/* A mathematical expression evaluator. * It uses a recursive descent parser internally. * Author: Werner Stoop * This is free and unencumbered software released into the public domain. * http://unlicense.org/ */ #include #include #include /* remember to compile with -lm */ #include #include #include /* Special tokens used by the lexer function lex() * they've been chosen as non-printable characters * so that printable characters can be used for other * purposes */ #define TOK_END 0 /* end of text */ #define TOK_INI 1 /* Initial state */ #define TOK_ID 2 /* identifier */ #define TOK_NUM 3 /* number */ /* Types of errors */ // 0 /* "no error" */ #define ERR_MEMORY 1 /* "out of memory" */ #define ERR_LEXER 2 /* "unknown token" */ #define ERR_LONGID 3 /* "identifier too long" */ #define ERR_VALUE 4 /* "value expected" */ #define ERR_BRACKET 5 /* "missing ')'" */ #define ERR_FUNC 6 /* "unknown function" */ #define ERR_ARGS 7 /* "wrong number of arguments" */ #define ERR_CONST 8 /* "unknown constant" */ /* Other definitions */ #define MAX_ID_LEN 11 /* Max length of an identifier */ #define OPERATORS "+-*/%(),^" /* Valid operators */ #define EVAL_PI 3.141592654 #define EVAL_E 2.718281828 #define EVAL_DEG (EVAL_PI/180) /* Internal structure for the parser/evaluator */ struct eval { jmp_buf j; /* For error handling */ const char *p; /* Position in the text being parsed */ double *st; /* Stack */ int st_size; /* Stack size */ int sp; /* Stack pointer */ /* The current and next tokens identified by the lexer */ struct { int type; /* Type of the token */ double n_val; /* Numeric value of the previous lexed token */ char s_val[MAX_ID_LEN]; /* String (identifier) value of the previous lexed token */ } token[2]; int cur_tok; /* Current token, either 0 or 1 (see the comments of lex()) */ }; /* Prototypes */ static double pop(struct eval *ev); static void push(struct eval *ev, double d); static int lex(struct eval *ev); /* Prototypes for the recursive descent parser */ static void expr(struct eval *ev); static void add_expr(struct eval *ev); static void mul_expr(struct eval *ev); static void pow_expr(struct eval *ev); static void uni_expr(struct eval *ev); static void bra_expr(struct eval *ev); static void id_expr(struct eval *ev); static void num_expr(struct eval *ev); /* * Evaluates a mathemeatical expression */ double eval(const char *exp/*, int *ep*/) { int _ep, *ep = &_ep; struct eval ev; double ans = 0.0; assert(ep != NULL); /* Allocate a stack */ ev.st_size = 10; ev.st = CALLOC(ev.st_size, sizeof *ev.st); if(!ev.st) { *ep = ERR_MEMORY; return NAN; //0.0; } ev.sp = 0; /* Manage errors */ *ep = setjmp(ev.j); if(*ep != 0) { FREE(ev.st); return NAN; //0.0; } /* Initialize the lexer */ ev.token[0].type = TOK_INI; ev.token[0].s_val[0] = '\0'; ev.token[1].type = TOK_INI; ev.token[1].s_val[0] = '\0'; ev.cur_tok = 0; /* Initialize the parser */ ev.p = exp; /* lex once to initialize the lexer */ if(lex(&ev) != TOK_END) { expr(&ev); ans = pop(&ev); } FREE(ev.st); return ans; } /* * Pushes a value onto the stack, increases the stack size if necessary */ static void push(struct eval *ev, double d) { if(ev->sp == ev->st_size) { /* Resize the stack by 1.5 */ double *old = ev->st; int new_size = ev->st_size + (ev->st_size >> 1); ev->st = REALLOC(ev->st, new_size); if(!ev->st) { ev->st = old; longjmp(ev->j, ERR_MEMORY); } ev->st_size = new_size; } ev->st[ev->sp++] = d; } // Pops a value from the top of the stack static double pop(struct eval *ev) { assert(ev->sp > 0); return ev->st[--ev->sp]; } // stricmp() is common, but not standard, so I provide my own static int istrcmp(const char *p, const char *q) { for(; tolower(p[0]) == tolower(q[0]) && p[0]; p++, q++); return tolower(p[0]) - tolower(q[0]); } /* * Lexical analyzer function * * In order to implement LL(1), struct eval has an array of two token structures, * and its cur_tok member is used to point to the _current_ token, while the other * element contains the _next_ token. This implements a 2 element ring buffer where * the lexer always writes to the _next_ token so that the recursive descent parser can * _peek_ at the next token. */ static int lex(struct eval *ev) { int next_tok; start: /* Cycle the tokens */ next_tok = ev->cur_tok; ev->cur_tok = ev->cur_tok?0:1; while(isspace(ev->p[0])) ev->p++; if(!ev->p[0]) { /* End of the expression */ ev->token[next_tok].type = TOK_END; goto end; } else if(isdigit(ev->p[0]) || ev->p[0] == '.') { /* Number */ char *endp; ev->token[next_tok].type = TOK_NUM; ev->token[next_tok].n_val = strtod(ev->p, &endp); ev->p = endp; goto end; } else if(isalpha(ev->p[0])) { /* Identifier */ int i; for(i = 0; isalnum(ev->p[0]) && i < MAX_ID_LEN - 1; i++, ev->p++) ev->token[next_tok].s_val[i] = ev->p[0]; if(isalpha(ev->p[0])) longjmp(ev->j, ERR_LONGID); ev->token[next_tok].s_val[i] = '\0'; ev->token[next_tok].type = TOK_ID; goto end; } else if(strchr(OPERATORS, ev->p[0])) { /* Operator */ ev->token[next_tok].type = ev->p[0]; ev->p++; goto end; } else /* Unknown token */ longjmp(ev->j, ERR_LEXER); end: /* If this was the first call, cycle the tokens again */ if(ev->token[ev->cur_tok].type == TOK_INI) goto start; return ev->token[ev->cur_tok].type; } #define EVAL_TYPE(e) (e->token[e->cur_tok].type) #define EVAL_ERROR(c) longjmp(ev->j, (c)) // num_expr ::= NUMBER static void num_expr(struct eval *ev) { if(EVAL_TYPE(ev) != TOK_NUM) EVAL_ERROR(ERR_VALUE); push(ev, ev->token[ev->cur_tok].n_val); lex(ev); } // expr ::= add_expr static void expr(struct eval *ev) { add_expr(ev); } // add_expr ::= mul_expr [('+'|'-') mul_expr] static void add_expr(struct eval *ev) { int t; mul_expr(ev); while((t =EVAL_TYPE(ev)) == '+' || t == '-') { double a,b; lex(ev); mul_expr(ev); b = pop(ev); a = pop(ev); if(t == '+') push(ev, a + b); else push(ev, a - b); } } // mul_expr ::= pow_expr [('*'|'/'|'%') pow_expr] static void mul_expr(struct eval *ev) { int t; pow_expr(ev); while((t = EVAL_TYPE(ev)) == '*' || t == '/' || t == '%') { double a,b; lex(ev); pow_expr(ev); b = pop(ev); a = pop(ev); if(t == '*') push(ev, a * b); else if(t == '/') push(ev, a / b); else push(ev, fmod(a, b)); } } // pow_expr ::= uni_expr ['^' pow_expr] static void pow_expr(struct eval *ev) { /* Note that exponentiation is right associative: 2^3^4 is 2^(3^4), not (2^3)^4 */ uni_expr(ev); if(EVAL_TYPE(ev) == '^') { double a,b; lex(ev); pow_expr(ev); b = pop(ev); a = pop(ev); push(ev, pow(a,b)); } } // uni_expr ::= ['+'|'-'] bra_expr static void uni_expr(struct eval *ev) { int t = '+'; if(EVAL_TYPE(ev) == '-' || EVAL_TYPE(ev) == '+') { t = EVAL_TYPE(ev); lex(ev); } bra_expr(ev); if(t == '-') { double a = pop(ev); push(ev, -a); } } // bra_expr ::= '(' add_expr ')' | id_expr static void bra_expr(struct eval *ev) { if(EVAL_TYPE(ev) == '(') { lex(ev); add_expr(ev); if(EVAL_TYPE(ev) != ')') EVAL_ERROR(ERR_BRACKET); lex(ev); } else id_expr(ev); } // id_expr ::= ID '(' add_expr [',' add_expr]* ')' | ID | num_expr static void id_expr(struct eval *ev) { int nargs = 0; char id[MAX_ID_LEN]; if(EVAL_TYPE(ev) != TOK_ID) { num_expr(ev); } else { strcpy(id, ev->token[ev->cur_tok].s_val); lex(ev); if(EVAL_TYPE(ev) != '(') { /**/ if(!istrcmp(id, "true")) push(ev, 1.0); else if(!istrcmp(id, "false")) push(ev, 0.0); else if(!istrcmp(id, "on")) push(ev, 1.0); else if(!istrcmp(id, "off")) push(ev, 0.0); // pi - 3.141592654 else if(!istrcmp(id, "pi")) push(ev, EVAL_PI); // e - base of natural logarithms, 2.718281828 else if(!istrcmp(id, "e")) push(ev, EVAL_E); // deg - deg2rad, allows to degree conversion `sin(90*deg) = 1` else if(!istrcmp(id, "deg")) push(ev, EVAL_DEG); else EVAL_ERROR(ERR_CONST); } else { lex(ev); while(EVAL_TYPE(ev) != ')') { add_expr(ev); nargs++; if(EVAL_TYPE(ev) == ')') break; if(EVAL_TYPE(ev) != ',') EVAL_ERROR(ERR_BRACKET); lex(ev); } lex(ev); // abs(x) - absolute value of x if(!istrcmp(id, "abs")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, fabs(pop(ev))); } // ceil(x) - smallest integer greater than x else if(!istrcmp(id, "ceil")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, ceil(pop(ev))); } // floor(x) - largest integer smaller than x else if(!istrcmp(id, "floor")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, floor(pop(ev))); } // sin(x) - sine of x, in radians else if(!istrcmp(id, "sin")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, sin(pop(ev))); } // asin(x) - arcsine of x, in radians else if(!istrcmp(id, "asin")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, asin(pop(ev))); } // cos(x) - cosine of x, in radians else if(!istrcmp(id, "cos")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, cos(pop(ev))); } // acos(x) - arccosine of x, in radians else if(!istrcmp(id, "acos")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, acos(pop(ev))); } // tan(x) - tangent of x, in radians else if(!istrcmp(id, "tan")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, tan(pop(ev))); } // atan(x) - arctangent of x, in radians else if(!istrcmp(id, "atan")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, atan(pop(ev))); } // atan(y,x) - arctangent of y/x, in radians. else if(!istrcmp(id, "atan2")) { double a, b; if(nargs != 2) EVAL_ERROR(ERR_ARGS); b = pop(ev); a = pop(ev); push(ev, atan2(a,b)); } // sinh(x) - hyperbolic sine of x, in radians else if(!istrcmp(id, "sinh")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, sinh(pop(ev))); } // cosh(x) - hyperbolic cosine of x, in radians else if(!istrcmp(id, "cosh")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, cosh(pop(ev))); } // tanh(x) - hyperbolic tangent of x, in radians else if(!istrcmp(id, "tanh")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, tanh(pop(ev))); } // log(x) - natural logarithm of x else if(!istrcmp(id, "log")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, log(pop(ev))); } // log10(x) - logarithm of x, base-10 else if(!istrcmp(id, "log10")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, log10(pop(ev))); } // exp(x) - computes e^x else if(!istrcmp(id, "exp")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, exp(pop(ev))); } // sqrt(x) - square root of x else if(!istrcmp(id, "sqrt")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, sqrt(pop(ev))); } // rad(x) - converts x from degrees to radians else if(!istrcmp(id, "rad")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, pop(ev)*EVAL_PI/180); } // deg(x) - converts x from radians to degrees else if(!istrcmp(id, "deg")) { if(nargs != 1) EVAL_ERROR(ERR_ARGS); push(ev, pop(ev)*180/EVAL_PI); } // pow(x,y) - computes x^y else if(!istrcmp(id, "pow")) { double a, b; if(nargs != 2) EVAL_ERROR(ERR_ARGS); b = pop(ev); a = pop(ev); push(ev, pow(a,b)); } // hypot(x,y) - computes sqrt(x*x + y*y) else if(!istrcmp(id, "hypot")) { double a, b; if(nargs != 2) EVAL_ERROR(ERR_ARGS); b = pop(ev); a = pop(ev); push(ev, sqrt(a*a + b*b)); } else EVAL_ERROR(ERR_FUNC); } } } // #ifdef EVALDEMO #include int main() { assert( eval("1+1") == 2 ); // common path assert( eval("1+") != eval("1+") ); // check that errors return NAN assert(~puts("Ok") ); } #endif