uniform mat4 model, view; uniform sampler2D u_texture2d; uniform vec3 u_coefficients_sh[9]; uniform bool u_textured = true; uniform bool u_lit = false; uniform bool u_matcaps = false; uniform vec4 u_diffuse = vec4(1.0,1.0,1.0,1.0); // lightmapping uniform sampler2D u_lightmap; uniform bool u_texlit; uniform bool u_texmod = false; uniform float u_litboost = 1.0; in vec3 v_position; in vec3 v_position_ws; #ifdef RIM uniform mat4 M; // RIM uniform vec3 u_rimcolor = vec3(0.2,0.2,0.2); uniform vec3 u_rimrange = vec3(0.11,0.98,0.5); uniform vec3 u_rimpivot = vec3(0,0,0); uniform bool u_rimambient = true; #endif in vec3 v_normal, v_normal_ws; in vec2 v_texcoord, v_texcoord2; in vec4 v_color; out vec4 fragcolor; {{include-shadowmap}} in vec4 vpeye; in vec4 vneye; in vec4 sc; vec4 shadowing() { return shadowmap(vpeye, vneye, v_texcoord, sc); } uniform vec3 u_cam_pos; uniform vec3 u_cam_dir; uniform int u_num_lights; struct light_t { int type; vec3 diffuse; vec3 specular; vec3 ambient; vec3 pos; vec3 dir; float power; float innerCone; float outerCone; // falloff float constant; float linear; float quadratic; }; #define MAX_LIGHTS 16 const int LIGHT_DIRECTIONAL = 0; const int LIGHT_POINT = 1; const int LIGHT_SPOT = 2; uniform light_t u_lights[MAX_LIGHTS]; #ifdef SHADING_PHONG vec3 shading_phong(light_t l) { vec3 lightDir; float attenuation = 1.0; if (l.type == LIGHT_DIRECTIONAL) { lightDir = normalize(-l.dir); } else if (l.type == LIGHT_POINT || l.type == LIGHT_SPOT) { vec3 toLight = l.pos - v_position_ws; lightDir = normalize(toLight); float distance = length(toLight); attenuation = 1.0 / (l.constant + l.linear * distance + l.quadratic * (distance * distance)); if (l.type == LIGHT_SPOT) { float angle = dot(l.dir, -lightDir); if (angle > l.outerCone) { float intensity = (angle-l.outerCone)/(l.innerCone-l.outerCone); attenuation *= clamp(intensity, 0.0, 1.0); } else { attenuation = 0.0; } } } // fast-rejection for faraway vertices if (attenuation <= 0.01) { return vec3(0,0,0); } vec3 n = normalize(v_normal_ws); float diffuse = max(dot(n, lightDir), 0.0); vec3 halfVec = normalize(lightDir + u_cam_dir); float specular = pow(max(dot(n, halfVec), 0.0), l.power); return (attenuation*l.ambient + diffuse*attenuation*l.diffuse + specular*attenuation*l.specular); } #endif vec3 lighting() { vec3 lit = vec3(0,0,0); #ifndef SHADING_NONE for (int i=0; i 0.0 ) lit = vec4(result, 1.0); } // analytical lights (phong shading) lit += vec4(lighting(), 0.0); // base vec4 diffuse; if(u_matcaps) { vec2 muv = vec2(view * vec4(v_normal_ws, 0))*0.5+vec2(0.5,0.5); // normal (model space) to view space diffuse = texture(u_texture2d, vec2(muv.x, 1.0-muv.y)); } else if(u_textured) { diffuse = texture(u_texture2d, v_texcoord); } else { diffuse = u_diffuse; // * v_color; } if (u_texlit) { vec4 litsample = texture(u_lightmap, v_texcoord2); if (u_texmod) { diffuse.rgb *= litsample.rgb; } else { diffuse.rgb += litsample.rgb; } } // lighting mix fragcolor = diffuse * lit * shadowing(); // rimlight #ifdef RIM { vec3 n = normalize(mat3(M) * v_normal); // convert normal to view space vec3 p = (M * vec4(v_position,1.0)).xyz; // convert position to view space vec3 v = vec3(0,-1,0); if (!u_rimambient) { v = normalize(u_rimpivot-p); } float rim = 1.0 - max(dot(v,n), 0.0); vec3 col = u_rimcolor*(pow(smoothstep(1.0-u_rimrange.x,u_rimrange.y,rim), u_rimrange.z)); fragcolor += vec4(col, 1.0);} #endif } #endif