID_fmt)) return FALSE; dwMemPos = sizeof(WAVEFILEHEADER) + 8 + pfmt->hdrlen; if ((dwMemPos >= dwMemLength - 8) || ((pfmt->format != WAVE_FORMAT_PCM) && (pfmt->format != WAVE_FORMAT_EXTENSIBLE)) || (pfmt->channels > 4) || (!pfmt->channels) || (!pfmt->freqHz) || (pfmt->bitspersample & 7) || (pfmt->bitspersample < 8) || (pfmt->bitspersample > 32)) return FALSE; const WAVEDATAHEADER *pdata; for (;;) { pdata = (WAVEDATAHEADER *)(lpStream + dwMemPos); if (pdata->id_data == IFFID_data) break; if (pdata->length >= dwMemLength || dwMemPos > dwMemLength - pdata->length) return FALSE; dwMemPos += pdata->length + 8; if (dwMemPos >= dwMemLength - 8) return FALSE; } m_nType = MOD_TYPE_WAV; m_nSamples = 0; m_nInstruments = 0; m_nChannels = 4; m_nDefaultSpeed = 8; m_nDefaultTempo = 125; m_dwSongFlags |= SONG_LINEARSLIDES; // For no resampling Order[0] = 0; Order[1] = 0xFF; PatternSize[0] = PatternSize[1] = 64; if ((Patterns[0] = AllocatePattern(64, 4)) == NULL) return TRUE; if ((Patterns[1] = AllocatePattern(64, 4)) == NULL) return TRUE; UINT samplesize = (pfmt->channels * pfmt->bitspersample) >> 3; UINT len = pdata->length, bytelen; if (len > dwMemLength - 8 - dwMemPos) len = dwMemLength - dwMemPos - 8; len /= samplesize; bytelen = len; if (pfmt->bitspersample >= 16) bytelen *= 2; if (len > MAX_SAMPLE_LENGTH) len = MAX_SAMPLE_LENGTH; if (!len) return TRUE; // Setting up module length DWORD dwTime = ((len * 50) / pfmt->freqHz) + 1; DWORD framesperrow = (dwTime + 63) / 63; if (framesperrow < 4) framesperrow = 4; UINT norders = 1; while (framesperrow >= 0x20) { Order[norders++] = 1; Order[norders] = 0xFF; framesperrow = (dwTime + (64 * norders - 1)) / (64 * norders); if (norders >= MAX_ORDERS-1) break; } m_nDefaultSpeed = framesperrow; for (UINT iChn=0; iChn<4; iChn++) { ChnSettings[iChn].nPan = (iChn & 1) ? 256 : 0; ChnSettings[iChn].nVolume = 64; ChnSettings[iChn].dwFlags = 0; } // Setting up speed command MODCOMMAND *pcmd = Patterns[0]; pcmd[0].command = CMD_SPEED; pcmd[0].param = (BYTE)m_nDefaultSpeed; pcmd[0].note = 5*12+1; pcmd[0].instr = 1; pcmd[1].note = pcmd[0].note; pcmd[1].instr = pcmd[0].instr; m_nSamples = pfmt->channels; // Support for Multichannel Wave for (UINT nChn=0; nChn<m_nSamples; nChn++) { MODINSTRUMENT *pins = &Ins[nChn+1]; pcmd[nChn].note = pcmd[0].note; pcmd[nChn].instr = (BYTE)(nChn+1); pins->nLength = len; pins->nC4Speed = pfmt->freqHz; pins->nVolume = 256; pins->nPan = 128; pins->nGlobalVol = 64; pins->uFlags = (WORD)((pfmt->bitspersample >= 16) ? CHN_16BIT : 0); pins->uFlags |= CHN_PANNING; if (m_nSamples > 1) { switch(nChn) { case 0: pins->nPan = 0; break; case 1: pins->nPan = 256; break; case 2: pins->nPan = (WORD)((m_nSamples == 3) ? 128 : 64); pcmd[nChn].command = CMD_S3MCMDEX; pcmd[nChn].param = 0x91; break; case 3: pins->nPan = 192; pcmd[nChn].command = CMD_S3MCMDEX; pcmd[nChn].param = 0x91; break; default: pins->nPan = 128; break; } } if ((pins->pSample = AllocateSample(bytelen+8)) == NULL) return TRUE; if (pfmt->bitspersample >= 16) { int slsize = pfmt->bitspersample >> 3; signed short *p = (signed short *)pins->pSample; signed char *psrc = (signed char *)(lpStream+dwMemPos+8+nChn*slsize+slsize-2); for (UINT i=0; i<len; i++) { p[i] = *((signed short *)psrc); psrc += samplesize; } p[len+1] = p[len] = p[len-1]; } else { signed char *p = (signed char *)pins->pSample; signed char *psrc = (signed char *)(lpStream+dwMemPos+8+nChn); for (UINT i=0; i<len; i++) { p[i] = (signed char)((*psrc) + 0x80); psrc += samplesize; } p[len+1] = p[len] = p[len-1]; } } return TRUE; } //////////////////////////////////////////////////////////////////////// // IMA ADPCM Support #pragma pack(1) typedef struct IMAADPCMBLOCK { WORD sample; BYTE index; BYTE Reserved; } DVI_ADPCMBLOCKHEADER; #pragma pack() static const int gIMAUnpackTable[90] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767, 0 }; BOOL IMAADPCMUnpack16(signed short *pdest, UINT nLen, LPBYTE psrc, DWORD dwBytes, UINT pkBlkAlign) //------------------------------------------------------------------------------------------------ { static const int gIMAIndexTab[8] = { -1, -1, -1, -1, 2, 4, 6, 8 }; UINT nPos; int value; if ((nLen < 4) || (!pdest) || (!psrc) || (pkBlkAlign < 5) || (pkBlkAlign > dwBytes)) return FALSE; nPos = 0; while ((nPos < nLen) && (dwBytes > 4)) { int nIndex; value = *((short int *)psrc); nIndex = psrc[2]; psrc += 4; dwBytes -= 4; pdest[nPos++] = (short int)value; for (UINT i=0; ((i<(pkBlkAlign-4)*2) && (nPos < nLen) && (dwBytes)); i++) { BYTE delta; if (i & 1) { delta = (BYTE)(((*(psrc++)) >> 4) & 0x0F); dwBytes--; } else { delta = (BYTE)((*psrc) & 0x0F); } int v = gIMAUnpackTable[nIndex] >> 3; if (delta & 1) v += gIMAUnpackTable[nIndex] >> 2; if (delta & 2) v += gIMAUnpackTable[nIndex] >> 1; if (delta & 4) v += gIMAUnpackTable[nIndex]; if (delta & 8) value -= v; else value += v; nIndex += gIMAIndexTab[delta & 7]; if (nIndex < 0) nIndex = 0; else if (nIndex > 88) nIndex = 88; if (value > 32767) value = 32767; else if (value < -32768) value = -32768; pdest[nPos++] = (short int)value; } } return TRUE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (endian and char fixes for PPC) */ //#include "stdafx.h" //#include "sndfile.h" //////////////////////////////////////////////////////// // FastTracker II XM file support #ifdef _MSC_VER #pragma warning(disable:4244) #endif #pragma pack(1) typedef struct tagXMFILEHEADER { DWORD size; WORD norder; WORD restartpos; WORD channels; WORD patterns; WORD instruments; WORD flags; WORD speed; WORD tempo; BYTE order[256]; } XMFILEHEADER; typedef struct tagXMINSTRUMENTHEADER { DWORD size; CHAR name[22]; BYTE type; BYTE samples; BYTE samplesh; } XMINSTRUMENTHEADER; typedef struct tagXMSAMPLEHEADER { DWORD shsize; BYTE snum[96]; WORD venv[24]; WORD penv[24]; BYTE vnum, pnum; BYTE vsustain, vloops, vloope, psustain, ploops, ploope; BYTE vtype, ptype; BYTE vibtype, vibsweep, vibdepth, vibrate; WORD volfade; WORD res; BYTE reserved1[20]; } XMSAMPLEHEADER; typedef struct tagXMSAMPLESTRUCT { DWORD samplen; DWORD loopstart; DWORD looplen; BYTE vol; signed char finetune; BYTE type; BYTE pan; signed char relnote; BYTE res; char name[22]; } XMSAMPLESTRUCT; #pragma pack() BOOL CSoundFile::ReadXM(const BYTE *lpStream, DWORD dwMemLength) //-------------------------------------------------------------- { XMSAMPLEHEADER xmsh; XMSAMPLESTRUCT xmss; DWORD dwMemPos, dwHdrSize; WORD norders=0, restartpos=0, channels=0, patterns=0, instruments=0; WORD xmflags=0, deftempo=125, defspeed=6; BOOL InstUsed[256]; BYTE channels_used[MAX_CHANNELS]; BYTE pattern_map[256]; BOOL samples_used[MAX_SAMPLES]; UINT unused_samples; tagXMFILEHEADER xmhead; m_nChannels = 0; if ((!lpStream) || (dwMemLength < 0x200)) return FALSE; if (strncmp((LPCSTR)lpStream, "Extended Module:", 16)) return FALSE; memcpy(m_szNames[0], lpStream+17, 20); xmhead = *(tagXMFILEHEADER *)(lpStream+60); dwHdrSize = bswapLE32(xmhead.size); norders = bswapLE16(xmhead.norder); restartpos = bswapLE16(xmhead.restartpos); channels = bswapLE16(xmhead.channels); if ((!dwHdrSize) || dwHdrSize > dwMemLength - 60) return FALSE; if ((!norders) || (norders > MAX_ORDERS)) return FALSE; if ((!channels) || (channels > 64)) return FALSE; m_nType = MOD_TYPE_XM; m_nMinPeriod = 27; m_nMaxPeriod = 54784; m_nChannels = channels; if (restartpos < norders) m_nRestartPos = restartpos; patterns = bswapLE16(xmhead.patterns); if (patterns > 256) patterns = 256; instruments = bswapLE16(xmhead.instruments); if (instruments >= MAX_INSTRUMENTS) instruments = MAX_INSTRUMENTS-1; m_nInstruments = instruments; m_nSamples = 0; xmflags = bswapLE16(xmhead.flags); if (xmflags & 1) m_dwSongFlags |= SONG_LINEARSLIDES; if (xmflags & 0x1000) m_dwSongFlags |= SONG_EXFILTERRANGE; defspeed = bswapLE16(xmhead.speed); deftempo = bswapLE16(xmhead.tempo); if ((deftempo >= 32) && (deftempo < 256)) m_nDefaultTempo = deftempo; if ((defspeed > 0) && (defspeed < 40)) m_nDefaultSpeed = defspeed; memcpy(Order, lpStream+80, norders); memset(InstUsed, 0, sizeof(InstUsed)); if (patterns > MAX_PATTERNS) { UINT i, j; for (i=0; i<norders; i++) { if (Order[i] < patterns) InstUsed[Order[i]] = TRUE; } j = 0; for (i=0; i<256; i++) { if (InstUsed[i]) pattern_map[i] = j++; } for (i=0; i<256; i++) { if (!InstUsed[i]) { pattern_map[i] = (j < MAX_PATTERNS) ? j : 0xFE; j++; } } for (i=0; i<norders; i++) { Order[i] = pattern_map[Order[i]]; } } else { for (UINT i=0; i<256; i++) pattern_map[i] = i; } memset(InstUsed, 0, sizeof(InstUsed)); dwMemPos = dwHdrSize + 60; if (dwMemPos + 8 >= dwMemLength) return TRUE; // Reading patterns memset(channels_used, 0, sizeof(channels_used)); for (UINT ipat=0; ipat<patterns; ipat++) { UINT ipatmap = pattern_map[ipat]; DWORD dwSize = 0; WORD rows=64, packsize=0; dwSize = bswapLE32(*((DWORD *)(lpStream+dwMemPos))); while ((dwMemPos + dwSize >= dwMemLength) || (dwSize & 0xFFFFFF00)) { if (dwMemPos + 4 >= dwMemLength) break; dwMemPos++; dwSize = bswapLE32(*((DWORD *)(lpStream+dwMemPos))); } if (dwMemPos + 9 > dwMemLength) return TRUE; rows = bswapLE16(*((WORD *)(lpStream+dwMemPos+5))); if ((!rows) || (rows > 256)) rows = 64; packsize = bswapLE16(*((WORD *)(lpStream+dwMemPos+7))); if (dwMemPos + dwSize + 4 > dwMemLength) return TRUE; dwMemPos += dwSize; if (dwMemPos + packsize + 4 > dwMemLength) return TRUE; MODCOMMAND *p; if (ipatmap < MAX_PATTERNS) { PatternSize[ipatmap] = rows; if ((Patterns[ipatmap] = AllocatePattern(rows, m_nChannels)) == NULL) return TRUE; if (!packsize) continue; p = Patterns[ipatmap]; } else p = NULL; const BYTE *src = lpStream+dwMemPos; UINT j=0; for (UINT row=0; row<rows; row++) { for (UINT chn=0; chn<m_nChannels; chn++) { if ((p) && (j < packsize)) { BYTE b = src[j++]; UINT vol = 0; if (b & 0x80) { if (b & 1) p->note = j < packsize ? src[j++] : 0; if (b & 2) p->instr = j < packsize ? src[j++] : 0; if (b & 4) vol = j < packsize ? src[j++] : 0; if (b & 8) p->command = j < packsize ? src[j++] : 0; if (b & 16) p->param = j < packsize ? src[j++] : 0; } else { if (j + 5 > packsize) break; p->note = b; p->instr = src[j++]; vol = src[j++]; p->command = src[j++]; p->param = src[j++]; } if (p->note == 97) p->note = 0xFF; else if ((p->note) && (p->note < 97)) p->note += 12; if (p->note) channels_used[chn] = 1; if (p->command | p->param) ConvertModCommand(p); if (p->instr == 0xff) p->instr = 0; if (p->instr) InstUsed[p->instr] = TRUE; if ((vol >= 0x10) && (vol <= 0x50)) { p->volcmd = VOLCMD_VOLUME; p->vol = vol - 0x10; } else if (vol >= 0x60) { UINT v = vol & 0xF0; vol &= 0x0F; p->vol = vol; switch(v) { // 60-6F: Volume Slide Down case 0x60: p->volcmd = VOLCMD_VOLSLIDEDOWN; break; // 70-7F: Volume Slide Up: case 0x70: p->volcmd = VOLCMD_VOLSLIDEUP; break; // 80-8F: Fine Volume Slide Down case 0x80: p->volcmd = VOLCMD_FINEVOLDOWN; break; // 90-9F: Fine Volume Slide Up case 0x90: p->volcmd = VOLCMD_FINEVOLUP; break; // A0-AF: Set Vibrato Speed case 0xA0: p->volcmd = VOLCMD_VIBRATOSPEED; break; // B0-BF: Vibrato case 0xB0: p->volcmd = VOLCMD_VIBRATO; break; // C0-CF: Set Panning case 0xC0: p->volcmd = VOLCMD_PANNING; p->vol = (vol << 2) + 2; break; // D0-DF: Panning Slide Left case 0xD0: p->volcmd = VOLCMD_PANSLIDELEFT; break; // E0-EF: Panning Slide Right case 0xE0: p->volcmd = VOLCMD_PANSLIDERIGHT; break; // F0-FF: Tone Portamento case 0xF0: p->volcmd = VOLCMD_TONEPORTAMENTO; break; } } p++; } else if (j < packsize) { BYTE b = src[j++]; if (b & 0x80) { if (b & 1) j++; if (b & 2) j++; if (b & 4) j++; if (b & 8) j++; if (b & 16) j++; } else j += 4; } else break; } } dwMemPos += packsize; } // Wrong offset check while (dwMemPos + 4 < dwMemLength) { DWORD d = bswapLE32(*((DWORD *)(lpStream+dwMemPos))); if (d < 0x300) break; dwMemPos++; } memset(samples_used, 0, sizeof(samples_used)); unused_samples = 0; // Reading instruments for (UINT iIns=1; iIns<=instruments; iIns++) { XMINSTRUMENTHEADER *pih; BYTE flags[32]; DWORD samplesize[32]; UINT samplemap[32]; WORD nsamples; DWORD pihlen; if (dwMemPos + sizeof(XMINSTRUMENTHEADER) >= dwMemLength) return TRUE; pih = (XMINSTRUMENTHEADER *)(lpStream+dwMemPos); pihlen = bswapLE32(pih->size); if (pihlen >= dwMemLength || dwMemPos > dwMemLength - pihlen) return TRUE; if ((Headers[iIns] = new INSTRUMENTHEADER) == NULL) continue; memset(Headers[iIns], 0, sizeof(INSTRUMENTHEADER)); memcpy(Headers[iIns]->name, pih->name, 22); if ((nsamples = pih->samples) > 0) { if (dwMemPos + sizeof(XMINSTRUMENTHEADER) + sizeof(XMSAMPLEHEADER) > dwMemLength) return TRUE; memcpy(&xmsh, lpStream+dwMemPos+sizeof(XMINSTRUMENTHEADER), sizeof(XMSAMPLEHEADER)); xmsh.shsize = bswapLE32(xmsh.shsize); for (int i = 0; i < 24; ++i) { xmsh.venv[i] = bswapLE16(xmsh.venv[i]); xmsh.penv[i] = bswapLE16(xmsh.penv[i]); } xmsh.volfade = bswapLE16(xmsh.volfade); xmsh.res = bswapLE16(xmsh.res); dwMemPos += pihlen; } else { if (pihlen) dwMemPos += pihlen; else dwMemPos += sizeof(XMINSTRUMENTHEADER); continue; } memset(samplemap, 0, sizeof(samplemap)); if (nsamples > 32) return TRUE; UINT newsamples = m_nSamples; for (UINT nmap=0; nmap<nsamples; nmap++) { UINT n = m_nSamples+nmap+1; if (n >= MAX_SAMPLES) { n = m_nSamples; while (n > 0) { if (!Ins[n].pSample) { for (UINT xmapchk=0; xmapchk < nmap; xmapchk++) { if (samplemap[xmapchk] == n) goto alreadymapped; } for (UINT clrs=1; clrs<iIns; clrs++) if (Headers[clrs]) { INSTRUMENTHEADER *pks = Headers[clrs]; for (UINT ks=0; ks<128; ks++) { if (pks->Keyboard[ks] == n) pks->Keyboard[ks] = 0; } } break; } alreadymapped: n--; } #ifndef MODPLUG_FASTSOUNDLIB // Damn! more than 200 samples: look for duplicates if (!n) { if (!unused_samples) { unused_samples = DetectUnusedSamples(samples_used); if (!unused_samples) unused_samples = 0xFFFF; } if ((unused_samples) && (unused_samples != 0xFFFF)) { for (UINT iext=m_nSamples; iext>=1; iext--) if (!samples_used[iext]) { unused_samples--; samples_used[iext] = TRUE; DestroySample(iext); n = iext; for (UINT mapchk=0; mapchk<nmap; mapchk++) { if (samplemap[mapchk] == n) samplemap[mapchk] = 0; } for (UINT clrs=1; clrs<iIns; clrs++) if (Headers[clrs]) { INSTRUMENTHEADER *pks = Headers[clrs]; for (UINT ks=0; ks<128; ks++) { if (pks->Keyboard[ks] == n) pks->Keyboard[ks] = 0; } } memset(&Ins[n], 0, sizeof(Ins[0])); break; } } } #endif // MODPLUG_FASTSOUNDLIB } if (newsamples < n) newsamples = n; samplemap[nmap] = n; } m_nSamples = newsamples; // Reading Volume Envelope INSTRUMENTHEADER *penv = Headers[iIns]; penv->nMidiProgram = pih->type; penv->nFadeOut = xmsh.volfade; penv->nPan = 128; penv->nPPC = 5*12; if (xmsh.vtype & 1) penv->dwFlags |= ENV_VOLUME; if (xmsh.vtype & 2) penv->dwFlags |= ENV_VOLSUSTAIN; if (xmsh.vtype & 4) penv->dwFlags |= ENV_VOLLOOP; if (xmsh.ptype & 1) penv->dwFlags |= ENV_PANNING; if (xmsh.ptype & 2) penv->dwFlags |= ENV_PANSUSTAIN; if (xmsh.ptype & 4) penv->dwFlags |= ENV_PANLOOP; if (xmsh.vnum > 12) xmsh.vnum = 12; if (xmsh.pnum > 12) xmsh.pnum = 12; penv->nVolEnv = xmsh.vnum; if (!xmsh.vnum) penv->dwFlags &= ~ENV_VOLUME; if (!xmsh.pnum) penv->dwFlags &= ~ENV_PANNING; penv->nPanEnv = xmsh.pnum; penv->nVolSustainBegin = penv->nVolSustainEnd = xmsh.vsustain; if (xmsh.vsustain >= 12) penv->dwFlags &= ~ENV_VOLSUSTAIN; penv->nVolLoopStart = xmsh.vloops; penv->nVolLoopEnd = xmsh.vloope; if (penv->nVolLoopEnd >= 12) penv->nVolLoopEnd = 0; if (penv->nVolLoopStart >= penv->nVolLoopEnd) penv->dwFlags &= ~ENV_VOLLOOP; penv->nPanSustainBegin = penv->nPanSustainEnd = xmsh.psustain; if (xmsh.psustain >= 12) penv->dwFlags &= ~ENV_PANSUSTAIN; penv->nPanLoopStart = xmsh.ploops; penv->nPanLoopEnd = xmsh.ploope; if (penv->nPanLoopEnd >= 12) penv->nPanLoopEnd = 0; if (penv->nPanLoopStart >= penv->nPanLoopEnd) penv->dwFlags &= ~ENV_PANLOOP; penv->nGlobalVol = 64; for (UINT ienv=0; ienv<12; ienv++) { penv->VolPoints[ienv] = (WORD)xmsh.venv[ienv*2]; penv->VolEnv[ienv] = (BYTE)xmsh.venv[ienv*2+1]; penv->PanPoints[ienv] = (WORD)xmsh.penv[ienv*2]; penv->PanEnv[ienv] = (BYTE)xmsh.penv[ienv*2+1]; if (ienv) { if (penv->VolPoints[ienv] < penv->VolPoints[ienv-1]) { penv->VolPoints[ienv] &= 0xFF; penv->VolPoints[ienv] += penv->VolPoints[ienv-1] & 0xFF00; if (penv->VolPoints[ienv] < penv->VolPoints[ienv-1]) penv->VolPoints[ienv] += 0x100; } if (penv->PanPoints[ienv] < penv->PanPoints[ienv-1]) { penv->PanPoints[ienv] &= 0xFF; penv->PanPoints[ienv] += penv->PanPoints[ienv-1] & 0xFF00; if (penv->PanPoints[ienv] < penv->PanPoints[ienv-1]) penv->PanPoints[ienv] += 0x100; } } } for (UINT j=0; j<96; j++) { penv->NoteMap[j+12] = j+1+12; if (xmsh.snum[j] < nsamples) penv->Keyboard[j+12] = samplemap[xmsh.snum[j]]; } // Reading samples for (UINT ins=0; ins<nsamples; ins++) { if ((dwMemPos + sizeof(xmss) > dwMemLength) || (xmsh.shsize >= dwMemLength) || (dwMemPos > dwMemLength - xmsh.shsize)) return TRUE; memcpy(&xmss, lpStream+dwMemPos, sizeof(xmss)); xmss.samplen = bswapLE32(xmss.samplen); xmss.loopstart = bswapLE32(xmss.loopstart); xmss.looplen = bswapLE32(xmss.looplen); dwMemPos += xmsh.shsize; flags[ins] = (xmss.type & 0x10) ? RS_PCM16D : RS_PCM8D; if (xmss.type & 0x20) flags[ins] = (xmss.type & 0x10) ? RS_STPCM16D : RS_STPCM8D; samplesize[ins] = xmss.samplen; if (!samplemap[ins]) continue; if (xmss.type & 0x10) { xmss.looplen >>= 1; xmss.loopstart >>= 1; xmss.samplen >>= 1; } if (xmss.type & 0x20) { xmss.looplen >>= 1; xmss.loopstart >>= 1; xmss.samplen >>= 1; } if (xmss.samplen > MAX_SAMPLE_LENGTH) xmss.samplen = MAX_SAMPLE_LENGTH; if (xmss.loopstart >= xmss.samplen) xmss.type &= ~3; xmss.looplen += xmss.loopstart; if (xmss.looplen > xmss.samplen) xmss.looplen = xmss.samplen; if (!xmss.looplen) xmss.type &= ~3; UINT imapsmp = samplemap[ins]; memcpy(m_szNames[imapsmp], xmss.name, 22); m_szNames[imapsmp][22] = 0; MODINSTRUMENT *pins = &Ins[imapsmp]; pins->nLength = (xmss.samplen > MAX_SAMPLE_LENGTH) ? MAX_SAMPLE_LENGTH : xmss.samplen; pins->nLoopStart = xmss.loopstart; pins->nLoopEnd = xmss.looplen; if (pins->nLoopEnd > pins->nLength) pins->nLoopEnd = pins->nLength; if (pins->nLoopStart >= pins->nLoopEnd) { pins->nLoopStart = pins->nLoopEnd = 0; } if (xmss.type & 3) pins->uFlags |= CHN_LOOP; if (xmss.type & 2) pins->uFlags |= CHN_PINGPONGLOOP; pins->nVolume = xmss.vol << 2; if (pins->nVolume > 256) pins->nVolume = 256; pins->nGlobalVol = 64; if ((xmss.res == 0xAD) && (!(xmss.type & 0x30))) { flags[ins] = RS_ADPCM4; samplesize[ins] = (samplesize[ins]+1)/2 + 16; } pins->nFineTune = xmss.finetune; pins->RelativeTone = (int)xmss.relnote; pins->nPan = xmss.pan; pins->uFlags |= CHN_PANNING; pins->nVibType = xmsh.vibtype; pins->nVibSweep = xmsh.vibsweep; pins->nVibDepth = xmsh.vibdepth; pins->nVibRate = xmsh.vibrate; memcpy(pins->name, xmss.name, 22); pins->name[21] = 0; } #if 0 if ((xmsh.reserved2 > nsamples) && (xmsh.reserved2 <= 16)) { dwMemPos += (((UINT)xmsh.reserved2) - nsamples) * xmsh.shsize; } #endif for (UINT ismpd=0; ismpd<nsamples; ismpd++) { if ((samplemap[ismpd]) && (samplesize[ismpd]) && (dwMemPos < dwMemLength)) { ReadSample(&Ins[samplemap[ismpd]], flags[ismpd], (LPSTR)(lpStream + dwMemPos), dwMemLength - dwMemPos); } dwMemPos += samplesize[ismpd]; if (dwMemPos >= dwMemLength) break; } } // Read song comments: "TEXT" if ((dwMemPos + 8 < dwMemLength) && (bswapLE32(*((DWORD *)(lpStream+dwMemPos))) == 0x74786574)) { UINT len = *((DWORD *)(lpStream+dwMemPos+4)); dwMemPos += 8; if ((dwMemPos + len <= dwMemLength) && (len < 16384)) { m_lpszSongComments = new char[len+1]; if (m_lpszSongComments) { memcpy(m_lpszSongComments, lpStream+dwMemPos, len); m_lpszSongComments[len] = 0; } dwMemPos += len; } } // Read midi config: "MIDI" if ((dwMemPos + 8 < dwMemLength) && (bswapLE32(*((DWORD *)(lpStream+dwMemPos))) == 0x4944494D)) { UINT len = *((DWORD *)(lpStream+dwMemPos+4)); dwMemPos += 8; if (len >= dwMemLength || dwMemPos > dwMemLength - len) return TRUE; if (len == sizeof(MODMIDICFG)) { memcpy(&m_MidiCfg, lpStream+dwMemPos, len); m_dwSongFlags |= SONG_EMBEDMIDICFG; } } // Read pattern names: "PNAM" if ((dwMemPos + 8 < dwMemLength) && (bswapLE32(*((DWORD *)(lpStream+dwMemPos))) == 0x4d414e50)) { UINT len = *((DWORD *)(lpStream+dwMemPos+4)); dwMemPos += 8; if (len >= dwMemLength || dwMemPos > dwMemLength - len) return TRUE; if ((len <= MAX_PATTERNS*MAX_PATTERNNAME) && (len >= MAX_PATTERNNAME)) { m_lpszPatternNames = new char[len]; if (m_lpszPatternNames) { m_nPatternNames = len / MAX_PATTERNNAME; memcpy(m_lpszPatternNames, lpStream+dwMemPos, len); } dwMemPos += len; } } // Read channel names: "CNAM" if ((dwMemPos + 8 < dwMemLength) && (bswapLE32(*((DWORD *)(lpStream+dwMemPos))) == 0x4d414e43)) { UINT len = *((DWORD *)(lpStream+dwMemPos+4)); dwMemPos += 8; if (len >= dwMemLength || dwMemPos > dwMemLength - len) return TRUE; if (len <= MAX_BASECHANNELS*MAX_CHANNELNAME) { UINT n = len / MAX_CHANNELNAME; for (UINT i=0; i<n; i++) { memcpy(ChnSettings[i].szName, (lpStream+dwMemPos+i*MAX_CHANNELNAME), MAX_CHANNELNAME); ChnSettings[i].szName[MAX_CHANNELNAME-1] = 0; } dwMemPos += len; } } // Read mix plugins information if (dwMemPos + 8 < dwMemLength) { dwMemPos += LoadMixPlugins(lpStream+dwMemPos, dwMemLength-dwMemPos); } return TRUE; } #ifndef MODPLUG_NO_FILESAVE BOOL CSoundFile::SaveXM(LPCSTR lpszFileName, UINT nPacking) //--------------------------------------------------------- { BYTE s[64*64*5]; XMFILEHEADER header; XMINSTRUMENTHEADER xmih; XMSAMPLEHEADER xmsh; XMSAMPLESTRUCT xmss; BYTE smptable[32]; BYTE xmph[9]; FILE *f; int i; if ((!m_nChannels) || (!lpszFileName)) return FALSE; if ((f = fopen(lpszFileName, "wb")) == NULL) return FALSE; fwrite("Extended Module: ", 17, 1, f); fwrite(m_szNames[0], 20, 1, f); s[0] = 0x1A; lstrcpy((LPSTR)&s[1], (nPacking) ? "MOD Plugin packed " : "FastTracker v2.00 "); s[21] = 0x04; s[22] = 0x01; fwrite(s, 23, 1, f); // Writing song header memset(&header, 0, sizeof(header)); header.size = sizeof(XMFILEHEADER); header.norder = 0; header.restartpos = m_nRestartPos; header.channels = m_nChannels; header.patterns = 0; for (i=0; i<MAX_ORDERS; i++) { if (Order[i] == 0xFF) break; header.norder++; if ((Order[i] >= header.patterns) && (Order[i] < MAX_PATTERNS)) header.patterns = Order[i]+1; } header.instruments = m_nInstruments; if (!header.instruments) header.instruments = m_nSamples; header.flags = (m_dwSongFlags & SONG_LINEARSLIDES) ? 0x01 : 0x00; if (m_dwSongFlags & SONG_EXFILTERRANGE) header.flags |= 0x1000; header.tempo = m_nDefaultTempo; header.speed = m_nDefaultSpeed; memcpy(header.order, Order, header.norder); fwrite(&header, 1, sizeof(header), f); // Writing patterns for (i=0; i<header.patterns; i++) if (Patterns[i]) { MODCOMMAND *p = Patterns[i]; UINT len = 0; memset(&xmph, 0, sizeof(xmph)); xmph[0] = 9; xmph[5] = (BYTE)(PatternSize[i] & 0xFF); xmph[6] = (BYTE)(PatternSize[i] >> 8); for (UINT j=m_nChannels*PatternSize[i]; j; j--,p++) { UINT note = p->note; UINT param = ModSaveCommand(p, TRUE); UINT command = param >> 8; param &= 0xFF; if (note >= 0xFE) note = 97; else if ((note <= 12) || (note > 96+12)) note = 0; else note -= 12; UINT vol = 0; if (p->volcmd) { UINT volcmd = p->volcmd; switch(volcmd) { case VOLCMD_VOLUME: vol = 0x10 + p->vol; break; case VOLCMD_VOLSLIDEDOWN: vol = 0x60 + (p->vol & 0x0F); break; case VOLCMD_VOLSLIDEUP: vol = 0x70 + (p->vol & 0x0F); break; case VOLCMD_FINEVOLDOWN: vol = 0x80 + (p->vol & 0x0F); break; case VOLCMD_FINEVOLUP: vol = 0x90 + (p->vol & 0x0F); break; case VOLCMD_VIBRATOSPEED: vol = 0xA0 + (p->vol & 0x0F); break; case VOLCMD_VIBRATO: vol = 0xB0 + (p->vol & 0x0F); break; case VOLCMD_PANNING: vol = 0xC0 + (p->vol >> 2); if (vol > 0xCF) vol = 0xCF; break; case VOLCMD_PANSLIDELEFT: vol = 0xD0 + (p->vol & 0x0F); break; case VOLCMD_PANSLIDERIGHT: vol = 0xE0 + (p->vol & 0x0F); break; case VOLCMD_TONEPORTAMENTO: vol = 0xF0 + (p->vol & 0x0F); break; } } if ((note) && (p->instr) && (vol > 0x0F) && (command) && (param)) { s[len++] = note; s[len++] = p->instr; s[len++] = vol; s[len++] = command; s[len++] = param; } else { BYTE b = 0x80; if (note) b |= 0x01; if (p->instr) b |= 0x02; if (vol >= 0x10) b |= 0x04; if (command) b |= 0x08; if (param) b |= 0x10; s[len++] = b; if (b & 1) s[len++] = note; if (b & 2) s[len++] = p->instr; if (b & 4) s[len++] = vol; if (b & 8) s[len++] = command; if (b & 16) s[len++] = param; } if (len > sizeof(s) - 5) break; } xmph[7] = (BYTE)(len & 0xFF); xmph[8] = (BYTE)(len >> 8); fwrite(xmph, 1, 9, f); fwrite(s, 1, len, f); } else { memset(&xmph, 0, sizeof(xmph)); xmph[0] = 9; xmph[5] = (BYTE)(PatternSize[i] & 0xFF); xmph[6] = (BYTE)(PatternSize[i] >> 8); fwrite(xmph, 1, 9, f); } // Writing instruments for (i=1; i<=header.instruments; i++) { MODINSTRUMENT *pins; BYTE flags[32]; memset(&xmih, 0, sizeof(xmih)); memset(&xmsh, 0, sizeof(xmsh)); xmih.size = sizeof(xmih) + sizeof(xmsh); memcpy(xmih.name, m_szNames[i], 22); xmih.type = 0; xmih.samples = 0; if (m_nInstruments) { INSTRUMENTHEADER *penv = Headers[i]; if (penv) { memcpy(xmih.name, penv->name, 22); xmih.type = penv->nMidiProgram; xmsh.volfade = penv->nFadeOut; xmsh.vnum = (BYTE)penv->nVolEnv; xmsh.pnum = (BYTE)penv->nPanEnv; if (xmsh.vnum > 12) xmsh.vnum = 12; if (xmsh.pnum > 12) xmsh.pnum = 12; for (UINT ienv=0; ienv<12; ienv++) { xmsh.venv[ienv*2] = penv->VolPoints[ienv]; xmsh.venv[ienv*2+1] = penv->VolEnv[ienv]; xmsh.penv[ienv*2] = penv->PanPoints[ienv]; xmsh.penv[ienv*2+1] = penv->PanEnv[ienv]; } if (penv->dwFlags & ENV_VOLUME) xmsh.vtype |= 1; if (penv->dwFlags & ENV_VOLSUSTAIN) xmsh.vtype |= 2; if (penv->dwFlags & ENV_VOLLOOP) xmsh.vtype |= 4; if (penv->dwFlags & ENV_PANNING) xmsh.ptype |= 1; if (penv->dwFlags & ENV_PANSUSTAIN) xmsh.ptype |= 2; if (penv->dwFlags & ENV_PANLOOP) xmsh.ptype |= 4; xmsh.vsustain = (BYTE)penv->nVolSustainBegin; xmsh.vloops = (BYTE)penv->nVolLoopStart; xmsh.vloope = (BYTE)penv->nVolLoopEnd; xmsh.psustain = (BYTE)penv->nPanSustainBegin; xmsh.ploops = (BYTE)penv->nPanLoopStart; xmsh.ploope = (BYTE)penv->nPanLoopEnd; for (UINT j=0; j<96; j++) if (penv->Keyboard[j+12]) { UINT k; for (k=0; k<xmih.samples; k++) if (smptable[k] == penv->Keyboard[j+12]) break; if (k == xmih.samples) { smptable[xmih.samples++] = penv->Keyboard[j+12]; } if (xmih.samples >= 32) break; xmsh.snum[j] = k; } // xmsh.reserved2 = xmih.samples; } } else { xmih.samples = 1; // xmsh.reserved2 = 1; smptable[0] = i; } xmsh.shsize = (xmih.samples) ? 40 : 0; fwrite(&xmih, 1, sizeof(xmih), f); if (smptable[0]) { MODINSTRUMENT *pvib = &Ins[smptable[0]]; xmsh.vibtype = pvib->nVibType; xmsh.vibsweep = pvib->nVibSweep; xmsh.vibdepth = pvib->nVibDepth; xmsh.vibrate = pvib->nVibRate; } fwrite(&xmsh, 1, xmih.size - sizeof(xmih), f); if (!xmih.samples) continue; for (UINT ins=0; ins<xmih.samples; ins++) { memset(&xmss, 0, sizeof(xmss)); if (smptable[ins]) memcpy(xmss.name, m_szNames[smptable[ins]], 22); pins = &Ins[smptable[ins]]; xmss.samplen = pins->nLength; xmss.loopstart = pins->nLoopStart; xmss.looplen = pins->nLoopEnd - pins->nLoopStart; xmss.vol = pins->nVolume / 4; xmss.finetune = (char)pins->nFineTune; xmss.type = 0; if (pins->uFlags & CHN_LOOP) xmss.type = (pins->uFlags & CHN_PINGPONGLOOP) ? 2 : 1; flags[ins] = RS_PCM8D; #ifndef NO_PACKING if (nPacking) { if ((!(pins->uFlags & (CHN_16BIT|CHN_STEREO))) && (CanPackSample((char *)pins->pSample, pins->nLength, nPacking))) { flags[ins] = RS_ADPCM4; xmss.res = 0xAD; } } else #endif { if (pins->uFlags & CHN_16BIT) { flags[ins] = RS_PCM16D; xmss.type |= 0x10; xmss.looplen *= 2; xmss.loopstart *= 2; xmss.samplen *= 2; } if (pins->uFlags & CHN_STEREO) { flags[ins] = (pins->uFlags & CHN_16BIT) ? RS_STPCM16D : RS_STPCM8D; xmss.type |= 0x20; xmss.looplen *= 2; xmss.loopstart *= 2; xmss.samplen *= 2; } } xmss.pan = 255; if (pins->nPan < 256) xmss.pan = (BYTE)pins->nPan; xmss.relnote = (signed char)pins->RelativeTone; fwrite(&xmss, 1, xmsh.shsize, f); } for (UINT ismpd=0; ismpd<xmih.samples; ismpd++) { pins = &Ins[smptable[ismpd]]; if (pins->pSample) { #ifndef NO_PACKING if ((flags[ismpd] == RS_ADPCM4) && (xmih.samples>1)) CanPackSample((char *)pins->pSample, pins->nLength, nPacking); #endif // NO_PACKING WriteSample(f, pins, flags[ismpd]); } } } // Writing song comments if ((m_lpszSongComments) && (m_lpszSongComments[0])) { DWORD d = 0x74786574; fwrite(&d, 1, 4, f); d = strlen(m_lpszSongComments); fwrite(&d, 1, 4, f); fwrite(m_lpszSongComments, 1, d, f); } // Writing midi cfg if (m_dwSongFlags & SONG_EMBEDMIDICFG) { DWORD d = 0x4944494D; fwrite(&d, 1, 4, f); d = sizeof(MODMIDICFG); fwrite(&d, 1, 4, f); fwrite(&m_MidiCfg, 1, sizeof(MODMIDICFG), f); } // Writing Pattern Names if ((m_nPatternNames) && (m_lpszPatternNames)) { DWORD dwLen = m_nPatternNames * MAX_PATTERNNAME; while ((dwLen >= MAX_PATTERNNAME) && (!m_lpszPatternNames[dwLen-MAX_PATTERNNAME])) dwLen -= MAX_PATTERNNAME; if (dwLen >= MAX_PATTERNNAME) { DWORD d = 0x4d414e50; fwrite(&d, 1, 4, f); fwrite(&dwLen, 1, 4, f); fwrite(m_lpszPatternNames, 1, dwLen, f); } } // Writing Channel Names { UINT nChnNames = 0; for (UINT inam=0; inam<m_nChannels; inam++) { if (ChnSettings[inam].szName[0]) nChnNames = inam+1; } // Do it! if (nChnNames) { DWORD dwLen = nChnNames * MAX_CHANNELNAME; DWORD d = 0x4d414e43; fwrite(&d, 1, 4, f); fwrite(&dwLen, 1, 4, f); for (UINT inam=0; inam<nChnNames; inam++) { fwrite(ChnSettings[inam].szName, 1, MAX_CHANNELNAME, f); } } } // Save mix plugins information SaveMixPlugins(f); fclose(f); return TRUE; } #endif // MODPLUG_NO_FILESAVE /* * This source code is public domain. * * Handles unpacking of Powerpack PP20 * Authors: Olivier Lapicque <olivierl@jps.net> */ //#include "stdafx.h" //#include "sndfile.h" BOOL PP20_Unpack(LPCBYTE *ppMemFile, LPDWORD pdwMemLength); #pragma pack(1) typedef struct MMCMPFILEHEADER { char id[8]; /* string 'ziRCONia' */ WORD hdrsize; /* sizeof MMCMPHEADER */ } MMCMPFILEHEADER, *LPMMCMPFILEHEADER; typedef struct MMCMPHEADER { WORD version; WORD nblocks; DWORD filesize; DWORD blktable; BYTE glb_comp; BYTE fmt_comp; } MMCMPHEADER, *LPMMCMPHEADER; typedef struct MMCMPBLOCK { DWORD unpk_size; DWORD pk_size; DWORD xor_chk; WORD sub_blk; WORD flags; WORD tt_entries; USHORT num_bits; } MMCMPBLOCK, *LPMMCMPBLOCK; typedef struct MMCMPSUBBLOCK { DWORD unpk_pos; DWORD unpk_size; } MMCMPSUBBLOCK, *LPMMCMPSUBBLOCK; #pragma pack() /* make sure of structure sizes */ typedef int chk_MMCMPFILEHEADER[(sizeof(struct MMCMPFILEHEADER) == 10) * 2 - 1]; typedef int chk_MMCMPHEADER[(sizeof(struct MMCMPHEADER) == 14) * 2 - 1]; typedef int chk_MMCMPBLOCK[(sizeof(struct MMCMPBLOCK) == 20) * 2 - 1]; typedef int chk_MMCMPSUBBLOCK[(sizeof(struct MMCMPSUBBLOCK) == 8) * 2 - 1]; #define MMCMP_COMP 0x0001 #define MMCMP_DELTA 0x0002 #define MMCMP_16BIT 0x0004 #define MMCMP_STEREO 0x0100 #define MMCMP_ABS16 0x0200 #define MMCMP_ENDIAN 0x0400 typedef struct MMCMPBITBUFFER { UINT bitcount; DWORD bitbuffer; LPCBYTE pSrc; LPCBYTE pEnd; DWORD GetBits(UINT nBits); } MMCMPBITBUFFER; DWORD MMCMPBITBUFFER::GetBits(UINT nBits) { DWORD d; if (!nBits) return 0; while (bitcount < 24) { bitbuffer |= ((pSrc < pEnd) ? *pSrc++ : 0) << bitcount; bitcount += 8; } d = bitbuffer & ((1 << nBits) - 1); bitbuffer >>= nBits; bitcount -= nBits; return d; } //#define MMCMP_LOG #ifdef MMCMP_LOG extern void Log(LPCSTR s, ...); #endif static const DWORD MMCMP8BitCommands[8] = { 0x01, 0x03, 0x07, 0x0F, 0x1E, 0x3C, 0x78, 0xF8 }; static const UINT MMCMP8BitFetch[8] = { 3, 3, 3, 3, 2, 1, 0, 0 }; static const DWORD MMCMP16BitCommands[16] = { 0x01, 0x03, 0x07, 0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0x1F0, 0x3F0, 0x7F0, 0xFF0, 0x1FF0, 0x3FF0, 0x7FF0, 0xFFF0 }; static const UINT MMCMP16BitFetch[16] = { 4, 4, 4, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static void swap_mfh(LPMMCMPFILEHEADER fh) { fh->hdrsize = bswapLE16(fh->hdrsize); } static void swap_mmh(LPMMCMPHEADER mh) { mh->version = bswapLE16(mh->version); mh->nblocks = bswapLE16(mh->nblocks); mh->filesize = bswapLE32(mh->filesize); mh->blktable = bswapLE32(mh->blktable); } static void swap_block (LPMMCMPBLOCK blk) { blk->unpk_size = bswapLE32(blk->unpk_size); blk->pk_size = bswapLE32(blk->pk_size); blk->xor_chk = bswapLE32(blk->xor_chk); blk->sub_blk = bswapLE16(blk->sub_blk); blk->flags = bswapLE16(blk->flags); blk->tt_entries = bswapLE16(blk->tt_entries); blk->num_bits = bswapLE16(blk->num_bits); } static void swap_subblock (LPMMCMPSUBBLOCK sblk) { sblk->unpk_pos = bswapLE32(sblk->unpk_pos); sblk->unpk_size = bswapLE32(sblk->unpk_size); } static BOOL MMCMP_IsDstBlockValid(const MMCMPSUBBLOCK *psub, DWORD dstlen) { if (psub->unpk_pos >= dstlen) return FALSE; if (psub->unpk_size > dstlen) return FALSE; if (psub->unpk_size > dstlen - psub->unpk_pos) return FALSE; return TRUE; } BOOL MMCMP_Unpack(LPCBYTE *ppMemFile, LPDWORD pdwMemLength) { DWORD dwMemLength; LPCBYTE lpMemFile; LPBYTE pBuffer,pBufEnd; LPMMCMPFILEHEADER pmfh; LPMMCMPHEADER pmmh; const DWORD *pblk_table; DWORD dwFileSize; BYTE tmp0[32], tmp1[32]; if (PP20_Unpack(ppMemFile, pdwMemLength)) { return TRUE; } dwMemLength = *pdwMemLength; lpMemFile = *ppMemFile; if ((dwMemLength < 256) || (!lpMemFile)) return FALSE; memcpy(tmp0, lpMemFile, 24); pmfh = (LPMMCMPFILEHEADER)(tmp0); pmmh = (LPMMCMPHEADER)(tmp0+10); swap_mfh(pmfh); swap_mmh(pmmh); if ((memcmp(pmfh->id,"ziRCONia",8) != 0) || (pmfh->hdrsize != 14)) return FALSE; if ((!pmmh->nblocks) || (pmmh->filesize < 16) || (pmmh->filesize > 0x8000000) || (pmmh->blktable >= dwMemLength) || (pmmh->blktable + 4*pmmh->nblocks > dwMemLength)) { return FALSE; } dwFileSize = pmmh->filesize; if ((pBuffer = (LPBYTE)calloc(1, (dwFileSize + 31) & ~15)) == NULL) return FALSE; pBufEnd = pBuffer + dwFileSize; pblk_table = (const DWORD *)(lpMemFile+pmmh->blktable); for (UINT nBlock=0; nBlock<pmmh->nblocks; nBlock++) { DWORD dwMemPos = bswapLE32(pblk_table[nBlock]); DWORD dwSubPos; LPMMCMPBLOCK pblk; LPMMCMPSUBBLOCK psubblk; if (dwMemPos >= dwMemLength - 20) goto err; memcpy(tmp1,lpMemFile+dwMemPos,28); pblk = (LPMMCMPBLOCK)(tmp1); psubblk = (LPMMCMPSUBBLOCK)(tmp1+20); swap_block(pblk); swap_subblock(psubblk); if (!pblk->unpk_size || !pblk->pk_size || !pblk->sub_blk) goto err; if (pblk->pk_size <= pblk->tt_entries) goto err; if (pblk->sub_blk*8 >= dwMemLength - dwMemPos - 20) goto err; if (pblk->flags & MMCMP_COMP) { if (pblk->flags & MMCMP_16BIT) { if (pblk->num_bits >= 16) goto err; } else { if (pblk->num_bits >= 8) goto err; } } dwSubPos = dwMemPos + 20; dwMemPos += 20 + pblk->sub_blk*8; #ifdef MMCMP_LOG Log("block %d: flags=%04X sub_blocks=%d", nBlock, (UINT)pblk->flags, (UINT)pblk->sub_blk); Log(" pksize=%d unpksize=%d", pblk->pk_size, pblk->unpk_size); Log(" tt_entries=%d num_bits=%d\n", pblk->tt_entries, pblk->num_bits); #endif if (!(pblk->flags & MMCMP_COMP)) { /* Data is not packed */ UINT i=0; while (1) { #ifdef MMCMP_LOG Log(" Unpacked sub-block %d: offset %d, size=%d\n", i, psubblk->unpk_pos, psubblk->unpk_size); #endif if (!MMCMP_IsDstBlockValid(psubblk, dwFileSize)) goto err; memcpy(pBuffer+psubblk->unpk_pos, lpMemFile+dwMemPos, psubblk->unpk_size); dwMemPos += psubblk->unpk_size; if (++i == pblk->sub_blk) break; memcpy(tmp1+20,lpMemFile+dwSubPos+i*8,8); swap_subblock(psubblk); } } else if (pblk->flags & MMCMP_16BIT) { /* Data is 16-bit packed */ MMCMPBITBUFFER bb; LPBYTE pDest = pBuffer + psubblk->unpk_pos; DWORD dwSize = psubblk->unpk_size; DWORD dwPos = 0; UINT numbits = pblk->num_bits; UINT subblk = 0, oldval = 0; #ifdef MMCMP_LOG Log(" 16-bit block: pos=%d size=%d ", psubblk->unpk_pos, psubblk->unpk_size); if (pblk->flags & MMCMP_DELTA) Log("DELTA "); if (pblk->flags & MMCMP_ABS16) Log("ABS16 "); Log("\n"); #endif if (!MMCMP_IsDstBlockValid(psubblk, dwFileSize)) goto err; bb.bitcount = 0; bb.bitbuffer = 0; bb.pSrc = lpMemFile+dwMemPos+pblk->tt_entries; bb.pEnd = lpMemFile+dwMemPos+pblk->pk_size; while (1) { UINT newval = 0x10000; DWORD d = bb.GetBits(numbits+1); if (d >= MMCMP16BitCommands[numbits]) { UINT nFetch = MMCMP16BitFetch[numbits]; UINT newbits = bb.GetBits(nFetch) + ((d - MMCMP16BitCommands[numbits]) << nFetch); if (newbits != numbits) { numbits = newbits & 0x0F; } else { if ((d = bb.GetBits(4)) == 0x0F) { if (bb.GetBits(1)) break; newval = 0xFFFF; } else { newval = 0xFFF0 + d; } } } else { newval = d; } if (newval < 0x10000) { newval = (newval & 1) ? (UINT)(-(LONG)((newval+1) >> 1)) : (UINT)(newval >> 1); if (pblk->flags & MMCMP_DELTA) { newval += oldval; oldval = newval; } else if (!(pblk->flags & MMCMP_ABS16)) { newval ^= 0x8000; } if (pBufEnd - pDest < 2) goto err; dwPos += 2; *pDest++ = (BYTE) (((WORD)newval) & 0xff); *pDest++ = (BYTE) (((WORD)newval) >> 8); } if (dwPos >= dwSize) { if (++subblk == pblk->sub_blk) break; dwPos = 0; memcpy(tmp1+20,lpMemFile+dwSubPos+subblk*8,8); swap_subblock(psubblk); if (!MMCMP_IsDstBlockValid(psubblk, dwFileSize)) goto err; dwSize = psubblk->unpk_size; pDest = pBuffer + psubblk->unpk_pos; } } } else { /* Data is 8-bit packed */ MMCMPBITBUFFER bb; LPBYTE pDest = pBuffer + psubblk->unpk_pos; DWORD dwSize = psubblk->unpk_size; DWORD dwPos = 0; UINT numbits = pblk->num_bits; UINT subblk = 0, oldval = 0; LPCBYTE ptable = lpMemFile+dwMemPos; if (!MMCMP_IsDstBlockValid(psubblk, dwFileSize)) goto err; bb.bitcount = 0; bb.bitbuffer = 0; bb.pSrc = lpMemFile+dwMemPos+pblk->tt_entries; bb.pEnd = lpMemFile+dwMemPos+pblk->pk_size; while (1) { UINT newval = 0x100; DWORD d = bb.GetBits(numbits+1); if (d >= MMCMP8BitCommands[numbits]) { UINT nFetch = MMCMP8BitFetch[numbits]; UINT newbits = bb.GetBits(nFetch) + ((d - MMCMP8BitCommands[numbits]) << nFetch); if (newbits != numbits) { numbits = newbits & 0x07; } else { if ((d = bb.GetBits(3)) == 7) { if (bb.GetBits(1)) break; newval = 0xFF; } else { newval = 0xF8 + d; } } } else { newval = d; } if (newval < 0x100) { int n = ptable[newval]; if (pblk->flags & MMCMP_DELTA) { n += oldval; oldval = n; } pDest[dwPos++] = (BYTE)n; } if (dwPos >= dwSize) { if (++subblk == pblk->sub_blk) break; dwPos = 0; memcpy(tmp1+20,lpMemFile+dwSubPos+subblk*8,8); swap_subblock(psubblk); if (!MMCMP_IsDstBlockValid(psubblk, dwFileSize)) goto err; dwSize = psubblk->unpk_size; pDest = pBuffer + psubblk->unpk_pos; } } } } *ppMemFile = pBuffer; *pdwMemLength = dwFileSize; return TRUE; err: free(pBuffer); return FALSE; } /* PowerPack PP20 Unpacker */ /* Code from Heikki Orsila's amigadepack 0.02 * based on code by Stuart Caie <kyzer@4u.net> * This software is in the Public Domain * * Modified for xmp by Claudio Matsuoka, 08/2007 * - merged mld's checks from the old depack sources. Original credits: * - corrupt file and data detection * (thanks to Don Adan and Dirk Stoecker for help and infos) * - implemeted "efficiency" checks * - further detection based on code by Georg Hoermann * * Modified for xmp by Claudio Matsuoka, 05/2013 * - decryption code removed * * Modified for libmodplug by O. Sezer, Apr. 2015 */ #define PP_READ_BITS(nbits, var) do { \ bit_cnt = (nbits); \ while (bits_left < bit_cnt) { \ if (buf_src <= src) return 0; /* out of source bits */ \ bit_buffer |= (*--buf_src << bits_left); \ bits_left += 8; \ } \ (var) = 0; \ bits_left -= bit_cnt; \ while (bit_cnt--) { \ (var) = ((var) << 1) | (bit_buffer & 1); \ bit_buffer >>= 1; \ } \ } while(0) #define PP_BYTE_OUT(byte) do { \ if (out <= dest) return 0; /* output overflow */ \ *--out = (byte); \ written++; \ } while (0) static BOOL ppDecrunch(LPCBYTE src, LPBYTE dest, LPCBYTE offset_lens, DWORD src_len, DWORD dest_len, BYTE skip_bits) { DWORD bit_buffer, x, todo, offbits, offset, written; LPCBYTE buf_src; LPBYTE out, dest_end; BYTE bits_left, bit_cnt; /* set up input and output pointers */ buf_src = src + src_len; out = dest_end = dest + dest_len; written = 0; bit_buffer = 0; bits_left = 0; /* skip the first few bits */ PP_READ_BITS(skip_bits, x); /* while there are input bits left */ while (written < dest_len) { PP_READ_BITS(1, x); if (x == 0) { /* 1bit==0: literal, then match. 1bit==1: just match */ todo = 1; do { PP_READ_BITS(2, x); todo += x; } while (x == 3); while (todo--) { PP_READ_BITS(8, x); PP_BYTE_OUT(x); } /* should we end decoding on a literal, break out of the main loop */ if (written == dest_len) break; } /* match: read 2 bits for initial offset bitlength / match length */ PP_READ_BITS(2, x); offbits = offset_lens[x]; todo = x+2; if (x == 3) { PP_READ_BITS(1, x); if (x==0) offbits = 7; PP_READ_BITS(offbits, offset); do { PP_READ_BITS(3, x); todo += x; } while (x == 7); } else { PP_READ_BITS(offbits, offset); } if ((out + offset) >= dest_end) return 0; /* match overflow */ while (todo--) { x = out[offset]; PP_BYTE_OUT(x); } } /* all output bytes written without error */ return 1; /* return (src == buf_src) ? 1 : 0; */ } BOOL PP20_Unpack(LPCBYTE *ppMemFile, LPDWORD pdwMemLength) { DWORD dwMemLength = *pdwMemLength; LPCBYTE lpMemFile = *ppMemFile; DWORD dwDstLen; BYTE tmp[4], skip; LPBYTE pBuffer; if ((!lpMemFile) || (dwMemLength < 256) || (memcmp(lpMemFile,"PP20",4) != 0)) return FALSE; if (dwMemLength & 3) /* file length should be a multiple of 4 */ return FALSE; /* PP FORMAT: * 1 longword identifier 'PP20' or 'PX20' * [1 word checksum (if 'PX20') $ssss] * 1 longword efficiency $eeeeeeee * X longwords crunched file $cccccccc,$cccccccc,... * 1 longword decrunch info 'decrlen' << 8 | '8 bits other info' */ memcpy(tmp,&lpMemFile[dwMemLength-4],4); dwDstLen = (tmp[0]<<16) | (tmp[1]<<8) | tmp[2]; skip = tmp[3]; if (skip > 32) return 0; /* original pp20 only support efficiency * from 9 9 9 9 up to 9 10 12 13, afaik, * but the xfd detection code says this... * * move.l 4(a0),d0 * cmp.b #9,d0 * blo.b .Exit * and.l #$f0f0f0f0,d0 * bne.s .Exit */ memcpy(tmp,&lpMemFile[4],4); if ((tmp[0] < 9) || (tmp[0] & 0xf0)) return FALSE; if ((tmp[1] < 9) || (tmp[1] & 0xf0)) return FALSE; if ((tmp[2] < 9) || (tmp[2] & 0xf0)) return FALSE; if ((tmp[3] < 9) || (tmp[3] & 0xf0)) return FALSE; //Log("PP20 detected: Packed length=%d, Unpacked length=%d\n", dwMemLength, dwDstLen); if ((dwDstLen < 512) || (dwDstLen > 0x400000) || (dwDstLen > 16*dwMemLength)) return FALSE; if ((pBuffer = (LPBYTE)calloc(1, (dwDstLen + 31) & ~15)) == NULL) return FALSE; if (!ppDecrunch(lpMemFile+8, pBuffer, tmp, dwMemLength-12, dwDstLen, skip)) { free(pBuffer); return FALSE; } *ppMemFile = pBuffer; *pdwMemLength = dwDstLen; return TRUE; } /* * This source code is public domain. * * Authors: Kenton Varda <temporal@gauge3d.org> (C interface wrapper) */ //#include "stdafx.h" //#include "modplug.h" //#include "sndfile.h" struct _ModPlugFile { CSoundFile mSoundFile; }; namespace ModPlug { ModPlug_Settings gSettings = { MODPLUG_ENABLE_OVERSAMPLING | MODPLUG_ENABLE_NOISE_REDUCTION, 2, // mChannels 16, // mBits 44100, // mFrequency MODPLUG_RESAMPLE_LINEAR, //mResamplingMode 128, // mStereoSeparation 32, // mMaxMixChannels 0, 0, 0, 0, 0, 0, 0 }; int gSampleSize; void UpdateSettings(bool updateBasicConfig) { if(gSettings.mFlags & MODPLUG_ENABLE_REVERB) { CSoundFile::SetReverbParameters(gSettings.mReverbDepth, gSettings.mReverbDelay); } if(gSettings.mFlags & MODPLUG_ENABLE_MEGABASS) { CSoundFile::SetXBassParameters(gSettings.mBassAmount, gSettings.mBassRange); } else // modplug seems to ignore the SetWaveConfigEx() setting for bass boost CSoundFile::SetXBassParameters(0, 0); if(gSettings.mFlags & MODPLUG_ENABLE_SURROUND) { CSoundFile::SetSurroundParameters(gSettings.mSurroundDepth, gSettings.mSurroundDelay); } if(updateBasicConfig) { CSoundFile::SetWaveConfig(gSettings.mFrequency, gSettings.mBits, gSettings.mChannels); CSoundFile::SetMixConfig(gSettings.mStereoSeparation, gSettings.mMaxMixChannels); gSampleSize = gSettings.mBits / 8 * gSettings.mChannels; } CSoundFile::SetWaveConfigEx(gSettings.mFlags & MODPLUG_ENABLE_SURROUND, !(gSettings.mFlags & MODPLUG_ENABLE_OVERSAMPLING), gSettings.mFlags & MODPLUG_ENABLE_REVERB, true, gSettings.mFlags & MODPLUG_ENABLE_MEGABASS, gSettings.mFlags & MODPLUG_ENABLE_NOISE_REDUCTION, false); CSoundFile::SetResamplingMode(gSettings.mResamplingMode); } } ModPlugFile* ModPlug_Load(const void* data, int size) { ModPlugFile* result = new ModPlugFile; ModPlug::UpdateSettings(true); if(result->mSoundFile.Create((const BYTE*)data, size)) { result->mSoundFile.SetRepeatCount(ModPlug::gSettings.mLoopCount); return result; } else { delete result; return NULL; } } void ModPlug_Unload(ModPlugFile* file) { file->mSoundFile.Destroy(); delete file; } int ModPlug_Read(ModPlugFile* file, void* buffer, int size) { return file->mSoundFile.Read(buffer, size) * ModPlug::gSampleSize; } const char* ModPlug_GetName(ModPlugFile* file) { return file->mSoundFile.GetTitle(); } int ModPlug_GetLength(ModPlugFile* file) { return file->mSoundFile.GetSongTime() * 1000; } void ModPlug_InitMixerCallback(ModPlugFile* file,ModPlugMixerProc proc) { file->mSoundFile.gpSndMixHook = (LPSNDMIXHOOKPROC)proc ; return; } void ModPlug_UnloadMixerCallback(ModPlugFile* file) { file->mSoundFile.gpSndMixHook = NULL; return ; } unsigned int ModPlug_GetMasterVolume(ModPlugFile* file) { return (unsigned int)file->mSoundFile.m_nMasterVolume; } void ModPlug_SetMasterVolume(ModPlugFile* file,unsigned int cvol) { (void)file->mSoundFile.SetMasterVolume( (UINT)cvol, FALSE ); return ; } int ModPlug_GetCurrentSpeed(ModPlugFile* file) { return file->mSoundFile.m_nMusicSpeed; } int ModPlug_GetCurrentTempo(ModPlugFile* file) { return file->mSoundFile.m_nMusicTempo; } int ModPlug_GetCurrentOrder(ModPlugFile* file) { return file->mSoundFile.GetCurrentOrder(); } int ModPlug_GetCurrentPattern(ModPlugFile* file) { return file->mSoundFile.GetCurrentPattern(); } int ModPlug_GetCurrentRow(ModPlugFile* file) { return file->mSoundFile.m_nRow; } int ModPlug_GetPlayingChannels(ModPlugFile* file) { return ( file->mSoundFile.m_nMixChannels < file->mSoundFile.m_nMaxMixChannels ? file->mSoundFile.m_nMixChannels : file->mSoundFile.m_nMaxMixChannels ); } void ModPlug_SeekOrder(ModPlugFile* file,int order) { file->mSoundFile.SetCurrentOrder(order); } int ModPlug_GetModuleType(ModPlugFile* file) { return file->mSoundFile.m_nType; } char* ModPlug_GetMessage(ModPlugFile* file) { return file->mSoundFile.m_lpszSongComments; } #ifndef MODPLUG_NO_FILESAVE char ModPlug_ExportS3M(ModPlugFile* file,const char* filepath) { return (char)file->mSoundFile.SaveS3M(filepath,0); } char ModPlug_ExportXM(ModPlugFile* file,const char* filepath) { return (char)file->mSoundFile.SaveXM(filepath,0); } char ModPlug_ExportMOD(ModPlugFile* file,const char* filepath) { return (char)file->mSoundFile.SaveMod(filepath,0); } char ModPlug_ExportIT(ModPlugFile* file,const char* filepath) { return (char)file->mSoundFile.SaveIT(filepath,0); } #endif // MODPLUG_NO_FILESAVE unsigned int ModPlug_NumInstruments(ModPlugFile* file) { return file->mSoundFile.m_nInstruments; } unsigned int ModPlug_NumSamples(ModPlugFile* file) { return file->mSoundFile.m_nSamples; } unsigned int ModPlug_NumPatterns(ModPlugFile* file) { return file->mSoundFile.GetNumPatterns(); } unsigned int ModPlug_NumChannels(ModPlugFile* file) { return file->mSoundFile.GetNumChannels(); } unsigned int ModPlug_SampleName(ModPlugFile* file,unsigned int qual,char* buff) { return file->mSoundFile.GetSampleName(qual,buff); } unsigned int ModPlug_InstrumentName(ModPlugFile* file,unsigned int qual,char* buff) { return file->mSoundFile.GetInstrumentName(qual,buff); } ModPlugNote* ModPlug_GetPattern(ModPlugFile* file,int pattern,unsigned int* numrows) { if ( pattern<MAX_PATTERNS && pattern >= 0) { if (file->mSoundFile.Patterns[pattern]) { if (numrows) *numrows=(unsigned int)file->mSoundFile.PatternSize[pattern]; return (ModPlugNote*)file->mSoundFile.Patterns[pattern]; } } return NULL; } void ModPlug_Seek(ModPlugFile* file, int millisecond) { int maxpos; int maxtime = file->mSoundFile.GetSongTime() * 1000; float postime; if(millisecond > maxtime) millisecond = maxtime; maxpos = file->mSoundFile.GetMaxPosition(); postime = 0.0f; if (maxtime != 0) postime = (float)maxpos / (float)maxtime; file->mSoundFile.SetCurrentPos((int)(millisecond * postime)); } void ModPlug_GetSettings(ModPlug_Settings* settings) { memcpy(settings, &ModPlug::gSettings, sizeof(ModPlug_Settings)); } void ModPlug_SetSettings(const ModPlug_Settings* settings) { memcpy(&ModPlug::gSettings, settings, sizeof(ModPlug_Settings)); ModPlug::UpdateSettings(false); // do not update basic config. } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net>, * Adam Goode <adam@evdebs.org> (endian and char fixes for PPC) */ #include <math.h> //for GCCFIX //#include "stdafx.h" //#include "sndfile.h" #define MMCMP_SUPPORT #ifdef MMCMP_SUPPORT extern BOOL MMCMP_Unpack(LPCBYTE *ppMemFile, LPDWORD pdwMemLength); #endif // External decompressors extern void AMSUnpack(const char *psrc, UINT inputlen, char *pdest, UINT dmax, char packcharacter); extern WORD MDLReadBits(DWORD &bitbuf, UINT &bitnum, LPBYTE &ibuf, CHAR n); extern int DMFUnpack(LPBYTE psample, LPBYTE ibuf, LPBYTE ibufmax, UINT maxlen); extern DWORD ITUnpack8Bit(signed char *pSample, DWORD dwLen, LPBYTE lpMemFile, DWORD dwMemLength, DWORD channels, BOOL b215); extern DWORD ITUnpack16Bit(signed char *pSample, DWORD dwLen, LPBYTE lpMemFile, DWORD dwMemLength, DWORD channels, BOOL b215); #define MAX_PACK_TABLES 3 // Compression table static const signed char UnpackTable[MAX_PACK_TABLES][16] = //-------------------------------------------- { // CPU-generated dynamic table {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, // u-Law table {0, 1, 2, 4, 8, 16, 32, 64, -1, -2, -4, -8, -16, -32, -48, -64}, // Linear table {0, 1, 2, 3, 5, 7, 12, 19, -1, -2, -3, -5, -7, -12, -19, -31} }; ////////////////////////////////////////////////////////// // CSoundFile CSoundFile::CSoundFile() //---------------------- { m_nType = MOD_TYPE_NONE; m_dwSongFlags = 0; m_nChannels = 0; m_nMixChannels = 0; m_nSamples = 0; m_nInstruments = 0; m_nPatternNames = 0; m_lpszPatternNames = NULL; m_lpszSongComments = NULL; m_nFreqFactor = m_nTempoFactor = 128; m_nMasterVolume = 128; m_nMinPeriod = 0x20; m_nMaxPeriod = 0x7FFF; m_nRepeatCount = 0; memset(Chn, 0, sizeof(Chn)); memset(ChnMix, 0, sizeof(ChnMix)); memset(Ins, 0, sizeof(Ins)); memset(ChnSettings, 0, sizeof(ChnSettings)); memset(Headers, 0, sizeof(Headers)); memset(Order, 0xFF, sizeof(Order)); memset(Patterns, 0, sizeof(Patterns)); memset(m_szNames, 0, sizeof(m_szNames)); memset(m_MixPlugins, 0, sizeof(m_MixPlugins)); } CSoundFile::~CSoundFile() //----------------------- { Destroy(); } BOOL CSoundFile::Create(LPCBYTE lpStream, DWORD dwMemLength) //---------------------------------------------------------- { int i; m_nType = MOD_TYPE_NONE; m_dwSongFlags = 0; m_nChannels = 0; m_nMixChannels = 0; m_nSamples = 0; m_nInstruments = 0; m_nFreqFactor = m_nTempoFactor = 128; m_nMasterVolume = 128; m_nDefaultGlobalVolume = 256; m_nGlobalVolume = 256; m_nOldGlbVolSlide = 0; m_nDefaultSpeed = 6; m_nDefaultTempo = 125; m_nPatternDelay = 0; m_nFrameDelay = 0; m_nNextRow = 0; m_nRow = 0; m_nNextStartRow = 0; m_nPattern = 0; m_nCurrentPattern = 0; m_nNextPattern = 0; m_nRestartPos = 0; m_nMinPeriod = 16; m_nMaxPeriod = 32767; m_nSongPreAmp = 0x30; m_nPatternNames = 0; m_nMaxOrderPosition = 0; m_lpszPatternNames = NULL; m_lpszSongComments = NULL; memset(Ins, 0, sizeof(Ins)); memset(ChnMix, 0, sizeof(ChnMix)); memset(Chn, 0, sizeof(Chn)); memset(Headers, 0, sizeof(Headers)); memset(Order, 0xFF, sizeof(Order)); memset(Patterns, 0, sizeof(Patterns)); memset(m_szNames, 0, sizeof(m_szNames)); memset(m_MixPlugins, 0, sizeof(m_MixPlugins)); ResetMidiCfg(); for (UINT npt=0; npt<MAX_PATTERNS; npt++) PatternSize[npt] = 64; for (UINT nch=0; nch<MAX_BASECHANNELS; nch++) { ChnSettings[nch].nPan = 128; ChnSettings[nch].nVolume = 64; ChnSettings[nch].dwFlags = 0; ChnSettings[nch].szName[0] = 0; } if (lpStream) { #ifdef MMCMP_SUPPORT BOOL bMMCmp = MMCMP_Unpack(&lpStream, &dwMemLength); #endif if ((!ReadXM(lpStream, dwMemLength)) && (!ReadS3M(lpStream, dwMemLength)) && (!ReadIT(lpStream, dwMemLength)) && (!ReadWav(lpStream, dwMemLength)) #ifndef MODPLUG_BASIC_SUPPORT /* Sequencer File Format Support */ && (!ReadABC(lpStream, dwMemLength)) && (!ReadMID(lpStream, dwMemLength)) && (!ReadPAT(lpStream, dwMemLength)) && (!ReadSTM(lpStream, dwMemLength)) && (!ReadMed(lpStream, dwMemLength)) && (!ReadMTM(lpStream, dwMemLength)) && (!ReadMDL(lpStream, dwMemLength)) && (!ReadDBM(lpStream, dwMemLength)) && (!Read669(lpStream, dwMemLength)) && (!ReadFAR(lpStream, dwMemLength)) && (!ReadAMS(lpStream, dwMemLength)) && (!ReadOKT(lpStream, dwMemLength)) && (!ReadPTM(lpStream, dwMemLength)) && (!ReadUlt(lpStream, dwMemLength)) && (!ReadDMF(lpStream, dwMemLength)) && (!ReadDSM(lpStream, dwMemLength)) && (!ReadUMX(lpStream, dwMemLength)) && (!ReadAMF(lpStream, dwMemLength)) && (!ReadPSM(lpStream, dwMemLength)) && (!ReadMT2(lpStream, dwMemLength)) #endif // MODPLUG_BASIC_SUPPORT && (!ReadMod(lpStream, dwMemLength))) m_nType = MOD_TYPE_NONE; #ifdef MMCMP_SUPPORT if (bMMCmp) { free((void*)lpStream); lpStream = NULL; } #endif } // Adjust song names for (i=0; i<MAX_SAMPLES; i++) { LPSTR p = m_szNames[i]; int j = 31; p[j] = 0; while ((j>=0) && (p[j]<=' ')) p[j--] = 0; while (j>=0) { if (((BYTE)p[j]) < ' ') p[j] = ' '; j--; } } // Adjust channels for (i=0; i<MAX_BASECHANNELS; i++) { if (ChnSettings[i].nVolume > 64) ChnSettings[i].nVolume = 64; if (ChnSettings[i].nPan > 256) ChnSettings[i].nPan = 128; Chn[i].nPan = ChnSettings[i].nPan; Chn[i].nGlobalVol = ChnSettings[i].nVolume; Chn[i].dwFlags = ChnSettings[i].dwFlags; Chn[i].nVolume = 256; Chn[i].nCutOff = 0x7F; } // Checking instruments MODINSTRUMENT *pins = Ins; for (i=0; i<MAX_INSTRUMENTS; i++, pins++) { if (pins->pSample) { if (pins->nLoopEnd > pins->nLength) pins->nLoopEnd = pins->nLength; if (pins->nLoopStart + 3 >= pins->nLoopEnd) { pins->nLoopStart = 0; pins->nLoopEnd = 0; } if (pins->nSustainEnd > pins->nLength) pins->nSustainEnd = pins->nLength; if (pins->nSustainStart + 3 >= pins->nSustainEnd) { pins->nSustainStart = 0; pins->nSustainEnd = 0; } } else { pins->nLength = 0; pins->nLoopStart = 0; pins->nLoopEnd = 0; pins->nSustainStart = 0; pins->nSustainEnd = 0; } if (!pins->nLoopEnd) pins->uFlags &= ~CHN_LOOP; if (!pins->nSustainEnd) pins->uFlags &= ~CHN_SUSTAINLOOP; if (pins->nGlobalVol > 64) pins->nGlobalVol = 64; } // Check invalid instruments while ((m_nInstruments > 0) && (!Headers[m_nInstruments])) m_nInstruments--; // Set default values if (m_nSongPreAmp < 0x20) m_nSongPreAmp = 0x20; if (m_nDefaultTempo < 32) m_nDefaultTempo = 125; if (!m_nDefaultSpeed) m_nDefaultSpeed = 6; m_nMusicSpeed = m_nDefaultSpeed; m_nMusicTempo = m_nDefaultTempo; m_nGlobalVolume = m_nDefaultGlobalVolume; m_nNextPattern = 0; m_nCurrentPattern = 0; m_nPattern = 0; m_nBufferCount = 0; m_nTickCount = m_nMusicSpeed; m_nNextRow = 0; m_nRow = 0; m_nNextStartRow = 0; if ((m_nRestartPos >= MAX_ORDERS) || (Order[m_nRestartPos] >= MAX_PATTERNS)) m_nRestartPos = 0; // Load plugins if (gpMixPluginCreateProc) { for (UINT iPlug=0; iPlug<MAX_MIXPLUGINS; iPlug++) { if ((m_MixPlugins[iPlug].Info.dwPluginId1) || (m_MixPlugins[iPlug].Info.dwPluginId2)) { gpMixPluginCreateProc(&m_MixPlugins[iPlug]); if (m_MixPlugins[iPlug].pMixPlugin) { m_MixPlugins[iPlug].pMixPlugin->RestoreAllParameters(); } } } } if (m_nType) { UINT maxpreamp = 0x10+(m_nChannels*8); if (maxpreamp > 100) maxpreamp = 100; if (m_nSongPreAmp > maxpreamp) m_nSongPreAmp = maxpreamp; return TRUE; } return FALSE; } BOOL CSoundFile::Destroy() //------------------------ { int i; for (i=0; i<MAX_PATTERNS; i++) if (Patterns[i]) { FreePattern(Patterns[i]); Patterns[i] = NULL; } m_nPatternNames = 0; if (m_lpszPatternNames) { delete [] m_lpszPatternNames; m_lpszPatternNames = NULL; } if (m_lpszSongComments) { delete [] m_lpszSongComments; m_lpszSongComments = NULL; } for (i=1; i<MAX_SAMPLES; i++) { MODINSTRUMENT *pins = &Ins[i]; if (pins->pSample) { FreeSample(pins->pSample); pins->pSample = NULL; } } for (i=0; i<MAX_INSTRUMENTS; i++) { if (Headers[i]) { delete Headers[i]; Headers[i] = NULL; } } for (i=0; i<MAX_MIXPLUGINS; i++) { if ((m_MixPlugins[i].nPluginDataSize) && (m_MixPlugins[i].pPluginData)) { m_MixPlugins[i].nPluginDataSize = 0; delete [] (signed char*)m_MixPlugins[i].pPluginData; m_MixPlugins[i].pPluginData = NULL; } m_MixPlugins[i].pMixState = NULL; if (m_MixPlugins[i].pMixPlugin) { m_MixPlugins[i].pMixPlugin->Release(); m_MixPlugins[i].pMixPlugin = NULL; } } m_nType = MOD_TYPE_NONE; m_nChannels = m_nSamples = m_nInstruments = 0; return TRUE; } ////////////////////////////////////////////////////////////////////////// // Memory Allocation MODCOMMAND *CSoundFile::AllocatePattern(UINT rows, UINT nchns) //------------------------------------------------------------ { MODCOMMAND *p = new MODCOMMAND[rows*nchns]; if (p) memset(p, 0, rows*nchns*sizeof(MODCOMMAND)); return p; } void CSoundFile::FreePattern(LPVOID pat) //-------------------------------------- { if (pat) delete [] (signed char*)pat; } signed char* CSoundFile::AllocateSample(UINT nbytes) //------------------------------------------- { signed char * p = (signed char *)calloc(1, (nbytes+39) & ~7); if (p) p += 16; return p; } void CSoundFile::FreeSample(LPVOID p) //----------------------------------- { if (p) { free((char*)p - 16); } } ////////////////////////////////////////////////////////////////////////// // Misc functions void CSoundFile::ResetMidiCfg() //----------------------------- { memset(&m_MidiCfg, 0, sizeof(m_MidiCfg)); lstrcpy(&m_MidiCfg.szMidiGlb[MIDIOUT_START*32], "FF"); lstrcpy(&m_MidiCfg.szMidiGlb[MIDIOUT_STOP*32], "FC"); lstrcpy(&m_MidiCfg.szMidiGlb[MIDIOUT_NOTEON*32], "9c n v"); lstrcpy(&m_MidiCfg.szMidiGlb[MIDIOUT_NOTEOFF*32], "9c n 0"); lstrcpy(&m_MidiCfg.szMidiGlb[MIDIOUT_PROGRAM*32], "Cc p"); lstrcpy(&m_MidiCfg.szMidiSFXExt[0], "F0F000z"); for (int iz=0; iz<16; iz++) /*w*/sprintf(&m_MidiCfg.szMidiZXXExt[iz*32], "F0F001%02X", iz*8); } UINT CSoundFile::GetNumChannels() const //------------------------------------- { UINT n = 0; for (UINT i=0; i<m_nChannels; i++) if (ChnSettings[i].nVolume) n++; return n; } UINT CSoundFile::GetSongComments(LPSTR s, UINT len, UINT linesize) //---------------------------------------------------------------- { LPCSTR p = m_lpszSongComments; if (!p) return 0; UINT i = 2, ln=0; if ((len) && (s)) s[0] = '\x0D'; if ((len > 1) && (s)) s[1] = '\x0A'; while ((*p) && (i+2 < len)) { BYTE c = (BYTE)*p++; if ((c == 0x0D) || ((c == ' ') && (ln >= linesize))) { if (s) { s[i++] = '\x0D'; s[i++] = '\x0A'; } else i+= 2; ln=0; } else if (c >= 0x20) { if (s) s[i++] = c; else i++; ln++; } } if (s) s[i] = 0; return i; } UINT CSoundFile::GetRawSongComments(LPSTR s, UINT len, UINT linesize) //------------------------------------------------------------------- { LPCSTR p = m_lpszSongComments; if (!p) return 0; UINT i = 0, ln=0; while ((*p) && (i < len-1)) { BYTE c = (BYTE)*p++; if ((c == 0x0D) || (c == 0x0A)) { if (ln) { while (ln < linesize) { if (s) s[i] = ' '; i++; ln++; } ln = 0; } } else if ((c == ' ') && (!ln)) { UINT k=0; while ((p[k]) && (p[k] >= ' ')) k++; if (k <= linesize) { if (s) s[i] = ' '; i++; ln++; } } else { if (s) s[i] = c; i++; ln++; if (ln == linesize) ln = 0; } } if (ln) { while ((ln < linesize) && (i < len)) { if (s) s[i] = ' '; i++; ln++; } } if (s) s[i] = 0; return i; } BOOL CSoundFile::SetWaveConfig(UINT nRate,UINT nBits,UINT nChannels,BOOL bMMX) //---------------------------------------------------------------------------- { BOOL bReset = FALSE; DWORD d = gdwSoundSetup & ~SNDMIX_ENABLEMMX; if (bMMX) d |= SNDMIX_ENABLEMMX; if ((gdwMixingFreq != nRate) || (gnBitsPerSample != nBits) || (gnChannels != nChannels) || (d != gdwSoundSetup)) bReset = TRUE; gnChannels = nChannels; gdwSoundSetup = d; gdwMixingFreq = nRate; gnBitsPerSample = nBits; InitPlayer(bReset); return TRUE; } BOOL CSoundFile::SetMixConfig(UINT nStereoSeparation, UINT nMaxMixChannels) //------------------------------------------------------------------------- { if (nMaxMixChannels < 2) return FALSE; m_nMaxMixChannels = nMaxMixChannels; m_nStereoSeparation = nStereoSeparation; return TRUE; } BOOL CSoundFile::SetResamplingMode(UINT nMode) //-------------------------------------------- { DWORD d = gdwSoundSetup & ~(SNDMIX_NORESAMPLING|SNDMIX_HQRESAMPLER|SNDMIX_ULTRAHQSRCMODE); switch(nMode) { case SRCMODE_NEAREST: d |= SNDMIX_NORESAMPLING; break; case SRCMODE_LINEAR: break; case SRCMODE_SPLINE: d |= SNDMIX_HQRESAMPLER; break; case SRCMODE_POLYPHASE: d |= (SNDMIX_HQRESAMPLER|SNDMIX_ULTRAHQSRCMODE); break; default: return FALSE; } gdwSoundSetup = d; return TRUE; } BOOL CSoundFile::SetMasterVolume(UINT nVol, BOOL bAdjustAGC) //---------------------------------------------------------- { if (nVol < 1) nVol = 1; if (nVol > 0x200) nVol = 0x200; // x4 maximum if ((nVol < m_nMasterVolume) && (nVol) && (gdwSoundSetup & SNDMIX_AGC) && (bAdjustAGC)) { gnAGC = gnAGC * m_nMasterVolume / nVol; if (gnAGC > AGC_UNITY) gnAGC = AGC_UNITY; } m_nMasterVolume = nVol; return TRUE; } void CSoundFile::SetAGC(BOOL b) //----------------------------- { if (b) { if (!(gdwSoundSetup & SNDMIX_AGC)) { gdwSoundSetup |= SNDMIX_AGC; gnAGC = AGC_UNITY; } } else gdwSoundSetup &= ~SNDMIX_AGC; } UINT CSoundFile::GetNumPatterns() const //------------------------------------- { UINT i = 0; while ((i < MAX_ORDERS) && (Order[i] < 0xFF)) i++; return i; } UINT CSoundFile::GetNumInstruments() const //---------------------------------------- { UINT n=0; for (UINT i=0; i<MAX_INSTRUMENTS; i++) if (Ins[i].pSample) n++; return n; } UINT CSoundFile::GetMaxPosition() const //------------------------------------- { UINT max = 0; UINT i = 0; while ((i < MAX_ORDERS) && (Order[i] != 0xFF)) { if (Order[i] < MAX_PATTERNS) max += PatternSize[Order[i]]; i++; } return max; } UINT CSoundFile::GetCurrentPos() const //------------------------------------ { UINT pos = 0; for (UINT i=0; i<m_nCurrentPattern; i++) if (Order[i] < MAX_PATTERNS) pos += PatternSize[Order[i]]; return pos + m_nRow; } void CSoundFile::SetCurrentPos(UINT nPos) //--------------------------------------- { UINT i, nPattern; for (i=0; i<MAX_CHANNELS; i++) { Chn[i].nNote = Chn[i].nNewNote = Chn[i].nNewIns = 0; Chn[i].pInstrument = NULL; Chn[i].pHeader = NULL; Chn[i].nPortamentoDest = 0; Chn[i].nCommand = 0; Chn[i].nPatternLoopCount = 0; Chn[i].nPatternLoop = 0; Chn[i].nFadeOutVol = 0; Chn[i].dwFlags |= CHN_KEYOFF|CHN_NOTEFADE; Chn[i].nTremorCount = 0; } if (!nPos) { for (i=0; i<MAX_CHANNELS; i++) { Chn[i].nPeriod = 0; Chn[i].nPos = Chn[i].nLength = 0; Chn[i].nLoopStart = 0; Chn[i].nLoopEnd = 0; Chn[i].nROfs = Chn[i].nLOfs = 0; Chn[i].pSample = NULL; Chn[i].pInstrument = NULL; Chn[i].pHeader = NULL; Chn[i].nCutOff = 0x7F; Chn[i].nResonance = 0; Chn[i].nLeftVol = Chn[i].nRightVol = 0; Chn[i].nNewLeftVol = Chn[i].nNewRightVol = 0; Chn[i].nLeftRamp = Chn[i].nRightRamp = 0; Chn[i].nVolume = 256; if (i < MAX_BASECHANNELS) { Chn[i].dwFlags = ChnSettings[i].dwFlags; Chn[i].nPan = ChnSettings[i].nPan; Chn[i].nGlobalVol = ChnSettings[i].nVolume; } else { Chn[i].dwFlags = 0; Chn[i].nPan = 128; Chn[i].nGlobalVol = 64; } } m_nGlobalVolume = m_nDefaultGlobalVolume; m_nMusicSpeed = m_nDefaultSpeed; m_nMusicTempo = m_nDefaultTempo; } m_dwSongFlags &= ~(SONG_PATTERNLOOP|SONG_CPUVERYHIGH|SONG_FADINGSONG|SONG_ENDREACHED|SONG_GLOBALFADE); for (nPattern = 0; nPattern < MAX_ORDERS; nPattern++) { UINT ord = Order[nPattern]; if (ord == 0xFE) continue; if (ord == 0xFF) break; if (ord < MAX_PATTERNS) { if (nPos < (UINT)PatternSize[ord]) break; nPos -= PatternSize[ord]; } } // Buggy position ? if ((nPattern >= MAX_ORDERS) || (Order[nPattern] >= MAX_PATTERNS) || (nPos >= PatternSize[Order[nPattern]])) { nPos = 0; nPattern = 0; } UINT nRow = nPos; if ((nRow) && (Order[nPattern] < MAX_PATTERNS)) { MODCOMMAND *p = Patterns[Order[nPattern]]; if ((p) && (nRow < PatternSize[Order[nPattern]])) { BOOL bOk = FALSE; while ((!bOk) && (nRow > 0)) { UINT n = nRow * m_nChannels; for (UINT k=0; k<m_nChannels; k++, n++) { if (p[n].note) { bOk = TRUE; break; } } if (!bOk) nRow--; } } } m_nNextPattern = nPattern; m_nNextRow = nRow; m_nNextStartRow = 0; m_nTickCount = m_nMusicSpeed; m_nBufferCount = 0; m_nPatternDelay = 0; m_nFrameDelay = 0; } void CSoundFile::SetCurrentOrder(UINT nPos) //----------------------------------------- { while ((nPos < MAX_ORDERS) && (Order[nPos] == 0xFE)) nPos++; if ((nPos >= MAX_ORDERS) || (Order[nPos] >= MAX_PATTERNS)) return; for (UINT j=0; j<MAX_CHANNELS; j++) { Chn[j].nPeriod = 0; Chn[j].nNote = 0; Chn[j].nPortamentoDest = 0; Chn[j].nCommand = 0; Chn[j].nPatternLoopCount = 0; Chn[j].nPatternLoop = 0; Chn[j].nTremorCount = 0; } if (!nPos) { SetCurrentPos(0); } else { m_nNextPattern = nPos; m_nRow = m_nNextRow = m_nNextStartRow = 0; m_nPattern = 0; m_nTickCount = m_nMusicSpeed; m_nBufferCount = 0; m_nTotalCount = 0; m_nPatternDelay = 0; m_nFrameDelay = 0; } m_dwSongFlags &= ~(SONG_PATTERNLOOP|SONG_CPUVERYHIGH|SONG_FADINGSONG|SONG_ENDREACHED|SONG_GLOBALFADE); } void CSoundFile::ResetChannels() //------------------------------ { m_dwSongFlags &= ~(SONG_CPUVERYHIGH|SONG_FADINGSONG|SONG_ENDREACHED|SONG_GLOBALFADE); m_nBufferCount = 0; for (UINT i=0; i<MAX_CHANNELS; i++) { Chn[i].nROfs = Chn[i].nLOfs = 0; } } void CSoundFile::LoopPattern(int nPat, int nRow) //---------------------------------------------- { if ((nPat < 0) || (nPat >= MAX_PATTERNS) || (!Patterns[nPat])) { m_dwSongFlags &= ~SONG_PATTERNLOOP; } else { if ((nRow < 0) || (nRow >= PatternSize[nPat])) nRow = 0; m_nPattern = nPat; m_nRow = m_nNextRow = nRow; m_nTickCount = m_nMusicSpeed; m_nPatternDelay = 0; m_nFrameDelay = 0; m_nBufferCount = 0; m_dwSongFlags |= SONG_PATTERNLOOP; } } UINT CSoundFile::GetBestSaveFormat() const //---------------------------------------- { if ((!m_nSamples) || (!m_nChannels)) return MOD_TYPE_NONE; if (!m_nType) return MOD_TYPE_NONE; if (m_nType & (MOD_TYPE_MOD|MOD_TYPE_OKT)) return MOD_TYPE_MOD; if (m_nType & (MOD_TYPE_S3M|MOD_TYPE_STM|MOD_TYPE_ULT|MOD_TYPE_FAR|MOD_TYPE_PTM)) return MOD_TYPE_S3M; if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MED|MOD_TYPE_MTM|MOD_TYPE_MT2)) return MOD_TYPE_XM; return MOD_TYPE_IT; } UINT CSoundFile::GetSaveFormats() const //------------------------------------- { UINT n = 0; if ((!m_nSamples) || (!m_nChannels) || (m_nType == MOD_TYPE_NONE)) return 0; if (m_nType & MOD_TYPE_MOD) n |= MOD_TYPE_MOD; if (m_nType & MOD_TYPE_S3M) n |= MOD_TYPE_S3M; // Can always save to XM & IT n |= MOD_TYPE_XM | MOD_TYPE_IT; if (!m_nInstruments) { if (m_nSamples < 32) n |= MOD_TYPE_MOD; n |= MOD_TYPE_S3M; } return n; } UINT CSoundFile::GetSampleName(UINT nSample,LPSTR s) const //-------------------------------------------------------- { char sztmp[40] = ""; // changed from CHAR if (nSample < MAX_SAMPLES) memcpy(sztmp, m_szNames[nSample], 32); sztmp[31] = 0; if (s) strcpy(s, sztmp); return strlen(sztmp); } UINT CSoundFile::GetInstrumentName(UINT nInstr,LPSTR s) const //----------------------------------------------------------- { char sztmp[40] = ""; // changed from CHAR if ((nInstr >= MAX_INSTRUMENTS) || (!Headers[nInstr])) { if (s) *s = 0; return 0; } INSTRUMENTHEADER *penv = Headers[nInstr]; memcpy(sztmp, penv->name, 32); sztmp[31] = 0; if (s) strcpy(s, sztmp); return strlen(sztmp); } #ifndef NO_PACKING UINT CSoundFile::PackSample(int &sample, int next) //------------------------------------------------ { UINT i = 0; int delta = next - sample; if (delta >= 0) { for (i=0; i<7; i++) if (delta <= (int)CompressionTable[i+1]) break; } else { for (i=8; i<15; i++) if (delta >= (int)CompressionTable[i+1]) break; } sample += (int)CompressionTable[i]; return i; } BOOL CSoundFile::CanPackSample(LPSTR pSample, UINT nLen, UINT nPacking, BYTE *result) //----------------------------------------------------------------------------------- { int pos, old, oldpos, besttable = 0; DWORD dwErr, dwTotal, dwResult; int i,j; if (result) *result = 0; if ((!pSample) || (nLen < 1024)) return FALSE; // Try packing with different tables dwResult = 0; for (j=1; j<MAX_PACK_TABLES; j++) { memcpy(CompressionTable, UnpackTable[j], 16); dwErr = 0; dwTotal = 1; old = pos = oldpos = 0; for (i=0; i<(int)nLen; i++) { int s = (int)pSample[i]; PackSample(pos, s); dwErr += abs(pos - oldpos); dwTotal += abs(s - old); old = s; oldpos = pos; } dwErr = _muldiv(dwErr, 100, dwTotal); if (dwErr >= dwResult) { dwResult = dwErr; besttable = j; } } memcpy(CompressionTable, UnpackTable[besttable], 16); if (result) { if (dwResult > 100) *result = 100; else *result = (BYTE)dwResult; } return (dwResult >= nPacking) ? TRUE : FALSE; } #endif // NO_PACKING #ifndef MODPLUG_NO_FILESAVE UINT CSoundFile::WriteSample(FILE *f, MODINSTRUMENT *pins, UINT nFlags, UINT nMaxLen) //----------------------------------------------------------------------------------- { UINT len = 0, bufcount; signed char buffer[4096]; signed char *pSample = (signed char *)pins->pSample; UINT nLen = pins->nLength; if ((nMaxLen) && (nLen > nMaxLen)) nLen = nMaxLen; if ((!pSample) || (f == NULL) || (!nLen)) return 0; switch(nFlags) { #ifndef NO_PACKING // 3: 4-bit ADPCM data case RS_ADPCM4: { int pos; len = (nLen + 1) / 2; fwrite(CompressionTable, 16, 1, f); bufcount = 0; pos = 0; for (UINT j=0; j<len; j++) { BYTE b; // Sample #1 b = PackSample(pos, (int)pSample[j*2]); // Sample #2 b |= PackSample(pos, (int)pSample[j*2+1]) << 4; buffer[bufcount++] = (signed char)b; if (bufcount >= sizeof(buffer)) { fwrite(buffer, 1, bufcount, f); bufcount = 0; } } if (bufcount) fwrite(buffer, 1, bufcount, f); len += 16; } break; #endif // NO_PACKING // 16-bit samples case RS_PCM16U: case RS_PCM16D: case RS_PCM16S: { int16_t *p = (int16_t *)pSample; int s_old = 0, s_ofs; len = nLen * 2; bufcount = 0; s_ofs = (nFlags == RS_PCM16U) ? 0x8000 : 0; for (UINT j=0; j<nLen; j++) { int s_new = *p; p++; if (pins->uFlags & CHN_STEREO) { s_new = (s_new + (*p) + 1) >> 1; p++; } if (nFlags == RS_PCM16D) { int16_t temp = bswapLE16((int16_t)(s_new - s_old)); *((int16_t*)(&buffer[bufcount])) = temp; s_old = s_new; } else { int16_t temp = bswapLE16((int16_t)(s_new + s_ofs)); *((int16_t *)(&buffer[bufcount])) = temp; } bufcount += 2; if (bufcount >= sizeof(buffer) - 1) { fwrite(buffer, 1, bufcount, f); bufcount = 0; } } if (bufcount) fwrite(buffer, 1, bufcount, f); } break; // 8-bit Stereo samples (not interleaved) case RS_STPCM8S: case RS_STPCM8U: case RS_STPCM8D: { int s_ofs = (nFlags == RS_STPCM8U) ? 0x80 : 0; for (UINT iCh=0; iCh<2; iCh++) { signed char *p = pSample + iCh; int s_old = 0; bufcount = 0; for (UINT j=0; j<nLen; j++) { int s_new = *p; p += 2; if (nFlags == RS_STPCM8D) { buffer[bufcount++] = (signed char)(s_new - s_old); s_old = s_new; } else { buffer[bufcount++] = (signed char)(s_new + s_ofs); } if (bufcount >= sizeof(buffer)) { fwrite(buffer, 1, bufcount, f); bufcount = 0; } } if (bufcount) fwrite(buffer, 1, bufcount, f); } } len = nLen * 2; break; // 16-bit Stereo samples (not interleaved) case RS_STPCM16S: case RS_STPCM16U: case RS_STPCM16D: { int s_ofs = (nFlags == RS_STPCM16U) ? 0x8000 : 0; for (UINT iCh=0; iCh<2; iCh++) { int16_t *p = ((int16_t *)pSample) + iCh; int s_old = 0; bufcount = 0; for (UINT j=0; j<nLen; j++) { int s_new = *p; p += 2; if (nFlags == RS_STPCM16D) { int16_t temp = bswapLE16((int16_t)(s_new - s_old)); *((int16_t *)(&buffer[bufcount])) = temp; s_old = s_new; } else { int16_t temp = bswapLE16((int16_t)(s_new - s_ofs)); *((int16_t*)(&buffer[bufcount])) = temp; } bufcount += 2; if (bufcount >= sizeof(buffer)) { fwrite(buffer, 1, bufcount, f); bufcount = 0; } } if (bufcount) fwrite(buffer, 1, bufcount, f); } } len = nLen*4; break; // Stereo signed interleaved case RS_STIPCM8S: case RS_STIPCM16S: len = nLen * 2; if (nFlags == RS_STIPCM16S) len *= 2; fwrite(pSample, 1, len, f); break; // Default: assume 8-bit PCM data default: len = nLen; bufcount = 0; { signed char *p = pSample; int sinc = (pins->uFlags & CHN_16BIT) ? 2 : 1; int s_old = 0, s_ofs = (nFlags == RS_PCM8U) ? 0x80 : 0; if (pins->uFlags & CHN_16BIT) p++; for (UINT j=0; j<len; j++) { int s_new = (signed char)(*p); p += sinc; if (pins->uFlags & CHN_STEREO) { s_new = (s_new + ((int)*p) + 1) >> 1; p += sinc; } if (nFlags == RS_PCM8D) { buffer[bufcount++] = (signed char)(s_new - s_old); s_old = s_new; } else { buffer[bufcount++] = (signed char)(s_new + s_ofs); } if (bufcount >= sizeof(buffer)) { fwrite(buffer, 1, bufcount, f); bufcount = 0; } } if (bufcount) fwrite(buffer, 1, bufcount, f); } } return len; } #endif // MODPLUG_NO_FILESAVE // Flags: // 0 = signed 8-bit PCM data (default) // 1 = unsigned 8-bit PCM data // 2 = 8-bit ADPCM data with linear table // 3 = 4-bit ADPCM data // 4 = 16-bit ADPCM data with linear table // 5 = signed 16-bit PCM data // 6 = unsigned 16-bit PCM data UINT CSoundFile::ReadSample(MODINSTRUMENT *pIns, UINT nFlags, LPCSTR lpMemFile, DWORD dwMemLength) //------------------------------------------------------------------------------ { UINT len = 0, mem; // Disable >2Gb samples,(preventing buffer overflow in AllocateSample) if ((!pIns) || ((int)pIns->nLength < 4) || (!lpMemFile)) return 0; if (pIns->nLength > MAX_SAMPLE_LENGTH) pIns->nLength = MAX_SAMPLE_LENGTH; mem = pIns->nLength+6; pIns->uFlags &= ~(CHN_16BIT|CHN_STEREO); if (nFlags & RSF_16BIT) { mem *= 2; pIns->uFlags |= CHN_16BIT; } if (nFlags & RSF_STEREO) { mem *= 2; pIns->uFlags |= CHN_STEREO; } if ((pIns->pSample = AllocateSample(mem)) == NULL) { pIns->nLength = 0; return 0; } switch(nFlags) { // 1: 8-bit unsigned PCM data case RS_PCM8U: { len = pIns->nLength; if (len > dwMemLength) len = pIns->nLength = dwMemLength; signed char *pSample = pIns->pSample; for (UINT j=0; j<len; j++) pSample[j] = (signed char)(lpMemFile[j] - 0x80); } break; // 2: 8-bit ADPCM data with linear table case RS_PCM8D: { len = pIns->nLength; if (len > dwMemLength) break; signed char *pSample = pIns->pSample; const signed char *p = (const signed char *)lpMemFile; int delta = 0; for (UINT j=0; j<len; j++) { delta += p[j]; *pSample++ = (signed char)delta; } } break; // 3: 4-bit ADPCM data case RS_ADPCM4: { len = (pIns->nLength + 1) / 2; if (len > dwMemLength - 16 || dwMemLength < 16) break; memcpy(CompressionTable, lpMemFile, 16); lpMemFile += 16; signed char *pSample = pIns->pSample; signed char delta = 0; for (UINT j=0; j<len; j++) { BYTE b0 = (BYTE)lpMemFile[j]; BYTE b1 = (BYTE)(lpMemFile[j] >> 4); delta = (signed char)GetDeltaValue((int)delta, b0); pSample[0] = delta; delta = (signed char)GetDeltaValue((int)delta, b1); pSample[1] = delta; pSample += 2; } len += 16; } break; // 4: 16-bit ADPCM data with linear table case RS_PCM16D: { len = pIns->nLength * 2; if (len > dwMemLength) break; int16_t *pSample = (int16_t *)pIns->pSample; int16_t *p = (int16_t *)lpMemFile; int delta16 = 0; for (UINT j=0; j<len; j+=2) { delta16 += bswapLE16(*p++); *pSample++ = (int16_t )delta16; } } break; // 5: 16-bit signed PCM data case RS_PCM16S: { len = pIns->nLength * 2; if (len <= dwMemLength) memcpy(pIns->pSample, lpMemFile, len); int16_t *pSample = (int16_t *)pIns->pSample; for (UINT j=0; j<len; j+=2) { int16_t rawSample = *pSample; *pSample++ = bswapLE16(rawSample); } } break; // 16-bit signed mono PCM motorola byte order case RS_PCM16M: len = pIns->nLength * 2; if (len > dwMemLength) len = dwMemLength & ~1; if (len > 1) { signed char *pSample = (signed char *)pIns->pSample; signed char *pSrc = (signed char *)lpMemFile; for (UINT j=0; j<len; j+=2) { // pSample[j] = pSrc[j+1]; // pSample[j+1] = pSrc[j]; *((uint16_t *)(pSample+j)) = bswapBE16(*((uint16_t *)(pSrc+j))); } } break; // 6: 16-bit unsigned PCM data case RS_PCM16U: { len = pIns->nLength * 2; if (len > dwMemLength) break; int16_t *pSample = (int16_t *)pIns->pSample; int16_t *pSrc = (int16_t *)lpMemFile; for (UINT j=0; j<len; j+=2) *pSample++ = bswapLE16(*(pSrc++)) - 0x8000; } break; // 16-bit signed stereo big endian case RS_STPCM16M: len = pIns->nLength * 2; if (len*2 <= dwMemLength) { signed char *pSample = (signed char *)pIns->pSample; signed char *pSrc = (signed char *)lpMemFile; for (UINT j=0; j<len; j+=2) { // pSample[j*2] = pSrc[j+1]; // pSample[j*2+1] = pSrc[j]; // pSample[j*2+2] = pSrc[j+1+len]; // pSample[j*2+3] = pSrc[j+len]; *((uint16_t *)(pSample+j*2)) = bswapBE16(*((uint16_t *)(pSrc+j))); *((uint16_t *)(pSample+j*2+2)) = bswapBE16(*((uint16_t *)(pSrc+j+len))); } len *= 2; } break; // 8-bit stereo samples case RS_STPCM8S: case RS_STPCM8U: case RS_STPCM8D: { int iadd_l = 0, iadd_r = 0; if (nFlags == RS_STPCM8U) { iadd_l = iadd_r = -128; } len = pIns->nLength; signed char *psrc = (signed char *)lpMemFile; signed char *pSample = (signed char *)pIns->pSample; if (len*2 > dwMemLength) break; for (UINT j=0; j<len; j++) { pSample[j*2] = (signed char)(psrc[0] + iadd_l); pSample[j*2+1] = (signed char)(psrc[len] + iadd_r); psrc++; if (nFlags == RS_STPCM8D) { iadd_l = pSample[j*2]; iadd_r = pSample[j*2+1]; } } len *= 2; } break; // 16-bit stereo samples case RS_STPCM16S: case RS_STPCM16U: case RS_STPCM16D: { int iadd_l = 0, iadd_r = 0; if (nFlags == RS_STPCM16U) { iadd_l = iadd_r = -0x8000; } len = pIns->nLength; int16_t *psrc = (int16_t *)lpMemFile; int16_t *pSample = (int16_t *)pIns->pSample; if (len*4 > dwMemLength) break; for (UINT j=0; j<len; j++) { pSample[j*2] = (int16_t) (bswapLE16(psrc[0]) + iadd_l); pSample[j*2+1] = (int16_t) (bswapLE16(psrc[len]) + iadd_r); psrc++; if (nFlags == RS_STPCM16D) { iadd_l = pSample[j*2]; iadd_r = pSample[j*2+1]; } } len *= 4; } break; // IT 2.14 compressed samples case RS_IT2148: case RS_IT21416: case RS_IT2158: case RS_IT21516: len = dwMemLength; if (len < 4) break; if ((nFlags == RS_IT2148) || (nFlags == RS_IT2158)) ITUnpack8Bit(pIns->pSample, pIns->nLength, (LPBYTE)lpMemFile, dwMemLength, 1, (nFlags == RS_IT2158)); else ITUnpack16Bit(pIns->pSample, pIns->nLength, (LPBYTE)lpMemFile, dwMemLength, 1, (nFlags == RS_IT21516)); break; case RS_IT2148 | RSF_STEREO: case RS_IT21416 | RSF_STEREO: case RS_IT2158 | RSF_STEREO: case RS_IT21516 | RSF_STEREO: len = dwMemLength; if (len < 4) break; if ((nFlags == (RS_IT2148 | RSF_STEREO)) || (nFlags == (RS_IT2158 | RSF_STEREO))) { DWORD offset = ITUnpack8Bit(pIns->pSample, pIns->nLength, (LPBYTE)lpMemFile, dwMemLength, 2, (nFlags == (RS_IT2158 | RSF_STEREO))); ITUnpack8Bit(pIns->pSample + 1, pIns->nLength, (LPBYTE)lpMemFile + offset, dwMemLength - offset, 2, (nFlags == (RS_IT2158 | RSF_STEREO))); } else { DWORD offset = ITUnpack16Bit(pIns->pSample, pIns->nLength, (LPBYTE)lpMemFile, dwMemLength, 2, (nFlags == (RS_IT21516 | RSF_STEREO))); ITUnpack16Bit(pIns->pSample + 2, pIns->nLength, (LPBYTE)lpMemFile + offset, dwMemLength - offset, 2, (nFlags == (RS_IT21516 | RSF_STEREO))); } break; #ifndef MODPLUG_BASIC_SUPPORT #ifndef MODPLUG_FASTSOUNDLIB // 8-bit interleaved stereo samples case RS_STIPCM8S: case RS_STIPCM8U: { int iadd = 0; if (nFlags == RS_STIPCM8U) { iadd = -0x80; } len = pIns->nLength; if (len*2 > dwMemLength) len = dwMemLength >> 1; LPBYTE psrc = (LPBYTE)lpMemFile; LPBYTE pSample = (LPBYTE)pIns->pSample; for (UINT j=0; j<len; j++) { pSample[j*2] = (signed char)(psrc[0] + iadd); pSample[j*2+1] = (signed char)(psrc[1] + iadd); psrc+=2; } len *= 2; } break; // 16-bit interleaved stereo samples case RS_STIPCM16S: case RS_STIPCM16U: { int iadd = 0; if (nFlags == RS_STIPCM16U) iadd = -32768; len = pIns->nLength; if (len*4 > dwMemLength) len = dwMemLength >> 2; int16_t *psrc = (int16_t *)lpMemFile; int16_t *pSample = (int16_t *)pIns->pSample; for (UINT j=0; j<len; j++) { pSample[j*2] = (int16_t)(bswapLE16(psrc[0]) + iadd); pSample[j*2+1] = (int16_t)(bswapLE16(psrc[1]) + iadd); psrc += 2; } len *= 4; } break; // AMS compressed samples case RS_AMS8: case RS_AMS16: len = 9; if (dwMemLength > 9) { const char *psrc = lpMemFile; char packcharacter = lpMemFile[8], *pdest = (char *)pIns->pSample; UINT smplen = bswapLE32(*((LPDWORD)(lpMemFile+4))); if (smplen > dwMemLength - 9) smplen = dwMemLength - 9; len += smplen; UINT dmax = pIns->nLength; if (pIns->uFlags & CHN_16BIT) dmax <<= 1; AMSUnpack(psrc+9, smplen, pdest, dmax, packcharacter); } break; // PTM 8bit delta to 16-bit sample case RS_PTM8DTO16: { UINT j; len = pIns->nLength * 2; if (len > dwMemLength) break; int8_t *pSample = (int8_t *)pIns->pSample; int8_t delta8 = 0; for (j=0; j<len; j++) { delta8 += lpMemFile[j]; *pSample++ = delta8; } uint16_t *pSampleW = (uint16_t *)pIns->pSample; for (j=0; j<len; j+=2) // swaparoni! { uint16_t rawSample = *pSampleW; *pSampleW++ = bswapLE16(rawSample); } } break; // Huffman MDL compressed samples case RS_MDL8: case RS_MDL16: len = dwMemLength; if (len >= 4) { LPBYTE pSample = (LPBYTE)pIns->pSample; LPBYTE ibuf = (LPBYTE)lpMemFile; DWORD bitbuf = bswapLE32(*((DWORD *)ibuf)); UINT bitnum = 32; BYTE dlt = 0, lowbyte = 0; LPBYTE ibufend = (LPBYTE)lpMemFile + dwMemLength - 1; ibuf += 4; for (UINT j=0; j<pIns->nLength && ibuf < ibufend; j++) { BYTE hibyte; BYTE sign; if (nFlags == RS_MDL16) lowbyte = (BYTE)MDLReadBits(bitbuf, bitnum, ibuf, 8); sign = (BYTE)MDLReadBits(bitbuf, bitnum, ibuf, 1); if (MDLReadBits(bitbuf, bitnum, ibuf, 1)) { hibyte = (BYTE)MDLReadBits(bitbuf, bitnum, ibuf, 3); } else { hibyte = 8; while (ibuf < ibufend && !MDLReadBits(bitbuf, bitnum, ibuf, 1)) hibyte += 0x10; if (ibuf < ibufend) hibyte += MDLReadBits(bitbuf, bitnum, ibuf, 4); } if (sign) hibyte = ~hibyte; dlt += hibyte; if (nFlags != RS_MDL16) pSample[j] = dlt; else { pSample[j<<1] = lowbyte; pSample[(j<<1)+1] = dlt; } } } break; case RS_DMF8: case RS_DMF16: len = dwMemLength; if (len >= 4) { UINT maxlen = pIns->nLength; if (pIns->uFlags & CHN_16BIT) maxlen <<= 1; LPBYTE ibuf = (LPBYTE)lpMemFile, ibufmax = (LPBYTE)(lpMemFile+dwMemLength); len = DMFUnpack((LPBYTE)pIns->pSample, ibuf, ibufmax, maxlen); } break; #ifdef MODPLUG_TRACKER // PCM 24-bit signed -> load sample, and normalize it to 16-bit case RS_PCM24S: case RS_PCM32S: len = pIns->nLength * 3; if (nFlags == RS_PCM32S) len += pIns->nLength; if (len > dwMemLength) break; if (len > 4*8) { UINT slsize = (nFlags == RS_PCM32S) ? 4 : 3; LPBYTE pSrc = (LPBYTE)lpMemFile; LONG max = 255; if (nFlags == RS_PCM32S) pSrc++; for (UINT j=0; j<len; j+=slsize) { LONG l = ((((pSrc[j+2] << 8) + pSrc[j+1]) << 8) + pSrc[j]) << 8; l /= 256; if (l > max) max = l; if (-l > max) max = -l; } max = (max / 128) + 1; int16_t *pDest = (int16_t *)pIns->pSample; for (UINT k=0; k<len; k+=slsize) { LONG l = ((((pSrc[k+2] << 8) + pSrc[k+1]) << 8) + pSrc[k]) << 8; *pDest++ = (uint16_t)(l / max); } } break; // Stereo PCM 24-bit signed -> load sample, and normalize it to 16-bit case RS_STIPCM24S: case RS_STIPCM32S: len = pIns->nLength * 6; if (nFlags == RS_STIPCM32S) len += pIns->nLength * 2; if (len > dwMemLength) break; if (len > 8*8) { UINT slsize = (nFlags == RS_STIPCM32S) ? 4 : 3; LPBYTE pSrc = (LPBYTE)lpMemFile; LONG max = 255; if (nFlags == RS_STIPCM32S) pSrc++; for (UINT j=0; j<len; j+=slsize) { LONG l = ((((pSrc[j+2] << 8) + pSrc[j+1]) << 8) + pSrc[j]) << 8; l /= 256; if (l > max) max = l; if (-l > max) max = -l; } max = (max / 128) + 1; int16_t *pDest = (int16_t *)pIns->pSample; for (UINT k=0; k<len; k+=slsize) { LONG lr = ((((pSrc[k+2] << 8) + pSrc[k+1]) << 8) + pSrc[k]) << 8; k += slsize; LONG ll = ((((pSrc[k+2] << 8) + pSrc[k+1]) << 8) + pSrc[k]) << 8; pDest[0] = (int16_t)ll; pDest[1] = (int16_t)lr; pDest += 2; } } break; // 16-bit signed big endian interleaved stereo case RS_STIPCM16M: { len = pIns->nLength; if (len*4 > dwMemLength) len = dwMemLength >> 2; LPCBYTE psrc = (LPCBYTE)lpMemFile; int16_t *pSample = (int16_t *)pIns->pSample; for (UINT j=0; j<len; j++) { pSample[j*2] = (int16_t)(((UINT)psrc[0] << 8) | (psrc[1])); pSample[j*2+1] = (int16_t)(((UINT)psrc[2] << 8) | (psrc[3])); psrc += 4; } len *= 4; } break; #endif // MODPLUG_TRACKER #endif // !MODPLUG_FASTSOUNDLIB #endif // !MODPLUG_BASIC_SUPPORT // Default: 8-bit signed PCM data default: len = pIns->nLength; if (len > dwMemLength) len = pIns->nLength = dwMemLength; memcpy(pIns->pSample, lpMemFile, len); } if (len > dwMemLength) { if (pIns->pSample) { pIns->nLength = 0; FreeSample(pIns->pSample); pIns->pSample = NULL; } return 0; } AdjustSampleLoop(pIns); return len; } void CSoundFile::AdjustSampleLoop(MODINSTRUMENT *pIns) //---------------------------------------------------- { if (!pIns->pSample) return; if (pIns->nLength > MAX_SAMPLE_LENGTH) pIns->nLength = MAX_SAMPLE_LENGTH; if (pIns->nLoopEnd > pIns->nLength) pIns->nLoopEnd = pIns->nLength; if (pIns->nLoopStart > pIns->nLength+2) pIns->nLoopStart = pIns->nLength+2; if (pIns->nLoopStart+2 >= pIns->nLoopEnd) { pIns->nLoopStart = pIns->nLoopEnd = 0; pIns->uFlags &= ~CHN_LOOP; } UINT len = pIns->nLength; if (pIns->uFlags & CHN_16BIT) { int16_t *pSample = (int16_t *)pIns->pSample; // Adjust end of sample if (pIns->uFlags & CHN_STEREO) { pSample[len*2+6] = pSample[len*2+4] = pSample[len*2+2] = pSample[len*2] = 0; pSample[len*2+7] = pSample[len*2+5] = pSample[len*2+3] = pSample[len*2+1] = 0; } else { pSample[len+4] = pSample[len+3] = pSample[len+2] = pSample[len+1] = pSample[len] = 0; } if ((pIns->uFlags & (CHN_LOOP|CHN_PINGPONGLOOP|CHN_STEREO)) == CHN_LOOP) { // Fix bad loops if ((pIns->nLoopEnd+3 >= pIns->nLength) || (m_nType & MOD_TYPE_S3M)) { pSample[pIns->nLoopEnd] = pSample[pIns->nLoopStart]; pSample[pIns->nLoopEnd+1] = pSample[pIns->nLoopStart+1]; pSample[pIns->nLoopEnd+2] = pSample[pIns->nLoopStart+2]; pSample[pIns->nLoopEnd+3] = pSample[pIns->nLoopStart+3]; pSample[pIns->nLoopEnd+4] = pSample[pIns->nLoopStart+4]; } } } else { signed char *pSample = pIns->pSample; #ifndef MODPLUG_FASTSOUNDLIB // Crappy samples (except chiptunes) ? if ((pIns->nLength > 0x100) && (m_nType & (MOD_TYPE_MOD|MOD_TYPE_S3M)) && (!(pIns->uFlags & CHN_STEREO))) { int smpend = pSample[pIns->nLength-1], smpfix = 0, kscan; for (kscan=pIns->nLength-1; kscan>0; kscan--) { smpfix = pSample[kscan-1]; if (smpfix != smpend) break; } int delta = smpfix - smpend; if (((!(pIns->uFlags & CHN_LOOP)) || (kscan > (int)pIns->nLoopEnd)) && ((delta < -8) || (delta > 8))) { while (kscan<(int)pIns->nLength) { if (!(kscan & 7)) { if (smpfix > 0) smpfix--; if (smpfix < 0) smpfix++; } pSample[kscan] = (signed char)smpfix; kscan++; } } } #endif // Adjust end of sample if (pIns->uFlags & CHN_STEREO) { pSample[len*2+6] = pSample[len*2+4] = pSample[len*2+2] = pSample[len*2] = 0; pSample[len*2+7] = pSample[len*2+5] = pSample[len*2+3] = pSample[len*2+1] = 0; } else { pSample[len+4] = pSample[len+3] = pSample[len+2] = pSample[len+1] = pSample[len] = 0; } if ((pIns->uFlags & (CHN_LOOP|CHN_PINGPONGLOOP|CHN_STEREO)) == CHN_LOOP) { if ((pIns->nLoopEnd+3 >= pIns->nLength) || (m_nType & (MOD_TYPE_MOD|MOD_TYPE_S3M))) { pSample[pIns->nLoopEnd] = pSample[pIns->nLoopStart]; pSample[pIns->nLoopEnd+1] = pSample[pIns->nLoopStart+1]; pSample[pIns->nLoopEnd+2] = pSample[pIns->nLoopStart+2]; pSample[pIns->nLoopEnd+3] = pSample[pIns->nLoopStart+3]; pSample[pIns->nLoopEnd+4] = pSample[pIns->nLoopStart+4]; } } } } ///////////////////////////////////////////////////////////// // Transpose <-> Frequency conversions // returns 8363*2^((transp*128+ftune)/(12*128)) DWORD CSoundFile::TransposeToFrequency(int transp, int ftune) //----------------------------------------------------------- { #if defined(_MSC_VER) && defined(_M_IX86) const float _fbase = 8363; const float _factor = 1.0f/(12.0f*128.0f); int result; DWORD freq; transp = (transp << 7) + ftune; _asm { fild transp fld _factor fmulp st(1), st(0) fist result fisub result f2xm1 fild result fld _fbase fscale fstp st(1) fmul st(1), st(0) faddp st(1), st(0) fistp freq } UINT derr = freq % 11025; if (derr <= 8) freq -= derr; if (derr >= 11015) freq += 11025-derr; derr = freq % 1000; if (derr <= 5) freq -= derr; if (derr >= 995) freq += 1000-derr; return freq; #else //---GCCFIX: Removed assembly. return (DWORD)(8363*pow(2, (double)(transp*128+ftune)/(1536))); #endif } // returns 12*128*log2(freq/8363) int CSoundFile::FrequencyToTranspose(DWORD freq) //---------------------------------------------- { #if defined(_MSC_VER) && defined(_M_IX86) const float _f1_8363 = 1.0f / 8363.0f; const float _factor = 128 * 12; LONG result; if (!freq) return 0; _asm { fld _factor fild freq fld _f1_8363 fmulp st(1), st(0) fyl2x fistp result } return result; #else //---GCCFIX: Removed assembly. return int(1536*(log(freq/8363.0)/log(2.0))); #endif } void CSoundFile::FrequencyToTranspose(MODINSTRUMENT *psmp) //-------------------------------------------------------- { int f2t = FrequencyToTranspose(psmp->nC4Speed); int transp = f2t >> 7; int ftune = f2t & 0x7F; if (ftune > 80) { transp++; ftune -= 128; } if (transp > 127) transp = 127; if (transp < -127) transp = -127; psmp->RelativeTone = transp; psmp->nFineTune = ftune; } void CSoundFile::CheckCPUUsage(UINT nCPU) //--------------------------------------- { if (nCPU > 100) nCPU = 100; gnCPUUsage = nCPU; if (nCPU < 90) { m_dwSongFlags &= ~SONG_CPUVERYHIGH; } else if ((m_dwSongFlags & SONG_CPUVERYHIGH) && (nCPU >= 94)) { UINT i=MAX_CHANNELS; while (i >= 8) { i--; if (Chn[i].nLength) { Chn[i].nLength = Chn[i].nPos = 0; nCPU -= 2; if (nCPU < 94) break; } } } else if (nCPU > 90) { m_dwSongFlags |= SONG_CPUVERYHIGH; } } BOOL CSoundFile::SetPatternName(UINT nPat, LPCSTR lpszName) //--------------------------------------------------------- { char szName[MAX_PATTERNNAME] = ""; // check input arguments if (nPat >= MAX_PATTERNS) return FALSE; if (lpszName == NULL) return(FALSE); if (lpszName) lstrcpyn(szName, lpszName, MAX_PATTERNNAME); szName[MAX_PATTERNNAME-1] = 0; if (!m_lpszPatternNames) m_nPatternNames = 0; if (nPat >= m_nPatternNames) { if (!lpszName[0]) return TRUE; UINT len = (nPat+1)*MAX_PATTERNNAME; char *p = new char[len]; if (!p) return FALSE; memset(p, 0, len); if (m_lpszPatternNames) { memcpy(p, m_lpszPatternNames, m_nPatternNames * MAX_PATTERNNAME); delete [] m_lpszPatternNames; m_lpszPatternNames = NULL; } m_lpszPatternNames = p; m_nPatternNames = nPat + 1; } memcpy(m_lpszPatternNames + nPat * MAX_PATTERNNAME, szName, MAX_PATTERNNAME); return TRUE; } BOOL CSoundFile::GetPatternName(UINT nPat, LPSTR lpszName, UINT cbSize) const //--------------------------------------------------------------------------- { if ((!lpszName) || (!cbSize)) return FALSE; lpszName[0] = 0; if (cbSize > MAX_PATTERNNAME) cbSize = MAX_PATTERNNAME; if ((m_lpszPatternNames) && (nPat < m_nPatternNames)) { memcpy(lpszName, m_lpszPatternNames + nPat * MAX_PATTERNNAME, cbSize); lpszName[cbSize-1] = 0; return TRUE; } return FALSE; } #ifndef MODPLUG_FASTSOUNDLIB UINT CSoundFile::DetectUnusedSamples(BOOL *pbIns) //----------------------------------------------- { UINT nExt = 0; if (!pbIns) return 0; if (m_nInstruments) { memset(pbIns, 0, MAX_SAMPLES * sizeof(BOOL)); for (UINT ipat=0; ipat<MAX_PATTERNS; ipat++) { MODCOMMAND *p = Patterns[ipat]; if (p) { UINT jmax = PatternSize[ipat] * m_nChannels; for (UINT j=0; j<jmax; j++, p++) { if ((p->note) && (p->note <= NOTE_MAX)) { if ((p->instr) && (p->instr < MAX_INSTRUMENTS)) { INSTRUMENTHEADER *penv = Headers[p->instr]; if (penv) { UINT n = penv->Keyboard[p->note-1]; if (n < MAX_SAMPLES) pbIns[n] = TRUE; } } else { for (UINT k=1; k<=m_nInstruments; k++) { INSTRUMENTHEADER *penv = Headers[k]; if (penv) { UINT n = penv->Keyboard[p->note-1]; if (n < MAX_SAMPLES) pbIns[n] = TRUE; } } } } } } } for (UINT ichk=1; ichk<=m_nSamples; ichk++) { if ((!pbIns[ichk]) && (Ins[ichk].pSample)) nExt++; } } return nExt; } BOOL CSoundFile::RemoveSelectedSamples(BOOL *pbIns) //------------------------------------------------- { if (!pbIns) return FALSE; for (UINT j=1; j<MAX_SAMPLES; j++) { if ((!pbIns[j]) && (Ins[j].pSample)) { DestroySample(j); if ((j == m_nSamples) && (j > 1)) m_nSamples--; } } return TRUE; } BOOL CSoundFile::DestroySample(UINT nSample) //------------------------------------------ { if ((!nSample) || (nSample >= MAX_SAMPLES)) return FALSE; if (!Ins[nSample].pSample) return TRUE; MODINSTRUMENT *pins = &Ins[nSample]; signed char *pSample = pins->pSample; pins->pSample = NULL; pins->nLength = 0; pins->uFlags &= ~(CHN_16BIT); for (UINT i=0; i<MAX_CHANNELS; i++) { if (Chn[i].pSample == pSample) { Chn[i].nPos = Chn[i].nLength = 0; Chn[i].pSample = Chn[i].pCurrentSample = NULL; } } FreeSample(pSample); return TRUE; } #endif // MODPLUG_FASTSOUNDLIB /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ //#include "stdafx.h" //#include "sndfile.h" //#include "tables.h" #ifdef MODPLUG_TRACKER #define ENABLE_STEREOVU #endif // Volume ramp length, in 1/10 ms #define VOLUMERAMPLEN 146 // 1.46ms = 64 samples at 44.1kHz // VU-Meter #define VUMETER_DECAY 4 // SNDMIX: These are global flags for playback control (first two configurable via SetMixConfig) UINT CSoundFile::m_nStereoSeparation = 128; UINT CSoundFile::m_nMaxMixChannels = 32; LONG CSoundFile::m_nStreamVolume = 0x8000; // Mixing Configuration (SetWaveConfig) DWORD CSoundFile::gdwSysInfo = 0; DWORD CSoundFile::gnChannels = 1; DWORD CSoundFile::gdwSoundSetup = 0; DWORD CSoundFile::gdwMixingFreq = 44100; DWORD CSoundFile::gnBitsPerSample = 16; // Mixing data initialized in UINT CSoundFile::gnAGC = AGC_UNITY; UINT CSoundFile::gnVolumeRampSamples = 64; UINT CSoundFile::gnVUMeter = 0; UINT CSoundFile::gnCPUUsage = 0; LPSNDMIXHOOKPROC CSoundFile::gpSndMixHook = NULL; PMIXPLUGINCREATEPROC CSoundFile::gpMixPluginCreateProc = NULL; LONG gnDryROfsVol = 0; LONG gnDryLOfsVol = 0; LONG gnRvbROfsVol = 0; LONG gnRvbLOfsVol = 0; int gbInitPlugins = 0; typedef DWORD (MPPASMCALL * LPCONVERTPROC)(LPVOID, int *, DWORD, LPLONG, LPLONG); extern DWORD MPPASMCALL X86_Convert32To8(LPVOID lpBuffer, int *, DWORD nSamples, LPLONG, LPLONG); extern DWORD MPPASMCALL X86_Convert32To16(LPVOID lpBuffer, int *, DWORD nSamples, LPLONG, LPLONG); extern DWORD MPPASMCALL X86_Convert32To24(LPVOID lpBuffer, int *, DWORD nSamples, LPLONG, LPLONG); extern DWORD MPPASMCALL X86_Convert32To32(LPVOID lpBuffer, int *, DWORD nSamples, LPLONG, LPLONG); extern UINT MPPASMCALL X86_AGC(int *pBuffer, UINT nSamples, UINT nAGC); extern VOID MPPASMCALL X86_Dither(int *pBuffer, UINT nSamples, UINT nBits); extern VOID MPPASMCALL X86_InterleaveFrontRear(int *pFrontBuf, int *pRearBuf, DWORD nSamples); extern VOID MPPASMCALL X86_StereoFill(int *pBuffer, UINT nSamples, LPLONG lpROfs, LPLONG lpLOfs); extern VOID MPPASMCALL X86_MonoFromStereo(int *pMixBuf, UINT nSamples); extern int MixSoundBuffer[MIXBUFFERSIZE*4]; extern int MixRearBuffer[MIXBUFFERSIZE*2]; UINT gnReverbSend; // Log tables for pre-amp // We don't want the tracker to get too loud const UINT PreAmpTable[16] = { 0x60, 0x60, 0x60, 0x70, // 0-7 0x80, 0x88, 0x90, 0x98, // 8-15 0xA0, 0xA4, 0xA8, 0xB0, // 16-23 0xB4, 0xB8, 0xBC, 0xC0, // 24-31 }; const UINT PreAmpAGCTable[16] = { 0x60, 0x60, 0x60, 0x60, 0x68, 0x70, 0x78, 0x80, 0x84, 0x88, 0x8C, 0x90, 0x94, 0x98, 0x9C, 0xA0, }; // Return (a*b)/c - no divide error int _muldiv(long a, long b, long c) { #if defined(_MSC_VER) && defined(_M_IX86) int sign, result; _asm { mov eax, a mov ebx, b or eax, eax mov edx, eax jge aneg neg eax aneg: xor edx, ebx or ebx, ebx mov ecx, c jge bneg neg ebx bneg: xor edx, ecx or ecx, ecx mov sign, edx jge cneg neg ecx cneg: mul ebx cmp edx, ecx jae diverr div ecx jmp ok diverr: mov eax, 0x7fffffff ok: mov edx, sign or edx, edx jge rneg neg eax rneg: mov result, eax } return result; #else return ((uint64_t) a * (uint64_t) b ) / c; #endif } // Return (a*b+c/2)/c - no divide error int _muldivr(long a, long b, long c) { #if defined(_MSC_VER) && defined(_M_IX86) int sign, result; _asm { mov eax, a mov ebx, b or eax, eax mov edx, eax jge aneg neg eax aneg: xor edx, ebx or ebx, ebx mov ecx, c jge bneg neg ebx bneg: xor edx, ecx or ecx, ecx mov sign, edx jge cneg neg ecx cneg: mul ebx mov ebx, ecx shr ebx, 1 add eax, ebx adc edx, 0 cmp edx, ecx jae diverr div ecx jmp ok diverr: mov eax, 0x7fffffff ok: mov edx, sign or edx, edx jge rneg neg eax rneg: mov result, eax } return result; #else return ((uint64_t) a * (uint64_t) b + (c >> 1)) / c; #endif } BOOL CSoundFile::InitPlayer(BOOL bReset) //-------------------------------------- { if (m_nMaxMixChannels > MAX_CHANNELS) m_nMaxMixChannels = MAX_CHANNELS; if (gdwMixingFreq < 4000) gdwMixingFreq = 4000; if (gdwMixingFreq > MAX_SAMPLE_RATE) gdwMixingFreq = MAX_SAMPLE_RATE; gnVolumeRampSamples = (gdwMixingFreq * VOLUMERAMPLEN) / 100000; if (gnVolumeRampSamples < 8) gnVolumeRampSamples = 8; gnDryROfsVol = gnDryLOfsVol = 0; gnRvbROfsVol = gnRvbLOfsVol = 0; if (bReset) { gnVUMeter = 0; gnCPUUsage = 0; } gbInitPlugins = (bReset) ? 3 : 1; InitializeDSP(bReset); return TRUE; } BOOL CSoundFile::FadeSong(UINT msec) //---------------------------------- { LONG nsamples = _muldiv(msec, gdwMixingFreq, 1000); if (nsamples <= 0) return FALSE; if (nsamples > 0x100000) nsamples = 0x100000; m_nBufferCount = nsamples; LONG nRampLength = m_nBufferCount; // Ramp everything down for (UINT noff=0; noff < m_nMixChannels; noff++) { MODCHANNEL *pramp = &Chn[ChnMix[noff]]; if (!pramp) continue; pramp->nNewLeftVol = pramp->nNewRightVol = 0; pramp->nRightRamp = (-pramp->nRightVol << VOLUMERAMPPRECISION) / nRampLength; pramp->nLeftRamp = (-pramp->nLeftVol << VOLUMERAMPPRECISION) / nRampLength; pramp->nRampRightVol = pramp->nRightVol << VOLUMERAMPPRECISION; pramp->nRampLeftVol = pramp->nLeftVol << VOLUMERAMPPRECISION; pramp->nRampLength = nRampLength; pramp->dwFlags |= CHN_VOLUMERAMP; } m_dwSongFlags |= SONG_FADINGSONG; return TRUE; } BOOL CSoundFile::GlobalFadeSong(UINT msec) //---------------------------------------- { if (m_dwSongFlags & SONG_GLOBALFADE) return FALSE; m_nGlobalFadeMaxSamples = _muldiv(msec, gdwMixingFreq, 1000); m_nGlobalFadeSamples = m_nGlobalFadeMaxSamples; m_dwSongFlags |= SONG_GLOBALFADE; return TRUE; } UINT CSoundFile::Read(LPVOID lpDestBuffer, UINT cbBuffer) //------------------------------------------------------- { LPBYTE lpBuffer = (LPBYTE)lpDestBuffer; LPCONVERTPROC pCvt = X86_Convert32To8; UINT lRead, lMax, lSampleSize, lCount, lSampleCount, nStat=0; LONG nVUMeterMin = 0x7FFFFFFF, nVUMeterMax = -0x7FFFFFFF; UINT nMaxPlugins; { nMaxPlugins = MAX_MIXPLUGINS; while ((nMaxPlugins > 0) && (!m_MixPlugins[nMaxPlugins-1].pMixPlugin)) nMaxPlugins--; } m_nMixStat = 0; lSampleSize = gnChannels; if (gnBitsPerSample == 16) { lSampleSize *= 2; pCvt = X86_Convert32To16; } #ifndef MODPLUG_FASTSOUNDLIB else if (gnBitsPerSample == 24) { lSampleSize *= 3; pCvt = X86_Convert32To24; } else if (gnBitsPerSample == 32) { lSampleSize *= 4; pCvt = X86_Convert32To32; } #endif lMax = cbBuffer / lSampleSize; if ((!lMax) || (!lpBuffer) || (!m_nChannels)) return 0; lRead = lMax; if (m_dwSongFlags & SONG_ENDREACHED) goto MixDone; while (lRead > 0) { // Update Channel Data if (!m_nBufferCount) { #ifndef MODPLUG_FASTSOUNDLIB if (m_dwSongFlags & SONG_FADINGSONG) { m_dwSongFlags |= SONG_ENDREACHED; m_nBufferCount = lRead; } else #endif if (!ReadNote()) { #ifndef MODPLUG_FASTSOUNDLIB if (!FadeSong(FADESONGDELAY)) #endif { m_dwSongFlags |= SONG_ENDREACHED; if (lRead == lMax) goto MixDone; m_nBufferCount = lRead; } } } lCount = m_nBufferCount; if (lCount > MIXBUFFERSIZE) lCount = MIXBUFFERSIZE; if (lCount > lRead) lCount = lRead; if (!lCount) break; lSampleCount = lCount; #ifndef MODPLUG_NO_REVERB gnReverbSend = 0; #endif // Resetting sound buffer X86_StereoFill(MixSoundBuffer, lSampleCount, &gnDryROfsVol, &gnDryLOfsVol); if (gnChannels >= 2) { lSampleCount *= 2; m_nMixStat += CreateStereoMix(lCount); ProcessStereoDSP(lCount); } else { m_nMixStat += CreateStereoMix(lCount); if (nMaxPlugins) ProcessPlugins(lCount); ProcessStereoDSP(lCount); X86_MonoFromStereo(MixSoundBuffer, lCount); } nStat++; #ifndef NO_AGC // Automatic Gain Control if (gdwSoundSetup & SNDMIX_AGC) ProcessAGC(lSampleCount); #endif UINT lTotalSampleCount = lSampleCount; #ifndef MODPLUG_FASTSOUNDLIB // Multichannel if (gnChannels > 2) { X86_InterleaveFrontRear(MixSoundBuffer, MixRearBuffer, lSampleCount); lTotalSampleCount *= 2; } // Hook Function if (gpSndMixHook) { gpSndMixHook(MixSoundBuffer, lTotalSampleCount, gnChannels); } #endif // Perform clipping + VU-Meter lpBuffer += pCvt(lpBuffer, MixSoundBuffer, lTotalSampleCount, &nVUMeterMin, &nVUMeterMax); // Buffer ready lRead -= lCount; m_nBufferCount -= lCount; } MixDone: if (lRead) memset(lpBuffer, (gnBitsPerSample == 8) ? 0x80 : 0, lRead * lSampleSize); // VU-Meter nVUMeterMin >>= (24-MIXING_ATTENUATION); nVUMeterMax >>= (24-MIXING_ATTENUATION); if (nVUMeterMax < nVUMeterMin) nVUMeterMax = nVUMeterMin; if ((gnVUMeter = (UINT)(nVUMeterMax - nVUMeterMin)) > 0xFF) gnVUMeter = 0xFF; if (nStat) { m_nMixStat += nStat-1; m_nMixStat /= nStat; } return lMax - lRead; } ///////////////////////////////////////////////////////////////////////////// // Handles navigation/effects BOOL CSoundFile::ProcessRow() //--------------------------- { if (++m_nTickCount >= m_nMusicSpeed * (m_nPatternDelay+1) + m_nFrameDelay) { m_nPatternDelay = 0; m_nFrameDelay = 0; m_nTickCount = 0; m_nRow = m_nNextRow; // Reset Pattern Loop Effect if (m_nCurrentPattern != m_nNextPattern) m_nCurrentPattern = m_nNextPattern; // Check if pattern is valid if (!(m_dwSongFlags & SONG_PATTERNLOOP)) { m_nPattern = (m_nCurrentPattern < MAX_ORDERS) ? Order[m_nCurrentPattern] : 0xFF; if ((m_nPattern < MAX_PATTERNS) && (!Patterns[m_nPattern])) m_nPattern = 0xFE; while (m_nPattern >= MAX_PATTERNS) { // End of song ? if ((m_nPattern == 0xFF) || (m_nCurrentPattern >= MAX_ORDERS)) { //if (!m_nRepeatCount) return FALSE; //never repeat entire song if (!m_nRestartPos) { m_nMusicSpeed = m_nDefaultSpeed; m_nMusicTempo = m_nDefaultTempo; m_nGlobalVolume = m_nDefaultGlobalVolume; for (UINT i=0; i<MAX_CHANNELS; i++) { Chn[i].dwFlags |= CHN_NOTEFADE | CHN_KEYOFF; Chn[i].nFadeOutVol = 0; if (i < m_nChannels) { Chn[i].nGlobalVol = ChnSettings[i].nVolume; Chn[i].nVolume = ChnSettings[i].nVolume; Chn[i].nPan = ChnSettings[i].nPan; Chn[i].nPanSwing = Chn[i].nVolSwing = 0; Chn[i].nOldVolParam = 0; Chn[i].nOldOffset = 0; Chn[i].nOldHiOffset = 0; Chn[i].nPortamentoDest = 0; if (!Chn[i].nLength) { Chn[i].dwFlags = ChnSettings[i].dwFlags; Chn[i].nLoopStart = 0; Chn[i].nLoopEnd = 0; Chn[i].pHeader = NULL; Chn[i].pSample = NULL; Chn[i].pInstrument = NULL; } } } } // if (m_nRepeatCount > 0) m_nRepeatCount--; m_nCurrentPattern = m_nRestartPos; m_nRow = 0; if ((Order[m_nCurrentPattern] >= MAX_PATTERNS) || (!Patterns[Order[m_nCurrentPattern]])) return FALSE; } else { m_nCurrentPattern++; } m_nPattern = (m_nCurrentPattern < MAX_ORDERS) ? Order[m_nCurrentPattern] : 0xFF; if ((m_nPattern < MAX_PATTERNS) && (!Patterns[m_nPattern])) m_nPattern = 0xFE; } m_nNextPattern = m_nCurrentPattern; } // Weird stuff? if ((m_nPattern >= MAX_PATTERNS) || (!Patterns[m_nPattern]) || PatternSize[m_nPattern] == 0) return FALSE; // Should never happen if (m_nRow >= PatternSize[m_nPattern]) m_nRow = 0; m_nNextRow = m_nRow + 1; if (m_nNextRow >= PatternSize[m_nPattern]) { if (!(m_dwSongFlags & SONG_PATTERNLOOP)) m_nNextPattern = m_nCurrentPattern + 1; m_nNextRow = m_nNextStartRow; m_nNextStartRow = 0; } // Reset channel values MODCHANNEL *pChn = Chn; MODCOMMAND *m = Patterns[m_nPattern] + m_nRow * m_nChannels; for (UINT nChn=0; nChn<m_nChannels; pChn++, nChn++, m++) { pChn->nRowNote = m->note; pChn->nRowInstr = m->instr; pChn->nRowVolCmd = m->volcmd; pChn->nRowVolume = m->vol; pChn->nRowCommand = m->command; pChn->nRowParam = m->param; pChn->nLeftVol = pChn->nNewLeftVol; pChn->nRightVol = pChn->nNewRightVol; pChn->dwFlags &= ~(CHN_PORTAMENTO | CHN_VIBRATO | CHN_TREMOLO | CHN_PANBRELLO); pChn->nCommand = 0; } } // Should we process tick0 effects? if (!m_nMusicSpeed) m_nMusicSpeed = 1; m_dwSongFlags |= SONG_FIRSTTICK; if (m_nTickCount) { m_dwSongFlags &= ~SONG_FIRSTTICK; if ((!(m_nType & MOD_TYPE_XM)) && (m_nTickCount < m_nMusicSpeed * (1 + m_nPatternDelay))) { if (!(m_nTickCount % m_nMusicSpeed)) m_dwSongFlags |= SONG_FIRSTTICK; } } // Update Effects return ProcessEffects(); } //////////////////////////////////////////////////////////////////////////////////////////// // Handles envelopes & mixer setup BOOL CSoundFile::ReadNote() //------------------------- { if (!ProcessRow()) return FALSE; //////////////////////////////////////////////////////////////////////////////////// m_nTotalCount++; if (!m_nMusicTempo) return FALSE; m_nBufferCount = (gdwMixingFreq * 5 * m_nTempoFactor) / (m_nMusicTempo << 8); // Master Volume + Pre-Amplification / Attenuation setup DWORD nMasterVol; { int nchn32 = (m_nChannels < 32) ? m_nChannels : 31; if ((m_nType & MOD_TYPE_IT) && (m_nInstruments) && (nchn32 < 6)) nchn32 = 6; int realmastervol = m_nMasterVolume; if (realmastervol > 0x80) { realmastervol = 0x80 + ((realmastervol - 0x80) * (nchn32+4)) / 16; } UINT attenuation = (gdwSoundSetup & SNDMIX_AGC) ? PreAmpAGCTable[nchn32>>1] : PreAmpTable[nchn32>>1]; DWORD mastervol = (realmastervol * (m_nSongPreAmp + 0x10)) >> 6; if (mastervol > 0x200) mastervol = 0x200; if ((m_dwSongFlags & SONG_GLOBALFADE) && (m_nGlobalFadeMaxSamples)) { mastervol = _muldiv(mastervol, m_nGlobalFadeSamples, m_nGlobalFadeMaxSamples); } nMasterVol = (mastervol << 7) / attenuation; if (nMasterVol > 0x180) nMasterVol = 0x180; } //////////////////////////////////////////////////////////////////////////////////// // Update channels data m_nMixChannels = 0; MODCHANNEL *pChn = Chn; for (UINT nChn=0; nChn<MAX_CHANNELS; nChn++,pChn++) { if ((pChn->dwFlags & CHN_NOTEFADE) && (!(pChn->nFadeOutVol|pChn->nRightVol|pChn->nLeftVol))) { pChn->nLength = 0; pChn->nROfs = pChn->nLOfs = 0; } // Check for unused channel if ((pChn->dwFlags & CHN_MUTE) || ((nChn >= m_nChannels) && (!pChn->nLength))) { pChn->nVUMeter = 0; #ifdef ENABLE_STEREOVU pChn->nLeftVU = pChn->nRightVU = 0; #endif continue; } // Reset channel data pChn->nInc = 0; pChn->nRealVolume = 0; pChn->nRealPan = pChn->nPan + pChn->nPanSwing; if (pChn->nRealPan < 0) pChn->nRealPan = 0; if (pChn->nRealPan > 256) pChn->nRealPan = 256; pChn->nRampLength = 0; // Calc Frequency if ((pChn->nPeriod) && (pChn->nLength)) { int vol = pChn->nVolume + pChn->nVolSwing; if (vol < 0) vol = 0; if (vol > 256) vol = 256; // Tremolo if (pChn->dwFlags & CHN_TREMOLO) { UINT trempos = pChn->nTremoloPos & 0x3F; if (vol > 0) { int tremattn = (m_nType & MOD_TYPE_XM) ? 5 : 6; switch (pChn->nTremoloType & 0x03) { case 1: vol += (ModRampDownTable[trempos] * (int)pChn->nTremoloDepth) >> tremattn; break; case 2: vol += (ModSquareTable[trempos] * (int)pChn->nTremoloDepth) >> tremattn; break; case 3: vol += (ModRandomTable[trempos] * (int)pChn->nTremoloDepth) >> tremattn; break; default: vol += (ModSinusTable[trempos] * (int)pChn->nTremoloDepth) >> tremattn; } } if ((m_nTickCount) || ((m_nType & (MOD_TYPE_STM|MOD_TYPE_S3M|MOD_TYPE_IT)) && (!(m_dwSongFlags & SONG_ITOLDEFFECTS)))) { pChn->nTremoloPos = (trempos + pChn->nTremoloSpeed) & 0x3F; } } // Tremor if (pChn->nCommand == CMD_TREMOR) { UINT n = (pChn->nTremorParam >> 4) + (pChn->nTremorParam & 0x0F); UINT ontime = pChn->nTremorParam >> 4; if ((!(m_nType & MOD_TYPE_IT)) || (m_dwSongFlags & SONG_ITOLDEFFECTS)) { n += 2; ontime++; } UINT tremcount = (UINT)pChn->nTremorCount; if (tremcount >= n) tremcount = 0; if ((m_nTickCount) || (m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT))) { if (tremcount >= ontime) vol = 0; pChn->nTremorCount = (BYTE)(tremcount + 1); } pChn->dwFlags |= CHN_FASTVOLRAMP; } // Clip volume if (vol < 0) vol = 0; if (vol > 0x100) vol = 0x100; vol <<= 6; // Process Envelopes if (pChn->pHeader) { INSTRUMENTHEADER *penv = pChn->pHeader; // Volume Envelope if ((pChn->dwFlags & CHN_VOLENV) && (penv->nVolEnv)) { int envpos = pChn->nVolEnvPosition; UINT pt = penv->nVolEnv - 1; for (UINT i=0; i<(UINT)(penv->nVolEnv-1); i++) { if (envpos <= penv->VolPoints[i]) { pt = i; break; } } int x2 = penv->VolPoints[pt]; int x1, envvol; if (envpos >= x2) { envvol = penv->VolEnv[pt] << 2; x1 = x2; } else if (pt) { envvol = penv->VolEnv[pt-1] << 2; x1 = penv->VolPoints[pt-1]; } else { envvol = 0; x1 = 0; } if (envpos > x2) envpos = x2; if ((x2 > x1) && (envpos > x1)) { envvol += ((envpos - x1) * (((int)penv->VolEnv[pt]<<2) - envvol)) / (x2 - x1); } if (envvol < 0) envvol = 0; if (envvol > 256) envvol = 256; vol = (vol * envvol) >> 8; } // Panning Envelope if ((pChn->dwFlags & CHN_PANENV) && (penv->nPanEnv)) { int envpos = pChn->nPanEnvPosition; UINT pt = penv->nPanEnv - 1; for (UINT i=0; i<(UINT)(penv->nPanEnv-1); i++) { if (envpos <= penv->PanPoints[i]) { pt = i; break; } } int x2 = penv->PanPoints[pt], y2 = penv->PanEnv[pt]; int x1, envpan; if (envpos >= x2) { envpan = y2; x1 = x2; } else if (pt) { envpan = penv->PanEnv[pt-1]; x1 = penv->PanPoints[pt-1]; } else { envpan = 128; x1 = 0; } if ((x2 > x1) && (envpos > x1)) { envpan += ((envpos - x1) * (y2 - envpan)) / (x2 - x1); } if (envpan < 0) envpan = 0; if (envpan > 64) envpan = 64; int pan = pChn->nPan; if (pan >= 128) { pan += ((envpan - 32) * (256 - pan)) / 32; } else { pan += ((envpan - 32) * (pan)) / 32; } if (pan < 0) pan = 0; if (pan > 256) pan = 256; pChn->nRealPan = pan; } // FadeOut volume if (pChn->dwFlags & CHN_NOTEFADE) { UINT fadeout = penv->nFadeOut; if (fadeout) { pChn->nFadeOutVol -= fadeout << 1; if (pChn->nFadeOutVol <= 0) pChn->nFadeOutVol = 0; vol = (vol * pChn->nFadeOutVol) >> 16; } else if (!pChn->nFadeOutVol) { vol = 0; } } // Pitch/Pan separation if ((penv->nPPS) && (pChn->nRealPan) && (pChn->nNote)) { int pandelta = (int)pChn->nRealPan + (int)((int)(pChn->nNote - penv->nPPC - 1) * (int)penv->nPPS) / (int)8; if (pandelta < 0) pandelta = 0; if (pandelta > 256) pandelta = 256; pChn->nRealPan = pandelta; } } else { // No Envelope: key off => note cut if (pChn->dwFlags & CHN_NOTEFADE) // 1.41-: CHN_KEYOFF|CHN_NOTEFADE { pChn->nFadeOutVol = 0; vol = 0; } } // vol is 14-bits if (vol) { // IMPORTANT: pChn->nRealVolume is 14 bits !!! // -> _muldiv( 14+8, 6+6, 18); => RealVolume: 14-bit result (22+12-20) pChn->nRealVolume = _muldiv(vol * m_nGlobalVolume, pChn->nGlobalVol * pChn->nInsVol, 1 << 20); } if (pChn->nPeriod < m_nMinPeriod) pChn->nPeriod = m_nMinPeriod; int period = pChn->nPeriod; if ((pChn->dwFlags & (CHN_GLISSANDO|CHN_PORTAMENTO)) == (CHN_GLISSANDO|CHN_PORTAMENTO)) { period = GetPeriodFromNote(GetNoteFromPeriod(period), pChn->nFineTune, pChn->nC4Speed); } // Arpeggio ? if (pChn->nCommand == CMD_ARPEGGIO) { switch(m_nTickCount % 3) { case 1: period = GetPeriodFromNote(pChn->nNote + (pChn->nArpeggio >> 4), pChn->nFineTune, pChn->nC4Speed); break; case 2: period = GetPeriodFromNote(pChn->nNote + (pChn->nArpeggio & 0x0F), pChn->nFineTune, pChn->nC4Speed); break; } } if (m_dwSongFlags & SONG_AMIGALIMITS) { if (period < 113*4) period = 113*4; if (period > 856*4) period = 856*4; } // Pitch/Filter Envelope if ((pChn->pHeader) && (pChn->dwFlags & CHN_PITCHENV) && (pChn->pHeader->nPitchEnv)) { INSTRUMENTHEADER *penv = pChn->pHeader; int envpos = pChn->nPitchEnvPosition; UINT pt = penv->nPitchEnv - 1; for (UINT i=0; i<(UINT)(penv->nPitchEnv-1); i++) { if (envpos <= penv->PitchPoints[i]) { pt = i; break; } } int x2 = penv->PitchPoints[pt]; int x1, envpitch; if (envpos >= x2) { envpitch = (((int)penv->PitchEnv[pt]) - 32) * 8; x1 = x2; } else if (pt) { envpitch = (((int)penv->PitchEnv[pt-1]) - 32) * 8; x1 = penv->PitchPoints[pt-1]; } else { envpitch = 0; x1 = 0; } if (envpos > x2) envpos = x2; if ((x2 > x1) && (envpos > x1)) { int envpitchdest = (((int)penv->PitchEnv[pt]) - 32) * 8; envpitch += ((envpos - x1) * (envpitchdest - envpitch)) / (x2 - x1); } if (envpitch < -256) envpitch = -256; if (envpitch > 256) envpitch = 256; // Filter Envelope: controls cutoff frequency if (penv->dwFlags & ENV_FILTER) { #ifndef NO_FILTER SetupChannelFilter(pChn, (pChn->dwFlags & CHN_FILTER) ? FALSE : TRUE, envpitch); #endif // NO_FILTER } else // Pitch Envelope { int l = envpitch; if (l < 0) { l = -l; if (l > 255) l = 255; period = _muldiv(period, LinearSlideUpTable[l], 0x10000); } else { if (l > 255) l = 255; period = _muldiv(period, LinearSlideDownTable[l], 0x10000); } } } // Vibrato if (pChn->dwFlags & CHN_VIBRATO) { UINT vibpos = pChn->nVibratoPos; LONG vdelta; switch (pChn->nVibratoType & 0x03) { case 1: vdelta = ModRampDownTable[vibpos]; break; case 2: vdelta = ModSquareTable[vibpos]; break; case 3: vdelta = ModRandomTable[vibpos]; break; default: vdelta = ModSinusTable[vibpos]; } UINT vdepth = ((m_nType != MOD_TYPE_IT) || (m_dwSongFlags & SONG_ITOLDEFFECTS)) ? 6 : 7; vdelta = (vdelta * (int)pChn->nVibratoDepth) >> vdepth; if ((m_dwSongFlags & SONG_LINEARSLIDES) && (m_nType & MOD_TYPE_IT)) { LONG l = vdelta; if (l < 0) { l = -l; vdelta = _muldiv(period, LinearSlideDownTable[l >> 2], 0x10000) - period; if (l & 0x03) vdelta += _muldiv(period, FineLinearSlideDownTable[l & 0x03], 0x10000) - period; } else { vdelta = _muldiv(period, LinearSlideUpTable[l >> 2], 0x10000) - period; if (l & 0x03) vdelta += _muldiv(period, FineLinearSlideUpTable[l & 0x03], 0x10000) - period; } } period += vdelta; if ((m_nTickCount) || ((m_nType & MOD_TYPE_IT) && (!(m_dwSongFlags & SONG_ITOLDEFFECTS)))) { pChn->nVibratoPos = (vibpos + pChn->nVibratoSpeed) & 0x3F; } } // Panbrello if (pChn->dwFlags & CHN_PANBRELLO) { UINT panpos = ((pChn->nPanbrelloPos+0x10) >> 2) & 0x3F; LONG pdelta; switch (pChn->nPanbrelloType & 0x03) { case 1: pdelta = ModRampDownTable[panpos]; break; case 2: pdelta = ModSquareTable[panpos]; break; case 3: pdelta = ModRandomTable[panpos]; break; default: pdelta = ModSinusTable[panpos]; } pChn->nPanbrelloPos += pChn->nPanbrelloSpeed; pdelta = ((pdelta * (int)pChn->nPanbrelloDepth) + 2) >> 3; pdelta += pChn->nRealPan; if (pdelta < 0) pdelta = 0; if (pdelta > 256) pdelta = 256; pChn->nRealPan = pdelta; } int nPeriodFrac = 0; // Instrument Auto-Vibrato if ((pChn->pInstrument) && (pChn->pInstrument->nVibDepth)) { MODINSTRUMENT *pins = pChn->pInstrument; if (pins->nVibSweep == 0) { pChn->nAutoVibDepth = pins->nVibDepth << 8; } else { if (m_nType & MOD_TYPE_IT) { pChn->nAutoVibDepth += pins->nVibSweep << 3; } else if (!(pChn->dwFlags & CHN_KEYOFF)) { pChn->nAutoVibDepth += (pins->nVibDepth << 8) / pins->nVibSweep; } if ((pChn->nAutoVibDepth >> 8) > pins->nVibDepth) pChn->nAutoVibDepth = pins->nVibDepth << 8; } pChn->nAutoVibPos += pins->nVibRate; int val; switch(pins->nVibType) { case 4: // Random val = ModRandomTable[pChn->nAutoVibPos & 0x3F]; pChn->nAutoVibPos++; break; case 3: // Ramp Down val = ((0x40 - (pChn->nAutoVibPos >> 1)) & 0x7F) - 0x40; break; case 2: // Ramp Up val = ((0x40 + (pChn->nAutoVibPos >> 1)) & 0x7f) - 0x40; break; case 1: // Square val = (pChn->nAutoVibPos & 128) ? +64 : -64; break; default: // Sine val = ft2VibratoTable[pChn->nAutoVibPos & 255]; } int n = ((val * pChn->nAutoVibDepth) >> 8); if (m_nType & MOD_TYPE_IT) { int df1, df2; if (n < 0) { n = -n; UINT n1 = n >> 8; df1 = LinearSlideUpTable[n1]; df2 = LinearSlideUpTable[n1+1]; } else { UINT n1 = n >> 8; df1 = LinearSlideDownTable[n1]; df2 = LinearSlideDownTable[n1+1]; } n >>= 2; period = _muldiv(period, df1 + ((df2-df1)*(n&0x3F)>>6), 256); nPeriodFrac = period & 0xFF; period >>= 8; } else { period += (n >> 6); } } // Final Period if (period <= m_nMinPeriod) { if (m_nType & MOD_TYPE_S3M) pChn->nLength = 0; period = m_nMinPeriod; } if (period > m_nMaxPeriod) { if ((m_nType & MOD_TYPE_IT) || (period >= 0x100000)) { pChn->nFadeOutVol = 0; pChn->dwFlags |= CHN_NOTEFADE; pChn->nRealVolume = 0; } period = m_nMaxPeriod; nPeriodFrac = 0; } UINT freq = GetFreqFromPeriod(period, pChn->nC4Speed, nPeriodFrac); if ((m_nType & MOD_TYPE_IT) && (freq < 256)) { pChn->nFadeOutVol = 0; pChn->dwFlags |= CHN_NOTEFADE; pChn->nRealVolume = 0; } UINT ninc = _muldiv(freq, 0x10000, gdwMixingFreq); if ((ninc >= 0xFFB0) && (ninc <= 0x10090)) ninc = 0x10000; if (m_nFreqFactor != 128) ninc = (ninc * m_nFreqFactor) >> 7; if (ninc > 0xFF0000) ninc = 0xFF0000; pChn->nInc = (ninc+1) & ~3; } // Increment envelope position if (pChn->pHeader) { INSTRUMENTHEADER *penv = pChn->pHeader; // Volume Envelope if (pChn->dwFlags & CHN_VOLENV) { // Increase position pChn->nVolEnvPosition++; // Volume Loop ? if (penv->dwFlags & ENV_VOLLOOP) { UINT volloopend = penv->VolPoints[penv->nVolLoopEnd]; if (m_nType != MOD_TYPE_XM) volloopend++; if (pChn->nVolEnvPosition == volloopend) { pChn->nVolEnvPosition = penv->VolPoints[penv->nVolLoopStart]; if ((penv->nVolLoopEnd == penv->nVolLoopStart) && (!penv->VolEnv[penv->nVolLoopStart]) && ((!(m_nType & MOD_TYPE_XM)) || (penv->nVolLoopEnd+1 == penv->nVolEnv))) { pChn->dwFlags |= CHN_NOTEFADE; pChn->nFadeOutVol = 0; } } } // Volume Sustain ? if ((penv->dwFlags & ENV_VOLSUSTAIN) && (!(pChn->dwFlags & CHN_KEYOFF))) { if (pChn->nVolEnvPosition == (UINT)penv->VolPoints[penv->nVolSustainEnd]+1) pChn->nVolEnvPosition = penv->VolPoints[penv->nVolSustainBegin]; } else // End of Envelope ? if (pChn->nVolEnvPosition > penv->VolPoints[penv->nVolEnv - 1]) { if ((m_nType & MOD_TYPE_IT) || (pChn->dwFlags & CHN_KEYOFF)) pChn->dwFlags |= CHN_NOTEFADE; pChn->nVolEnvPosition = penv->VolPoints[penv->nVolEnv - 1]; if ((!penv->VolEnv[penv->nVolEnv-1]) && ((nChn >= m_nChannels) || (m_nType & MOD_TYPE_IT))) { pChn->dwFlags |= CHN_NOTEFADE; pChn->nFadeOutVol = 0; pChn->nRealVolume = 0; } } } // Panning Envelope if (pChn->dwFlags & CHN_PANENV) { pChn->nPanEnvPosition++; if (penv->dwFlags & ENV_PANLOOP) { UINT panloopend = penv->PanPoints[penv->nPanLoopEnd]; if (m_nType != MOD_TYPE_XM) panloopend++; if (pChn->nPanEnvPosition == panloopend) pChn->nPanEnvPosition = penv->PanPoints[penv->nPanLoopStart]; } // Panning Sustain ? if ((penv->dwFlags & ENV_PANSUSTAIN) && (pChn->nPanEnvPosition == (UINT)penv->PanPoints[penv->nPanSustainEnd]+1) && (!(pChn->dwFlags & CHN_KEYOFF))) { // Panning sustained pChn->nPanEnvPosition = penv->PanPoints[penv->nPanSustainBegin]; } else { if (pChn->nPanEnvPosition > penv->PanPoints[penv->nPanEnv - 1]) pChn->nPanEnvPosition = penv->PanPoints[penv->nPanEnv - 1]; } } // Pitch Envelope if (pChn->dwFlags & CHN_PITCHENV) { // Increase position pChn->nPitchEnvPosition++; // Pitch Loop ? if (penv->dwFlags & ENV_PITCHLOOP) { if (pChn->nPitchEnvPosition >= penv->PitchPoints[penv->nPitchLoopEnd]) pChn->nPitchEnvPosition = penv->PitchPoints[penv->nPitchLoopStart]; } // Pitch Sustain ? if ((penv->dwFlags & ENV_PITCHSUSTAIN) && (!(pChn->dwFlags & CHN_KEYOFF))) { if (pChn->nPitchEnvPosition == (UINT)penv->PitchPoints[penv->nPitchSustainEnd]+1) pChn->nPitchEnvPosition = penv->PitchPoints[penv->nPitchSustainBegin]; } else { if (pChn->nPitchEnvPosition > penv->PitchPoints[penv->nPitchEnv - 1]) pChn->nPitchEnvPosition = penv->PitchPoints[penv->nPitchEnv - 1]; } } } #ifdef MODPLUG_PLAYER // Limit CPU -> > 80% -> don't ramp if ((gnCPUUsage >= 80) && (!pChn->nRealVolume)) { pChn->nLeftVol = pChn->nRightVol = 0; } #endif // MODPLUG_PLAYER // Volume ramping pChn->dwFlags &= ~CHN_VOLUMERAMP; if ((pChn->nRealVolume) || (pChn->nLeftVol) || (pChn->nRightVol)) pChn->dwFlags |= CHN_VOLUMERAMP; #ifdef MODPLUG_PLAYER // Decrease VU-Meter if (pChn->nVUMeter > VUMETER_DECAY) pChn->nVUMeter -= VUMETER_DECAY; else pChn->nVUMeter = 0; #endif // MODPLUG_PLAYER #ifdef ENABLE_STEREOVU if (pChn->nLeftVU > VUMETER_DECAY) pChn->nLeftVU -= VUMETER_DECAY; else pChn->nLeftVU = 0; if (pChn->nRightVU > VUMETER_DECAY) pChn->nRightVU -= VUMETER_DECAY; else pChn->nRightVU = 0; #endif // Check for too big nInc if (((pChn->nInc >> 16) + 1) >= (LONG)(pChn->nLoopEnd - pChn->nLoopStart)) pChn->dwFlags &= ~CHN_LOOP; pChn->nNewRightVol = pChn->nNewLeftVol = 0; pChn->pCurrentSample = ((pChn->pSample) && (pChn->nLength) && (pChn->nInc)) ? pChn->pSample : NULL; if (pChn->pCurrentSample) { // Update VU-Meter (nRealVolume is 14-bit) #ifdef MODPLUG_PLAYER UINT vutmp = pChn->nRealVolume >> (14 - 8); if (vutmp > 0xFF) vutmp = 0xFF; if (pChn->nVUMeter >= 0x100) pChn->nVUMeter = vutmp; vutmp >>= 1; if (pChn->nVUMeter < vutmp) pChn->nVUMeter = vutmp; #endif // MODPLUG_PLAYER #ifdef ENABLE_STEREOVU UINT vul = (pChn->nRealVolume * pChn->nRealPan) >> 14; if (vul > 127) vul = 127; if (pChn->nLeftVU > 127) pChn->nLeftVU = (BYTE)vul; vul >>= 1; if (pChn->nLeftVU < vul) pChn->nLeftVU = (BYTE)vul; UINT vur = (pChn->nRealVolume * (256-pChn->nRealPan)) >> 14; if (vur > 127) vur = 127; if (pChn->nRightVU > 127) pChn->nRightVU = (BYTE)vur; vur >>= 1; if (pChn->nRightVU < vur) pChn->nRightVU = (BYTE)vur; #endif #ifdef MODPLUG_TRACKER UINT kChnMasterVol = (pChn->dwFlags & CHN_EXTRALOUD) ? 0x100 : nMasterVol; #else #define kChnMasterVol nMasterVol #endif // MODPLUG_TRACKER // Adjusting volumes if (gnChannels >= 2) { int pan = ((int)pChn->nRealPan) - 128; pan *= (int)m_nStereoSeparation; pan /= 128; pan += 128; if (pan < 0) pan = 0; if (pan > 256) pan = 256; #ifndef MODPLUG_FASTSOUNDLIB if (gdwSoundSetup & SNDMIX_REVERSESTEREO) pan = 256 - pan; #endif LONG realvol = (pChn->nRealVolume * kChnMasterVol) >> (8-1); if (gdwSoundSetup & SNDMIX_SOFTPANNING) { if (pan < 128) { pChn->nNewLeftVol = (realvol * pan) >> 8; pChn->nNewRightVol = (realvol * 128) >> 8; } else { pChn->nNewLeftVol = (realvol * 128) >> 8; pChn->nNewRightVol = (realvol * (256 - pan)) >> 8; } } else { pChn->nNewLeftVol = (realvol * pan) >> 8; pChn->nNewRightVol = (realvol * (256 - pan)) >> 8; } } else { pChn->nNewRightVol = (pChn->nRealVolume * kChnMasterVol) >> 8; pChn->nNewLeftVol = pChn->nNewRightVol; } // Clipping volumes if (pChn->nNewRightVol > 0xFFFF) pChn->nNewRightVol = 0xFFFF; if (pChn->nNewLeftVol > 0xFFFF) pChn->nNewLeftVol = 0xFFFF; // Check IDO if (gdwSoundSetup & SNDMIX_NORESAMPLING) { pChn->dwFlags |= CHN_NOIDO; } else { pChn->dwFlags &= ~(CHN_NOIDO|CHN_HQSRC); if( pChn->nInc == 0x10000 ) { pChn->dwFlags |= CHN_NOIDO; } else { if( ((gdwSoundSetup & SNDMIX_HQRESAMPLER) == 0) && ((gdwSoundSetup & SNDMIX_ULTRAHQSRCMODE) == 0) ) { if (pChn->nInc >= 0xFF00) pChn->dwFlags |= CHN_NOIDO; } } } pChn->nNewRightVol >>= MIXING_ATTENUATION; pChn->nNewLeftVol >>= MIXING_ATTENUATION; pChn->nRightRamp = pChn->nLeftRamp = 0; // Dolby Pro-Logic Surround if ((pChn->dwFlags & CHN_SURROUND) && (gnChannels <= 2)) pChn->nNewLeftVol = - pChn->nNewLeftVol; // Checking Ping-Pong Loops if (pChn->dwFlags & CHN_PINGPONGFLAG) pChn->nInc = -pChn->nInc; // Setting up volume ramp if ((pChn->dwFlags & CHN_VOLUMERAMP) && ((pChn->nRightVol != pChn->nNewRightVol) || (pChn->nLeftVol != pChn->nNewLeftVol))) { LONG nRampLength = gnVolumeRampSamples; LONG nRightDelta = ((pChn->nNewRightVol - pChn->nRightVol) << VOLUMERAMPPRECISION); LONG nLeftDelta = ((pChn->nNewLeftVol - pChn->nLeftVol) << VOLUMERAMPPRECISION); #ifndef MODPLUG_FASTSOUNDLIB if ((gdwSoundSetup & SNDMIX_DIRECTTODISK) || ((gdwSysInfo & (SYSMIX_ENABLEMMX|SYSMIX_FASTCPU)) && (gdwSoundSetup & SNDMIX_HQRESAMPLER) && (gnCPUUsage <= 20))) { if ((pChn->nRightVol|pChn->nLeftVol) && (pChn->nNewRightVol|pChn->nNewLeftVol) && (!(pChn->dwFlags & CHN_FASTVOLRAMP))) { nRampLength = m_nBufferCount; if (nRampLength > (1 << (VOLUMERAMPPRECISION-1))) nRampLength = (1 << (VOLUMERAMPPRECISION-1)); if (nRampLength < (LONG)gnVolumeRampSamples) nRampLength = gnVolumeRampSamples; } } #endif pChn->nRightRamp = nRightDelta / nRampLength; pChn->nLeftRamp = nLeftDelta / nRampLength; pChn->nRightVol = pChn->nNewRightVol - ((pChn->nRightRamp * nRampLength) >> VOLUMERAMPPRECISION); pChn->nLeftVol = pChn->nNewLeftVol - ((pChn->nLeftRamp * nRampLength) >> VOLUMERAMPPRECISION); if (pChn->nRightRamp|pChn->nLeftRamp) { pChn->nRampLength = nRampLength; } else { pChn->dwFlags &= ~CHN_VOLUMERAMP; pChn->nRightVol = pChn->nNewRightVol; pChn->nLeftVol = pChn->nNewLeftVol; } } else { pChn->dwFlags &= ~CHN_VOLUMERAMP; pChn->nRightVol = pChn->nNewRightVol; pChn->nLeftVol = pChn->nNewLeftVol; } pChn->nRampRightVol = pChn->nRightVol << VOLUMERAMPPRECISION; pChn->nRampLeftVol = pChn->nLeftVol << VOLUMERAMPPRECISION; // Adding the channel in the channel list ChnMix[m_nMixChannels++] = nChn; if (m_nMixChannels >= MAX_CHANNELS) break; } else { #ifdef ENABLE_STEREOVU // Note change but no sample if (pChn->nLeftVU > 128) pChn->nLeftVU = 0; if (pChn->nRightVU > 128) pChn->nRightVU = 0; #endif if (pChn->nVUMeter > 0xFF) pChn->nVUMeter = 0; pChn->nLeftVol = pChn->nRightVol = 0; pChn->nLength = 0; } } // Checking Max Mix Channels reached: ordering by volume if ((m_nMixChannels >= m_nMaxMixChannels) && (!(gdwSoundSetup & SNDMIX_DIRECTTODISK))) { for (UINT i=0; i<m_nMixChannels; i++) { UINT j=i; while ((j+1<m_nMixChannels) && (Chn[ChnMix[j]].nRealVolume < Chn[ChnMix[j+1]].nRealVolume)) { UINT n = ChnMix[j]; ChnMix[j] = ChnMix[j+1]; ChnMix[j+1] = n; j++; } } } if (m_dwSongFlags & SONG_GLOBALFADE) { if (!m_nGlobalFadeSamples) { m_dwSongFlags |= SONG_ENDREACHED; return FALSE; } if (m_nGlobalFadeSamples > m_nBufferCount) m_nGlobalFadeSamples -= m_nBufferCount; else m_nGlobalFadeSamples = 0; } return TRUE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ //#include "stdafx.h" //#include "sndfile.h" #ifdef MODPLUG_FASTSOUNDLIB #define MODPLUG_NO_REVERB #endif // Delayed Surround Filters #ifndef MODPLUG_FASTSOUNDLIB #define nDolbyHiFltAttn 6 #define nDolbyHiFltMask 3 #define DOLBYATTNROUNDUP 31 #else #define nDolbyHiFltAttn 3 #define nDolbyHiFltMask 3 #define DOLBYATTNROUNDUP 3 #endif // Bass Expansion #define XBASS_DELAY 14 // 2.5 ms // Buffer Sizes #define XBASSBUFFERSIZE 64 // 2 ms at 50KHz #define FILTERBUFFERSIZE 64 // 1.25 ms #define SURROUNDBUFFERSIZE ((MAX_SAMPLE_RATE * 50) / 1000) #define REVERBBUFFERSIZE ((MAX_SAMPLE_RATE * 200) / 1000) #define REVERBBUFFERSIZE2 ((REVERBBUFFERSIZE*13) / 17) #define REVERBBUFFERSIZE3 ((REVERBBUFFERSIZE*7) / 13) #define REVERBBUFFERSIZE4 ((REVERBBUFFERSIZE*7) / 19) // DSP Effects: PUBLIC members UINT CSoundFile::m_nXBassDepth = 6; UINT CSoundFile::m_nXBassRange = XBASS_DELAY; UINT CSoundFile::m_nReverbDepth = 1; UINT CSoundFile::m_nReverbDelay = 100; UINT CSoundFile::m_nProLogicDepth = 12; UINT CSoundFile::m_nProLogicDelay = 20; //////////////////////////////////////////////////////////////////// // DSP Effects internal state // Bass Expansion: low-pass filter static LONG nXBassSum = 0; static LONG nXBassBufferPos = 0; static LONG nXBassDlyPos = 0; static LONG nXBassMask = 0; // Noise Reduction: simple low-pass filter static LONG nLeftNR = 0; static LONG nRightNR = 0; // Surround Encoding: 1 delay line + low-pass filter + high-pass filter static LONG nSurroundSize = 0; static LONG nSurroundPos = 0; static LONG nDolbyDepth = 0; static LONG nDolbyLoDlyPos = 0; static LONG nDolbyLoFltPos = 0; static LONG nDolbyLoFltSum = 0; static LONG nDolbyHiFltPos = 0; static LONG nDolbyHiFltSum = 0; // Reverb: 4 delay lines + high-pass filter + low-pass filter #ifndef MODPLUG_NO_REVERB static LONG nReverbSize = 0; static LONG nReverbBufferPos = 0; static LONG nReverbSize2 = 0; static LONG nReverbBufferPos2 = 0; static LONG nReverbSize3 = 0; static LONG nReverbBufferPos3 = 0; static LONG nReverbSize4 = 0; static LONG nReverbBufferPos4 = 0; static LONG nReverbLoFltSum = 0; static LONG nReverbLoFltPos = 0; static LONG nReverbLoDlyPos = 0; static LONG nFilterAttn = 0; static LONG gRvbLowPass[8]; static LONG gRvbLPPos = 0; static LONG gRvbLPSum = 0; static LONG ReverbLoFilterBuffer[XBASSBUFFERSIZE]; static LONG ReverbLoFilterDelay[XBASSBUFFERSIZE]; static LONG ReverbBuffer[REVERBBUFFERSIZE]; static LONG ReverbBuffer2[REVERBBUFFERSIZE2]; static LONG ReverbBuffer3[REVERBBUFFERSIZE3]; static LONG ReverbBuffer4[REVERBBUFFERSIZE4]; #endif static LONG XBassBuffer[XBASSBUFFERSIZE]; static LONG XBassDelay[XBASSBUFFERSIZE]; static LONG DolbyLoFilterBuffer[XBASSBUFFERSIZE]; static LONG DolbyLoFilterDelay[XBASSBUFFERSIZE]; static LONG DolbyHiFilterBuffer[FILTERBUFFERSIZE]; static LONG SurroundBuffer[SURROUNDBUFFERSIZE]; // Access the main temporary mix buffer directly: avoids an extra pointer extern int MixSoundBuffer[MIXBUFFERSIZE*4]; //cextern int MixReverbBuffer[MIXBUFFERSIZE*2]; extern int MixReverbBuffer[MIXBUFFERSIZE*2]; static UINT GetMaskFromSize(UINT len) //----------------------------------- { UINT n = 2; while (n <= len) n <<= 1; return ((n >> 1) - 1); } void CSoundFile::InitializeDSP(BOOL bReset) //----------------------------------------- { if (!m_nReverbDelay) m_nReverbDelay = 100; if (!m_nXBassRange) m_nXBassRange = XBASS_DELAY; if (!m_nProLogicDelay) m_nProLogicDelay = 20; if (m_nXBassDepth > 8) m_nXBassDepth = 8; if (m_nXBassDepth < 2) m_nXBassDepth = 2; if (bReset) { // Noise Reduction nLeftNR = nRightNR = 0; } // Pro-Logic Surround nSurroundPos = nSurroundSize = 0; nDolbyLoFltPos = nDolbyLoFltSum = nDolbyLoDlyPos = 0; nDolbyHiFltPos = nDolbyHiFltSum = 0; if (gdwSoundSetup & SNDMIX_SURROUND) { memset(DolbyLoFilterBuffer, 0, sizeof(DolbyLoFilterBuffer)); memset(DolbyHiFilterBuffer, 0, sizeof(DolbyHiFilterBuffer)); memset(DolbyLoFilterDelay, 0, sizeof(DolbyLoFilterDelay)); memset(SurroundBuffer, 0, sizeof(SurroundBuffer)); nSurroundSize = (gdwMixingFreq * m_nProLogicDelay) / 1000; if (nSurroundSize > SURROUNDBUFFERSIZE) nSurroundSize = SURROUNDBUFFERSIZE; if (m_nProLogicDepth < 8) nDolbyDepth = (32 >> m_nProLogicDepth) + 32; else nDolbyDepth = (m_nProLogicDepth < 16) ? (8 + (m_nProLogicDepth - 8) * 7) : 64; nDolbyDepth >>= 2; } // Reverb Setup #ifndef MODPLUG_NO_REVERB if (gdwSoundSetup & SNDMIX_REVERB) { UINT nrs = (gdwMixingFreq * m_nReverbDelay) / 1000; UINT nfa = m_nReverbDepth+1; if (nrs > REVERBBUFFERSIZE) nrs = REVERBBUFFERSIZE; if ((bReset) || (nrs != (UINT)nReverbSize) || (nfa != (UINT)nFilterAttn)) { nFilterAttn = nfa; nReverbSize = nrs; nReverbBufferPos = nReverbBufferPos2 = nReverbBufferPos3 = nReverbBufferPos4 = 0; nReverbLoFltSum = nReverbLoFltPos = nReverbLoDlyPos = 0; gRvbLPSum = gRvbLPPos = 0; nReverbSize2 = (nReverbSize * 13) / 17; if (nReverbSize2 > REVERBBUFFERSIZE2) nReverbSize2 = REVERBBUFFERSIZE2; nReverbSize3 = (nReverbSize * 7) / 13; if (nReverbSize3 > REVERBBUFFERSIZE3) nReverbSize3 = REVERBBUFFERSIZE3; nReverbSize4 = (nReverbSize * 7) / 19; if (nReverbSize4 > REVERBBUFFERSIZE4) nReverbSize4 = REVERBBUFFERSIZE4; memset(ReverbLoFilterBuffer, 0, sizeof(ReverbLoFilterBuffer)); memset(ReverbLoFilterDelay, 0, sizeof(ReverbLoFilterDelay)); memset(ReverbBuffer, 0, sizeof(ReverbBuffer)); memset(ReverbBuffer2, 0, sizeof(ReverbBuffer2)); memset(ReverbBuffer3, 0, sizeof(ReverbBuffer3)); memset(ReverbBuffer4, 0, sizeof(ReverbBuffer4)); memset(gRvbLowPass, 0, sizeof(gRvbLowPass)); } } else nReverbSize = 0; #endif BOOL bResetBass = FALSE; // Bass Expansion Reset if (gdwSoundSetup & SNDMIX_MEGABASS) { UINT nXBassSamples = (gdwMixingFreq * m_nXBassRange) / 10000; if (nXBassSamples > XBASSBUFFERSIZE) nXBassSamples = XBASSBUFFERSIZE; UINT mask = GetMaskFromSize(nXBassSamples); if ((bReset) || (mask != (UINT)nXBassMask)) { nXBassMask = mask; bResetBass = TRUE; } } else { nXBassMask = 0; bResetBass = TRUE; } if (bResetBass) { nXBassSum = nXBassBufferPos = nXBassDlyPos = 0; memset(XBassBuffer, 0, sizeof(XBassBuffer)); memset(XBassDelay, 0, sizeof(XBassDelay)); } } void CSoundFile::ProcessStereoDSP(int count) //------------------------------------------ { #ifndef MODPLUG_NO_REVERB // Reverb if (gdwSoundSetup & SNDMIX_REVERB) { int *pr = MixSoundBuffer, *pin = MixReverbBuffer, rvbcount = count; do { int echo = ReverbBuffer[nReverbBufferPos] + ReverbBuffer2[nReverbBufferPos2] + ReverbBuffer3[nReverbBufferPos3] + ReverbBuffer4[nReverbBufferPos4]; // echo = reverb signal // Delay line and remove Low Frequencies // v = original signal int echodly = ReverbLoFilterDelay[nReverbLoDlyPos]; // echodly = delayed signal ReverbLoFilterDelay[nReverbLoDlyPos] = echo >> 1; nReverbLoDlyPos++; nReverbLoDlyPos &= 0x1F; int n = nReverbLoFltPos; nReverbLoFltSum -= ReverbLoFilterBuffer[n]; int tmp = echo / 128; ReverbLoFilterBuffer[n] = tmp; nReverbLoFltSum += tmp; echodly -= nReverbLoFltSum; nReverbLoFltPos = (n + 1) & 0x3F; // Reverb int v = (pin[0]+pin[1]) >> nFilterAttn; pr[0] += pin[0] + echodly; pr[1] += pin[1] + echodly; v += echodly >> 2; ReverbBuffer3[nReverbBufferPos3] = v; ReverbBuffer4[nReverbBufferPos4] = v; v += echodly >> 4; v >>= 1; gRvbLPSum -= gRvbLowPass[gRvbLPPos]; gRvbLPSum += v; gRvbLowPass[gRvbLPPos] = v; gRvbLPPos++; gRvbLPPos &= 7; int vlp = gRvbLPSum >> 2; ReverbBuffer[nReverbBufferPos] = vlp; ReverbBuffer2[nReverbBufferPos2] = vlp; if (++nReverbBufferPos >= nReverbSize) nReverbBufferPos = 0; if (++nReverbBufferPos2 >= nReverbSize2) nReverbBufferPos2 = 0; if (++nReverbBufferPos3 >= nReverbSize3) nReverbBufferPos3 = 0; if (++nReverbBufferPos4 >= nReverbSize4) nReverbBufferPos4 = 0; pr += 2; pin += 2; } while (--rvbcount); } #endif // Dolby Pro-Logic Surround if (gdwSoundSetup & SNDMIX_SURROUND) { int *pr = MixSoundBuffer, n = nDolbyLoFltPos; for (int r=count; r; r--) { int v = (pr[0]+pr[1]+DOLBYATTNROUNDUP) >> (nDolbyHiFltAttn+1); #ifndef MODPLUG_FASTSOUNDLIB v *= (int)nDolbyDepth; #endif // Low-Pass Filter nDolbyHiFltSum -= DolbyHiFilterBuffer[nDolbyHiFltPos]; DolbyHiFilterBuffer[nDolbyHiFltPos] = v; nDolbyHiFltSum += v; v = nDolbyHiFltSum; nDolbyHiFltPos++; nDolbyHiFltPos &= nDolbyHiFltMask; // Surround int secho = SurroundBuffer[nSurroundPos]; SurroundBuffer[nSurroundPos] = v; // Delay line and remove low frequencies v = DolbyLoFilterDelay[nDolbyLoDlyPos]; // v = delayed signal DolbyLoFilterDelay[nDolbyLoDlyPos] = secho; // secho = signal nDolbyLoDlyPos++; nDolbyLoDlyPos &= 0x1F; nDolbyLoFltSum -= DolbyLoFilterBuffer[n]; int tmp = secho / 64; DolbyLoFilterBuffer[n] = tmp; nDolbyLoFltSum += tmp; v -= nDolbyLoFltSum; n++; n &= 0x3F; // Add echo pr[0] += v; pr[1] -= v; if (++nSurroundPos >= nSurroundSize) nSurroundPos = 0; pr += 2; } nDolbyLoFltPos = n; } // Bass Expansion if (gdwSoundSetup & SNDMIX_MEGABASS) { int *px = MixSoundBuffer; int xba = m_nXBassDepth+1, xbamask = (1 << xba) - 1; int n = nXBassBufferPos; for (int x=count; x; x--) { nXBassSum -= XBassBuffer[n]; int tmp0 = px[0] + px[1]; int tmp = (tmp0 + ((tmp0 >> 31) & xbamask)) >> xba; XBassBuffer[n] = tmp; nXBassSum += tmp; int v = XBassDelay[nXBassDlyPos]; XBassDelay[nXBassDlyPos] = px[0]; px[0] = v + nXBassSum; v = XBassDelay[nXBassDlyPos+1]; XBassDelay[nXBassDlyPos+1] = px[1]; px[1] = v + nXBassSum; nXBassDlyPos = (nXBassDlyPos + 2) & nXBassMask; px += 2; n++; n &= nXBassMask; } nXBassBufferPos = n; } // Noise Reduction if (gdwSoundSetup & SNDMIX_NOISEREDUCTION) { int n1 = nLeftNR, n2 = nRightNR; int *pnr = MixSoundBuffer; for (int nr=count; nr; nr--) { int vnr = pnr[0] >> 1; pnr[0] = vnr + n1; n1 = vnr; vnr = pnr[1] >> 1; pnr[1] = vnr + n2; n2 = vnr; pnr += 2; } nLeftNR = n1; nRightNR = n2; } } void CSoundFile::ProcessMonoDSP(int count) //---------------------------------------- { #ifndef MODPLUG_NO_REVERB // Reverb if (gdwSoundSetup & SNDMIX_REVERB) { int *pr = MixSoundBuffer, rvbcount = count, *pin = MixReverbBuffer; do { int echo = ReverbBuffer[nReverbBufferPos] + ReverbBuffer2[nReverbBufferPos2] + ReverbBuffer3[nReverbBufferPos3] + ReverbBuffer4[nReverbBufferPos4]; // echo = reverb signal // Delay line and remove Low Frequencies // v = original signal int echodly = ReverbLoFilterDelay[nReverbLoDlyPos]; // echodly = delayed signal ReverbLoFilterDelay[nReverbLoDlyPos] = echo >> 1; nReverbLoDlyPos++; nReverbLoDlyPos &= 0x1F; int n = nReverbLoFltPos; nReverbLoFltSum -= ReverbLoFilterBuffer[n]; int tmp = echo / 128; ReverbLoFilterBuffer[n] = tmp; nReverbLoFltSum += tmp; echodly -= nReverbLoFltSum; nReverbLoFltPos = (n + 1) & 0x3F; // Reverb int v = pin[0] >> (nFilterAttn-1); *pr++ += pin[0] + echodly; pin++; v += echodly >> 2; ReverbBuffer3[nReverbBufferPos3] = v; ReverbBuffer4[nReverbBufferPos4] = v; v += echodly >> 4; v >>= 1; gRvbLPSum -= gRvbLowPass[gRvbLPPos]; gRvbLPSum += v; gRvbLowPass[gRvbLPPos] = v; gRvbLPPos++; gRvbLPPos &= 7; int vlp = gRvbLPSum >> 2; ReverbBuffer[nReverbBufferPos] = vlp; ReverbBuffer2[nReverbBufferPos2] = vlp; if (++nReverbBufferPos >= nReverbSize) nReverbBufferPos = 0; if (++nReverbBufferPos2 >= nReverbSize2) nReverbBufferPos2 = 0; if (++nReverbBufferPos3 >= nReverbSize3) nReverbBufferPos3 = 0; if (++nReverbBufferPos4 >= nReverbSize4) nReverbBufferPos4 = 0; } while (--rvbcount); } #endif // Bass Expansion if (gdwSoundSetup & SNDMIX_MEGABASS) { int *px = MixSoundBuffer; int xba = m_nXBassDepth, xbamask = (1 << xba)-1; int n = nXBassBufferPos; for (int x=count; x; x--) { nXBassSum -= XBassBuffer[n]; int tmp0 = *px; int tmp = (tmp0 + ((tmp0 >> 31) & xbamask)) >> xba; XBassBuffer[n] = tmp; nXBassSum += tmp; int v = XBassDelay[nXBassDlyPos]; XBassDelay[nXBassDlyPos] = *px; *px++ = v + nXBassSum; nXBassDlyPos = (nXBassDlyPos + 2) & nXBassMask; n++; n &= nXBassMask; } nXBassBufferPos = n; } // Noise Reduction if (gdwSoundSetup & SNDMIX_NOISEREDUCTION) { int n = nLeftNR; int *pnr = MixSoundBuffer; for (int nr=count; nr; pnr++, nr--) { int vnr = *pnr >> 1; *pnr = vnr + n; n = vnr; } nLeftNR = n; } } ///////////////////////////////////////////////////////////////// // Clean DSP Effects interface // [Reverb level 0(quiet)-100(loud)], [delay in ms, usually 40-200ms] BOOL CSoundFile::SetReverbParameters(UINT nDepth, UINT nDelay) //------------------------------------------------------------ { if (nDepth > 100) nDepth = 100; UINT gain = nDepth / 20; if (gain > 4) gain = 4; m_nReverbDepth = 4 - gain; if (nDelay < 40) nDelay = 40; if (nDelay > 250) nDelay = 250; m_nReverbDelay = nDelay; return TRUE; } // [XBass level 0(quiet)-100(loud)], [cutoff in Hz 20-100] BOOL CSoundFile::SetXBassParameters(UINT nDepth, UINT nRange) //----------------------------------------------------------- { if (nDepth > 100) nDepth = 100; UINT gain = nDepth / 20; if (gain > 4) gain = 4; m_nXBassDepth = 8 - gain; // filter attenuation 1/256 .. 1/16 UINT range = nRange / 5; if (range > 5) range -= 5; else range = 0; if (nRange > 16) nRange = 16; m_nXBassRange = 21 - range; // filter average on 0.5-1.6ms return TRUE; } // [Surround level 0(quiet)-100(heavy)] [delay in ms, usually 5-50ms] BOOL CSoundFile::SetSurroundParameters(UINT nDepth, UINT nDelay) //-------------------------------------------------------------- { UINT gain = (nDepth * 16) / 100; if (gain > 16) gain = 16; if (gain < 1) gain = 1; m_nProLogicDepth = gain; if (nDelay < 4) nDelay = 4; if (nDelay > 50) nDelay = 50; m_nProLogicDelay = nDelay; return TRUE; } BOOL CSoundFile::SetWaveConfigEx(BOOL bSurround,BOOL bNoOverSampling,BOOL bReverb,BOOL hqido,BOOL bMegaBass,BOOL bNR,BOOL bEQ) //---------------------------------------------------------------------------------------------------------------------------- { DWORD d = gdwSoundSetup & ~(SNDMIX_SURROUND | SNDMIX_NORESAMPLING | SNDMIX_REVERB | SNDMIX_HQRESAMPLER | SNDMIX_MEGABASS | SNDMIX_NOISEREDUCTION | SNDMIX_EQ); if (bSurround) d |= SNDMIX_SURROUND; if (bNoOverSampling) d |= SNDMIX_NORESAMPLING; if (bReverb) d |= SNDMIX_REVERB; if (hqido) d |= SNDMIX_HQRESAMPLER; if (bMegaBass) d |= SNDMIX_MEGABASS; if (bNR) d |= SNDMIX_NOISEREDUCTION; if (bEQ) d |= SNDMIX_EQ; gdwSoundSetup = d; InitPlayer(FALSE); return TRUE; } /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ //#include "stdafx.h" //#include "sndfile.h" // AWE32: cutoff = reg[0-255] * 31.25 + 100 -> [100Hz-8060Hz] // EMU10K1 docs: cutoff = reg[0-127]*62+100 #define FILTER_PRECISION 8192 #ifndef NO_FILTER #if defined(_MSC_VER) && defined(_M_IX86) #define _ASM_MATH #endif #ifdef _ASM_MATH // pow(a,b) returns a^^b -> 2^^(b.log2(a)) static float pow(float a, float b) { long tmpint; float result; _asm { fld b // Load b fld a // Load a fyl2x // ST(0) = b.log2(a) fist tmpint // Store integer exponent fisub tmpint // ST(0) = -1 <= (b*log2(a)) <= 1 f2xm1 // ST(0) = 2^(x)-1 fild tmpint // load integer exponent fld1 // Load 1 fscale // ST(0) = 2^ST(1) fstp ST(1) // Remove the integer from the stack fmul ST(1), ST(0) // multiply with fractional part faddp ST(1), ST(0) // add integer_part fstp result // Store the result } return result; } #else #include <math.h> #endif // _ASM_MATH DWORD CSoundFile::CutOffToFrequency(UINT nCutOff, int flt_modifier) const //----------------------------------------------------------------------- { float Fc; if (m_dwSongFlags & SONG_EXFILTERRANGE) Fc = 110.0f * pow(2.0f, 0.25f + ((float)(nCutOff*(flt_modifier+256)))/(21.0f*512.0f)); else Fc = 110.0f * pow(2.0f, 0.25f + ((float)(nCutOff*(flt_modifier+256)))/(24.0f*512.0f)); LONG freq = (LONG)Fc; if (freq < 120) return 120; if (freq > 10000) return 10000; if (freq*2 > (LONG)gdwMixingFreq) freq = gdwMixingFreq>>1; return (DWORD)freq; } // Simple 2-poles resonant filter void CSoundFile::SetupChannelFilter(MODCHANNEL *pChn, BOOL bReset, int flt_modifier) const //---------------------------------------------------------------------------------------- { float fc = (float)CutOffToFrequency(pChn->nCutOff, flt_modifier); float fs = (float)gdwMixingFreq; float fg, fb0, fb1; fc *= (float)(2.0*3.14159265358/fs); float dmpfac = pow(10.0f, -((24.0f / 128.0f)*(float)pChn->nResonance) / 20.0f); float d = (1.0f-2.0f*dmpfac)* fc; if (d>2.0) d = 2.0; d = (2.0f*dmpfac - d)/fc; float e = pow(1.0f/fc,2.0f); fg=1/(1+d+e); fb0=(d+e+e)/(1+d+e); fb1=-e/(1+d+e); pChn->nFilter_A0 = (int)(fg * FILTER_PRECISION); pChn->nFilter_B0 = (int)(fb0 * FILTER_PRECISION); pChn->nFilter_B1 = (int)(fb1 * FILTER_PRECISION); if (bReset) { pChn->nFilter_Y1 = pChn->nFilter_Y2 = 0; pChn->nFilter_Y3 = pChn->nFilter_Y4 = 0; } pChn->dwFlags |= CHN_FILTER; } #endif // NO_FILTER /* * This source code is public domain. * * Authors: Olivier Lapicque <olivierl@jps.net> */ //#include "stdafx.h" #include <stdlib.h> //#include "sndfile.h" //#include "tables.h" #ifdef _MSC_VER #pragma warning(disable:4244) #endif //////////////////////////////////////////////////////////// // Length DWORD CSoundFile::GetLength(BOOL bAdjust, BOOL bTotal) //---------------------------------------------------- { UINT dwElapsedTime=0, nRow=0, nCurrentPattern=0, nNextPattern=0, nPattern=0; UINT nMusicSpeed=m_nDefaultSpeed, nMusicTempo=m_nDefaultTempo, nNextRow=0; UINT nMaxRow = 0, nMaxPattern = 0, nNextStartRow = 0; LONG nGlbVol = m_nDefaultGlobalVolume, nOldGlbVolSlide = 0; BYTE instr[MAX_CHANNELS]; BYTE notes[MAX_CHANNELS]; BYTE vols[MAX_CHANNELS]; BYTE oldparam[MAX_CHANNELS]; BYTE chnvols[MAX_CHANNELS]; DWORD patloop[MAX_CHANNELS]; memset(instr, 0, sizeof(instr)); memset(notes, 0, sizeof(notes)); memset(vols, 0xFF, sizeof(vols)); memset(patloop, 0, sizeof(patloop)); memset(oldparam, 0, sizeof(oldparam)); memset(chnvols, 64, sizeof(chnvols)); for (UINT icv=0; icv<m_nChannels; icv++) chnvols[icv] = ChnSettings[icv].nVolume; nMaxRow = m_nNextRow; nMaxPattern = m_nNextPattern; for (;;) { UINT nSpeedCount = 0; nRow = nNextRow; nCurrentPattern = nNextPattern; // Check if pattern is valid nPattern = (nCurrentPattern < MAX_ORDERS) ? Order[nCurrentPattern] : 0xFF; while (nPattern >= MAX_PATTERNS) { // End of song ? if ((nPattern == 0xFF) || (nCurrentPattern >= MAX_ORDERS)) { goto EndMod; } else { nCurrentPattern++; nPattern = (nCurrentPattern < MAX_ORDERS) ? Order[nCurrentPattern] : 0xFF; } nNextPattern = nCurrentPattern; } // Weird stuff? if ((nPattern >= MAX_PATTERNS) || (!Patterns[nPattern]) || PatternSize[nPattern] == 0) break; // Should never happen if (nRow >= PatternSize[nPattern]) nRow = 0; // Update next position nNextRow = nRow + 1; if (nNextRow >= PatternSize[nPattern]) { nNextPattern = nCurrentPattern + 1; nNextRow = nNextStartRow; nNextStartRow = 0; } if (!nRow) { for (UINT ipck=0; ipck<m_nChannels; ipck++) patloop[ipck] = dwElapsedTime; } if (!bTotal) { if ((nCurrentPattern > nMaxPattern) || ((nCurrentPattern == nMaxPattern) && (nRow >= nMaxRow))) { if (bAdjust) { m_nMusicSpeed = nMusicSpeed; m_nMusicTempo = nMusicTempo; } break; } } MODCHANNEL *pChn = Chn; MODCOMMAND *p = Patterns[nPattern] + nRow * m_nChannels; for (UINT nChn=0; nChn<m_nChannels; p++,pChn++, nChn++) if (*((DWORD *)p)) { UINT command = p->command; UINT param = p->param; UINT note = p->note; if (p->instr) { instr[nChn] = p->instr; notes[nChn] = 0; vols[nChn] = 0xFF; } if ((note) && (note <= NOTE_MAX)) notes[nChn] = note; if (p->volcmd == VOLCMD_VOLUME) { vols[nChn] = p->vol; } if (command) switch (command) { // Position Jump case CMD_POSITIONJUMP: if (param <= nCurrentPattern) goto EndMod; nNextPattern = param; nNextRow = 0; nNextStartRow = 0; if (bAdjust) { pChn->nPatternLoopCount = 0; pChn->nPatternLoop = 0; } break; // Pattern Break case CMD_PATTERNBREAK: nNextRow = param; nNextPattern = nCurrentPattern + 1; nNextStartRow = 0; if (bAdjust) { pChn->nPatternLoopCount = 0; pChn->nPatternLoop = 0; } break; // Set Speed case CMD_SPEED: if (!param) break; if ((param <= 0x20) || (m_nType != MOD_TYPE_MOD)) { if (param < 128) nMusicSpeed = param; } break; // Set Tempo case CMD_TEMPO: if ((bAdjust) && (m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT))) { if (param) pChn->nOldTempo = param; else param = pChn->nOldTempo; } if (param >= 0x20) nMusicTempo = param; else // Tempo Slide if ((param & 0xF0) == 0x10) { nMusicTempo += param & 0x0F; if (nMusicTempo > 255) nMusicTempo = 255; } else { nMusicTempo -= param & 0x0F; if (nMusicTempo < 32) nMusicTempo = 32; } break; // Pattern Delay case CMD_S3MCMDEX: if ((param & 0xF0) == 0x60) { nSpeedCount = param & 0x0F; break; } else if ((param & 0xF0) == 0xB0) { param &= 0x0F; param |= 0x60; } case CMD_MODCMDEX: if ((param & 0xF0) == 0xE0) nSpeedCount = (param & 0x0F) * nMusicSpeed; else if ((param & 0xF0) == 0x60) { if (param & 0x0F) dwElapsedTime += (dwElapsedTime - patloop[nChn]) * (param & 0x0F); else { patloop[nChn] = dwElapsedTime; if (m_nType & MOD_TYPE_XM) nNextStartRow = nRow; } } break; } if (!bAdjust) continue; switch(command) { // Portamento Up/Down case CMD_PORTAMENTOUP: case CMD_PORTAMENTODOWN: if (param) pChn->nOldPortaUpDown = param; break; // Tone-Portamento case CMD_TONEPORTAMENTO: if (param) pChn->nPortamentoSlide = param << 2; break; // Offset case CMD_OFFSET: if (param) pChn->nOldOffset = param; break; // Volume Slide case CMD_VOLUMESLIDE: case CMD_TONEPORTAVOL: case CMD_VIBRATOVOL: if (param) pChn->nOldVolumeSlide = param; break; // Set Volume case CMD_VOLUME: vols[nChn] = param; break; // Global Volume case CMD_GLOBALVOLUME: if (!(m_nType & (MOD_TYPE_IT))) param <<= 1; if (param > 128) param = 128; nGlbVol = param << 1; break; // Global Volume Slide case CMD_GLOBALVOLSLIDE: if (param) nOldGlbVolSlide = param; else param = nOldGlbVolSlide; if (((param & 0x0F) == 0x0F) && (param & 0xF0)) { param >>= 4; if (m_nType != MOD_TYPE_IT) param <<= 1; nGlbVol += param << 1; } else if (((param & 0xF0) == 0xF0) && (param & 0x0F)) { param = (param & 0x0F) << 1; if (m_nType != MOD_TYPE_IT) param <<= 1; nGlbVol -= param; } else if (param & 0xF0) { param >>= 4; param <<= 1; if (m_nType != MOD_TYPE_IT) param <<= 1; nGlbVol += param * nMusicSpeed; } else { param = (param & 0x0F) << 1; if (m_nType != MOD_TYPE_IT) param <<= 1; nGlbVol -= param * nMusicSpeed; } if (nGlbVol < 0) nGlbVol = 0; if (nGlbVol > 256) nGlbVol = 256; break; case CMD_CHANNELVOLUME: if (param <= 64) chnvols[nChn] = param; break; case CMD_CHANNELVOLSLIDE: if (param) oldparam[nChn] = param; else param = oldparam[nChn]; pChn->nOldChnVolSlide = param; if (((param & 0x0F) == 0x0F) && (param & 0xF0)) { param = (param >> 4) + chnvols[nChn]; } else if (((param & 0xF0) == 0xF0) && (param & 0x0F)) { if (chnvols[nChn] > (int)(param & 0x0F)) param = chnvols[nChn] - (param & 0x0F); else param = 0; } else if (param & 0x0F) { param = (param & 0x0F) * nMusicSpeed; param = (chnvols[nChn] > param) ? chnvols[nChn] - param : 0; } else param = ((param & 0xF0) >> 4) * nMusicSpeed + chnvols[nChn]; if (param > 64) param = 64; chnvols[nChn] = param; break; } } nSpeedCount += nMusicSpeed; dwElapsedTime += (2500 * nSpeedCount) / nMusicTempo; } EndMod: if ((bAdjust) && (!bTotal)) { m_nGlobalVolume = nGlbVol; m_nOldGlbVolSlide = nOldGlbVolSlide; for (UINT n=0; n<m_nChannels; n++) { Chn[n].nGlobalVol = chnvols[n]; if (notes[n]) Chn[n].nNewNote = notes[n]; if (instr[n]) Chn[n].nNewIns = instr[n]; if (vols[n] != 0xFF) { if (vols[n] > 64) vols[n] = 64; Chn[n].nVolume = vols[n] << 2; } } } return (dwElapsedTime+500) / 1000; } ////////////////////////////////////////////////////////////////////////////////////////////////// // Effects void CSoundFile::InstrumentChange(MODCHANNEL *pChn, UINT instr, BOOL bPorta, BOOL bUpdVol, BOOL bResetEnv) //-------------------------------------------------------------------------------------------------------- { BOOL bInstrumentChanged = FALSE; if (instr >= MAX_INSTRUMENTS) return; INSTRUMENTHEADER *penv = Headers[instr]; MODINSTRUMENT *psmp = &Ins[instr]; UINT note = pChn->nNewNote; if ((penv) && (note) && (note <= 128)) { if (penv->NoteMap[note-1] >= 0xFE) return; UINT n = penv->Keyboard[note-1]; psmp = ((n) && (n < MAX_SAMPLES)) ? &Ins[n] : NULL; } else if (m_nInstruments) { if (note >= 0xFE) return; psmp = NULL; } // Update Volume if (bUpdVol) pChn->nVolume = (psmp) ? psmp->nVolume : 0; // bInstrumentChanged is used for IT carry-on env option if (penv != pChn->pHeader) { bInstrumentChanged = TRUE; pChn->pHeader = penv; } else { // Special XM hack if ((bPorta) && (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) && (penv) && (pChn->pInstrument) && (psmp != pChn->pInstrument)) { // FT2 doesn't change the sample in this case, // but still uses the sample info from the old one (bug?) return; } } // Instrument adjust pChn->nNewIns = 0; if (psmp) { if (penv) { pChn->nInsVol = (psmp->nGlobalVol * penv->nGlobalVol) >> 6; if (penv->dwFlags & ENV_SETPANNING) pChn->nPan = penv->nPan; pChn->nNNA = penv->nNNA; } else { pChn->nInsVol = psmp->nGlobalVol; } if (psmp->uFlags & CHN_PANNING) pChn->nPan = psmp->nPan; } // Reset envelopes if (bResetEnv) { if ((!bPorta) || (!(m_nType & MOD_TYPE_IT)) || (m_dwSongFlags & SONG_ITCOMPATMODE) || (!pChn->nLength) || ((pChn->dwFlags & CHN_NOTEFADE) && (!pChn->nFadeOutVol))) { pChn->dwFlags |= CHN_FASTVOLRAMP; if ((m_nType & MOD_TYPE_IT) && (!bInstrumentChanged) && (penv) && (!(pChn->dwFlags & (CHN_KEYOFF|CHN_NOTEFADE)))) { if (!(penv->dwFlags & ENV_VOLCARRY)) pChn->nVolEnvPosition = 0; if (!(penv->dwFlags & ENV_PANCARRY)) pChn->nPanEnvPosition = 0; if (!(penv->dwFlags & ENV_PITCHCARRY)) pChn->nPitchEnvPosition = 0; } else { pChn->nVolEnvPosition = 0; pChn->nPanEnvPosition = 0; pChn->nPitchEnvPosition = 0; } pChn->nAutoVibDepth = 0; pChn->nAutoVibPos = 0; } else if ((penv) && (!(penv->dwFlags & ENV_VOLUME))) { pChn->nVolEnvPosition = 0; pChn->nAutoVibDepth = 0; pChn->nAutoVibPos = 0; } } // Invalid sample ? if (!psmp) { pChn->pInstrument = NULL; pChn->nInsVol = 0; return; } // Tone-Portamento doesn't reset the pingpong direction flag if ((bPorta) && (psmp == pChn->pInstrument)) { if (m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT)) return; pChn->dwFlags &= ~(CHN_KEYOFF|CHN_NOTEFADE); pChn->dwFlags = (pChn->dwFlags & (0xFFFFFF00 | CHN_PINGPONGFLAG)) | (psmp->uFlags); } else { pChn->dwFlags &= ~(CHN_KEYOFF|CHN_NOTEFADE|CHN_VOLENV|CHN_PANENV|CHN_PITCHENV); pChn->dwFlags = (pChn->dwFlags & 0xFFFFFF00) | (psmp->uFlags); if (penv) { if (penv->dwFlags & ENV_VOLUME) pChn->dwFlags |= CHN_VOLENV; if (penv->dwFlags & ENV_PANNING) pChn->dwFlags |= CHN_PANENV; if (penv->dwFlags & ENV_PITCH) pChn->dwFlags |= CHN_PITCHENV; if ((penv->dwFlags & ENV_PITCH) && (penv->dwFlags & ENV_FILTER)) { if (!pChn->nCutOff) pChn->nCutOff = 0x7F; } if (penv->nIFC & 0x80) pChn->nCutOff = penv->nIFC & 0x7F; if (penv->nIFR & 0x80) pChn->nResonance = penv->nIFR & 0x7F; } pChn->nVolSwing = pChn->nPanSwing = 0; } pChn->pInstrument = psmp; pChn->nLength = psmp->nLength; pChn->nLoopStart = psmp->nLoopStart; pChn->nLoopEnd = psmp->nLoopEnd; pChn->nC4Speed = psmp->nC4Speed; pChn->pSample = psmp->pSample; pChn->nTranspose = psmp->RelativeTone; pChn->nFineTune = psmp->nFineTune; if (pChn->dwFlags & CHN_SUSTAINLOOP) { pChn->nLoopStart = psmp->nSustainStart; pChn->nLoopEnd = psmp->nSustainEnd; pChn->dwFlags |= CHN_LOOP; if (pChn->dwFlags & CHN_PINGPONGSUSTAIN) pChn->dwFlags |= CHN_PINGPONGLOOP; } if ((pChn->dwFlags & CHN_LOOP) && (pChn->nLoopEnd < pChn->nLength)) pChn->nLength = pChn->nLoopEnd; } void CSoundFile::NoteChange(UINT nChn, int note, BOOL bPorta, BOOL bResetEnv) //--------------------------------------------------------------------------- { if (note < 1) return; MODCHANNEL * const pChn = &Chn[nChn]; MODINSTRUMENT *pins = pChn->pInstrument; INSTRUMENTHEADER *penv = pChn->pHeader; if ((penv) && (note <= 0x80)) { UINT n = penv->Keyboard[note - 1]; if ((n) && (n < MAX_SAMPLES)) pins = &Ins[n]; note = penv->NoteMap[note-1]; } // Key Off if (note >= 0x80) // 0xFE or invalid note => key off { // Key Off if (note < 0xFD && m_nType == MOD_TYPE_IT) { if (m_nInstruments) pChn->dwFlags |= CHN_NOTEFADE; } else { KeyOff(nChn); } // Note Cut if (note == 0xFE) { pChn->dwFlags |= (CHN_NOTEFADE|CHN_FASTVOLRAMP); if ((!(m_nType & MOD_TYPE_IT)) || (m_nInstruments)) pChn->nVolume = 0; pChn->nFadeOutVol = 0; } return; } if (!pins) return; if ((!bPorta) && (m_nType & (MOD_TYPE_XM|MOD_TYPE_MED|MOD_TYPE_MT2))) { pChn->nTranspose = pins->RelativeTone; pChn->nFineTune = pins->nFineTune; } if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2|MOD_TYPE_MED)) note += pChn->nTranspose; if (note < 1) note = 1; if (note > 132) note = 132; pChn->nNote = note; if ((!bPorta) || (m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT))) pChn->nNewIns = 0; UINT period = GetPeriodFromNote(note, pChn->nFineTune, pChn->nC4Speed); if (period) { if ((!bPorta) || (!pChn->nPeriod)) pChn->nPeriod = period; pChn->nPortamentoDest = period; if ((!bPorta) || ((!pChn->nLength) && (!(m_nType & MOD_TYPE_S3M)))) { pChn->pInstrument = pins; pChn->pSample = pins->pSample; pChn->nLength = pins->nLength; pChn->nLoopEnd = pins->nLength; pChn->nLoopStart = 0; pChn->dwFlags = (pChn->dwFlags & 0xFFFFFF00) | (pins->uFlags); if (pChn->dwFlags & CHN_SUSTAINLOOP) { pChn->nLoopStart = pins->nSustainStart; pChn->nLoopEnd = pins->nSustainEnd; pChn->dwFlags &= ~CHN_PINGPONGLOOP; pChn->dwFlags |= CHN_LOOP; if (pChn->dwFlags & CHN_PINGPONGSUSTAIN) pChn->dwFlags |= CHN_PINGPONGLOOP; if (pChn->nLength > pChn->nLoopEnd) pChn->nLength = pChn->nLoopEnd; } else if (pChn->dwFlags & CHN_LOOP) { pChn->nLoopStart = pins->nLoopStart; pChn->nLoopEnd = pins->nLoopEnd; if (pChn->nLength > pChn->nLoopEnd) pChn->nLength = pChn->nLoopEnd; } pChn->nPos = 0; pChn->nPosLo = 0; if (pChn->nVibratoType < 4) pChn->nVibratoPos = ((m_nType & MOD_TYPE_IT) && (!(m_dwSongFlags & SONG_ITOLDEFFECTS))) ? 0x10 : 0; if (pChn->nTremoloType < 4) pChn->nTremoloPos = 0; } if (pChn->nPos >= pChn->nLength) pChn->nPos = pChn->nLoopStart; } else bPorta = FALSE; if ((!bPorta) || (!(m_nType & MOD_TYPE_IT)) || ((pChn->dwFlags & CHN_NOTEFADE) && (!pChn->nFadeOutVol)) || ((m_dwSongFlags & SONG_ITCOMPATMODE) && (pChn->nRowInstr))) { if ((m_nType & MOD_TYPE_IT) && (pChn->dwFlags & CHN_NOTEFADE) && (!pChn->nFadeOutVol)) { pChn->nVolEnvPosition = 0; pChn->nPanEnvPosition = 0; pChn->nPitchEnvPosition = 0; pChn->nAutoVibDepth = 0; pChn->nAutoVibPos = 0; pChn->dwFlags &= ~CHN_NOTEFADE; pChn->nFadeOutVol = 65536; } if ((!bPorta) || (!(m_dwSongFlags & SONG_ITCOMPATMODE)) || (pChn->nRowInstr)) { if ((!(m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2))) || (pChn->nRowInstr)) { pChn->dwFlags &= ~CHN_NOTEFADE; pChn->nFadeOutVol = 65536; } } } pChn->dwFlags &= ~(CHN_EXTRALOUD|CHN_KEYOFF); // Enable Ramping if (!bPorta) { pChn->nVUMeter = 0x100; pChn->nLeftVU = pChn->nRightVU = 0xFF; pChn->dwFlags &= ~CHN_FILTER; pChn->dwFlags |= CHN_FASTVOLRAMP; pChn->nRetrigCount = 0; pChn->nTremorCount = 0; if (bResetEnv) { pChn->nVolSwing = pChn->nPanSwing = 0; if (penv) { if (!(penv->dwFlags & ENV_VOLCARRY)) pChn->nVolEnvPosition = 0; if (!(penv->dwFlags & ENV_PANCARRY)) pChn->nPanEnvPosition = 0; if (!(penv->dwFlags & ENV_PITCHCARRY)) pChn->nPitchEnvPosition = 0; if (m_nType & MOD_TYPE_IT) { // Volume Swing if (penv->nVolSwing) { int d = ((LONG)penv->nVolSwing*(LONG)((rand() & 0xFF) - 0x7F)) / 128; pChn->nVolSwing = (signed short)((d * pChn->nVolume + 1)/128); } // Pan Swing if (penv->nPanSwing) { int d = ((LONG)penv->nPanSwing*(LONG)((rand() & 0xFF) - 0x7F)) / 128; pChn->nPanSwing = (signed short)d; } } } pChn->nAutoVibDepth = 0; pChn->nAutoVibPos = 0; } pChn->nLeftVol = pChn->nRightVol = 0; BOOL bFlt = (m_dwSongFlags & SONG_MPTFILTERMODE) ? FALSE : TRUE; // Setup Initial Filter for this note if (penv) { if (penv->nIFR & 0x80) { pChn->nResonance = penv->nIFR & 0x7F; bFlt = TRUE; } if (penv->nIFC & 0x80) { pChn->nCutOff = penv->nIFC & 0x7F; bFlt = TRUE; } } else { pChn->nVolSwing = pChn->nPanSwing = 0; } #ifndef NO_FILTER if ((pChn->nCutOff < 0x7F) && (bFlt)) SetupChannelFilter(pChn, TRUE); #endif // NO_FILTER } } UINT CSoundFile::GetNNAChannel(UINT nChn) const //--------------------------------------------- { const MODCHANNEL *pChn = &Chn[nChn]; // Check for empty channel const MODCHANNEL *pi = &Chn[m_nChannels]; for (UINT i=m_nChannels; i<MAX_CHANNELS; i++, pi++) if (!pi->nLength) return i; if (!pChn->nFadeOutVol) return 0; // All channels are used: check for lowest volume UINT result = 0; DWORD vol = 64*65536; // 25% DWORD envpos = 0xFFFFFF; const MODCHANNEL *pj = &Chn[m_nChannels]; for (UINT j=m_nChannels; j<MAX_CHANNELS; j++, pj++) { if (!pj->nFadeOutVol) return j; DWORD v = pj->nVolume; if (pj->dwFlags & CHN_NOTEFADE) v = v * pj->nFadeOutVol; else v <<= 16; if (pj->dwFlags & CHN_LOOP) v >>= 1; if ((v < vol) || ((v == vol) && (pj->nVolEnvPosition > envpos))) { envpos = pj->nVolEnvPosition; vol = v; result = j; } } return result; } void CSoundFile::CheckNNA(UINT nChn, UINT instr, int note, BOOL bForceCut) //------------------------------------------------------------------------ { MODCHANNEL *pChn = &Chn[nChn]; INSTRUMENTHEADER *penv = pChn->pHeader, *pHeader = 0; signed char *pSample; if (note > 0x80) note = 0; if (note < 1) return; // Always NNA cut - using if ((!(m_nType & (MOD_TYPE_IT|MOD_TYPE_MT2))) || (!m_nInstruments) || (bForceCut)) { if ((m_dwSongFlags & SONG_CPUVERYHIGH) || (!pChn->nLength) || (pChn->dwFlags & CHN_MUTE) || ((!pChn->nLeftVol) && (!pChn->nRightVol))) return; UINT n = GetNNAChannel(nChn); if (!n) return; MODCHANNEL *p = &Chn[n]; // Copy Channel *p = *pChn; p->dwFlags &= ~(CHN_VIBRATO|CHN_TREMOLO|CHN_PANBRELLO|CHN_MUTE|CHN_PORTAMENTO); p->nMasterChn = nChn+1; p->nCommand = 0; // Cut the note p->nFadeOutVol = 0; p->dwFlags |= (CHN_NOTEFADE|CHN_FASTVOLRAMP); // Stop this channel pChn->nLength = pChn->nPos = pChn->nPosLo = 0; pChn->nROfs = pChn->nLOfs = 0; pChn->nLeftVol = pChn->nRightVol = 0; return; } if (instr >= MAX_INSTRUMENTS) instr = 0; pSample = pChn->pSample; pHeader = pChn->pHeader; if ((instr) && (note)) { pHeader = Headers[instr]; if (pHeader) { UINT n = 0; if (note <= 0x80) { n = pHeader->Keyboard[note-1]; note = pHeader->NoteMap[note-1]; if ((n) && (n < MAX_SAMPLES)) pSample = Ins[n].pSample; } } else pSample = NULL; } if (!penv) return; MODCHANNEL *p = pChn; for (UINT i=nChn; i<MAX_CHANNELS; p++, i++) if ((i >= m_nChannels) || (p == pChn)) { if (((p->nMasterChn == nChn+1) || (p == pChn)) && (p->pHeader)) { BOOL bOk = FALSE; // Duplicate Check Type switch(p->pHeader->nDCT) { // Note case DCT_NOTE: if ((note) && (p->nNote == note) && (pHeader == p->pHeader)) bOk = TRUE; break; // Sample case DCT_SAMPLE: if ((pSample) && (pSample == p->pSample)) bOk = TRUE; break; // Instrument case DCT_INSTRUMENT: if (pHeader == p->pHeader) bOk = TRUE; break; } // Duplicate Note Action if (bOk) { switch(p->pHeader->nDNA) { // Cut case DNA_NOTECUT: KeyOff(i); p->nVolume = 0; break; // Note Off case DNA_NOTEOFF: KeyOff(i); break; // Note Fade case DNA_NOTEFADE: p->dwFlags |= CHN_NOTEFADE; break; } if (!p->nVolume) { p->nFadeOutVol = 0; p->dwFlags |= (CHN_NOTEFADE|CHN_FASTVOLRAMP); } } } } if (pChn->dwFlags & CHN_MUTE) return; // New Note Action if ((pChn->nVolume) && (pChn->nLength)) { UINT n = GetNNAChannel(nChn); if (n) { p = &Chn[n]; // Copy Channel *p = *pChn; p->dwFlags &= ~(CHN_VIBRATO|CHN_TREMOLO|CHN_PANBRELLO|CHN_MUTE|CHN_PORTAMENTO); p->nMasterChn = nChn+1; p->nCommand = 0; // Key Off the note switch(pChn->nNNA) { case NNA_NOTEOFF: KeyOff(n); break; case NNA_NOTECUT: p->nFadeOutVol = 0; case NNA_NOTEFADE: p->dwFlags |= CHN_NOTEFADE; break; } if (!p->nVolume) { p->nFadeOutVol = 0; p->dwFlags |= (CHN_NOTEFADE|CHN_FASTVOLRAMP); } // Stop this channel pChn->nLength = pChn->nPos = pChn->nPosLo = 0; pChn->nROfs = pChn->nLOfs = 0; } } } BOOL CSoundFile::ProcessEffects() //------------------------------- { MODCHANNEL *pChn = Chn; int nBreakRow = -1, nPosJump = -1, nPatLoopRow = -1; for (UINT nChn=0; nChn<m_nChannels; nChn++, pChn++) { UINT instr = pChn->nRowInstr; UINT volcmd = pChn->nRowVolCmd; UINT vol = pChn->nRowVolume; UINT cmd = pChn->nRowCommand; UINT param = pChn->nRowParam; bool bPorta = ((cmd != CMD_TONEPORTAMENTO) && (cmd != CMD_TONEPORTAVOL) && (volcmd != VOLCMD_TONEPORTAMENTO)) ? FALSE : TRUE; UINT nStartTick = 0; pChn->dwFlags &= ~CHN_FASTVOLRAMP; // Process special effects (note delay, pattern delay, pattern loop) if ((cmd == CMD_MODCMDEX) || (cmd == CMD_S3MCMDEX)) { if ((!param) && (m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT))) param = pChn->nOldCmdEx; else pChn->nOldCmdEx = param; // Note Delay ? if ((param & 0xF0) == 0xD0) { nStartTick = param & 0x0F; } else if (!m_nTickCount) { // Pattern Loop ? if ((((param & 0xF0) == 0x60) && (cmd == CMD_MODCMDEX)) || (((param & 0xF0) == 0xB0) && (cmd == CMD_S3MCMDEX))) { int nloop = PatternLoop(pChn, param & 0x0F); if (nloop >= 0) nPatLoopRow = nloop; } else // Pattern Delay if ((param & 0xF0) == 0xE0) { m_nPatternDelay = param & 0x0F; } } } // Handles note/instrument/volume changes if (m_nTickCount == nStartTick) // can be delayed by a note delay effect { UINT note = pChn->nRowNote; if (instr) pChn->nNewIns = instr; // XM: Key-Off + Sample == Note Cut if (m_nType & (MOD_TYPE_MOD|MOD_TYPE_XM|MOD_TYPE_MT2)) { if ((note == 0xFF) && ((!pChn->pHeader) || (!(pChn->pHeader->dwFlags & ENV_VOLUME)))) { pChn->dwFlags |= CHN_FASTVOLRAMP; pChn->nVolume = 0; note = instr = 0; } } if ((!note) && (instr)) { if (m_nInstruments) { if (pChn->pInstrument) pChn->nVolume = pChn->pInstrument->nVolume; if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) { pChn->dwFlags |= CHN_FASTVOLRAMP; pChn->nVolEnvPosition = 0; pChn->nPanEnvPosition = 0; pChn->nPitchEnvPosition = 0; pChn->nAutoVibDepth = 0; pChn->nAutoVibPos = 0; pChn->dwFlags &= ~CHN_NOTEFADE; pChn->nFadeOutVol = 65536; } } else { if (instr < MAX_SAMPLES) pChn->nVolume = Ins[instr].nVolume; } if (!(m_nType & MOD_TYPE_IT)) instr = 0; } // Invalid Instrument ? if (instr >= MAX_INSTRUMENTS) instr = 0; // Note Cut/Off => ignore instrument if (note >= 0xFE) instr = 0; if ((note) && (note <= 128)) pChn->nNewNote = note; // New Note Action ? if ((note) && (note <= 128) && (!bPorta)) { CheckNNA(nChn, instr, note, FALSE); } // Instrument Change ? if (instr) { MODINSTRUMENT *psmp = pChn->pInstrument; InstrumentChange(pChn, instr, bPorta, TRUE); pChn->nNewIns = 0; // Special IT case: portamento+note causes sample change -> ignore portamento if ((m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT)) && (psmp != pChn->pInstrument) && (note) && (note < 0x80)) { bPorta = FALSE; } } // New Note ? if (note) { if ((!instr) && (pChn->nNewIns) && (note < 0x80)) { InstrumentChange(pChn, pChn->nNewIns, bPorta, FALSE, (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) ? FALSE : TRUE); pChn->nNewIns = 0; } NoteChange(nChn, note, bPorta, (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) ? FALSE : TRUE); if ((bPorta) && (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) && (instr)) { pChn->dwFlags |= CHN_FASTVOLRAMP; pChn->nVolEnvPosition = 0; pChn->nPanEnvPosition = 0; pChn->nPitchEnvPosition = 0; pChn->nAutoVibDepth = 0; pChn->nAutoVibPos = 0; } } // Tick-0 only volume commands if (volcmd == VOLCMD_VOLUME) { if (vol > 64) vol = 64; pChn->nVolume = vol << 2; pChn->dwFlags |= CHN_FASTVOLRAMP; } else if (volcmd == VOLCMD_PANNING) { if (vol > 64) vol = 64; pChn->nPan = vol << 2; pChn->dwFlags |= CHN_FASTVOLRAMP; } } // Volume Column Effect (except volume & panning) if ((volcmd > VOLCMD_PANNING) && (m_nTickCount >= nStartTick)) { if (volcmd == VOLCMD_TONEPORTAMENTO) { if (m_nType & MOD_TYPE_IT) TonePortamento(pChn, ImpulseTrackerPortaVolCmd[vol & 0x0F]); else TonePortamento(pChn, vol * 16); } else { if (vol) pChn->nOldVolParam = vol; else vol = pChn->nOldVolParam; switch(volcmd) { case VOLCMD_VOLSLIDEUP: VolumeSlide(pChn, vol << 4); break; case VOLCMD_VOLSLIDEDOWN: VolumeSlide(pChn, vol); break; case VOLCMD_FINEVOLUP: if (m_nType & MOD_TYPE_IT) { if (m_nTickCount == nStartTick) VolumeSlide(pChn, (vol << 4) | 0x0F); } else FineVolumeUp(pChn, vol); break; case VOLCMD_FINEVOLDOWN: if (m_nType & MOD_TYPE_IT) { if (m_nTickCount == nStartTick) VolumeSlide(pChn, 0xF0 | vol); } else FineVolumeDown(pChn, vol); break; case VOLCMD_VIBRATOSPEED: Vibrato(pChn, vol << 4); break; case VOLCMD_VIBRATO: Vibrato(pChn, vol); break; case VOLCMD_PANSLIDELEFT: PanningSlide(pChn, vol); break; case VOLCMD_PANSLIDERIGHT: PanningSlide(pChn, vol << 4); break; case VOLCMD_PORTAUP: PortamentoUp(pChn, vol << 2); break; case VOLCMD_PORTADOWN: PortamentoDown(pChn, vol << 2); break; } } } // Effects if (cmd) switch (cmd) { // Set Volume case CMD_VOLUME: if (!m_nTickCount) { pChn->nVolume = (param < 64) ? param*4 : 256; pChn->dwFlags |= CHN_FASTVOLRAMP; } break; // Portamento Up case CMD_PORTAMENTOUP: if ((!param) && (m_nType & MOD_TYPE_MOD)) break; PortamentoUp(pChn, param); break; // Portamento Down case CMD_PORTAMENTODOWN: if ((!param) && (m_nType & MOD_TYPE_MOD)) break; PortamentoDown(pChn, param); break; // Volume Slide case CMD_VOLUMESLIDE: if ((param) || (m_nType != MOD_TYPE_MOD)) VolumeSlide(pChn, param); break; // Tone-Portamento case CMD_TONEPORTAMENTO: TonePortamento(pChn, param); break; // Tone-Portamento + Volume Slide case CMD_TONEPORTAVOL: if ((param) || (m_nType != MOD_TYPE_MOD)) VolumeSlide(pChn, param); TonePortamento(pChn, 0); break; // Vibrato case CMD_VIBRATO: Vibrato(pChn, param); break; // Vibrato + Volume Slide case CMD_VIBRATOVOL: if ((param) || (m_nType != MOD_TYPE_MOD)) VolumeSlide(pChn, param); Vibrato(pChn, 0); break; // Set Speed case CMD_SPEED: if (!m_nTickCount) SetSpeed(param); break; // Set Tempo case CMD_TEMPO: if (!m_nTickCount) { if (m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT)) { if (param) pChn->nOldTempo = param; else param = pChn->nOldTempo; } SetTempo(param); } break; // Set Offset case CMD_OFFSET: if (m_nTickCount) break; if (param) pChn->nOldOffset = param; else param = pChn->nOldOffset; param <<= 8; param |= (UINT)(pChn->nOldHiOffset) << 16; if ((pChn->nRowNote) && (pChn->nRowNote < 0x80)) { if (bPorta) pChn->nPos = param; else pChn->nPos += param; if (pChn->nPos >= pChn->nLength) { if (!(m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2))) { pChn->nPos = pChn->nLoopStart; if ((m_dwSongFlags & SONG_ITOLDEFFECTS) && (pChn->nLength > 4)) { pChn->nPos = pChn->nLength - 2; } } } } else if ((param < pChn->nLength) && (m_nType & (MOD_TYPE_MTM|MOD_TYPE_DMF))) { pChn->nPos = param; } break; // Arpeggio case CMD_ARPEGGIO: if ((m_nTickCount) || (!pChn->nPeriod) || (!pChn->nNote)) break; if ((!param) && (!(m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT)))) break; pChn->nCommand = CMD_ARPEGGIO; if (param) pChn->nArpeggio = param; break; // Retrig case CMD_RETRIG: if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) { if (!(param & 0xF0)) param |= pChn->nRetrigParam & 0xF0; if (!(param & 0x0F)) param |= pChn->nRetrigParam & 0x0F; param |= 0x100; // increment retrig count on first row } if (param) pChn->nRetrigParam = (BYTE)(param & 0xFF); else param = pChn->nRetrigParam; RetrigNote(nChn, param); break; // Tremor case CMD_TREMOR: if (m_nTickCount) break; pChn->nCommand = CMD_TREMOR; if (param) pChn->nTremorParam = param; break; // Set Global Volume case CMD_GLOBALVOLUME: if (m_nTickCount) break; if (m_nType != MOD_TYPE_IT) param <<= 1; if (param > 128) param = 128; m_nGlobalVolume = param << 1; break; // Global Volume Slide case CMD_GLOBALVOLSLIDE: GlobalVolSlide(param); break; // Set 8-bit Panning case CMD_PANNING8: if (m_nTickCount) break; if (!(m_dwSongFlags & SONG_SURROUNDPAN)) pChn->dwFlags &= ~CHN_SURROUND; if (m_nType & (MOD_TYPE_IT|MOD_TYPE_XM|MOD_TYPE_MT2)) { pChn->nPan = param; } else if (param <= 0x80) { pChn->nPan = param << 1; } else if (param == 0xA4) { pChn->dwFlags |= CHN_SURROUND; pChn->nPan = 0x80; } pChn->dwFlags |= CHN_FASTVOLRAMP; break; // Panning Slide case CMD_PANNINGSLIDE: PanningSlide(pChn, param); break; // Tremolo case CMD_TREMOLO: Tremolo(pChn, param); break; // Fine Vibrato case CMD_FINEVIBRATO: FineVibrato(pChn, param); break; // MOD/XM Exx Extended Commands case CMD_MODCMDEX: ExtendedMODCommands(nChn, param); break; // S3M/IT Sxx Extended Commands case CMD_S3MCMDEX: ExtendedS3MCommands(nChn, param); break; // Key Off case CMD_KEYOFF: if (!m_nTickCount) KeyOff(nChn); break; // Extra-fine porta up/down case CMD_XFINEPORTAUPDOWN: switch(param & 0xF0) { case 0x10: ExtraFinePortamentoUp(pChn, param & 0x0F); break; case 0x20: ExtraFinePortamentoDown(pChn, param & 0x0F); break; // Modplug XM Extensions case 0x50: case 0x60: case 0x70: case 0x90: case 0xA0: ExtendedS3MCommands(nChn, param); break; } break; // Set Channel Global Volume case CMD_CHANNELVOLUME: if (m_nTickCount) break; if (param <= 64) { pChn->nGlobalVol = param; pChn->dwFlags |= CHN_FASTVOLRAMP; } break; // Channel volume slide case CMD_CHANNELVOLSLIDE: ChannelVolSlide(pChn, param); break; // Panbrello (IT) case CMD_PANBRELLO: Panbrello(pChn, param); break; // Set Envelope Position case CMD_SETENVPOSITION: if (!m_nTickCount) { pChn->nVolEnvPosition = param; pChn->nPanEnvPosition = param; pChn->nPitchEnvPosition = param; if (pChn->pHeader) { INSTRUMENTHEADER *penv = pChn->pHeader; if ((pChn->dwFlags & CHN_PANENV) && (penv->nPanEnv) && (param > penv->PanPoints[penv->nPanEnv-1])) { pChn->dwFlags &= ~CHN_PANENV; } } } break; // Position Jump case CMD_POSITIONJUMP: nPosJump = param; m_nNextStartRow = 0; break; // Pattern Break case CMD_PATTERNBREAK: nBreakRow = param; m_nNextStartRow = 0; break; // Midi Controller case CMD_MIDI: if (m_nTickCount) break; if (param < 0x80){ ProcessMidiMacro(nChn, &m_MidiCfg.szMidiSFXExt[pChn->nActiveMacro << 5], param); } else { ProcessMidiMacro(nChn, &m_MidiCfg.szMidiZXXExt[(param & 0x7F) << 5], 0); } break; } } // Navigation Effects if (!m_nTickCount) { // Pattern Loop if (nPatLoopRow >= 0) { m_nNextPattern = m_nCurrentPattern; m_nNextRow = nPatLoopRow; if (m_nPatternDelay) m_nNextRow++; } else // Pattern Break / Position Jump only if no loop running if ((nBreakRow >= 0) || (nPosJump >= 0)) { BOOL bNoLoop = FALSE; if (nPosJump < 0) nPosJump = m_nCurrentPattern+1; if (nBreakRow < 0) nBreakRow = 0; // Modplug Tracker & ModPlugin allow backward jumps #ifndef MODPLUG_FASTSOUNDLIB if ((nPosJump < (int)m_nCurrentPattern) || ((nPosJump == (int)m_nCurrentPattern) && (nBreakRow <= (int)m_nRow))) { if (!IsValidBackwardJump(m_nCurrentPattern, m_nRow, nPosJump, nBreakRow)) { if (m_nRepeatCount) { if (m_nRepeatCount > 0) m_nRepeatCount--; } else { #ifdef MODPLUG_TRACKER if (gdwSoundSetup & SNDMIX_NOBACKWARDJUMPS) #endif // Backward jump disabled bNoLoop = TRUE; //reset repeat count incase there are multiple loops. //(i.e. Unreal tracks) m_nRepeatCount = m_nInitialRepeatCount; } } } #endif // MODPLUG_FASTSOUNDLIB if (((!bNoLoop) && (nPosJump < MAX_ORDERS)) && ((nPosJump != (int)m_nCurrentPattern) || (nBreakRow != (int)m_nRow))) { if (nPosJump != (int)m_nCurrentPattern) { for (UINT i=0; i<m_nChannels; i++) Chn[i].nPatternLoopCount = 0; } m_nNextPattern = nPosJump; m_nNextRow = (UINT)nBreakRow; } } } return TRUE; } //////////////////////////////////////////////////////////// // Channels effects void CSoundFile::PortamentoUp(MODCHANNEL *pChn, UINT param) //--------------------------------------------------------- { if (param) pChn->nOldPortaUpDown = param; else param = pChn->nOldPortaUpDown; if ((m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT|MOD_TYPE_STM)) && ((param & 0xF0) >= 0xE0)) { if (param & 0x0F) { if ((param & 0xF0) == 0xF0) { FinePortamentoUp(pChn, param & 0x0F); } else if ((param & 0xF0) == 0xE0) { ExtraFinePortamentoUp(pChn, param & 0x0F); } } return; } // Regular Slide if (!(m_dwSongFlags & SONG_FIRSTTICK) || (m_nMusicSpeed == 1)) //rewbs.PortaA01fix { DoFreqSlide(pChn, -(int)(param * 4)); } } void CSoundFile::PortamentoDown(MODCHANNEL *pChn, UINT param) //----------------------------------------------------------- { if (param) pChn->nOldPortaUpDown = param; else param = pChn->nOldPortaUpDown; if ((m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT|MOD_TYPE_STM)) && ((param & 0xF0) >= 0xE0)) { if (param & 0x0F) { if ((param & 0xF0) == 0xF0) { FinePortamentoDown(pChn, param & 0x0F); } else if ((param & 0xF0) == 0xE0) { ExtraFinePortamentoDown(pChn, param & 0x0F); } } return; } if (!(m_dwSongFlags & SONG_FIRSTTICK) || (m_nMusicSpeed == 1)) { //rewbs.PortaA01fix DoFreqSlide(pChn, (int)(param << 2)); } } void CSoundFile::FinePortamentoUp(MODCHANNEL *pChn, UINT param) //------------------------------------------------------------- { if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) { if (param) pChn->nOldFinePortaUpDown = param; else param = pChn->nOldFinePortaUpDown; } if (m_dwSongFlags & SONG_FIRSTTICK) { if ((pChn->nPeriod) && (param)) { if ((m_dwSongFlags & SONG_LINEARSLIDES) && (!(m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)))) { pChn->nPeriod = _muldivr(pChn->nPeriod, LinearSlideDownTable[param & 0x0F], 65536); } else { pChn->nPeriod -= (int)(param * 4); } if (pChn->nPeriod < 1) pChn->nPeriod = 1; } } } void CSoundFile::FinePortamentoDown(MODCHANNEL *pChn, UINT param) //--------------------------------------------------------------- { if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) { if (param) pChn->nOldFinePortaUpDown = param; else param = pChn->nOldFinePortaUpDown; } if (m_dwSongFlags & SONG_FIRSTTICK) { if ((pChn->nPeriod) && (param)) { if ((m_dwSongFlags & SONG_LINEARSLIDES) && (!(m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)))) { pChn->nPeriod = _muldivr(pChn->nPeriod, LinearSlideUpTable[param & 0x0F], 65536); } else { pChn->nPeriod += (int)(param * 4); } if (pChn->nPeriod > 0xFFFF) pChn->nPeriod = 0xFFFF; } } } void CSoundFile::ExtraFinePortamentoUp(MODCHANNEL *pChn, UINT param) //------------------------------------------------------------------ { if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) { if (param) pChn->nOldFinePortaUpDown = param; else param = pChn->nOldFinePortaUpDown; } if (m_dwSongFlags & SONG_FIRSTTICK) { if ((pChn->nPeriod) && (param)) { if ((m_dwSongFlags & SONG_LINEARSLIDES) && (!(m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)))) { pChn->nPeriod = _muldivr(pChn->nPeriod, FineLinearSlideDownTable[param & 0x0F], 65536); } else { pChn->nPeriod -= (int)(param); } if (pChn->nPeriod < 1) pChn->nPeriod = 1; } } } void CSoundFile::ExtraFinePortamentoDown(MODCHANNEL *pChn, UINT param) //-------------------------------------------------------------------- { if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) { if (param) pChn->nOldFinePortaUpDown = param; else param = pChn->nOldFinePortaUpDown; } if (m_dwSongFlags & SONG_FIRSTTICK) { if ((pChn->nPeriod) && (param)) { if ((m_dwSongFlags & SONG_LINEARSLIDES) && (!(m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)))) { pChn->nPeriod = _muldivr(pChn->nPeriod, FineLinearSlideUpTable[param & 0x0F], 65536); } else { pChn->nPeriod += (int)(param); } if (pChn->nPeriod > 0xFFFF) pChn->nPeriod = 0xFFFF; } } } // Portamento Slide void CSoundFile::TonePortamento(MODCHANNEL *pChn, UINT param) //----------------------------------------------------------- { if (param) pChn->nPortamentoSlide = param * 4; pChn->dwFlags |= CHN_PORTAMENTO; if ((pChn->nPeriod) && (pChn->nPortamentoDest) && (!(m_dwSongFlags & SONG_FIRSTTICK))) { if (pChn->nPeriod < pChn->nPortamentoDest) { LONG delta = (int)pChn->nPortamentoSlide; if ((m_dwSongFlags & SONG_LINEARSLIDES) && (!(m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)))) { UINT n = pChn->nPortamentoSlide >> 2; if (n > 255) n = 255; delta = _muldivr(pChn->nPeriod, LinearSlideUpTable[n], 65536) - pChn->nPeriod; if (delta < 1) delta = 1; } pChn->nPeriod += delta; if (pChn->nPeriod > pChn->nPortamentoDest) pChn->nPeriod = pChn->nPortamentoDest; } else if (pChn->nPeriod > pChn->nPortamentoDest) { LONG delta = - (int)pChn->nPortamentoSlide; if ((m_dwSongFlags & SONG_LINEARSLIDES) && (!(m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)))) { UINT n = pChn->nPortamentoSlide >> 2; if (n > 255) n = 255; delta = _muldivr(pChn->nPeriod, LinearSlideDownTable[n], 65536) - pChn->nPeriod; if (delta > -1) delta = -1; } pChn->nPeriod += delta; if (pChn->nPeriod < pChn->nPortamentoDest) pChn->nPeriod = pChn->nPortamentoDest; } } } void CSoundFile::Vibrato(MODCHANNEL *p, UINT param) //------------------------------------------------- { if (param & 0x0F) p->nVibratoDepth = (param & 0x0F) * 4; if (param & 0xF0) p->nVibratoSpeed = (param >> 4) & 0x0F; p->dwFlags |= CHN_VIBRATO; } void CSoundFile::FineVibrato(MODCHANNEL *p, UINT param) //----------------------------------------------------- { if (param & 0x0F) p->nVibratoDepth = param & 0x0F; if (param & 0xF0) p->nVibratoSpeed = (param >> 4) & 0x0F; p->dwFlags |= CHN_VIBRATO; } void CSoundFile::Panbrello(MODCHANNEL *p, UINT param) //--------------------------------------------------- { if (param & 0x0F) p->nPanbrelloDepth = param & 0x0F; if (param & 0xF0) p->nPanbrelloSpeed = (param >> 4) & 0x0F; p->dwFlags |= CHN_PANBRELLO; } void CSoundFile::VolumeSlide(MODCHANNEL *pChn, UINT param) //-------------------------------------------------------- { if (param) pChn->nOldVolumeSlide = param; else param = pChn->nOldVolumeSlide; LONG newvolume = pChn->nVolume; if (m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT|MOD_TYPE_STM|MOD_TYPE_AMF)) { if ((param & 0x0F) == 0x0F) { if (param & 0xF0) { FineVolumeUp(pChn, (param >> 4)); return; } else { if ((m_dwSongFlags & SONG_FIRSTTICK) && (!(m_dwSongFlags & SONG_FASTVOLSLIDES))) { newvolume -= 0x0F * 4; } } } else if ((param & 0xF0) == 0xF0) { if (param & 0x0F) { FineVolumeDown(pChn, (param & 0x0F)); return; } else { if ((m_dwSongFlags & SONG_FIRSTTICK) && (!(m_dwSongFlags & SONG_FASTVOLSLIDES))) { newvolume += 0x0F * 4; } } } } if ((!(m_dwSongFlags & SONG_FIRSTTICK)) || (m_dwSongFlags & SONG_FASTVOLSLIDES)) { if (param & 0x0F) newvolume -= (int)((param & 0x0F) * 4); else newvolume += (int)((param & 0xF0) >> 2); if (m_nType & MOD_TYPE_MOD) pChn->dwFlags |= CHN_FASTVOLRAMP; } if (newvolume < 0) newvolume = 0; if (newvolume > 256) newvolume = 256; pChn->nVolume = newvolume; } void CSoundFile::PanningSlide(MODCHANNEL *pChn, UINT param) //--------------------------------------------------------- { LONG nPanSlide = 0; if (param) pChn->nOldPanSlide = param; else param = pChn->nOldPanSlide; if (m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT|MOD_TYPE_STM)) { if (((param & 0x0F) == 0x0F) && (param & 0xF0)) { if (m_dwSongFlags & SONG_FIRSTTICK) { param = (param & 0xF0) >> 2; nPanSlide = - (int)param; } } else if (((param & 0xF0) == 0xF0) && (param & 0x0F)) { if (m_dwSongFlags & SONG_FIRSTTICK) { nPanSlide = (param & 0x0F) << 2; } } else { if (!(m_dwSongFlags & SONG_FIRSTTICK)) { if (param & 0x0F) nPanSlide = (int)((param & 0x0F) << 2); else nPanSlide = -(int)((param & 0xF0) >> 2); } } } else { if (!(m_dwSongFlags & SONG_FIRSTTICK)) { if (param & 0x0F) nPanSlide = -(int)((param & 0x0F) << 2); else nPanSlide = (int)((param & 0xF0) >> 2); } } if (nPanSlide) { nPanSlide += pChn->nPan; if (nPanSlide < 0) nPanSlide = 0; if (nPanSlide > 256) nPanSlide = 256; pChn->nPan = nPanSlide; } } void CSoundFile::FineVolumeUp(MODCHANNEL *pChn, UINT param) //--------------------------------------------------------- { if (param) pChn->nOldFineVolUpDown = param; else param = pChn->nOldFineVolUpDown; if (m_dwSongFlags & SONG_FIRSTTICK) { pChn->nVolume += param * 4; if (pChn->nVolume > 256) pChn->nVolume = 256; if (m_nType & MOD_TYPE_MOD) pChn->dwFlags |= CHN_FASTVOLRAMP; } } void CSoundFile::FineVolumeDown(MODCHANNEL *pChn, UINT param) //----------------------------------------------------------- { if (param) pChn->nOldFineVolUpDown = param; else param = pChn->nOldFineVolUpDown; if (m_dwSongFlags & SONG_FIRSTTICK) { pChn->nVolume -= param * 4; if (pChn->nVolume < 0) pChn->nVolume = 0; if (m_nType & MOD_TYPE_MOD) pChn->dwFlags |= CHN_FASTVOLRAMP; } } void CSoundFile::Tremolo(MODCHANNEL *p, UINT param) //------------------------------------------------- { if (param & 0x0F) p->nTremoloDepth = (param & 0x0F) << 2; if (param & 0xF0) p->nTremoloSpeed = (param >> 4) & 0x0F; p->dwFlags |= CHN_TREMOLO; } void CSoundFile::ChannelVolSlide(MODCHANNEL *pChn, UINT param) //------------------------------------------------------------ { LONG nChnSlide = 0; if (param) pChn->nOldChnVolSlide = param; else param = pChn->nOldChnVolSlide; if (((param & 0x0F) == 0x0F) && (param & 0xF0)) { if (m_dwSongFlags & SONG_FIRSTTICK) nChnSlide = param >> 4; } else if (((param & 0xF0) == 0xF0) && (param & 0x0F)) { if (m_dwSongFlags & SONG_FIRSTTICK) nChnSlide = - (int)(param & 0x0F); } else { if (!(m_dwSongFlags & SONG_FIRSTTICK)) { if (param & 0x0F) nChnSlide = -(int)(param & 0x0F); else nChnSlide = (int)((param & 0xF0) >> 4); } } if (nChnSlide) { nChnSlide += pChn->nGlobalVol; if (nChnSlide < 0) nChnSlide = 0; if (nChnSlide > 64) nChnSlide = 64; pChn->nGlobalVol = nChnSlide; } } void CSoundFile::ExtendedMODCommands(UINT nChn, UINT param) //--------------------------------------------------------- { MODCHANNEL *pChn = &Chn[nChn]; UINT command = param & 0xF0; param &= 0x0F; switch(command) { // E0x: Set Filter // E1x: Fine Portamento Up case 0x10: if ((param) || (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2))) FinePortamentoUp(pChn, param); break; // E2x: Fine Portamento Down case 0x20: if ((param) || (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2))) FinePortamentoDown(pChn, param); break; // E3x: Set Glissando Control case 0x30: pChn->dwFlags &= ~CHN_GLISSANDO; if (param) pChn->dwFlags |= CHN_GLISSANDO; break; // E4x: Set Vibrato WaveForm case 0x40: pChn->nVibratoType = param & 0x07; break; // E5x: Set FineTune case 0x50: if (m_nTickCount) break; pChn->nC4Speed = S3MFineTuneTable[param]; if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) pChn->nFineTune = param*2; else pChn->nFineTune = MOD2XMFineTune(param); if (pChn->nPeriod) pChn->nPeriod = GetPeriodFromNote(pChn->nNote, pChn->nFineTune, pChn->nC4Speed); break; // E6x: Pattern Loop // E7x: Set Tremolo WaveForm case 0x70: pChn->nTremoloType = param & 0x07; break; // E8x: Set 4-bit Panning case 0x80: if (!m_nTickCount) { pChn->nPan = (param << 4) + 8; pChn->dwFlags |= CHN_FASTVOLRAMP; } break; // E9x: Retrig case 0x90: RetrigNote(nChn, param); break; // EAx: Fine Volume Up case 0xA0: if ((param) || (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2))) FineVolumeUp(pChn, param); break; // EBx: Fine Volume Down case 0xB0: if ((param) || (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2))) FineVolumeDown(pChn, param); break; // ECx: Note Cut case 0xC0: NoteCut(nChn, param); break; // EDx: Note Delay // EEx: Pattern Delay // EFx: MOD: Invert Loop, XM: Set Active Midi Macro case 0xF0: pChn->nActiveMacro = param; break; } } void CSoundFile::ExtendedS3MCommands(UINT nChn, UINT param) //--------------------------------------------------------- { MODCHANNEL *pChn = &Chn[nChn]; UINT command = param & 0xF0; param &= 0x0F; switch(command) { // S0x: Set Filter // S1x: Set Glissando Control case 0x10: pChn->dwFlags &= ~CHN_GLISSANDO; if (param) pChn->dwFlags |= CHN_GLISSANDO; break; // S2x: Set FineTune case 0x20: if (m_nTickCount) break; pChn->nC4Speed = S3MFineTuneTable[param & 0x0F]; pChn->nFineTune = MOD2XMFineTune(param); if (pChn->nPeriod) pChn->nPeriod = GetPeriodFromNote(pChn->nNote, pChn->nFineTune, pChn->nC4Speed); break; // S3x: Set Vibrato WaveForm case 0x30: pChn->nVibratoType = param & 0x07; break; // S4x: Set Tremolo WaveForm case 0x40: pChn->nTremoloType = param & 0x07; break; // S5x: Set Panbrello WaveForm case 0x50: pChn->nPanbrelloType = param & 0x07; break; // S6x: Pattern Delay for x frames case 0x60: m_nFrameDelay = param; break; // S7x: Envelope Control case 0x70: if (m_nTickCount) break; switch(param) { case 0: case 1: case 2: { MODCHANNEL *bkp = &Chn[m_nChannels]; for (UINT i=m_nChannels; i<MAX_CHANNELS; i++, bkp++) { if (bkp->nMasterChn == nChn+1) { if (param == 1) KeyOff(i); else if (param == 2) bkp->dwFlags |= CHN_NOTEFADE; else { bkp->dwFlags |= CHN_NOTEFADE; bkp->nFadeOutVol = 0; } } } } break; case 3: pChn->nNNA = NNA_NOTECUT; break; case 4: pChn->nNNA = NNA_CONTINUE; break; case 5: pChn->nNNA = NNA_NOTEOFF; break; case 6: pChn->nNNA = NNA_NOTEFADE; break; case 7: pChn->dwFlags &= ~CHN_VOLENV; break; case 8: pChn->dwFlags |= CHN_VOLENV; break; case 9: pChn->dwFlags &= ~CHN_PANENV; break; case 10: pChn->dwFlags |= CHN_PANENV; break; case 11: pChn->dwFlags &= ~CHN_PITCHENV; break; case 12: pChn->dwFlags |= CHN_PITCHENV; break; } break; // S8x: Set 4-bit Panning case 0x80: if (!m_nTickCount) { pChn->nPan = (param << 4) + 8; pChn->dwFlags |= CHN_FASTVOLRAMP; } break; // S9x: Set Surround case 0x90: ExtendedChannelEffect(pChn, param & 0x0F); break; // SAx: Set 64k Offset case 0xA0: if (!m_nTickCount) { pChn->nOldHiOffset = param; if ((pChn->nRowNote) && (pChn->nRowNote < 0x80)) { DWORD pos = param << 16; if (pos < pChn->nLength) pChn->nPos = pos; } } break; // SBx: Pattern Loop // SCx: Note Cut case 0xC0: NoteCut(nChn, param); break; // SDx: Note Delay // case 0xD0: break; // SEx: Pattern Delay for x rows // SFx: S3M: Funk Repeat, IT: Set Active Midi Macro case 0xF0: pChn->nActiveMacro = param; break; } } void CSoundFile::ExtendedChannelEffect(MODCHANNEL *pChn, UINT param) //------------------------------------------------------------------ { // S9x and X9x commands (S3M/XM/IT only) if (m_nTickCount) return; switch(param & 0x0F) { // S90: Surround Off case 0x00: pChn->dwFlags &= ~CHN_SURROUND; break; // S91: Surround On case 0x01: pChn->dwFlags |= CHN_SURROUND; pChn->nPan = 128; break; //////////////////////////////////////////////////////////// // Modplug Extensions // S98: Reverb Off case 0x08: pChn->dwFlags &= ~CHN_REVERB; pChn->dwFlags |= CHN_NOREVERB; break; // S99: Reverb On case 0x09: pChn->dwFlags &= ~CHN_NOREVERB; pChn->dwFlags |= CHN_REVERB; break; // S9A: 2-Channels surround mode case 0x0A: m_dwSongFlags &= ~SONG_SURROUNDPAN; break; // S9B: 4-Channels surround mode case 0x0B: m_dwSongFlags |= SONG_SURROUNDPAN; break; // S9C: IT Filter Mode case 0x0C: m_dwSongFlags &= ~SONG_MPTFILTERMODE; break; // S9D: MPT Filter Mode case 0x0D: m_dwSongFlags |= SONG_MPTFILTERMODE; break; // S9E: Go forward case 0x0E: pChn->dwFlags &= ~(CHN_PINGPONGFLAG); break; // S9F: Go backward (set position at the end for non-looping samples) case 0x0F: if ((!(pChn->dwFlags & CHN_LOOP)) && (!pChn->nPos) && (pChn->nLength)) { pChn->nPos = pChn->nLength - 1; pChn->nPosLo = 0xFFFF; } pChn->dwFlags |= CHN_PINGPONGFLAG; break; } } void CSoundFile::ProcessMidiMacro(UINT nChn, LPCSTR pszMidiMacro, UINT param) //--------------------------------------------------------------------------- { MODCHANNEL *pChn = &Chn[nChn]; DWORD dwMacro = (*((LPDWORD)pszMidiMacro)) & 0x7F5F7F5F; // Not Internal Device ? if (dwMacro != 0x30463046 && dwMacro != 0x31463046) { UINT pos = 0, nNib = 0, nBytes = 0; DWORD dwMidiCode = 0, dwByteCode = 0; while (pos+6 <= 32) { CHAR cData = pszMidiMacro[pos++]; if (!cData) break; if ((cData >= '0') && (cData <= '9')) { dwByteCode = (dwByteCode<<4) | (cData-'0'); nNib++; } else if ((cData >= 'A') && (cData <= 'F')) { dwByteCode = (dwByteCode<<4) | (cData-'A'+10); nNib++; } else if ((cData >= 'a') && (cData <= 'f')) { dwByteCode = (dwByteCode<<4) | (cData-'a'+10); nNib++; } else if ((cData == 'z') || (cData == 'Z')) { dwByteCode = param & 0x7f; nNib = 2; } else if ((cData == 'x') || (cData == 'X')) { dwByteCode = param & 0x70; nNib = 2; } else if ((cData == 'y') || (cData == 'Y')) { dwByteCode = (param & 0x0f)<<3; nNib = 2; } else if (nNib >= 2) { nNib = 0; dwMidiCode |= dwByteCode << (nBytes*8); dwByteCode = 0; nBytes++; if (nBytes >= 3) { UINT nMasterCh = (nChn < m_nChannels) ? nChn+1 : pChn->nMasterChn; if ((nMasterCh) && (nMasterCh <= m_nChannels)) { UINT nPlug = ChnSettings[nMasterCh-1].nMixPlugin; if ((nPlug) && (nPlug <= MAX_MIXPLUGINS)) { IMixPlugin *pPlugin = m_MixPlugins[nPlug-1].pMixPlugin; if ((pPlugin) && (m_MixPlugins[nPlug-1].pMixState)) { pPlugin->MidiSend(dwMidiCode); } } } nBytes = 0; dwMidiCode = 0; } } } return; } // Internal device pszMidiMacro += 4; // Filter ? if (pszMidiMacro[0] == '0') { CHAR cData1 = pszMidiMacro[2]; DWORD dwParam = 0; if ((cData1 == 'z') || (cData1 == 'Z')) { dwParam = param; } else { CHAR cData2 = pszMidiMacro[3]; if ((cData1 >= '0') && (cData1 <= '9')) dwParam += (cData1 - '0') << 4; else if ((cData1 >= 'A') && (cData1 <= 'F')) dwParam += (cData1 - 'A' + 0x0A) << 4; if ((cData2 >= '0') && (cData2 <= '9')) dwParam += (cData2 - '0'); else if ((cData2 >= 'A') && (cData2 <= 'F')) dwParam += (cData2 - 'A' + 0x0A); } switch(pszMidiMacro[1]) { // F0.F0.00.xx: Set CutOff case '0': { int oldcutoff = pChn->nCutOff; if (dwParam < 0x80) pChn->nCutOff = (BYTE)dwParam; #ifndef NO_FILTER oldcutoff -= pChn->nCutOff; if (oldcutoff < 0) oldcutoff = -oldcutoff; if ((pChn->nVolume > 0) || (oldcutoff < 0x10) || (!(pChn->dwFlags & CHN_FILTER)) || (!(pChn->nLeftVol|pChn->nRightVol))) SetupChannelFilter(pChn, (pChn->dwFlags & CHN_FILTER) ? FALSE : TRUE); #endif // NO_FILTER } break; // F0.F0.01.xx: Set Resonance case '1': if (dwParam < 0x80) pChn->nResonance = (BYTE)dwParam; #ifndef NO_FILTER SetupChannelFilter(pChn, (pChn->dwFlags & CHN_FILTER) ? FALSE : TRUE); #endif // NO_FILTER break; } } } void CSoundFile::RetrigNote(UINT nChn, UINT param) //------------------------------------------------ { // Retrig: bit 8 is set if it's the new XM retrig MODCHANNEL *pChn = &Chn[nChn]; UINT nRetrigSpeed = param & 0x0F; UINT nRetrigCount = pChn->nRetrigCount; BOOL bDoRetrig = FALSE; if (m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT)) { if (!nRetrigSpeed) nRetrigSpeed = 1; if ((nRetrigCount) && (!(nRetrigCount % nRetrigSpeed))) bDoRetrig = TRUE; nRetrigCount++; } else { UINT realspeed = nRetrigSpeed; if ((param & 0x100) && (pChn->nRowVolCmd == VOLCMD_VOLUME) && (pChn->nRowParam & 0xF0)) realspeed++; if ((m_nTickCount) || (param & 0x100)) { if (!realspeed) realspeed = 1; if ((!(param & 0x100)) && (m_nMusicSpeed) && (!(m_nTickCount % realspeed))) bDoRetrig = TRUE; nRetrigCount++; } else if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) nRetrigCount = 0; if (nRetrigCount >= realspeed) { if ((m_nTickCount) || ((param & 0x100) && (!pChn->nRowNote))) bDoRetrig = TRUE; } } if (bDoRetrig) { UINT dv = (param >> 4) & 0x0F; if (dv) { int vol = pChn->nVolume; if (retrigTable1[dv]) vol = (vol * retrigTable1[dv]) >> 4; else vol += ((int)retrigTable2[dv]) << 2; if (vol < 0) vol = 0; if (vol > 256) vol = 256; pChn->nVolume = vol; pChn->dwFlags |= CHN_FASTVOLRAMP; } UINT nNote = pChn->nNewNote; LONG nOldPeriod = pChn->nPeriod; if ((nNote) && (nNote <= NOTE_MAX) && (pChn->nLength)) CheckNNA(nChn, 0, nNote, TRUE); BOOL bResetEnv = FALSE; if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) { if ((pChn->nRowInstr) && (param < 0x100)) { InstrumentChange(pChn, pChn->nRowInstr, FALSE, FALSE); bResetEnv = TRUE; } if (param < 0x100) bResetEnv = TRUE; } NoteChange(nChn, nNote, FALSE, bResetEnv); if ((m_nType & MOD_TYPE_IT) && (!pChn->nRowNote) && (nOldPeriod)) pChn->nPeriod = nOldPeriod; if (!(m_nType & (MOD_TYPE_S3M|MOD_TYPE_IT))) nRetrigCount = 0; } pChn->nRetrigCount = (BYTE)nRetrigCount; } void CSoundFile::DoFreqSlide(MODCHANNEL *pChn, LONG nFreqSlide) //------------------------------------------------------------- { // IT Linear slides if (!pChn->nPeriod) return; if ((m_dwSongFlags & SONG_LINEARSLIDES) && (!(m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)))) { if (nFreqSlide < 0) { UINT n = (- nFreqSlide) >> 2; if (n > 255) n = 255; pChn->nPeriod = _muldivr(pChn->nPeriod, LinearSlideDownTable[n], 65536); } else { UINT n = (nFreqSlide) >> 2; if (n > 255) n = 255; pChn->nPeriod = _muldivr(pChn->nPeriod, LinearSlideUpTable[n], 65536); } } else { pChn->nPeriod += nFreqSlide; } if (pChn->nPeriod < 1) { pChn->nPeriod = 1; if (m_nType & MOD_TYPE_IT) { pChn->dwFlags |= CHN_NOTEFADE; pChn->nFadeOutVol = 0; } } } void CSoundFile::NoteCut(UINT nChn, UINT nTick) //--------------------------------------------- { if (m_nTickCount == nTick) { MODCHANNEL *pChn = &Chn[nChn]; // if (m_nInstruments) KeyOff(pChn); ? pChn->nVolume = 0; pChn->dwFlags |= CHN_FASTVOLRAMP; } } void CSoundFile::KeyOff(UINT nChn) //-------------------------------- { MODCHANNEL *pChn = &Chn[nChn]; BOOL bKeyOn = (pChn->dwFlags & CHN_KEYOFF) ? FALSE : TRUE; pChn->dwFlags |= CHN_KEYOFF; //if ((!pChn->pHeader) || (!(pChn->dwFlags & CHN_VOLENV))) if ((pChn->pHeader) && (!(pChn->dwFlags & CHN_VOLENV))) { pChn->dwFlags |= CHN_NOTEFADE; } if (!pChn->nLength) return; if ((pChn->dwFlags & CHN_SUSTAINLOOP) && (pChn->pInstrument) && (bKeyOn)) { MODINSTRUMENT *psmp = pChn->pInstrument; if (psmp->uFlags & CHN_LOOP) { if (psmp->uFlags & CHN_PINGPONGLOOP) pChn->dwFlags |= CHN_PINGPONGLOOP; else pChn->dwFlags &= ~(CHN_PINGPONGLOOP|CHN_PINGPONGFLAG); pChn->dwFlags |= CHN_LOOP; pChn->nLength = psmp->nLength; pChn->nLoopStart = psmp->nLoopStart; pChn->nLoopEnd = psmp->nLoopEnd; if (pChn->nLength > pChn->nLoopEnd) pChn->nLength = pChn->nLoopEnd; } else { pChn->dwFlags &= ~(CHN_LOOP|CHN_PINGPONGLOOP|CHN_PINGPONGFLAG); pChn->nLength = psmp->nLength; } } if (pChn->pHeader) { INSTRUMENTHEADER *penv = pChn->pHeader; if (((penv->dwFlags & ENV_VOLLOOP) || (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2))) && (penv->nFadeOut)) pChn->dwFlags |= CHN_NOTEFADE; } } ////////////////////////////////////////////////////////// // CSoundFile: Global Effects void CSoundFile::SetSpeed(UINT param) //----------------------------------- { UINT max = (m_nType == MOD_TYPE_IT) ? 256 : 128; // Modplug Tracker and Mod-Plugin don't do this check #ifndef MODPLUG_TRACKER #ifndef MODPLUG_FASTSOUNDLIB // Big Hack!!! if ((!param) || (param >= 0x80) || ((m_nType & (MOD_TYPE_MOD|MOD_TYPE_XM|MOD_TYPE_MT2)) && (param >= 0x1E))) { if (IsSongFinished(m_nCurrentPattern, m_nRow+1)) { GlobalFadeSong(1000); } } #endif // MODPLUG_FASTSOUNDLIB #endif // MODPLUG_TRACKER if ((m_nType & MOD_TYPE_S3M) && (param > 0x80)) param -= 0x80; if ((param) && (param <= max)) m_nMusicSpeed = param; } void CSoundFile::SetTempo(UINT param) //----------------------------------- { if (param < 0x20) { // Tempo Slide if ((param & 0xF0) == 0x10) { m_nMusicTempo += (param & 0x0F) * 2; if (m_nMusicTempo > 255) m_nMusicTempo = 255; } else { m_nMusicTempo -= (param & 0x0F) * 2; if ((LONG)m_nMusicTempo < 32) m_nMusicTempo = 32; } } else { m_nMusicTempo = param; } } int CSoundFile::PatternLoop(MODCHANNEL *pChn, UINT param) //------------------------------------------------------- { if (param) { if (pChn->nPatternLoopCount) { pChn->nPatternLoopCount--; if (!pChn->nPatternLoopCount) return -1; } else { MODCHANNEL *p = Chn; for (UINT i=0; i<m_nChannels; i++, p++) if (p != pChn) { // Loop already done if (p->nPatternLoopCount) return -1; } pChn->nPatternLoopCount = param; } return pChn->nPatternLoop; } else { pChn->nPatternLoop = m_nRow; if (m_nType & MOD_TYPE_XM) m_nNextStartRow = m_nRow; } return -1; } void CSoundFile::GlobalVolSlide(UINT param) //----------------------------------------- { LONG nGlbSlide = 0; if (param) m_nOldGlbVolSlide = param; else param = m_nOldGlbVolSlide; if (((param & 0x0F) == 0x0F) && (param & 0xF0)) { if (m_dwSongFlags & SONG_FIRSTTICK) nGlbSlide = (param >> 4) * 2; } else if (((param & 0xF0) == 0xF0) && (param & 0x0F)) { if (m_dwSongFlags & SONG_FIRSTTICK) nGlbSlide = - (int)((param & 0x0F) * 2); } else { if (!(m_dwSongFlags & SONG_FIRSTTICK)) { if (param & 0xF0) nGlbSlide = (int)((param & 0xF0) >> 4) * 2; else nGlbSlide = -(int)((param & 0x0F) * 2); } } if (nGlbSlide) { if (m_nType != MOD_TYPE_IT) nGlbSlide *= 2; nGlbSlide += m_nGlobalVolume; if (nGlbSlide < 0) nGlbSlide = 0; if (nGlbSlide > 256) nGlbSlide = 256; m_nGlobalVolume = nGlbSlide; } } DWORD CSoundFile::IsSongFinished(UINT nStartOrder, UINT nStartRow) const //---------------------------------------------------------------------- { UINT nOrd; for (nOrd=nStartOrder; nOrd<MAX_ORDERS; nOrd++) { UINT nPat = Order[nOrd]; if (nPat != 0xFE) { MODCOMMAND *p; if (nPat >= MAX_PATTERNS) break; p = Patterns[nPat]; if (p) { UINT len = PatternSize[nPat] * m_nChannels; UINT pos = (nOrd == nStartOrder) ? nStartRow : 0; pos *= m_nChannels; while (pos < len) { UINT cmd; if ((p[pos].note) || (p[pos].volcmd)) return 0; cmd = p[pos].command; if (cmd == CMD_MODCMDEX) { UINT cmdex = p[pos].param & 0xF0; if ((!cmdex) || (cmdex == 0x60) || (cmdex == 0xE0) || (cmdex == 0xF0)) cmd = 0; } if ((cmd) && (cmd != CMD_SPEED) && (cmd != CMD_TEMPO)) return 0; pos++; } } } } return (nOrd < MAX_ORDERS) ? nOrd : MAX_ORDERS-1; } BOOL CSoundFile::IsValidBackwardJump(UINT nStartOrder, UINT nStartRow, UINT nJumpOrder, UINT nJumpRow) const //---------------------------------------------------------------------------------------------------------- { while ((nJumpOrder < MAX_PATTERNS) && (Order[nJumpOrder] == 0xFE)) nJumpOrder++; if ((nStartOrder >= MAX_PATTERNS) || (nJumpOrder >= MAX_PATTERNS)) return FALSE; // Treat only case with jumps in the same pattern if (nJumpOrder > nStartOrder) return TRUE; if ((nJumpOrder < nStartOrder) || (nJumpRow >= PatternSize[nStartOrder]) || (!Patterns[nStartOrder]) || (nStartRow >= 256) || (nJumpRow >= 256)) return FALSE; // See if the pattern is being played backward BYTE row_hist[256]; memset(row_hist, 0, sizeof(row_hist)); UINT nRows = PatternSize[nStartOrder], row = nJumpRow; if (nRows > 256) nRows = 256; row_hist[nStartRow] = TRUE; while ((row < 256) && (!row_hist[row])) { if (row >= nRows) return TRUE; row_hist[row] = TRUE; MODCOMMAND *p = Patterns[nStartOrder] + row * m_nChannels; row++; int breakrow = -1, posjump = 0; for (UINT i=0; i<m_nChannels; i++, p++) { if (p->command == CMD_POSITIONJUMP) { if (p->param < nStartOrder) return FALSE; if (p->param > nStartOrder) return TRUE; posjump = TRUE; } else if (p->command == CMD_PATTERNBREAK) { breakrow = p->param; } } if (breakrow >= 0) { if (!posjump) return TRUE; row = breakrow; } if (row >= nRows) return TRUE; } return FALSE; } ////////////////////////////////////////////////////// // Note/Period/Frequency functions UINT CSoundFile::GetNoteFromPeriod(UINT period) const //--------------------------------------------------- { if (!period) return 0; if (m_nType & (MOD_TYPE_MED|MOD_TYPE_MOD|MOD_TYPE_MTM|MOD_TYPE_669|MOD_TYPE_OKT|MOD_TYPE_AMF0)) { period >>= 2; for (UINT i=0; i<6*12; i++) { if (period >= ProTrackerPeriodTable[i]) { if ((period != ProTrackerPeriodTable[i]) && (i)) { UINT p1 = ProTrackerPeriodTable[i-1]; UINT p2 = ProTrackerPeriodTable[i]; if (p1 - period < (period - p2)) return i+36; } return i+1+36; } } return 6*12+36; } else { for (UINT i=1; i<NOTE_MAX; i++) { LONG n = GetPeriodFromNote(i, 0, 0); if ((n > 0) && (n <= (LONG)period)) return i; } return NOTE_MAX; } } UINT CSoundFile::GetPeriodFromNote(UINT note, int nFineTune, UINT nC4Speed) const //------------------------------------------------------------------------------- { if ((!note) || (note > 0xF0)) return 0; if (m_nType & (MOD_TYPE_IT|MOD_TYPE_S3M|MOD_TYPE_STM|MOD_TYPE_MDL|MOD_TYPE_ULT|MOD_TYPE_WAV |MOD_TYPE_FAR|MOD_TYPE_DMF|MOD_TYPE_PTM|MOD_TYPE_AMS|MOD_TYPE_DBM|MOD_TYPE_AMF|MOD_TYPE_PSM)) { note--; if (m_dwSongFlags & SONG_LINEARSLIDES) { return (FreqS3MTable[note % 12] << 5) >> (note / 12); } else { int divider; if (!nC4Speed) nC4Speed = 8363; // if C4Speed is large, then up shifting may produce a zero divider divider = nC4Speed << (note / 12); if (!divider) divider = 1e6; return _muldiv(8363, (FreqS3MTable[note % 12] << 5), divider); } } else if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) { if (note < 13) note = 13; note -= 13; if (m_dwSongFlags & SONG_LINEARSLIDES) { LONG l = ((NOTE_MAX - note) << 6) - (nFineTune / 2); if (l < 1) l = 1; return (UINT)l; } else { int finetune = nFineTune; UINT rnote = (note % 12) << 3; UINT roct = note / 12; int rfine = finetune / 16; int i = rnote + rfine + 8; if (i < 0) i = 0; if (i >= 104) i = 103; UINT per1 = XMPeriodTable[i]; if ( finetune < 0 ) { rfine--; finetune = -finetune; } else rfine++; i = rnote+rfine+8; if (i < 0) i = 0; if (i >= 104) i = 103; UINT per2 = XMPeriodTable[i]; rfine = finetune & 0x0F; per1 *= 16-rfine; per2 *= rfine; return ((per1 + per2) << 1) >> roct; } } else { note--; nFineTune = XM2MODFineTune(nFineTune); if ((nFineTune) || (note < 36) || (note >= 36+6*12)) return (ProTrackerTunedPeriods[nFineTune*12 + note % 12] << 5) >> (note / 12); else return (ProTrackerPeriodTable[note-36] << 2); } } UINT CSoundFile::GetFreqFromPeriod(UINT period, UINT nC4Speed, int nPeriodFrac) const //----------------------------------------------------------------------------------- { if (!period) return 0; if (m_nType & (MOD_TYPE_MED|MOD_TYPE_MOD|MOD_TYPE_MTM|MOD_TYPE_669|MOD_TYPE_OKT|MOD_TYPE_AMF0)) { return (3546895L*4) / period; } else if (m_nType & (MOD_TYPE_XM|MOD_TYPE_MT2)) { if (m_dwSongFlags & SONG_LINEARSLIDES) return XMLinearTable[period % 768] >> (period / 768); else return 8363 * 1712L / period; } else { if (m_dwSongFlags & SONG_LINEARSLIDES) { if (!nC4Speed) nC4Speed = 8363; return _muldiv(nC4Speed, 1712L << 8, (period << 8)+nPeriodFrac); } else { return _muldiv(8363, 1712L << 8, (period << 8)+nPeriodFrac); } } } #endif // MODPLUG_CPP