// ---------------------------------------------------------------------------- // sprites typedef struct sprite_static_t { float px, py, pz; // origin x, y, depth float ox, oy, cos, sin; // offset x, offset y, cos/sin of rotation degree float sx, sy; // scale x,y float cellw, cellh; // dimensions of any cell in spritesheet union { struct { int frame, ncx, ncy; // frame in a (num cellx, num celly) spritesheet }; struct { float x, y, w, h; // normalized[0..1] within texture bounds }; }; uint32_t rgba, flags; // vertex color and flags } sprite_static_t; // sprite batching typedef struct batch_t { array(sprite_static_t) sprites; mesh_t mesh; int dirty; } batch_t; typedef map(int, batch_t) batch_group_t; // mapkey is anything that forces a flush. texture_id for now, might be texture_id+program_id soon // sprite stream typedef struct sprite_vertex { vec3 pos; vec2 uv; uint32_t rgba; } sprite_vertex; typedef struct sprite_index { GLuint triangle[3]; } sprite_index; #define sprite_vertex(...) C_CAST(sprite_vertex, __VA_ARGS__) #define sprite_index(...) C_CAST(sprite_index, __VA_ARGS__) // sprite impl static int sprite_count = 0; static int sprite_program = -1; static array(sprite_index) sprite_indices = 0; static array(sprite_vertex) sprite_vertices = 0; // center_wh << 2 | additive << 1 | projected << 0 static batch_group_t sprite_group[8] = {0}; // rect(x,y,w,h) is [0..1] normalized, pos(xyz,z-index), scale_offset(sx,sy,offx,offy), rotation (degrees), color (rgba) void sprite_rect( texture_t t, vec4 rect, vec4 pos, vec4 scale_offset, float tilt_deg, unsigned tint_rgba, unsigned flags) { float zindex = pos.w; float scalex = scale_offset.x; float scaley = scale_offset.y; float offsetx = scale_offset.z; float offsety = scale_offset.w; // do not queue if either scales or alpha are zero if( 0 == (scalex * scaley * ((tint_rgba>>24) & 255)) ) return; ASSERT( (flags & SPRITE_CENTERED) == 0 ); if( flags & SPRITE_PROJECTED ) { tilt_deg += 180, scalex = -scalex; // flip texture Y on mvp3d (same than turn 180ยบ then flip X) } sprite_static_t s = {0}; s.px = pos.x, s.py = pos.y, s.pz = pos.z - zindex; s.sx = scalex, s.sy = scaley; s.x = rect.x, s.y = rect.y, s.w = rect.z, s.h = rect.w; s.cellw = s.w * s.sx * t.w, s.cellh = s.h * s.sy * t.h; s.rgba = tint_rgba; s.flags = flags; #if 0 s.ox = 0/*ox*/ * s.sx; s.oy = 0/*oy*/ * s.sy; #else s.ox += offsetx * scalex; s.oy += offsety * scaley; #endif if( tilt_deg ) { tilt_deg = (tilt_deg + 0) * ((float)C_PI / 180); s.cos = cosf(tilt_deg); s.sin = sinf(tilt_deg); } else { s.cos = 1; s.sin = 0; } batch_group_t *batches = &sprite_group[ flags & 7 ]; batch_t *found = map_find_or_add(*batches, t.id, (batch_t){0}); array_push(found->sprites, s); } void sprite_sheet( texture_t texture, float spritesheet[3], float position[3], float rotation, float offset[2], float scale[2], unsigned rgba, unsigned flags) { flags |= SPRITE_CENTERED; ASSERT( flags & SPRITE_CENTERED ); const float px = position[0], py = position[1], pz = position[2]; const float ox = offset[0], oy = offset[1], sx = scale[0], sy = scale[1]; const float frame = spritesheet[0], xcells = spritesheet[1], ycells = spritesheet[2]; if (frame < 0) return; if (frame > 0 && frame >= (xcells * ycells)) return; // no need to queue if alpha or scale are zero if( sx && sy && alpha(rgba) ) { vec3 bak = camera_get_active()->position; if( flags & SPRITE_RESOLUTION_INDEPENDANT ) { // @todo: optimize me sprite_flush(); camera_get_active()->position = vec3(window_width()/2,window_height()/2,1); } sprite_static_t s; s.px = px; s.py = py; s.pz = pz; s.frame = frame; s.ncx = xcells ? xcells : 1; s.ncy = ycells ? ycells : 1; s.sx = sx; s.sy = sy; s.ox = ox * sx; s.oy = oy * sy; s.cellw = (texture.x * sx / s.ncx); s.cellh = (texture.y * sy / s.ncy); s.rgba = rgba; s.flags = flags; s.cos = 1; s.sin = 0; if(rotation) { rotation = (rotation + 0) * ((float)C_PI / 180); s.cos = cosf(rotation); s.sin = sinf(rotation); } batch_group_t *batches = &sprite_group[ flags & 7 ]; #if 0 batch_t *found = map_find(*batches, texture.id); if( !found ) found = map_insert(*batches, texture.id, (batch_t){0}); #else batch_t *found = map_find_or_add(*batches, texture.id, (batch_t){0}); #endif array_push(found->sprites, s); if( flags & SPRITE_RESOLUTION_INDEPENDANT ) { // @todo: optimize me sprite_flush(); camera_get_active()->position = bak; } } } void sprite( texture_t texture, float position[3], float rotation, unsigned color, unsigned flags) { float offset[2] = {0,0}, scale[2] = {1,1}, spritesheet[3] = {0,0,0}; sprite_sheet( texture, spritesheet, position, rotation, offset, scale, color, flags ); } static void sprite_rebuild_meshes() { sprite_count = 0; // w/2,h/2 centered for( int l = countof(sprite_group) / 2; l < countof(sprite_group); ++l) { for each_map_ptr(sprite_group[l], int,_, batch_t,bt) { bt->dirty = array_count(bt->sprites) ? 1 : 0; if( !bt->dirty ) continue; int index = 0; array_clear(sprite_indices); array_clear(sprite_vertices); array_foreach_ptr(bt->sprites, sprite_static_t,it ) { float x0 = it->ox - it->cellw/2, x3 = x0 + it->cellw; float y0 = it->oy - it->cellh/2, y3 = y0; float x1 = x0, x2 = x3; float y1 = y0 + it->cellh, y2 = y1; // @todo: move this affine transform into glsl shader vec3 v0 = { it->px + ( x0 * it->cos - y0 * it->sin ), it->py + ( x0 * it->sin + y0 * it->cos ), it->pz }; vec3 v1 = { it->px + ( x1 * it->cos - y1 * it->sin ), it->py + ( x1 * it->sin + y1 * it->cos ), it->pz }; vec3 v2 = { it->px + ( x2 * it->cos - y2 * it->sin ), it->py + ( x2 * it->sin + y2 * it->cos ), it->pz }; vec3 v3 = { it->px + ( x3 * it->cos - y3 * it->sin ), it->py + ( x3 * it->sin + y3 * it->cos ), it->pz }; float cx = (1.0f / it->ncx) - 1e-9f; float cy = (1.0f / it->ncy) - 1e-9f; int idx = (int)it->frame; int px = idx % it->ncx; int py = idx / it->ncx; float ux = px * cx, uy = py * cy; float vx = ux + cx, vy = uy + cy; vec2 uv0 = vec2(ux, uy); vec2 uv1 = vec2(ux, vy); vec2 uv2 = vec2(vx, vy); vec2 uv3 = vec2(vx, uy); array_push( sprite_vertices, sprite_vertex(v0, uv0, it->rgba) ); // Vertex 0 (A) array_push( sprite_vertices, sprite_vertex(v1, uv1, it->rgba) ); // Vertex 1 (B) array_push( sprite_vertices, sprite_vertex(v2, uv2, it->rgba) ); // Vertex 2 (C) array_push( sprite_vertices, sprite_vertex(v3, uv3, it->rgba) ); // Vertex 3 (D) // A--B A A-B // quad | | becomes triangle |\ and triangle \| // D--C D-C C GLuint A = (index+0), B = (index+1), C = (index+2), D = (index+3); index += 4; array_push( sprite_indices, sprite_index(C, D, A) ); // Triangle 1 array_push( sprite_indices, sprite_index(C, A, B) ); // Triangle 2 } mesh_update(&bt->mesh, "p3 t2 c4B", 0,array_count(sprite_vertices),sprite_vertices, 3*array_count(sprite_indices),sprite_indices, MESH_STATIC); // clear elements from queue sprite_count += array_count(bt->sprites); array_clear(bt->sprites); } } // (0,0) centered for( int l = 0; l < countof(sprite_group) / 2; ++l) { for each_map_ptr(sprite_group[l], int,_, batch_t,bt) { bt->dirty = array_count(bt->sprites) ? 1 : 0; if( !bt->dirty ) continue; int index = 0; array_clear(sprite_indices); array_clear(sprite_vertices); array_foreach_ptr(bt->sprites, sprite_static_t,it ) { float x0 = it->ox - it->cellw/2, x3 = x0 + it->cellw; float y0 = it->oy - it->cellh/2, y3 = y0; float x1 = x0, x2 = x3; float y1 = y0 + it->cellh, y2 = y1; // @todo: move this affine transform into glsl shader vec3 v0 = { it->px + ( x0 * it->cos - y0 * it->sin ), it->py + ( x0 * it->sin + y0 * it->cos ), it->pz }; vec3 v1 = { it->px + ( x1 * it->cos - y1 * it->sin ), it->py + ( x1 * it->sin + y1 * it->cos ), it->pz }; vec3 v2 = { it->px + ( x2 * it->cos - y2 * it->sin ), it->py + ( x2 * it->sin + y2 * it->cos ), it->pz }; vec3 v3 = { it->px + ( x3 * it->cos - y3 * it->sin ), it->py + ( x3 * it->sin + y3 * it->cos ), it->pz }; float ux = it->x, vx = ux + it->w; float uy = it->y, vy = uy + it->h; vec2 uv0 = vec2(ux, uy); vec2 uv1 = vec2(ux, vy); vec2 uv2 = vec2(vx, vy); vec2 uv3 = vec2(vx, uy); array_push( sprite_vertices, sprite_vertex(v0, uv0, it->rgba) ); // Vertex 0 (A) array_push( sprite_vertices, sprite_vertex(v1, uv1, it->rgba) ); // Vertex 1 (B) array_push( sprite_vertices, sprite_vertex(v2, uv2, it->rgba) ); // Vertex 2 (C) array_push( sprite_vertices, sprite_vertex(v3, uv3, it->rgba) ); // Vertex 3 (D) // A--B A A-B // quad | | becomes triangle |\ and triangle \| // D--C D-C C GLuint A = (index+0), B = (index+1), C = (index+2), D = (index+3); index += 4; array_push( sprite_indices, sprite_index(C, D, A) ); // Triangle 1 array_push( sprite_indices, sprite_index(C, A, B) ); // Triangle 2 } mesh_update(&bt->mesh, "p3 t2 c4B", 0,array_count(sprite_vertices),sprite_vertices, 3*array_count(sprite_indices),sprite_indices, MESH_STATIC); // clear elements from queue sprite_count += array_count(bt->sprites); array_clear(bt->sprites); } } } static void sprite_render_meshes_group(batch_group_t* sprites, int alpha_key, int alpha_value, float mvp[16]) { if( map_count(*sprites) > 0 ) { // setup shader if( sprite_program < 0 ) { sprite_program = shader( vfs_read("shaders/vs_324_24_sprite.glsl"), vfs_read("shaders/fs_24_4_sprite.glsl"), "att_Position,att_TexCoord,att_Color", "fragColor", NULL ); } shader_bind(sprite_program); shader_mat44("u_mvp", mvp); // set (unit 0) in the uniform texture sampler, and render batch glActiveTexture(GL_TEXTURE0); glBlendFunc( alpha_key, alpha_value ); for each_map_ptr(*sprites, int,texture_id, batch_t,bt) { if( bt->dirty ) { shader_texture_unit("u_texture", *texture_id, 0); mesh_render(&bt->mesh); } } // map_clear(*sprites); } } static void sprite_init() { do_once for(int i = 0; i < countof(sprite_group); ++i) { map_init(sprite_group[i], less_int, hash_int); } } void sprite_flush() { profile("Sprite.rebuild_time") { sprite_rebuild_meshes(); } profile("Sprite.render_time") { // setup rendering state glEnable(GL_DEPTH_TEST); glEnable(GL_BLEND); glDepthFunc(GL_LEQUAL); // try to help with zfighting // 3d mat44 mvp3d; multiply44x2(mvp3d, camera_get_active()->proj, camera_get_active()->view); // render all additive then translucent groups sprite_render_meshes_group(&sprite_group[SPRITE_PROJECTED], GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, mvp3d ); sprite_render_meshes_group(&sprite_group[SPRITE_PROJECTED|SPRITE_CENTERED], GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, mvp3d ); sprite_render_meshes_group(&sprite_group[SPRITE_PROJECTED|SPRITE_CENTERED|SPRITE_ADDITIVE], GL_SRC_ALPHA, GL_ONE, mvp3d ); sprite_render_meshes_group(&sprite_group[SPRITE_PROJECTED|SPRITE_ADDITIVE], GL_SRC_ALPHA, GL_ONE, mvp3d ); // 2d: (0,0) is center of screen mat44 mvp2d; vec3 pos = camera_get_active()->position; float zoom = absf(pos.z); if(zoom < 0.1f) zoom = 0.1f; zoom = 1.f / (zoom + !zoom); float zdepth_max = window_height(); // 1; float l = pos.x - window_width() * zoom / 2; float r = pos.x + window_width() * zoom / 2; float b = pos.y + window_height() * zoom / 2; float t = pos.y - window_height() * zoom / 2; ortho44(mvp2d, l,r,b,t, -zdepth_max, +zdepth_max); // render all additive then translucent groups sprite_render_meshes_group(&sprite_group[0], GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, mvp2d ); sprite_render_meshes_group(&sprite_group[SPRITE_CENTERED], GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, mvp2d ); sprite_render_meshes_group(&sprite_group[SPRITE_CENTERED|SPRITE_ADDITIVE], GL_SRC_ALPHA, GL_ONE, mvp2d ); sprite_render_meshes_group(&sprite_group[SPRITE_ADDITIVE], GL_SRC_ALPHA, GL_ONE, mvp2d ); // restore rendering state glDisable(GL_DEPTH_TEST); glDisable(GL_BLEND); glDepthFunc(GL_LESS); glUseProgram(0); } } // ----------------------------------------------------------------------------- // tilemaps tilemap_t tilemap(const char *map, int blank_chr, int linefeed_chr) { tilemap_t t = {0}; t.tint = ~0u; // WHITE t.blank_chr = blank_chr; for( ; *map ; ++map ) { if( map[0] == linefeed_chr ) ++t.rows; else { array_push(t.map, map[0]); ++t.cols; } } return t; } void tilemap_render_ext( tilemap_t m, tileset_t t, float zindex, float xy_zoom[3], float tilt, unsigned tint, bool is_additive ) { vec3 old_pos = camera_get_active()->position; sprite_flush(); camera_get_active()->position = vec3(window_width()/2,window_height()/2,1); float scale[2] = {xy_zoom[2], xy_zoom[2]}; xy_zoom[2] = zindex; float offset[2] = {0,0}; float spritesheet[3] = {0,t.cols,t.rows}; // selected tile index and spritesheet dimensions (cols,rows) for( unsigned y = 0, c = 0; y < m.rows; ++y ) { for( unsigned x = 0; x < m.cols; ++x, ++c ) { if( m.map[c] != m.blank_chr ) { spritesheet[0] = m.map[c]; sprite_sheet(t.tex, spritesheet, xy_zoom, tilt, offset, scale, tint, is_additive ? SPRITE_ADDITIVE : 0); } offset[0] += t.tile_w; } offset[0] = 0, offset[1] += t.tile_h; } sprite_flush(); camera_get_active()->position = old_pos; } void tilemap_render( tilemap_t map, tileset_t set ) { map.position.x += set.tile_w; map.position.y += set.tile_h; tilemap_render_ext( map, set, map.zindex, &map.position.x, map.tilt, map.tint, map.is_additive ); } tileset_t tileset(texture_t tex, unsigned tile_w, unsigned tile_h, unsigned cols, unsigned rows) { tileset_t t = {0}; t.tex = tex; t.cols = cols, t.rows = rows; t.tile_w = tile_w, t.tile_h = tile_h; return t; } int ui_tileset( tileset_t t ) { ui_subimage(va("Selection #%d (%d,%d)", t.selected, t.selected % t.cols, t.selected / t.cols), t.tex.id, t.tex.w, t.tex.h, (t.selected % t.cols) * t.tile_w, (t.selected / t.cols) * t.tile_h, t.tile_w, t.tile_h); int choice; if( (choice = ui_image(0, t.tex.id, t.tex.w,t.tex.h)) ) { int px = ((choice / 100) / 100.f) * t.tex.w / t.tile_w; int py = ((choice % 100) / 100.f) * t.tex.h / t.tile_h; t.selected = px + py * t.cols; } // if( (choice = ui_buttons(3, "load", "save", "clear")) ) {} return t.selected; } // ----------------------------------------------------------------------------- // tiled tiled_t tiled(const char *file_tmx) { tiled_t zero = {0}, ti = zero; // read file and parse json if( !xml_push(file_tmx) ) return zero; // sanity checks bool supported = !strcmp(xml_string("/map/@orientation"), "orthogonal") && !strcmp(xml_string("/map/@renderorder"), "right-down"); if( !supported ) return xml_pop(), zero; // tileset const char *file_tsx = xml_string("/map/tileset/@source"); if( !xml_push(vfs_read(file_tsx)) ) return zero; const char *set_src = xml_string("/tileset/image/@source"); int set_w = xml_int("/tileset/@tilewidth"); int set_h = xml_int("/tileset/@tileheight"); int set_c = xml_int("/tileset/@columns"); int set_r = xml_int("/tileset/@tilecount") / set_c; tileset_t set = tileset(texture(set_src,0), set_w, set_h, set_c, set_r ); xml_pop(); // actual parsing ti.w = xml_int("/map/@width"); ti.h = xml_int("/map/@height"); ti.tilew = xml_int("/map/@tilewidth"); ti.tileh = xml_int("/map/@tileheight"); ti.first_gid = xml_int("/map/tileset/@firstgid"); ti.map_name = STRDUP( xml_string("/map/tileset/@source") ); // @leak for(int l = 0, layers = xml_count("/map/layer"); l < layers; ++l ) { if( strcmp(xml_string("/map/layer[%d]/data/@encoding",l), "base64") || strcmp(xml_string("/map/layer[%d]/data/@compression",l), "zlib") ) { PRINTF("Warning: layer encoding not supported: '%s' -> layer '%s'\n", file_tmx, *array_back(ti.names)); continue; } int cols = xml_int("/map/layer[%d]/@width",l); int rows = xml_int("/map/layer[%d]/@height",l); tilemap_t tm = tilemap("", ' ', '\n'); tm.blank_chr = ~0u; //ti.first_gid - 1; tm.cols = cols; tm.rows = rows; array_resize(tm.map, tm.cols * tm.rows); memset(tm.map, 0xFF, tm.cols * tm.rows * sizeof(int)); for( int c = 0, chunks = xml_count("/map/layer[%d]/data/chunk", l); c <= chunks; ++c ) { int cw, ch; int cx, cy; array(char) b64 = 0; if( !chunks ) { // non-infinite mode b64 = xml_blob("/map/layer[%d]/data/$",l); cw = tm.cols, ch = tm.rows; cx = 0, cy = 0; } else { // infinite mode b64 = xml_blob("/map/layer[%d]/data/chunk[%d]/$",l,c); cw = xml_int("/map/layer[%d]/data/chunk[%d]/@width",l,c), ch = xml_int("/map/layer[%d]/data/chunk[%d]/@height",l,c); // 20x20 cx = xml_int("/map/layer[%d]/data/chunk[%d]/@x",l,c), cy = xml_int("/map/layer[%d]/data/chunk[%d]/@y",l,c); // (-16,-32) cx = abs(cx), cy = abs(cy); } int outlen = cw * ch * 4; static __thread int *out = 0; out = (int *)REALLOC( 0, outlen + zexcess(COMPRESS_ZLIB) ); // @leak if( zdecode( out, outlen, b64, array_count(b64), COMPRESS_ZLIB ) > 0 ) { for( int y = 0, p = 0; y < ch; ++y ) { for( int x = 0; x < cw; ++x, ++p ) { if( out[p] >= ti.first_gid ) { int offset = (x + cx) + (y + cy) * tm.cols; if( offset >= 0 && offset < (cw * ch) ) tm.map[ offset ] = out[ p ] - ti.first_gid; } } } } else { PRINTF("Warning: bad zlib stream: '%s' -> layer #%d -> chunk #%d\n", file_tmx, l, c); } array_free(b64); } array_push(ti.layers, tm); array_push(ti.names, STRDUP(xml_string("/map/layer[%d]/@name",l))); array_push(ti.visible, true); array_push(ti.sets, set); } xml_pop(); return ti; } void tiled_render(tiled_t tmx, vec3 pos) { for( unsigned i = 0, end = array_count(tmx.layers); i < end; ++i ) { tmx.layers[i].position = pos; // add3(camera_get_active()->position, pos); if( tmx.parallax ) tmx.layers[i].position.x /= (3+i), tmx.layers[i].position.y /= (5+i); if( tmx.visible[i] ) tilemap_render(tmx.layers[i], tmx.sets[i]); } } void ui_tiled(tiled_t *t) { ui_label2("Loaded map", t->map_name ? t->map_name : "(none)"); ui_label2("Map dimensions", va("%dx%d", t->w, t->h)); ui_label2("Tile dimensions", va("%dx%d", t->tilew, t->tileh)); ui_separator(); ui_bool("Parallax", &t->parallax); ui_separator(); ui_label2("Layers", va("%d", array_count(t->layers))); for( int i = 0; i < array_count(t->layers); ++i ) { if( ui_label2_toolbar(va("- %s (%dx%d)", t->names[i], t->layers[i].cols, t->layers[i].rows ), t->visible[i] ? "\xee\xa3\xb4" : "\xee\xa3\xb5") > 0 ) { // ICON_MD_VISIBILITY / ICON_MD_VISIBILITY_OFF t->visible[i] ^= true; } } ui_separator(); if( ui_collapse(va("Sets: %d", array_count(t->layers)), va("%p",t))) { for( int i = 0; i < array_count(t->layers); ++i ) { if( ui_collapse(va("%d", i+1), va("%p%d",t,i)) ) { t->sets[i].selected = ui_tileset( t->sets[i] ); ui_collapse_end(); } } ui_collapse_end(); } } // ----------------------------------------------------------------------------- // spine json loader (wip) // - rlyeh, public domain // // [ref] http://es.esotericsoftware.com/spine-json-format // // notable misses: // - mesh deforms // - cubic beziers // - shears // - bounding boxes enum { SPINE_MAX_BONES = 64 }; // max bones typedef struct spine_bone_t { char *name, *parent; struct spine_bone_t *parent_bone; float z; // draw order usually matches bone-id. ie, zindex == bone_id .. root(0) < chest (mid) < finger(top) float len; float x, y, deg; // base float x2, y2, deg2; // accum / temporaries during bone transform time float x3, y3, deg3; // values from timeline unsigned rect_id; unsigned atlas_id; } spine_bone_t; typedef struct spine_slot_t { char *name, *bone, *attach; } spine_slot_t; typedef struct spine_rect_t { char *name; float x,y,w,h,sx,sy,deg; } spine_rect_t; typedef struct spine_skin_t { char *name; array(spine_rect_t) rects; } spine_skin_t; typedef struct spine_animkey_t { // offline; only during loading float time, curve[4]; // time is mandatory, curve is optional union { char *name; // type: attachment (mode-1) struct { float deg; }; // type: rotate (mode-2) struct { float x,y; }; // type: translate (mode-3) }; } spine_animkey_t; #if 0 typedef struct spine_pose_t { // runtime; only during playing unsigned frame; array(vec4) xform; // entry per bone. translation(x,y),rotation(z),attachment-id(w) } spine_pose_t; #endif typedef struct spine_anim_t { char *name; union { #if 0 struct { unsigned frames; array(spine_pose_t) poses; }; #endif struct { array(spine_animkey_t) attach_keys[SPINE_MAX_BONES]; array(spine_animkey_t) rotate_keys[SPINE_MAX_BONES]; array(spine_animkey_t) translate_keys[SPINE_MAX_BONES]; }; }; } spine_anim_t; typedef struct spine_atlas_t { char *name; float x,y,w,h,deg; } spine_atlas_t; typedef struct spine_t { char *name; texture_t texture; unsigned skin; array(spine_bone_t) bones; array(spine_slot_t) slots; array(spine_skin_t) skins; array(spine_anim_t) anims; array(spine_atlas_t) atlas; // anim controller unsigned inuse; float time, maxtime; unsigned debug_atlas_id; } spine_t; // --- static void spine_convert_animkeys_to_animpose(spine_anim_t *input) { spine_anim_t copy = *input; // @todo // @leak: attach/rot/tra keys } static int find_bone_id(spine_t *s, const char *bone_name) { for( unsigned i = 0, end = array_count(s->bones); i < end; ++i ) if( !strcmp(s->bones[i].name, bone_name)) return i; return -1; } static spine_bone_t *find_bone(spine_t *s, const char *bone_name) { int bone_id = find_bone_id(s, bone_name); return bone_id >= 0 ? &s->bones[bone_id] : NULL; } void spine_skin(spine_t *p, unsigned skin) { if( !p->texture.id ) return; if( skin >= array_count(p->skins) ) return; p->skin = skin; char *skin_name = va("%s/", p->skins[skin].name); int header = strlen(skin_name); for( int i = 0; i < array_count(p->atlas); ++i) { if(!strbeg(p->atlas[i].name, skin_name)) continue; int bone_id = find_bone_id(p, p->atlas[i].name+header ); if( bone_id < 0 ) continue; p->bones[bone_id].atlas_id = i; } for( int i = 0; i < array_count(p->skins[p->skin].rects); ++i) { int bone_id = find_bone_id(p, p->skins[p->skin].rects[i].name ); if( bone_id < 0 ) continue; p->bones[bone_id].rect_id = i; } } static bool spine_(spine_t *t, const char *file_json, const char *file_atlas, unsigned flags) { char *atlas = vfs_read(file_atlas); if(!atlas || !atlas[0]) return false; memset(t, 0, sizeof(spine_t)); // goblins.png // size: 1024, 128 // filter: Linear, Linear // pma: true // dagger // bounds: 2, 18, 26, 108 // goblin/eyes-closed // bounds: 2, 4, 34, 12 spine_atlas_t *sa = 0; const char *last_id = 0; const char *texture_name = 0; const char *texture_filter = 0; const char *texture_format = 0; const char *texture_repeat = 0; float texture_width = 0, texture_height = 0, temp; for each_substring(atlas, "\r\n", it) { it += strspn(it, " \t\f\v"); /**/ if( strbeg(it, "pma:" ) || strbeg(it, "index:") ) {} // ignored else if( strbeg(it, "size:" ) ) sscanf(it+5, "%f,%f", &texture_width, &texture_height); else if( strbeg(it, "rotate:" ) ) { float tmp; tmp=sa->w,sa->w=sa->h,sa->h=tmp; sa->deg = 90; } // assert(val==90) else if( strbeg(it, "repeat:" ) ) texture_repeat = it+7; // temp string else if( strbeg(it, "filter:" ) ) texture_filter = it+7; // temp string else if( strbeg(it, "format:" ) ) texture_format = it+7; // temp string else if( strbeg(it, "bounds:" ) ) { sscanf(it+7, "%f,%f,%f,%f", &sa->x, &sa->y, &sa->w, &sa->h); } else if( !texture_name ) texture_name = va("%s", it); else { array_push(t->atlas, ((spine_atlas_t){0}) ); sa = &t->atlas[array_count(t->atlas) - 1]; sa->name = STRDUP(it); } } for( int i = 0; i < array_count(t->atlas); ++i ) { sa = &t->atlas[i]; sa->x /= texture_width, sa->y /= texture_height; sa->w /= texture_width, sa->h /= texture_height; } if(!texture_name) return false; t->texture = texture(texture_name, TEXTURE_LINEAR); json_push(vfs_read(file_json)); // @fixme: json_push_from_file() ? array_resize(t->bones, json_count("/bones")); array_reserve(t->slots, json_count("/slots")); array_resize(t->skins, json_count("/skins")); array_resize(t->anims, json_count("/animations")); for( int i = 0, end = json_count("/bones"); i < end; ++i ) { spine_bone_t v = {0}; v.name = STRDUP(json_string("/bones[%d]/name", i)); v.parent = STRDUP(json_string("/bones[%d]/parent", i)); v.x = json_float("/bones[%d]/x", i); v.y = json_float("/bones[%d]/y", i); v.z = i; v.len = json_float("/bones[%d]/length", i); v.deg = json_float("/bones[%d]/rotation", i); t->bones[i] = v; for( int j = i-1; j > 0; --j ) { if( strcmp(t->bones[j].name,v.parent) ) continue; t->bones[i].parent_bone = &t->bones[j]; break; } } for( int i = 0, end = json_count("/slots"); i < end; ++i ) { spine_slot_t v = {0}; v.name = STRDUP(json_string("/slots[%d]/name", i)); v.bone = STRDUP(json_string("/slots[%d]/bone", i)); v.attach = STRDUP(json_string("/slots[%d]/attachment", i)); array_push(t->slots, v); // slots define draw-order. so, update draw-order/zindex in bone spine_bone_t *b = find_bone(t, v.name); if( b ) b->z = i; } for( int i = 0, end = json_count("/skins"); i < end; ++i ) { spine_skin_t v = {0}; v.name = STRDUP(json_string("/skins[%d]/name", i)); for( int j = 0, jend = json_count("/skins[%d]/attachments",i); j < jend; ++j ) // /skins/default/ for( int k = 0, kend = json_count("/skins[%d]/attachments[%d]",i,j); k < kend; ++k ) { // /skins/default/left hand item/ spine_rect_t r = {0}; r.name = STRDUP(json_key("/skins[%d]/attachments[%d][%d]",i,j,k)); // stringf("%s-%s-%s", json_key("/skins[%d]",i), json_key("/skins[%d][%d]",i,j), json_key("/skins[%d][%d][%d]",i,j,k)); r.x = json_float("/skins[%d]/attachments[%d][%d]/x",i,j,k); r.y = json_float("/skins[%d]/attachments[%d][%d]/y",i,j,k); r.sx= json_float("/skins[%d]/attachments[%d][%d]/scaleX",i,j,k); r.sx += !r.sx; r.sy= json_float("/skins[%d]/attachments[%d][%d]/scaleY",i,j,k); r.sy += !r.sy; r.w = json_float("/skins[%d]/attachments[%d][%d]/width",i,j,k); r.h = json_float("/skins[%d]/attachments[%d][%d]/height",i,j,k); r.deg = json_float("/skins[%d]/attachments[%d][%d]/rotation",i,j,k); array_push(v.rects, r); } t->skins[i] = v; } #if 1 // simplify: // merge /skins/default into existing /skins/*, then delete /skins/default if( array_count(t->skins) > 1 ) { for( int i = 1; i < array_count(t->skins); ++i ) { for( int j = 0; j < array_count(t->skins[0].rects); ++j ) { array_push(t->skins[i].rects, t->skins[0].rects[j]); } } // @leak @fixme: FREE(t->skins[0]) for( int i = 0; i < array_count(t->skins)-1; ++i ) { t->skins[i] = t->skins[i+1]; } array_pop(t->skins); } #endif for( int i = 0, end = json_count("/animations"); i < end; ++i ) { int id; const char *name; spine_anim_t v = {0}; v.name = STRDUP(json_key("/animations[%d]", i)); // slots / attachments for( int j = 0, jend = json_count("/animations[%d]/slots",i); j < jend; ++j ) for( int k = 0, kend = json_count("/animations[%d]/slots[%d]",i,j); k < kend; ++k ) // ids { int bone_id = find_bone_id(t, json_key("/animations[%d]/bones[%d]",i,j)); if( bone_id < 0 ) continue; for( int l = 0, lend = json_count("/animations[%d]/slots[%d][%d]",i,j,k); l < lend; ++l ) { // channels (rot,tra,attach) spine_animkey_t key = {0}; key.name = STRDUP(json_string("/animations[%d]/slots[%d][%d][%d]/name",i,j,k,l)); key.time = json_float("/animations[%d]/slots[%d][%d][%d]/time",i,j,k,l); if( json_count("/animations[%d]/slots[%d][%d][%d]/curve",i,j,k,l) == 4 ) { key.curve[0] = json_float("/animations[%d]/slots[%d][%d][%d]/curve[0]",i,j,k,l); key.curve[1] = json_float("/animations[%d]/slots[%d][%d][%d]/curve[1]",i,j,k,l); key.curve[2] = json_float("/animations[%d]/slots[%d][%d][%d]/curve[2]",i,j,k,l); key.curve[3] = json_float("/animations[%d]/slots[%d][%d][%d]/curve[3]",i,j,k,l); } // @todo: convert name to id // for(id = 0; t->bones[id].name && strcmp(t->bones[id].name,key.name); ++id) // printf("%s vs %s\n", key.name, t->bones[id].name); array_push(v.attach_keys[bone_id], key); } } // bones for( int j = 0, jend = json_count("/animations[%d]/bones",i); j < jend; ++j ) // slots or bones for( int k = 0, kend = json_count("/animations[%d]/bones[%d]",i,j); k < kend; ++k ) { // bone ids int bone_id = find_bone_id(t, json_key("/animations[%d]/bones[%d]",i,j)); if( bone_id < 0 ) continue; // parse bones for( int l = 0, lend = json_count("/animations[%d]/bones[%d][%d]",i,j,k); l < lend; ++l ) { // channels (rot,tra,attach) const char *channel = json_key("/animations[%d]/bones[%d][%d]",i,j,k); int track = !strcmp(channel, "rotate") ? 1 : !strcmp(channel, "translate") ? 2 : 0; if( !track ) continue; spine_animkey_t key = {0}; key.time = json_float("/animations[%d]/bones[%d][%d][%d]/time",i,j,k,l); if( json_count("/animations[%d]/bones[%d][%d][%d]/curve",i,j,k,l) == 4 ) { key.curve[0] = json_float("/animations[%d]/bones[%d][%d][%d]/curve[0]",i,j,k,l); key.curve[1] = json_float("/animations[%d]/bones[%d][%d][%d]/curve[1]",i,j,k,l); key.curve[2] = json_float("/animations[%d]/bones[%d][%d][%d]/curve[2]",i,j,k,l); key.curve[3] = json_float("/animations[%d]/bones[%d][%d][%d]/curve[3]",i,j,k,l); } if( track == 1 ) key.deg = json_float("/animations[%d]/bones[%d][%d][%d]/value",i,j,k,l), // "/angle" array_push(v.rotate_keys[bone_id], key); else key.x = json_float("/animations[%d]/bones[%d][%d][%d]/x",i,j,k,l), key.y = json_float("/animations[%d]/bones[%d][%d][%d]/y",i,j,k,l), array_push(v.translate_keys[bone_id], key); } } t->anims[i] = v; } json_pop(); spine_skin(t, 0); return true; } spine_t* spine(const char *file_json, const char *file_atlas, unsigned flags) { spine_t *t = MALLOC(sizeof(spine_t)); if( !spine_(t, file_json, file_atlas, flags) ) return FREE(t), NULL; return t; } void spine_render(spine_t *p, vec3 offset, unsigned flags) { if( !p->texture.id ) return; if( !flags ) return; ddraw_push_2d(); // if( flags & 2 ) ddraw_line(vec3(0,0,0), vec3(window_width(),window_height(),0)); // if( flags & 2 ) ddraw_line(vec3(window_width(),0,0), vec3(0,window_height(),0)); // int already_computed[SPINE_MAX_BONES] = {0}; // @fixme: optimize: update longest chains first, then remnant branches for( int i = 1; i < array_count(p->bones); ++i ) { spine_bone_t *self = &p->bones[i]; if( !self->rect_id ) continue; int num_bones = 0; static array(spine_bone_t*) chain = 0; array_resize(chain, 0); for( spine_bone_t *next = self; next ; next = next->parent_bone, ++num_bones ) { array_push(chain, next); } vec3 target = {0}, prev = {0}; for( int j = 0, end = array_count(chain); j < end; ++j ) { // traverse from root(skipped) -> `i` bone direction int j_opposite = end - 1 - j; spine_bone_t *b = chain[j_opposite]; // bone spine_bone_t *pb = b->parent_bone; // parent bone float pb_x2 = 0, pb_y2 = 0, pb_deg2 = 0; if( pb ) pb_x2 = pb->x2, pb_y2 = pb->y2, pb_deg2 = pb->deg2; const float deg2rad = C_PI / 180; b->x2 = b->x3 + pb_x2 + b->x * cos( -pb_deg2 * deg2rad ) - b->y * sin( -pb_deg2 * deg2rad ); b->y2 = -b->y3 + pb_y2 - b->y * cos( pb_deg2 * deg2rad ) + b->x * sin( pb_deg2 * deg2rad ); b->deg2 = -b->deg3 + pb_deg2 - b->deg; prev = target; target = vec3(b->x2,b->y2,b->deg2); } target.z = 0; target = add3(target, offset); prev.z = 0; prev = add3(prev, offset); if( flags & 2 ) { ddraw_point( target ); ddraw_text( target, -0.25f, self->name ); ddraw_bone( prev, target ); // from parent to bone } if( flags & 1 ) { spine_atlas_t *a = &p->atlas[self->atlas_id]; spine_rect_t *r = &p->skins[p->skin].rects[self->rect_id]; vec4 rect = ptr4(&a->x); float zindex = self->z; float offsx = 0; float offsy = 0; float tilt = self->deg2 + (a->deg - r->deg); unsigned tint = self->atlas_id == p->debug_atlas_id ? 0xFF<<24 | 0xFF : ~0u; if( 1 ) { vec3 dir = vec3(r->x,r->y,0); dir = rotatez3(dir, self->deg2); offsx = dir.x * r->sx; offsy = dir.y * r->sy; } sprite_rect(p->texture, rect, vec4(target.x,target.y,0,zindex), vec4(1,1,offsx,offsy), tilt, tint, 0); } } ddraw_pop_2d(); ddraw_flush(); } static void spine_animate_(spine_t *p, float *time, float *maxtime, float delta) { if( !p->texture.id ) return; if( delta > 1/120.f ) delta = 1/120.f; if( *time >= *maxtime ) *time = 0; else *time += delta; // reset root // needed? p->bones[0].x2 = 0; p->bones[0].y2 = 0; p->bones[0].deg2 = 0; p->bones[0].x3 = 0; p->bones[0].y3 = 0; p->bones[0].deg3 = 0; for( int i = 0, end = array_count(p->bones); i < end; ++i) { // @todo: attach channel // @todo: per channel: if curve == linear || curve == stepped || array_count(curve) == 4 {...} for each_array_ptr(p->anims[p->inuse].rotate_keys[i], spine_animkey_t, r) { double r0 = r->time; *maxtime = maxf( *maxtime, r0 ); if( absf(*time - r0) < delta ) { p->bones[i].deg3 = r->deg; } } for each_array_ptr(p->anims[p->inuse].translate_keys[i], spine_animkey_t, r) { double r0 = r->time; *maxtime = maxf( *maxtime, r0 ); if( absf(*time - r0) < delta ) { p->bones[i].x3 = r->x; p->bones[i].y3 = r->y; } } } } void spine_animate(spine_t *p, float delta) { spine_animate_(p, &p->time, &p->maxtime, delta); } void ui_spine(spine_t *p) { if( ui_collapse(va("Anims: %d", array_count(p->anims)), va("%p-a", p))) { for each_array_ptr(p->anims, spine_anim_t, q) { if(ui_slider2("", &p->time, va("%.2f/%.0f %.2f%%", p->time, p->maxtime, p->time * 100.f))) { spine_animate(p, 0); } int choice = ui_label2_toolbar(q->name, ICON_MD_PAUSE_CIRCLE " " ICON_MD_PLAY_CIRCLE); if( choice == 1 ) window_pause( 0 ); // play if( choice == 2 ) window_pause( 1 ); // pause for( int i = 0; i < SPINE_MAX_BONES; ++i ) { ui_separator(); ui_label(va("Bone %d: Attachment keys", i)); for each_array_ptr(q->attach_keys[i], spine_animkey_t, r) { ui_label(va("%.2f [%.2f %.2f %.2f %.2f] %s", r->time, r->curve[0], r->curve[1], r->curve[2], r->curve[3], r->name)); } ui_label(va("Bone %d: Rotate keys", i)); for each_array_ptr(q->rotate_keys[i], spine_animkey_t, r) { ui_label(va("%.2f [%.2f %.2f %.2f %.2f] %.2f deg", r->time, r->curve[0], r->curve[1], r->curve[2], r->curve[3], r->deg)); } ui_label(va("Bone %d: Translate keys", i)); for each_array_ptr(q->translate_keys[i], spine_animkey_t, r) { ui_label(va("%.2f [%.2f %.2f %.2f %.2f] (%.2f,%.2f)", r->time, r->curve[0], r->curve[1], r->curve[2], r->curve[3], r->x, r->y)); } } } ui_collapse_end(); } if( ui_collapse(va("Bones: %d", array_count(p->bones)), va("%p-b", p))) { for each_array_ptr(p->bones, spine_bone_t, q) if( ui_collapse(q->name, va("%p-b2", q)) ) { ui_label2("Parent:", q->parent); ui_label2("X:", va("%.2f", q->x)); ui_label2("Y:", va("%.2f", q->y)); ui_label2("Length:", va("%.2f", q->len)); ui_label2("Rotation:", va("%.2f", q->deg)); ui_collapse_end(); } ui_collapse_end(); } if( ui_collapse(va("Slots: %d", array_count(p->slots)), va("%p-s", p))) { for each_array_ptr(p->slots, spine_slot_t, q) if( ui_collapse(q->name, va("%p-s2", q)) ) { ui_label2("Bone:", q->bone); ui_label2("Attachment:", q->attach); ui_collapse_end(); } ui_collapse_end(); } if( ui_collapse(va("Skins: %d", array_count(p->skins)), va("%p-k", p))) { for each_array_ptr(p->skins, spine_skin_t, q) if( ui_collapse(q->name, va("%p-k2", q)) ) { for each_array_ptr(q->rects, spine_rect_t, r) if( ui_collapse(r->name, va("%p-k3", r)) ) { ui_label2("X:", va("%.2f", r->x)); ui_label2("Y:", va("%.2f", r->y)); ui_label2("Scale X:", va("%.2f", r->sx)); ui_label2("Scale Y:", va("%.2f", r->sy)); ui_label2("Width:", va("%.2f", r->w)); ui_label2("Height:", va("%.2f", r->h)); ui_label2("Rotation:", va("%.2f", r->deg)); ui_collapse_end(); spine_bone_t *b = find_bone(p, r->name); if( b ) { p->debug_atlas_id = b->atlas_id; static float tilt = 0; if( input(KEY_LCTRL) ) tilt += 60*1/60.f; else tilt = 0; spine_atlas_t *r = p->atlas + b->atlas_id; sprite_flush(); camera_get_active()->position = vec3(0,0,2); vec4 rect = ptr4(&r->x); float zindex = 0; vec4 scale_offset = vec4(1,1,0,0); sprite_rect(p->texture, ptr4(&r->x), vec4(0,0,0,zindex), scale_offset, r->deg + tilt, ~0u, 0); sprite_flush(); camera_get_active()->position = vec3(+window_width()/3,window_height()/2.25,2); } } ui_collapse_end(); } ui_collapse_end(); } if( ui_int("Use skin", &p->skin) ) { p->skin = clampf(p->skin, 0, array_count(p->skins) - 1); spine_skin(p, p->skin); } if( p->texture.id ) ui_texture(0, p->texture); } // ---------------------------------------------------------------------------- // texture_t texture_createclip(unsigned cx,unsigned cy,unsigned cw,unsigned ch, unsigned tw,unsigned th,unsigned tn,void *pixels, unsigned flags) { // return texture_create(tw,th,tn,pixels,flags); // static array(unsigned) clip = 0; // array_resize(clip, cw*ch*4); // for( unsigned y = 0; y < ch; ++y ) // memcpy((char *)clip + (0+(0+y)*cw)*tn, (char*)pixels + (cx+(cy+y)*tw)*tn, cw*tn); // return texture_create(cw,ch,tn,clip,flags); // } typedef unsigned quark_t; #define array_reserve_(arr,x) (array_count(arr) > (x) ? (arr) : array_resize(arr, 1+(x))) #define ui_array(label,type,ptr) do { \ int changed = 0; \ if( ui_collapse(label, va(#type "%p",ptr)) ) { \ char label_ex[8]; \ for( int idx = 0, iend = array_count(*(ptr)); idx < iend; ++idx ) { \ type* it = *(ptr) + idx; \ snprintf(label_ex, sizeof(label_ex), "[%d]", idx); \ changed |= ui_##type(label_ex, it); \ } \ ui_collapse_end(); \ } \ } while(0) int ui_vec2i(const char *label, vec2i *v) { return ui_unsigned2(label, (unsigned*)v); } int ui_vec3i(const char *label, vec3i *v) { return ui_unsigned3(label, (unsigned*)v); } int ui_vec2(const char *label, vec2 *v) { return ui_float2(label, (float*)v); } int ui_vec3(const char *label, vec3 *v) { return ui_float3(label, (float*)v); } int ui_vec4(const char *label, vec4 *v) { return ui_float4(label, (float*)v); } char *trimspace(char *str) { for( char *s = str; *s; ++s ) if(*s <= 32) memmove(s, s+1, strlen(s)); return str; } char *file_parent(const char *f) { // folder/folder/abc char *p = file_path(f); // folder/folder/ char *last = strrchr(p, '/'); // ^ if( !last ) return p; // return parent if no sep *last = '\0'; // folder/folder last = strrchr(p, '/'); // ^ return last ? last + 1 : p; // return parent if no sep } int ui_obj(const char *fmt, obj *o) { int changed = 0, item = 1; for each_objmember(o, TYPE,NAME,PTR) { char *label = va(fmt, NAME); /**/ if(!strcmp(TYPE,"float")) { if(ui_float(label, PTR)) changed = item; } else if(!strcmp(TYPE,"int")) { if(ui_int(label, PTR)) changed = item; } else if(!strcmp(TYPE,"unsigned")) { if(ui_unsigned(label, PTR)) changed = item; } else if(!strcmp(TYPE,"vec2")) { if(ui_float2(label, PTR)) changed = item; } else if(!strcmp(TYPE,"vec3")) { if(ui_float3(label, PTR)) changed = item; } else if(!strcmp(TYPE,"vec4")) { if(ui_float4(label, PTR)) changed = item; } else if(!strcmp(TYPE,"rgb")) { if(ui_color3(label, PTR)) changed = item; } else if(!strcmp(TYPE,"rgba")) { if(ui_color4(label, PTR)) changed = item; } else if(!strcmp(TYPE,"color")) { if(ui_color4f(label, PTR)) changed = item; } else if(!strcmp(TYPE,"color3f")) { if(ui_color3f(label, PTR)) changed = item; } else if(!strcmp(TYPE,"color4f")) { if(ui_color4f(label, PTR)) changed = item; } else if(!strcmp(TYPE,"char*")) { if(ui_string(label, PTR)) changed = item; } else ui_label2(label, va("(%s)", TYPE)); // INFO instead of (TYPE)? ++item; } return changed; } #define OBJTYPEDEF2(...) OBJTYPEDEF(__VA_ARGS__); AUTORUN // ---------------------------------------------------------------------------- // atlas int ui_atlas_frame(atlas_frame_t *f) { ui_unsigned("delay", &f->delay); ui_vec4("sheet", &f->sheet); ui_array("indices", vec3i, &f->indices); ui_array("coords", vec2, &f->coords); ui_array("uvs", vec2, &f->uvs); return 0; } int ui_atlas_slice_frame(atlas_slice_frame_t *f) { ui_vec4("bounds", &f->bounds); ui_bool("9-slice", &f->has_9slice); ui_vec4("core", &f->core); return 0; } int ui_atlas(atlas_t *a) { int changed = 0; ui_texture(NULL, a->tex); for( int i = 0; i < array_count(a->anims); ++i ) { if( ui_collapse(quark_string(&a->db, a->anims[i].name), va("%p%d", a, a->anims[i].name) ) ) { changed = i+1; for( int j = 0; j < array_count(a->anims[i].frames); ++j ) { if( ui_collapse(va("[%d]",j), va("%p%d.%d", a, a->anims[i].name,j) ) ) { ui_unsigned("Frame", &a->anims[i].frames[j]); ui_atlas_frame(a->frames + a->anims[i].frames[j]); ui_collapse_end(); } } ui_collapse_end(); } } for( int i = 0; i < array_count(a->slices); ++i ) { if( ui_collapse(quark_string(&a->db, a->slices[i].name), va("%p%d", a, a->slices[i].name) ) ) { changed = i+1; for( int j = 0; j < array_count(a->slices[i].frames); ++j ) { if( ui_collapse(va("[%d]",j), va("%p%d.%d", a, a->slices[i].name,j) ) ) { // ui_unsigned("Frame", &a->slices[i].frames[j]); ui_atlas_slice_frame(a->slice_frames + a->slices[i].frames[j]); ui_collapse_end(); } } ui_collapse_end(); } } return changed; } void atlas_destroy(atlas_t *a) { if( a ) { texture_destroy(&a->tex); memset(a, 0, sizeof(atlas_t)); } } atlas_t atlas_create(const char *inifile, unsigned flags) { atlas_t a = {0}; int padding = 0, border = 0; ini_t kv = ini(inifile); for each_map(kv, char*,k, char*,v ) { unsigned index = atoi(k); // printf("aaa %s=%s\n", k, v); /**/ if( strend(k, ".name") ) { array_reserve_(a.anims, index); a.anims[index].name = quark_intern(&a.db, v); } else if ( strend(k, ".sl_name") ) { array_reserve_(a.slices, index); a.slices[index].name = quark_intern(&a.db, v); } else if ( strend(k, ".sl_frames") ) { array_reserve_(a.slices, index); const char *text = v; array(char*) frames = strsplit(text, ","); for( int i = 0; i < array_count(frames); i++ ) { unsigned frame = atoi(frames[i]); array_push(a.slices[index].frames, frame); } } else if ( strend(k, ".sl_bounds") ) { array_reserve_(a.slice_frames, index); float x,y,z,w; sscanf(v, "%f,%f,%f,%f", &x, &y, &z, &w); a.slice_frames[index].bounds = vec4(x,y,x+z,y+w); } else if ( strend(k, ".sl_9slice") ) { array_reserve_(a.slice_frames, index); a.slice_frames[index].has_9slice = atoi(v); } else if ( strend(k, ".sl_core") ) { array_reserve_(a.slice_frames, index); float x,y,z,w; sscanf(v, "%f,%f,%f,%f", &x, &y, &z, &w); a.slice_frames[index].core = vec4(x,y,x+z,y+w); } else if( strend(k, ".frames") ) { array_reserve_(a.anims, index); array(char*) pairs = strsplit(v, ","); for( int i = 0, end = array_count(pairs); i < end; i += 2 ) { unsigned frame = atoi(pairs[i]); unsigned delay = atoi(pairs[i+1]); array_reserve_(a.frames, frame); a.frames[frame].delay = delay; array_push(a.anims[index].frames, frame); } } else if( strend(k, ".sheet") ) { array_reserve_(a.frames, index); vec4 sheet = atof4(v); //x,y,x2+2,y2+2 -> x,y,w,h (for 2,2 padding) a.frames[index].sheet = vec4(sheet.x,sheet.y,sheet.z-sheet.x,sheet.w-sheet.y); } else if( strend(k, ".indices") ) { array_reserve_(a.frames, index); const char *text = v; array(char*) tuples = strsplit(text, ","); for( int i = 0, end = array_count(tuples); i < end; i += 3 ) { unsigned p1 = atoi(tuples[i]); unsigned p2 = atoi(tuples[i+1]); unsigned p3 = atoi(tuples[i+2]); array_push(a.frames[index].indices, vec3i(p1,p2,p3)); } } else if( strend(k, ".coords") ) { array_reserve_(a.frames, index); const char *text = v; array(char*) pairs = strsplit(text, ","); for( int i = 0, end = array_count(pairs); i < end; i += 2 ) { unsigned x = atoi(pairs[i]); unsigned y = atoi(pairs[i+1]); array_push(a.frames[index].coords, vec2(x,y)); } } else if( strend(k, ".uvs") ) { array_reserve_(a.frames, index); const char *text = v; array(char*) pairs = strsplit(text, ","); for( int i = 0, end = array_count(pairs); i < end; i += 2 ) { unsigned u = atoi(pairs[i]); unsigned v = atoi(pairs[i+1]); array_push(a.frames[index].uvs, vec2(u,v)); } } else if( strend(k, "padding") ) { padding = atoi(v); } else if( strend(k, "border") ) { border = atoi(v); } else if( strend(k, "file") ) { a.tex = texture(v, 0); } else if( strend(k, "bitmap") ) { const char *text = v; array(char) bin = base64_decode(text, strlen(text)); a.tex = texture_from_mem(bin, array_count(bin), 0); array_free(bin); } #if 0 else if( strend(k, ".frame") ) { array_reserve_(a.frames, index); puts(k), puts(v); } #endif } // post-process: normalize uvs and coords into [0..1] ranges for each_array_ptr(a.frames, atlas_frame_t, f) { for each_array_ptr(f->uvs, vec2, uv) { uv->x /= a.tex.w; uv->y /= a.tex.h; } for each_array_ptr(f->coords, vec2, xy) { xy->x /= a.tex.w; xy->y /= a.tex.h; } // @todo: adjust padding/border } for each_array_ptr(a.slice_frames, atlas_slice_frame_t, f) { f->bounds.x += padding+border; f->bounds.y += padding+border; f->bounds.z += padding+border; f->bounds.w += padding+border; // f->core.x += f->bounds.x; // f->core.y += f->bounds.y; // f->core.z += f->bounds.x; // f->core.w += f->bounds.y; } #if 0 // post-process: specify an anchor for each anim based on 1st frame dims for each_array_ptr(a.anims, atlas_anim_t, anim) { atlas_frame_t *first = a.frames + *anim->frames; for( int i = 0; i < array_count(anim->frames); i += 2) { atlas_frame_t *ff = a.frames + anim->frames[ i ]; ff->anchor.x = (ff->sheet.z - first->sheet.z) / 2; ff->anchor.y = (ff->sheet.w - first->sheet.w) / 2; } } #endif return a; } // ---------------------------------------------------------------------------- // sprite v2 void sprite_ctor(sprite_t *s) { s->tint = WHITE; s->timer_ms = 100; s->flipped = 1; s->sca.x += !s->sca.x; s->sca.y += !s->sca.y; } void sprite_dtor(sprite_t *s) { memset(s, 0, sizeof(*s)); } void sprite_tick(sprite_t *s) { int right = input(s->gamepad.array[3]) - input(s->gamepad.array[2]); // RIGHT - LEFT int forward = input(s->gamepad.array[1]) - input(s->gamepad.array[0]); // DOWN - UP int move = right || forward; int dt = 16; // window_delta() * 1000; unsigned over = (s->timer - dt) > s->timer; if(!s->paused) s->timer -= dt; if( over ) { int len = array_count(s->a->anims[s->play].frames); unsigned next = (s->frame + 1) % (len + !len); unsigned eoa = next < s->frame; s->frame = next; atlas_frame_t *f = &s->a->frames[ s->a->anims[s->play].frames[s->frame] ]; s->timer_ms = f->delay; s->timer += s->timer_ms; } if( s->play == 0 && move ) sprite_setanim(s, 1); if( s->play == 1 ) { //< if(right) s->flip_ = right < 0, sprite_setanim(s, 1); if(!right && !forward) sprite_setanim(s, 0); float speed = s->sca.x*2; s->pos = add4(s->pos, scale4(norm4(vec4(right,0,forward,0)),speed)); } } void sprite_draw(sprite_t *s) { atlas_frame_t *f = &s->a->frames[ s->a->anims[s->play].frames[s->frame] ]; #if 1 // @todo { unsigned sample = s->a->anims[s->play].frames[s->frame]; sample = 0; f->anchor.x = (-s->a->frames[sample].sheet.z + f->sheet.z) / 2; f->anchor.y = (+s->a->frames[sample].sheet.w - f->sheet.w) / 2; // } #endif // rect(x,y,w,h) is [0..1] normalized, z-index, pos(x,y,scale), rotation (degrees), color (rgba) vec4 rect = { f->sheet.x / s->a->tex.w, f->sheet.y / s->a->tex.h, f->sheet.z / s->a->tex.w, f->sheet.w / s->a->tex.h }; sprite_rect(s->a->tex, rect, s->pos, vec4(s->flip_ ^ s->flipped?s->sca.x:-s->sca.x,s->sca.y,f->anchor.x,f->anchor.y), s->tilt, s->tint, 0|SPRITE_PROJECTED); } void sprite_edit(sprite_t *s) { const char *name = obj_name(s); const char *id = vac("%p", s); if( s && ui_collapse(name ? name : id, id) ) { ui_obj("%s", (obj*)s); ui_bool("paused", &s->paused); ui_label(va("frame anim [%d]", s->a->anims[s->play].frames[s->frame])); int k = s->play; if( ui_int("anim", &k) ) { sprite_setanim(s, k); } int selected = ui_atlas(s->a); if( selected ) sprite_setanim(s, selected - 1); ui_collapse_end(); } } sprite_t* sprite_new(const char *ase, int bindings[6]) { sprite_t *s = obj_new(sprite_t, {bindings[0],bindings[1],bindings[2],bindings[3]}, {bindings[4],bindings[5]}); atlas_t own = atlas_create(ase, 0); memcpy(s->a = MALLOC(sizeof(atlas_t)), &own, sizeof(atlas_t)); // s->a = &s->own; return s; } void sprite_del(sprite_t *s) { if( s ) { if( s->a ) atlas_destroy(s->a), FREE(s->a); // if( s->a == &s->own ) obj_free(s); memset(s, 0, sizeof(sprite_t)); } } void sprite_setanim(sprite_t *s, unsigned name) { if( s->play != name ) { s->play = name; s->frame = 0; atlas_frame_t *f = &s->a->frames[ s->a->anims[s->play].frames[s->frame] ]; s->timer_ms = f->delay; s->timer = s->timer_ms; } } AUTORUN { STRUCT(sprite_t, vec4, pos); STRUCT(sprite_t, vec2, sca); STRUCT(sprite_t, float, tilt); STRUCT(sprite_t, vec4, gamepad); STRUCT(sprite_t, vec2, fire); STRUCT(sprite_t, rgba, tint); STRUCT(sprite_t, unsigned, frame); STRUCT(sprite_t, unsigned, timer); STRUCT(sprite_t, unsigned, timer_ms); STRUCT(sprite_t, unsigned, flipped); STRUCT(sprite_t, unsigned, play); EXTEND_T(sprite, ctor,edit,draw,tick); }