// ----------------------------------------------------------------------------- // opengl #define GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0 #define GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #define GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #define GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #define GL_DEBUG_SEVERITY_HIGH 0x9146 #define GL_DEBUG_SEVERITY_NOTIFICATION 0x826B #define GL_DEBUG_SOURCE_API 0x8246 #define GL_DEBUG_TYPE_ERROR 0x824C // void glDebugCallback(uint32_t source, uint32_t type, uint32_t id, uint32_t severity, int32_t length, const char * message, void * userdata) { // whitelisted codes (also: 131169, 131204). if( id == 131154 ) return; // Pixel-path performance warning: Pixel transfer is synchronized with 3D rendering. if( id == 131185 ) return; // Buffer object 2 (bound to GL_ELEMENT_ARRAY_BUFFER_ARB, usage hint is GL_STATIC_DRAW) will use VIDEO memory as the source for buffer object operations if( id == 131218 ) return; // Program/shader state performance warning: Vertex shader in program 9 is being recompiled based on GL state. if( id == 2 ) return; // INFO: API_ID_RECOMPILE_FRAGMENT_SHADER performance warning has been generated. Fragment shader recompiled due to state change. [ID: 2] const char * GL_ERROR_TYPE[] = { "ERROR", "DEPRECATED BEHAVIOR", "UNDEFINED DEHAVIOUR", "PORTABILITY", "PERFORMANCE", "OTHER" }; const char * GL_ERROR_SOURCE[] = { "API", "WINDOW SYSTEM", "SHADER COMPILER", "THIRD PARTY", "APPLICATION", "OTHER" }; const char * GL_ERROR_SEVERITY[] = { "HIGH", "MEDIUM", "LOW", "NOTIFICATION" }; type = type - GL_DEBUG_TYPE_ERROR; source = source - GL_DEBUG_SOURCE_API; severity = severity == GL_DEBUG_SEVERITY_NOTIFICATION ? 3 : severity - GL_DEBUG_SEVERITY_HIGH; if(severity >= 2) return; // do not log low_severity or notifications PRINTF( "!%s:%s [ID: %u]\n", type == 0 ? "ERROR":"WARNING", message, id ); // PANIC( "!%s:%s [ID: %u]\n", type == 0 ? "ERROR":"WARNING", message, id ); } void glDebugEnable() { do_once { typedef void (*GLDEBUGPROC)(uint32_t, uint32_t, uint32_t, uint32_t, int32_t, const char *, const void *); typedef void (*GLDEBUGMESSAGECALLBACKPROC)(GLDEBUGPROC, const void *); void *func = glfwGetProcAddress("glDebugMessageCallback"); void (*glDebugMessageCallback)(GLDEBUGPROC, const void *) = (GLDEBUGMESSAGECALLBACKPROC)func; if( func ) { glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB); glDebugMessageCallback((GLDEBUGPROC)glDebugCallback, NULL); } } } static void glCopyBackbufferToTexture( texture_t *tex ) { // unused glActiveTexture( GL_TEXTURE0 + tex->unit ); glBindTexture( GL_TEXTURE_2D, tex->id ); glCopyTexImage2D( GL_TEXTURE_2D, 0, GL_RGB, 0, 0, window_width(), window_height(), 0 ); } // ---------------------------------------------------------------------------- // embedded shaders (@fixme: promote to files?) static const char *const fs_0_0_shadowmap_lit = // "#version 140 // inverse() requires v140\n" "//" FILELINE "\n" // "uniform mat4 view = mat4(1.0);\n" "uniform vec3 lightPos = vec3(1.0);\n" "uniform float doTexture = 1.;\n" #if VSMCUBE "uniform samplerCube shadowMap;\n" // VSMCUBE #else "uniform sampler2D shadowMap;\n" // !VSMCUBE #endif "struct light {\n" " vec3 position; // world-space\n" " vec4 diffuse;\n" " vec4 specular;\n" " float constantAttenuation, linearAttenuation, quadraticAttenuation;\n" "};\n" "light light0 = light(\n" " lightPos,\n" " vec4(1,1,1,1), // diffuse\n" " vec4(1,1,1,1), // specular\n" " 1.0, 0.0, 0.0 // attenuation (const, linear, quad)\n" ");\n" "// From http://fabiensanglard.net/shadowmappingVSM/index.php\n" #if VSMCUBE "float chebyshevUpperBound(float distance, vec3 dir) {\n" " distance = distance/20 ;\n" " vec2 moments = texture(shadowMap, dir).rg;\n" #else "float chebyshevUpperBound(float distance, vec4 scPostW) {\n" " vec2 moments = texture(shadowMap,scPostW.xy).rg;\n" #endif " // Surface is fully lit. as the current fragment is before the light occluder\n" " if (distance <= moments.x)\n" " return 1.0;\n" " // The fragment is either in shadow or penumbra. We now use chebyshev's upperBound to check\n" " // How likely this pixel is to be lit (p_max)\n" " float variance = moments.y - (moments.x*moments.x);\n" " //variance = max(variance, 0.000002);\n" " variance = max(variance, 0.00002);\n" " float d = distance - moments.x;\n" " float p_max = variance / (variance + d*d);\n" " return p_max;\n" "}\n" "vec4 shadowmap(in vec4 vpeye, in vec4 vneye, in vec2 uv, in vec4 sc) {\n" #ifndef VSMCUBE " return vec4(1.);\n" #else " vec3 fragment = vec3(vpeye);\n" " vec3 normal = vec3(normalize(vneye));\n" " vec3 viewDir = normalize(-fragment);\n" " // Lighting\n" " // Convert to eye-space\n" " vec3 light = vec3(view * vec4(light0.position, 1.0));\n" #if VSMCUBE " // Vectors\n" " vec3 fragmentToLight = light - fragment;\n" " vec3 fragmentToLightDir = normalize(fragmentToLight);\n" " // Shadows\n" " vec4 fragmentToLight_world = inverse(view) * vec4(fragmentToLightDir, 0.0);\n" " float shadowFactor = chebyshevUpperBound(length(fragmentToLight), -fragmentToLight_world.xyz);\n" #else " // Shadows\n" " vec4 scPostW = sc / sc.w;\n" " scPostW = scPostW * 0.5 + 0.5;\n" " float shadowFactor = 1.0; // Not in shadow\n" " bool outsideShadowMap = sc.w <= 0.0f || (scPostW.x < 0 || scPostW.y < 0) || (scPostW.x >= 1 || scPostW.y >= 1);\n" " if (!outsideShadowMap) {\n" " shadowFactor = chebyshevUpperBound(scPostW.z, scPostW);\n" " }\n" #endif " vec4 diffColor = vec4(1,1,1,1);\n" #if VSMCUBE " if(doTexture != 0) diffColor = vec4(vec3(texture(shadowMap, -fragmentToLight_world.xyz).r), 1.0);\n" #else " if(doTexture != 0) diffColor = vec4(vec3(texture(shadowMap, vec2(uv.x, 1.0 - uv.y)).r), 1.0);\n" #endif #if 1 " vec3 positionToLight = light - fragment;\n" " vec3 lightDir = normalize(positionToLight);\n" " // Angle between fragment-normal and incoming light\n" " float cosAngIncidence = dot(lightDir, normal);\n" " cosAngIncidence = clamp(cosAngIncidence, 0, 1);\n" " float attenuation = 1.0f;\n" " attenuation = 1.0 / (light0.constantAttenuation + light0.linearAttenuation * length(positionToLight) + light0.quadraticAttenuation * pow(length(positionToLight),2));\n" " vec4 diffuse = diffColor * light0.diffuse * cosAngIncidence * attenuation;\n" " vec4 total_lighting;\n" " total_lighting += vec4(0.1, 0.1, 0.1, 1.0) * diffColor; // Ambient\n" " total_lighting += diffuse * shadowFactor; // Diffuse\n" #else " vec4 total_lighting = diffColor;\n" #endif " return vec4(clamp(vec3(total_lighting), 0., 1.), 1.0);\n" #endif "}\n"; static const char *const fs_0_0_shadowmap_unlit = "//" FILELINE "\n" // "uniform mat4 view = mat4(1.0);\n" "uniform vec3 lightPos = vec3(1.0);\n" "uniform float doTexture = 0.;\n" "uniform sampler2D shadowMap;\n" "vec4 shadowmap(in vec4 vpeye, in vec4 vneye, in vec2 Texcoord, in vec4 sc) {\n" " return vec4(1.);\n" "};\n"; static const char *const vs_3_3_skybox = "//" FILELINE "\n" "uniform mat4 u_mvp;\n" "in vec3 att_position;\n" "out vec3 v_direction;\n" "void main() {\n" " vec4 position = u_mvp * vec4(att_position, 0.0);\n" " gl_Position = position.xyww;\n" " v_direction = att_position;\n" "}\n"; static const char *const fs_3_4_skybox = "//" FILELINE "\n" "uniform samplerCube u_cubemap;\n" "in vec3 v_direction;\n" "out vec4 fragcolor;\n" "void main() {\n" " fragcolor = vec4(texture(u_cubemap, v_direction).rgb, 1.0);\n" "}\n"; static const char *const fs_3_4_skybox_rayleigh = "//" FILELINE "\n" "uniform vec3 uSunPos = vec3( 0, 0.1, -1 ); // = [0, Math.cos(theta) * 0.3 + 0.2, -1];\n" "in vec3 v_direction;\n" "out vec4 fragcolor;\n" "vec3 atmosphere(vec3 r, vec3 r0, vec3 pSun, float iSun, float rPlanet, float rAtmos, vec3 kRlh, float kMie, float shRlh, float shMie, float g);\n" "void main() {\n" " vec3 color = atmosphere(\n" " normalize(v_direction), // normalized ray direction\n" " vec3(0,6372e3,0), // ray origin\n" " uSunPos, // position of the sun\n" " 22.0, // intensity of the sun\n" " 6371e3, // radius of the planet in meters\n" " 6471e3, // radius of the atmosphere in meters\n" " vec3(5.5e-6, 13.0e-6, 22.4e-6), // Rayleigh scattering coefficient\n" " 21e-6, // Mie scattering coefficient\n" " 8e3, // Rayleigh scale height\n" " 1.2e3, // Mie scale height\n" " 0.758 // Mie preferred scattering direction\n" " );\n" " // Apply exposure.\n" " color = 1.0 - exp(-1.0 * color);\n" " fragcolor = vec4(color, 1);\n" "}\n" "// [src] https://github.com/wwwtyro/glsl-atmosphere by wwwtyro (Unlicensed)\n" "// For more information, please refer to \n" "#define PI 3.141592\n" "#define iSteps 16\n" "#define jSteps 8\n" "vec2 rsi(vec3 r0, vec3 rd, float sr) {\n" " // ray-sphere intersection that assumes\n" " // the sphere is centered at the origin.\n" " // No intersection when result.x > result.y\n" " float a = dot(rd, rd);\n" " float b = 2.0 * dot(rd, r0);\n" " float c = dot(r0, r0) - (sr * sr);\n" " float d = (b*b) - 4.0*a*c;\n" " if (d < 0.0) return vec2(1e5,-1e5);\n" " return vec2(\n" " (-b - sqrt(d))/(2.0*a),\n" " (-b + sqrt(d))/(2.0*a)\n" " );\n" "}\n" "vec3 atmosphere(vec3 r, vec3 r0, vec3 pSun, float iSun, float rPlanet, float rAtmos, vec3 kRlh, float kMie, float shRlh, float shMie, float g) {\n" " // Normalize the sun and view directions.\n" " pSun = normalize(pSun);\n" " r = normalize(r);\n" " // Calculate the step size of the primary ray.\n" " vec2 p = rsi(r0, r, rAtmos);\n" " if (p.x > p.y) return vec3(0,0,0);\n" " p.y = min(p.y, rsi(r0, r, rPlanet).x);\n" " float iStepSize = (p.y - p.x) / float(iSteps);\n" " // Initialize the primary ray time.\n" " float iTime = 0.0;\n" " // Initialize accumulators for Rayleigh and Mie scattering.\n" " vec3 totalRlh = vec3(0,0,0);\n" " vec3 totalMie = vec3(0,0,0);\n" " // Initialize optical depth accumulators for the primary ray.\n" " float iOdRlh = 0.0;\n" " float iOdMie = 0.0;\n" " // Calculate the Rayleigh and Mie phases.\n" " float mu = dot(r, pSun);\n" " float mumu = mu * mu;\n" " float gg = g * g;\n" " float pRlh = 3.0 / (16.0 * PI) * (1.0 + mumu);\n" " float pMie = 3.0 / (8.0 * PI) * ((1.0 - gg) * (mumu + 1.0)) / (pow(1.0 + gg - 2.0 * mu * g, 1.5) * (2.0 + gg));\n" " // Sample the primary ray.\n" " for (int i = 0; i < iSteps; i++) {\n" " // Calculate the primary ray sample position.\n" " vec3 iPos = r0 + r * (iTime + iStepSize * 0.5);\n" " // Calculate the height of the sample.\n" " float iHeight = length(iPos) - rPlanet;\n" " // Calculate the optical depth of the Rayleigh and Mie scattering for this step.\n" " float odStepRlh = exp(-iHeight / shRlh) * iStepSize;\n" " float odStepMie = exp(-iHeight / shMie) * iStepSize;\n" " // Accumulate optical depth.\n" " iOdRlh += odStepRlh;\n" " iOdMie += odStepMie;\n" " // Calculate the step size of the secondary ray.\n" " float jStepSize = rsi(iPos, pSun, rAtmos).y / float(jSteps);\n" " // Initialize the secondary ray time.\n" " float jTime = 0.0;\n" " // Initialize optical depth accumulators for the secondary ray.\n" " float jOdRlh = 0.0;\n" " float jOdMie = 0.0;\n" " // Sample the secondary ray.\n" " for (int j = 0; j < jSteps; j++) {\n" " // Calculate the secondary ray sample position.\n" " vec3 jPos = iPos + pSun * (jTime + jStepSize * 0.5);\n" " // Calculate the height of the sample.\n" " float jHeight = length(jPos) - rPlanet;\n" " // Accumulate the optical depth.\n" " jOdRlh += exp(-jHeight / shRlh) * jStepSize;\n" " jOdMie += exp(-jHeight / shMie) * jStepSize;\n" " // Increment the secondary ray time.\n" " jTime += jStepSize;\n" " }\n" " // Calculate attenuation.\n" " vec3 attn = exp(-(kMie * (iOdMie + jOdMie) + kRlh * (iOdRlh + jOdRlh)));\n" " // Accumulate scattering.\n" " totalRlh += odStepRlh * attn;\n" " totalMie += odStepMie * attn;\n" " // Increment the primary ray time.\n" " iTime += iStepSize;\n" " }\n" " // Calculate and return the final color.\n" " return iSun * (pRlh * kRlh * totalRlh + pMie * kMie * totalMie);\n" "}\n"; static const char *const vs_332_32 = "//" FILELINE "\n" //"uniform mat4 u_model, u_view, u_proj;\n" "uniform mat4 u_mvp;\n" "in vec3 att_position;\n" "in vec3 att_normal;\n" "in vec2 att_texcoord;\n" "in vec4 att_color;\n" "out vec4 v_color;\n" "out vec3 v_normal;\n" "out vec3 v_normal_ws;\n" "out vec2 v_texcoord;\n" // shadow "uniform mat4 model, view, proj;\n" "uniform mat4 cameraToShadowProjector;\n" // !VSMCUBE "out vec4 vneye;\n" "out vec4 vpeye;\n" "out vec4 sc;\n" // !VSMCUBE "void do_shadow() {\n" " vneye = view * model * vec4(att_normal, 0.0f);\n" " vpeye = view * model * vec4(att_position, 1.0);\n" " sc = cameraToShadowProjector * model * vec4(att_position, 1.0f);\n" "}\n" "void main() {\n" //" gl_Position = proj * view * model * vec4(att_position, 1.0);\n" " gl_Position = u_mvp * vec4(att_position, 1.0);\n" " v_normal = normalize(att_normal);\n" " v_normal_ws = normalize(vec3(model * vec4(att_normal, 0.)));\n" // normal world/model space " v_texcoord = att_texcoord;\n" " v_color = att_color;\n" " do_shadow();\n" "}"; static const char *const vs_0_2_fullscreen_quad_A = "//" FILELINE "\n" "out vec2 texcoord;\n" "void main() {\n" " texcoord = vec2( (gl_VertexID << 1) & 2, gl_VertexID & 2 );\n" " gl_Position = vec4( texCoord * 2.0 - 1.0, 0.0, 1.0 );\n" "}\n"; static const char *const vs_0_2_fullscreen_quad_B = "//" FILELINE "\n" "out vec2 uv;\n" "void main() {\n" " float x = float(((uint(gl_VertexID) + 2u) / 3u)%2u); \n" " float y = float(((uint(gl_VertexID) + 1u) / 3u)%2u); \n" " gl_Position = vec4(-1.0 + x*2.0, 0.0+(-1.0+y*2.0), 0.0, 1.0);\n" // normal(0+),flipped(0-) " uv = vec2(x, y);\n" // normal(y),flipped(1.0-y) "}\n"; static const char *const vs_0_2_fullscreen_quad_B_flipped = "//" FILELINE "\n" "out vec2 uv;\n" "void main() {\n" " float x = float(((uint(gl_VertexID) + 2u) / 3u)%2u); \n" " float y = float(((uint(gl_VertexID) + 1u) / 3u)%2u); \n" " gl_Position = vec4(-1.0 + x*2.0, 0.0-(-1.0+y*2.0), 0.0, 1.0);\n" // normal(0+),flipped(0-) " uv = vec2(x, y);\n" // normal(y),flipped(1.0-y) "}\n"; /* "out vec2 uv;\n" "void main() {\n" " float x = gl_VertexID / 2;\n" " float y = gl_VertexID % 2;\n" " uv = vec2(x, y);\n" " gl_Position = vec4(2.0*uv - 1.0, 0.0, 1.0);\n" "}\n"; */ static const char *const fs_2_4_texel_inv_gamma = "//" FILELINE "\n" "uniform sampler2D texture0; /*unit0*/\n" "uniform float u_inv_gamma;\n" "in vec2 uv;\n" "out vec4 fragcolor;\n" "void main() {\n" " vec4 texel = texture( texture0, uv );\n" " fragcolor = texel;\n" " fragcolor.rgb = pow( fragcolor.rgb, vec3( u_inv_gamma ) );\n" // defaults: 1.0/2.2 gamma "}\n"; // vertex stride = 4*(3+2+3+4+4+4+1+4+3) = 112 bytes + 16 bytes/instance static const char *const vs_323444143_16_332_model = "//" FILELINE "\n" "#ifndef MAX_BONES\n" "#define MAX_BONES 110\n" "#endif\n" "uniform mat3x4 vsBoneMatrix[MAX_BONES];\n" "uniform bool SKINNED = false;\n" // "uniform mat4 M;\n" // RIM "uniform mat4 VP;\n" #if 0 // Fetch blend channels from all attached blend deformers. for (size_t di = 0; di < mesh->blend_deformers.count; di++) { ufbx_blend_deformer *deformer = mesh->blend_deformers.data[di]; for (size_t ci = 0; ci < deformer->channels.count; ci++) { ufbx_blend_channel *chan = deformer->channels.data[ci]; if (chan->keyframes.count == 0) continue; if (num_blend_shapes < MAX_BLEND_SHAPES) { blend_channels[num_blend_shapes] = chan; vmesh->blend_channel_indices[num_blend_shapes] = (int32_t)chan->typed_id; num_blend_shapes++; } } } if (num_blend_shapes > 0) { vmesh->blend_shape_image = pack_blend_channels_to_image(mesh, blend_channels, num_blend_shapes); vmesh->num_blend_shapes = num_blend_shapes; } ubo.f_num_blend_shapes = (float)mesh->num_blend_shapes; for (size_t i = 0; i < mesh->num_blend_shapes; i++) { ubo.blend_weights[i] = view->scene.blend_channels[mesh->blend_channel_indices[i]].weight; } sg_image blend_shapes = mesh->num_blend_shapes > 0 ? mesh->blend_shape_image : view->empty_blend_shape_image; #endif // for blendshapes "#ifndef MAX_BLENDSHAPES\n" "#define MAX_BLENDSHAPES 16\n" "#endif\n" "uniform vec4 blend_weights[MAX_BLENDSHAPES];\n" // @todo: implement me "uniform float f_num_blend_shapes;\n" // @todo: implement me "uniform sampler2DArray blend_shapes;\n" // @todo: implement me "in vec3 att_position;\n" // @todo: reorder ass2iqe to emit p3 n3 u2 t3 b3 c4B i4 w4 instead "in vec2 att_texcoord;\n" "in vec3 att_normal;\n" "in vec4 att_tangent;\n" // vec3 + bi sign "in mat4 att_instanced_matrix;\n" // for instanced rendering "in vec4 att_indexes;\n" // @fixme: gles might use ivec4 instead? "in vec4 att_weights;\n" // @todo: downgrade from float to byte "in float att_vertexindex;\n" // for blendshapes "in vec4 att_color;\n" "in vec3 att_bitangent;\n" // @todo: remove? also, ass2iqe might output this "out vec4 v_color;\n" "out vec3 v_position;\n" "out vec3 v_normal, v_normal_ws;\n" "out vec2 v_texcoord;\n" // shadow "uniform mat4 model, view;\n" "uniform mat4 cameraToShadowProjector;\n" "out vec4 vneye;\n" "out vec4 vpeye;\n" "out vec4 sc;\n" "void do_shadow() {\n" " vneye = view * model * vec4(att_normal, 0.0f);\n" " vpeye = view * model * vec4(att_position, 1.0);\n" " sc = cameraToShadowProjector * model * vec4(att_position, 1.0f);\n" "}\n" // blendshapes "vec3 evaluate_blend_shape(int vertex_index) {\n" " ivec2 coord = ivec2(vertex_index & (2048 - 1), vertex_index >> 11);\n" " int num_blend_shapes = int(f_num_blend_shapes);\n" " vec3 offset = vec3(0.0);\n" " for (int i = 0; i < num_blend_shapes; i++) {\n" " vec4 packedw = blend_weights[i >> 2];\n" " float weight = packedw[i & 3];\n" " offset += weight * texelFetch(blend_shapes, ivec3(coord, i), 0).xyz;\n" " }\n" " return offset;\n" "}\n" "void main() {\n" " vec3 objPos;\n" " if(!SKINNED) {\n" " objPos = att_position;\n" " v_normal = att_normal;\n" " } else {\n" " mat3x4 m = vsBoneMatrix[int(att_indexes.x)] * att_weights.x;\n" " m += vsBoneMatrix[int(att_indexes.y)] * att_weights.y;\n" " m += vsBoneMatrix[int(att_indexes.z)] * att_weights.z;\n" " m += vsBoneMatrix[int(att_indexes.w)] * att_weights.w;\n" " objPos = vec4(att_position, 1.0) * m;\n" // blendshapes // "objPos += evaluate_blend_shape(int(att_vertexindex));\n" " v_normal = vec4(att_normal, 0.0) * m;\n" " //@todo: tangents\n" " }\n" //" vec3 tangent = att_tangent.xyz;\n" //" vec3 bitangent = cross(att_normal, att_tangent.xyz) * att_tangent.w; " v_normal_ws = normalize(vec3(model * vec4(v_normal, 0.)));\n" // normal to world/model space " v_normal = normalize(v_normal);\n" " v_position = att_position;\n" " v_texcoord = att_texcoord;\n" " v_color = att_color;\n" " gl_Position = VP * att_instanced_matrix * vec4( objPos, 1.0 );\n" " do_shadow();\n" "}\n"; #if 0 static const char *const fs_32_4_model_basic = "//" FILELINE "\n" "uniform sampler2D fsDiffTex;\n" "uniform sampler2D fsNormalTex;\n" "uniform sampler2D fsPositionTex;\n" "uniform mat4 MVP;\n" "in vec3 v_normal;\n" "in vec2 v_texcoord;\n" "out vec4 fragColor;\n" "void main() {\n" " vec4 diff = texture(fsDiffTex, v_texcoord).rgba;\n" " vec3 n = normalize(mat3(MVP) * v_normal); // transform normal to eye space\n" " fragColor = diff;// * vec4(v_normal.xyz, 1);\n" "}\n"; #endif static const char *const fs_32_4_model = "//" FILELINE "\n" "uniform mat4 model, view;\n" "uniform sampler2D u_texture2d;\n" "uniform vec3 u_coefficients_sh[9];\n" "uniform bool u_textured = true;\n" "uniform bool u_lit = false;\n" "uniform bool u_matcaps = false;\n" "uniform vec4 u_diffuse = vec4(1.0,1.0,1.0,1.0);\n" "#ifdef RIM\n" "in vec3 v_position;\n" "#endif\n" "in vec3 v_normal, v_normal_ws;\n" "in vec2 v_texcoord;\n" "in vec4 v_color;\n" "out vec4 fragcolor;\n" "{{include-shadowmap}}\n" "in vec4 vpeye;\n" "in vec4 vneye;\n" "in vec4 sc;\n" "vec4 shadowing() {\n" " return shadowmap(vpeye, vneye, v_texcoord, sc);\n" "}\n" "void main() {\n" " vec3 n = /*normalize*/(v_normal);\n" // SH lighting " vec4 lit = vec4(1.0, 1.0, 1.0, 1.0);\n" " vec3 SHLightResult[9];\n" " SHLightResult[0] = 0.282095f * u_coefficients_sh[0];\n" " SHLightResult[1] = -0.488603f * u_coefficients_sh[1] * n.y;\n" " SHLightResult[2] = 0.488603f * u_coefficients_sh[2] * n.z;\n" " SHLightResult[3] = -0.488603f * u_coefficients_sh[3] * n.x;\n" " SHLightResult[4] = 1.092548f * u_coefficients_sh[4] * n.x * n.y;\n" " SHLightResult[5] = -1.092548f * u_coefficients_sh[5] * n.y * n.z;\n" " SHLightResult[6] = 0.315392f * u_coefficients_sh[6] * (3.0f * n.z * n.z - 1.0f);\n" " SHLightResult[7] = -1.092548f * u_coefficients_sh[7] * n.x * n.z;\n" " SHLightResult[8] = 0.546274f * u_coefficients_sh[8] * (n.x * n.x - n.y * n.y);\n" " vec3 result = vec3(0.0);\n" " for (int i = 0; i < 9; ++i)\n" " result += SHLightResult[i];\n" " if( (result.x*result.x+result.y*result.y+result.z*result.z) > 0.0 ) lit = vec4(result, 1.0);\n" "\n" // base " vec4 diffuse;\n" " if(u_matcaps) {\n" " vec2 muv = vec2(view * vec4(v_normal_ws, 0))*0.5+vec2(0.5,0.5);\n" // normal (model space) to view space " diffuse = texture(u_texture2d, vec2(muv.x, 1.0-muv.y));\n" " } else if(u_textured) {\n" " diffuse = texture(u_texture2d, v_texcoord);\n" " } else {\n" " diffuse = u_diffuse; // * v_color;\n" " }\n" // lighting mix " fragcolor = diffuse * lit * shadowing();\n" // rimlight "#ifdef RIM\n" " {vec3 n = normalize(mat3(M) * v_normal); // convert normal to view space\n" " vec3 p = (M * vec4(v_position,1.0)).xyz; // convert position to view space\n" " vec3 v = normalize(-p); // eye vector\n" " float rim = 1.0 - max(dot(v, n), 0.0); // rimlight\n" " rim = smoothstep(1.0-0.01, 1.0, rim); // intensity (0.01)\n" " fragcolor += vec4(0.0, 0.0, rim, 1.0);} // blue\n" "#endif\n" "}\n"; static const char *const fs_2_4_texel_ycbr_gamma_saturation = "//" FILELINE "\n" "uniform sampler2D u_texture_y; /*unit0*/\n" "uniform sampler2D u_texture_cb; /*unit1*/\n" "uniform sampler2D u_texture_cr; /*unit2*/\n" "uniform float u_gamma;\n" "in vec2 uv;\n" "out vec4 fragcolor;\n" "void main() {\n" " float y = texture(u_texture_y, uv).r;\n" " float cb = texture(u_texture_cb, uv).r;\n" " float cr = texture(u_texture_cr, uv).r;\n" " const mat4 to_rgb = mat4(\n" " 1.0000, 1.0000, 1.0000, 0.0000,\n" " 0.0000, -0.3441, 1.7720, 0.0000,\n" " 1.4020, -0.7141, 0.0000, 0.0000,\n" " -0.7010, 0.5291, -0.8860, 1.0000\n" " );\n" " vec4 texel = to_rgb * vec4(y, cb, cr, 1.0);\n" /* same as: " vec3 yCbCr = vec3(y,cb-0.5,cr-0.5);\n" " vec4 texel = vec4( dot( vec3( 1.0, 0.0, 1.402 ), yCbCr ),\n" " dot( vec3( 1.0 , -0.34414 , -0.71414 ), yCbCr ),\n" " dot( vec3( 1.0, 1.772, 0.0 ), yCbCr ), 1.0);\n" */ " // gamma correction\n" " texel.rgb = pow(texel.rgb, vec3(1.0 / u_gamma));\n" " // saturation (algorithm from Chapter 16 of OpenGL Shading Language)\n" " if(false) { float saturation = 2.0; const vec3 W = vec3(0.2125, 0.7154, 0.0721);\n" " vec3 intensity = vec3(dot(texel.rgb, W));\n" " texel.rgb = mix(intensity, texel.rgb, saturation); }\n" " fragcolor = vec4(texel.rgb, 1.0);\n" "}\n"; static const char *const vs_324_24_sprite = "//" FILELINE "\n" "uniform mat4 u_mvp;\n" "in vec3 att_Position;\n" "in vec2 att_TexCoord;\n" "in vec4 att_Color;\n" "out vec2 vTexCoord;\n" "out vec4 vColor;\n" "void main() {\n" " vColor = att_Color;\n" " vTexCoord = att_TexCoord;\n" " gl_Position = u_mvp * vec4(att_Position, 1.0);\n" "}\n"; static const char *const fs_24_4_sprite = "//" FILELINE "\n" "uniform sampler2D u_texture;\n" "in vec2 vTexCoord;\n" "in vec4 vColor;\n" "out vec4 fragColor;\n" "// [src] https://www.shadertoy.com/view/MllBWf CC1.0\n" "vec4 texture_AA(sampler2D tx, vec2 uv) {\n" " vec2 res = vec2(textureSize(tx, 0));\n" " uv = uv*res + 0.5;\n" " // tweak fractionnal value of the texture coordinate\n" " vec2 fl = floor(uv);\n" " vec2 fr = fract(uv);\n" " vec2 aa = fwidth(uv)*0.75;\n" " fr = smoothstep( vec2(0.5)-aa, vec2(0.5)+aa, fr);\n" " // return value\n" " uv = (fl+fr-0.5) / res;\n" " return texture(tx, uv);\n" "}\n" "// [src] https://www.shadertoy.com/view/MllBWf CC1.0\n" "vec4 texture_AA2( sampler2D tex, vec2 uv) {\n" " vec2 res = vec2(textureSize(tex,0));\n" " uv = uv*res;\n" " vec2 seam = floor(uv+0.5);\n" " uv = seam + clamp( (uv-seam)/fwidth(uv), -0.5, 0.5);\n" " return texture(tex, uv/res);\n" "}\n" "// [src] https://www.shadertoy.com/view/ltBfRD\n" "vec4 texture_AA3(sampler2D tex, vec2 uv) {\n" " vec2 res = vec2(textureSize(tex,0));\n" " float width = 2.0;\n" " uv = uv * res;\n" " // ---\n" " vec2 uv_floor = floor(uv + 0.5);\n" " vec2 uv_fract = fract(uv + 0.5);\n" " vec2 uv_aa = fwidth(uv) * width * 0.5;\n" " uv_fract = smoothstep(\n" " vec2(0.5) - uv_aa,\n" " vec2(0.5) + uv_aa,\n" " uv_fract\n" " );\n" " uv = (uv_floor + uv_fract - 0.5) / res;\n" " return texture(tex, uv);\n" "}\n" "void main() {\n" " vec4 texColor = texture_AA2(u_texture, vTexCoord);\n" "if(texColor.a < 0.9) discard;" " fragColor = vColor * texColor;\n" "}\n"; static const char *const fs_2_4_preamble = "//" FILELINE "\n" "#define texture2D texture\n" "#define texture2DLod textureLod\n" "#define FRAGCOLOR fragColor\n" "#define texcoord uv\n" "#define TEXCOORD uv\n" "uniform sampler2D iChannel0;\n" "uniform sampler2D iChannel1;\n" "uniform float iWidth, iHeight, iTime, iFrame, iMousex, iMousey;\n" "uniform float iChannelRes0x, iChannelRes0y;\n" "uniform float iChannelRes1x, iChannelRes1y;\n" "vec2 iResolution = vec2(iWidth, iHeight);\n" "vec2 iMouse = vec2(iMousex, iMousey);\n" "vec2 iChannelResolution[2] = vec2[2]( vec2(iChannelRes0x, iChannelRes0y),vec2(iChannelRes1x, iChannelRes1y) );\n" "float iGlobalTime = iTime;\n" "in vec2 texcoord;\n" "out vec4 fragColor;\n"; static const char *const fs_main_shadertoy = "//" FILELINE "\n" "void mainImage( out vec4 fragColor, in vec2 fragCoord );\n" "void main() {\n" " mainImage(fragColor, texcoord.xy * iResolution);\n" "}\n"; // ---------------------------------------------------------------------------- // shaders void shader_print(const char *source) { for(int line = 0, i = 0; source[i] > 0; ) { printf("\t%03d: ", line+1); while( source[i] >= 32 || source[i] == '\t' ) fputc(source[i++], stdout); while( source[i] > 0 && source[i] < 32 ) line += source[i++] == '\n'; puts(""); } } static GLuint shader_compile( GLenum type, const char *source ) { GLuint shader = glCreateShader(type); glShaderSource(shader, 1, (const char **)&source, NULL); glCompileShader(shader); GLint status = GL_FALSE, length; glGetShaderiv(shader, GL_COMPILE_STATUS, &status); if( status == GL_FALSE ) { glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &length); // ASSERT(length < 2048); char buf[2048] = { 0 }; char *buf = stack(length+1); glGetShaderInfoLog(shader, length, NULL, buf); // dump log with line numbers shader_print( source ); PANIC("ERROR: shader_compile(): %s\n%s\n", type == GL_VERTEX_SHADER ? "Vertex" : "Fragment", buf); return 0; } return shader; } unsigned shader(const char *vs, const char *fs, const char *attribs, const char *fragcolor) { PRINTF(/*"!"*/"Compiling shader\n"); //char *vs = vfs_read(file_vs); if(!vs) vs = (char*)file_vs; //char *fs = vfs_read(file_fs); if(!fs) fs = (char*)file_fs; const char *glsl_version = ifdef(ems, "300 es", "150"); vs = vs[0] == '#' && vs[1] == 'v' ? vs : va("#version %s\n%s", glsl_version, vs ? vs : ""); fs = fs[0] == '#' && fs[1] == 'v' ? fs : va("#version %s\n%s", glsl_version, fs ? fs : ""); #if is(ems) { char *vs_ = REALLOC( 0, strlen(vs) + 512 ); strcpy(vs_, vs); char *fs_ = REALLOC( 0, strlen(fs) + 512 ); strcpy(fs_, fs); //strrepl(&vs_, "\nin ", "\nattribute "); //strrepl(&vs_, "\nout ", "\nvarying "); strrepl(&fs_, "#version 300 es\n", "#version 300 es\nprecision mediump float;\n"); //strrepl(&fs_, "\nin ", "\nattribute "); //strrepl(&fs_, "\nout ", "\nvarying "); //strrepl(&fs_, "FRAGCOLOR", "gl_FragColor"); //strrepl(&fs_, "fragcolor", "gl_FragColor" ); //strrepl(&fs_, "fragColor", "gl_FragColor" ); #if 0 //strrepl(&fs_, "outcolor", "gl_FragColor" ); //strrepl(&fs_, "outColor", "gl_FragColor" ); #endif //strrepl(&fs_, "out vec4 gl_FragColor", "//out vec4 outcolor"); vs = vs_; fs = fs_; } #endif GLuint vert = shader_compile(GL_VERTEX_SHADER, vs); GLuint frag = shader_compile(GL_FRAGMENT_SHADER, fs); //GLuint geom = shader_compile(GL_GEOMETRY_SHADER, gs); GLuint program = 0; if( vert && frag ) { program = glCreateProgram(); glAttachShader(program, vert); glAttachShader(program, frag); // glAttachShader(program, geom); for( int i = 0; attribs && attribs[0]; ++i ) { char attrib[128] = {0}; sscanf(attribs, "%127[^,]", attrib); while( attribs[0] && attribs[0] != ',' ) { attribs++; } while( attribs[0] && attribs[0] == ',' ) { attribs++; break; } if(!attrib[0]) continue; glBindAttribLocation(program, i, attrib); PRINTF("Shader.attribute[%d]=%s\n", i, attrib); } #if !is(ems) // @fixme if(fragcolor) glBindFragDataLocation(program, 0, fragcolor); #endif glLinkProgram(program); GLint status = GL_FALSE, length; glGetProgramiv(program, GL_LINK_STATUS, &status); #ifdef DEBUG_SHADER if (status != GL_FALSE && program == DEBUG_SHADER) { #else if (status == GL_FALSE) { #endif glGetProgramiv(program, GL_INFO_LOG_LENGTH, &length); // ASSERT(length < 2048); char buf[2048] = { 0 }; char *buf = stack(length+1); glGetProgramInfoLog(program, length, NULL, buf); puts("--- vs:"); shader_print(vs); puts("--- fs:"); shader_print(fs); } if (status == GL_FALSE) { PANIC("ERROR: shader(): Shader/program link: %s\n", buf); return 0; } // glDetachShader(program, vert); // glDetachShader(program, frag); // glDetachShader(program, geom); glDeleteShader(vert); glDeleteShader(frag); // glDeleteShader(geom); //#ifdef DEBUG_ANY_SHADER // PRINTF("Shader #%d:\n", program); // shader_print(vs); // shader_print(fs); //#endif } /* if( s->program ) { strcatf(&s->name, "// vs (%s)\n%s\n\n\n", file_vs, vs); strcatf(&s->name, "// fs (%s)\n%s\n\n\n", file_fs, fs); } */ return program; } void shader_destroy(unsigned program){ if( program == ~0u ) return; glDeleteProgram(program); // if(s->name) FREE(s->name), s->name = NULL; } static __thread unsigned last_shader = -1; static int shader_uniform(const char *name) { int ret = glGetUniformLocation(last_shader, name); // if( ret < 0 ) PRINTF("!cannot find uniform '%s' in shader program %d\n", name, (int)last_shader ); return ret; } unsigned shader_get_active() { return last_shader; } unsigned shader_bind(unsigned program) { unsigned ret = last_shader; return glUseProgram(last_shader = program), ret; } void shader_int(const char *uniform, int i) { glUniform1i(shader_uniform(uniform), i); } void shader_float(const char *uniform, float f) { glUniform1f(shader_uniform(uniform), f); } void shader_vec2(const char *uniform, vec2 v) { glUniform2fv(shader_uniform(uniform), 1, &v.x); } void shader_vec3(const char *uniform, vec3 v) { glUniform3fv(shader_uniform(uniform), 1, &v.x); } void shader_vec4(const char *uniform, vec4 v) { glUniform4fv(shader_uniform(uniform), 1, &v.x); } void shader_mat44(const char *uniform, mat44 m) { glUniformMatrix4fv(shader_uniform(uniform), 1, GL_FALSE/*GL_TRUE*/, m); } void shader_cubemap(const char *sampler, unsigned texture) { glUniform1i(shader_uniform(sampler), 0); glBindTexture(GL_TEXTURE_CUBE_MAP, texture); } void shader_bool(const char *uniform, bool x) { glUniform1i(shader_uniform(uniform), x); } void shader_uint(const char *uniform, unsigned x ) { glUniform1ui(shader_uniform(uniform), x); } void shader_texture(const char *sampler, texture_t t) { shader_texture_unit(sampler, t.id, t.unit); } void shader_texture_unit(const char *sampler, unsigned id, unsigned unit) { // @todo. if tex.h == 1 ? GL_TEXTURE_1D : GL_TEXTURE_2D glUniform1i(shader_uniform(sampler), unit); glActiveTexture(GL_TEXTURE0 + unit); glBindTexture(GL_TEXTURE_2D, id); } void shader_colormap(const char *name, colormap_t c ) { // assumes shader uses `struct { vec4 color; bool has_tex } name + sampler2D name_tex;` shader_vec4( va("%s.color", name), c.color ); shader_bool( va("%s.has_tex", name), c.texture != NULL ); if( c.texture ) shader_texture( va("%s_tex", name), *c.texture ); } // ----------------------------------------------------------------------------- // colors unsigned rgba( uint8_t r, uint8_t g, uint8_t b, uint8_t a ) { return (unsigned)a << 24 | r << 16 | g << 8 | b; } unsigned bgra( uint8_t b, uint8_t g, uint8_t r, uint8_t a ) { return rgba(r,g,b,a); } float alpha( unsigned rgba ) { return ( rgba >> 24 ) / 255.f; } unsigned rgbaf(float r, float g, float b, float a) { return rgba(r * 255, g * 255, b * 255, a * 255); } unsigned bgraf(float b, float g, float r, float a) { return rgba(r * 255, g * 255, b * 255, a * 255); } // ----------------------------------------------------------------------------- // images image_t image_create(int x, int y, int flags) { int n = 3; // defaults to RGB if(flags & IMAGE_R) n = 1; if(flags & IMAGE_RG) n = 2; if(flags & IMAGE_RGB) n = 3; if(flags & IMAGE_RGBA) n = 4; image_t img; img.x = x; img.y = y; img.n = n; img.pixels = REALLOC(0, x * y * n ); // @fixme: image_destroy() requires stbi allocator to match REALLOC return img; } image_t image_from_mem(const void *data, int size, int flags) { image_t img = {0}; if( data && size ) { stbi_set_flip_vertically_on_load(flags & IMAGE_FLIP ? 1 : 0); int n = 0; if(flags & IMAGE_R) n = 1; if(flags & IMAGE_RG) n = 2; if(flags & IMAGE_RGB) n = 3; if(flags & IMAGE_RGBA) n = 4; if(flags & IMAGE_FLOAT) img.pixels = stbi_loadf_from_memory((const stbi_uc*)data, size, (int*)&img.x,(int*)&img.y,(int*)&img.n, n); else img.pixels = stbi_load_from_memory((const stbi_uc*)data, size, (int*)&img.x,(int*)&img.y,(int*)&img.n, n); if( img.pixels ) { PRINTF("Loaded image (%dx%d %.*s->%.*s)\n",img.w,img.h,img.n,"RGBA",n?n:img.n,"RGBA"); } else { // PANIC("Error loading image (%s)\n", pathfile); } img.n = n ? n : img.n; } return img; } image_t image(const char *pathfile, int flags) { //const char *fname = vfs_remap(pathfile); // if( !fname[0] ) fname = vfs_remap(va("%s.png",pathfile)); // needed? // if( !fname[0] ) fname = vfs_remap(va("%s.jpg",pathfile)); // needed? // if( !fname[0] ) fname = vfs_remap(va("%s.tga",pathfile)); // needed? // if( !fname[0] ) fname = vfs_remap(va("%s.jpg.png",pathfile)); // needed? // if( !fname[0] ) fname = vfs_remap(va("%s.tga.png",pathfile)); // needed? // if( !fname[0] ) fname = vfs_remap(va("%s.png.jpg",pathfile)); // needed? // if( !fname[0] ) fname = vfs_remap(va("%s.tga.jpg",pathfile)); // needed? int size = 0; char *data = vfs_load(pathfile, &size); return image_from_mem(data, size, flags); } void image_destroy(image_t *img) { if(img->pixels) stbi_image_free(img->pixels); img->pixels = 0; // *img = (image_t){0}; // do not clear fields yet. might be useful in the future. } // bilinear interpolation (uv must be in image coords, range [0..w-1,0..h-1]) static vec3 bilinear(image_t in, vec2 uv) { // image_bilinear_pixel() ? float w = in.x, h = in.y, u = uv.x, v = uv.y; float u1 = (int)u, v1 = (int)v, u2 = minf(u1+1, w-1), v2 = minf(v1+1, h-1); float c1 = u - u1, c2 = v - v1; uint8_t *p1 = &in.pixels8[ in.n * (int)(u1 + v1 * in.w) ]; uint8_t *p2 = &in.pixels8[ in.n * (int)(u2 + v1 * in.w) ]; uint8_t *p3 = &in.pixels8[ in.n * (int)(u1 + v2 * in.w) ]; uint8_t *p4 = &in.pixels8[ in.n * (int)(u2 + v2 * in.w) ]; vec3 A = vec3( p1[0], p1[1], p1[2] ); vec3 B = vec3( p2[0], p2[1], p2[2] ); vec3 C = vec3( p3[0], p3[1], p3[2] ); vec3 D = vec3( p4[0], p4[1], p4[2] ); return mix3(mix3(A, B, c1), mix3(C, D, c1), c2); } // ----------------------------------------------------------------------------- // textures static int allocate_texture_unit() { static int textureUnit = 0, totalTextureUnits = 0; do_once glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &totalTextureUnits); ASSERT(textureUnit < totalTextureUnits, "%d texture units exceeded", totalTextureUnits); return textureUnit++; } unsigned texture_update(texture_t *t, unsigned w, unsigned h, unsigned n, const void *pixels, int flags) { if( t && !t->id ) { glGenTextures( 1, &t->id ); return texture_update(t, w, h, n, pixels, flags); } ASSERT( t && t->id ); ASSERT( n <= 4 ); GLuint pixel_types[] = { GL_RED, GL_RED, GL_RG, GL_RGB, GL_RGBA, GL_R32F, GL_R32F, GL_RG32F, GL_RGB32F, GL_RGBA32F }; GLenum pixel_storage = flags & TEXTURE_FLOAT ? GL_FLOAT : GL_UNSIGNED_BYTE; GLuint pixel_type = pixel_types[ n ]; GLuint texel_type = pixel_types[ n + 5 * !!(flags & TEXTURE_FLOAT) ]; GLenum wrap = GL_CLAMP_TO_EDGE; GLenum min_filter = GL_NEAREST, mag_filter = GL_NEAREST; // GLfloat color = (flags&7)/7.f, border_color[4] = { color, color, color, 1.f }; if( flags & TEXTURE_BGR ) if( pixel_type == GL_RGB ) pixel_type = GL_BGR; if( flags & TEXTURE_BGR ) if( pixel_type == GL_RGBA ) pixel_type = GL_BGRA; if( flags & TEXTURE_SRGB ) if( texel_type == GL_RGB ) texel_type = GL_SRGB; if( flags & TEXTURE_SRGB ) if( texel_type == GL_RGBA ) texel_type = GL_SRGB_ALPHA; // GL_SRGB8_ALPHA8 ? if( flags & TEXTURE_BC1 ) texel_type = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; if( flags & TEXTURE_BC2 ) texel_type = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; if( flags & TEXTURE_BC3 ) texel_type = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; if( flags & TEXTURE_DEPTH ) texel_type = pixel_type = GL_DEPTH_COMPONENT; // GL_DEPTH_COMPONENT32 if( flags & TEXTURE_REPEAT ) wrap = GL_REPEAT; if( flags & TEXTURE_BORDER ) wrap = GL_CLAMP_TO_BORDER; if( flags & TEXTURE_LINEAR ) min_filter = GL_LINEAR, mag_filter = GL_LINEAR; if( flags & TEXTURE_MIPMAPS ) min_filter = flags & TEXTURE_LINEAR ? GL_LINEAR_MIPMAP_LINEAR : GL_NEAREST_MIPMAP_LINEAR; // : GL_LINEAR_MIPMAP_NEAREST; maybe? if( flags & TEXTURE_MIPMAPS ) mag_filter = flags & TEXTURE_LINEAR ? GL_LINEAR : GL_NEAREST; #if 0 if( 0 ) { // flags & TEXTURE_PREMULTIPLY_ALPHA ) uint8_t *p = pixels; if(n == 2) for( unsigned i = 0; i < 2*w*h; i += 2 ) { p[i] = (p[i] * p[i+1] + 128) >> 8; } if(n == 4) for( unsigned i = 0; i < 4*w*h; i += 4 ) { p[i+0] = (p[i+0] * p[i+3] + 128) >> 8; p[i+1] = (p[i+1] * p[i+3] + 128) >> 8; p[i+2] = (p[i+2] * p[i+3] + 128) >> 8; } } #endif GLenum texture_type = t->flags & TEXTURE_ARRAY ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D; // @fixme: test GL_TEXTURE_2D_ARRAY //glPixelStorei( GL_UNPACK_ALIGNMENT, n < 4 ? 1 : 4 ); // for framebuffer reading //glActiveTexture(GL_TEXTURE0 + (flags&7)); glBindTexture(texture_type, t->id); glTexImage2D(texture_type, 0, texel_type, w, h, 0, pixel_type, pixel_storage, pixels); glTexParameteri(texture_type, GL_TEXTURE_WRAP_S, wrap); glTexParameteri(texture_type, GL_TEXTURE_WRAP_T, wrap); glTexParameteri(texture_type, GL_TEXTURE_MIN_FILTER, min_filter); glTexParameteri(texture_type, GL_TEXTURE_MAG_FILTER, mag_filter); #if 0 // only for sampler2DShadow if( flags & TEXTURE_DEPTH ) glTexParameteri(texture_type, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); if( flags & TEXTURE_DEPTH ) glTexParameteri(texture_type, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL); #endif // if( flags & TEXTURE_BORDER ) glTexParameterfv(texture_type, GL_TEXTURE_BORDER_COLOR, border_color); if( flags & TEXTURE_MIPMAPS ) glGenerateMipmap(texture_type); if( flags & TEXTURE_MIPMAPS ) { GLfloat max_aniso = 0; // glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY, &max_aniso); max_aniso = 4; // glTexParameterf(texture_type, GL_TEXTURE_MAX_ANISOTROPY, max_aniso); } // glBindTexture(texture_type, 0); // do not unbind. current code expects texture to be bound at function exit t->w = w; t->h = h; t->n = n; t->flags = flags; t->filename = t->filename ? t->filename : ""; return t->id; } texture_t texture_create(unsigned w, unsigned h, unsigned n, const void *pixels, int flags) { texture_t texture = {0}; glGenTextures( 1, &texture.id ); texture_update( &texture, w, h, n, pixels, flags ); texture.unit = allocate_texture_unit(); texture.transparent = texture.n > 3; // @fixme: should be true only if any pixel.a == 0 return texture; } texture_t texture_checker() { static texture_t texture = {0}; if( !texture.id ) { #if 0 float pixels[] = { 1,0.5,0.5,1 }; texture = texture_create(2,2,1, pixels, TEXTURE_FLOAT|TEXTURE_MIPMAPS|TEXTURE_REPEAT|TEXTURE_BORDER); #else uint32_t *pixels = REALLOC(0, 256*256*4); for (int y = 0, i = 0; y < 256; y++) { for (int x = 0; x < 256; x++) { #if 0 extern const uint32_t secret_palette[32]; uint32_t rgb = secret_palette[ y / 8 ] * !!((x ^ y) & 0x8); pixels[i++] = (rgb>>16) & 255; pixels[i++] = (rgb>>8) & 255; pixels[i++] = (rgb>>0) & 255; pixels[i++] = 255; #elif 0 extern const uint32_t secret_palette[32]; uint32_t rgb = ((x ^ y) & 0x8) ? secret_palette[6] : secret_palette[ 8 + ((x^y) / (256/6)) ]; pixels[i++] = (rgb>>16) & 255; pixels[i++] = (rgb>>8) & 255; pixels[i++] = (rgb>>0) & 255; pixels[i++] = 255; #else extern const uint32_t secret_palette[32]; uint32_t lum = (x^y) & 8 ? 128 : (x^y) & 128 ? 192 : 255; uint32_t rgb = rgba(lum,lum,lum,255); pixels[i++] = rgb; #endif } } texture = texture_create(256,256,4, pixels, TEXTURE_RGBA|TEXTURE_MIPMAPS|TEXTURE_REPEAT|TEXTURE_BORDER); FREE(pixels); #endif } return texture; } texture_t texture_from_mem(const void *ptr, int len, int flags) { image_t img = image_from_mem(ptr, len, flags); if( img.pixels ) { texture_t t = texture_create(img.x, img.y, img.n, img.pixels, flags); image_destroy(&img); return t; } return texture_checker(); } texture_t texture(const char *pathfile, int flags) { // PRINTF("Loading file %s\n", pathfile); image_t img = image(pathfile, flags); if( img.pixels ) { texture_t t = texture_create(img.x, img.y, img.n, img.pixels, flags); t.filename = STRDUP(file_name(pathfile)); image_destroy(&img); return t; } return texture_checker(); } void texture_destroy( texture_t *t ) { if(t->filename && t->filename[0]) FREE(t->filename), t->filename = 0; if(t->fbo) fbo_destroy(t->fbo), t->fbo = 0; if(t->id) glDeleteTextures(1, &t->id), t->id = 0; *t = (texture_t){0}; } bool texture_rec_begin(texture_t *t, unsigned tw, unsigned th) { for( unsigned w = tw ? tw : window_width(), h = th ? th : window_height(); w*h ; ) { // resize if needed if( t->w != w || t->h != h ) { // re-create texture, set texture parameters and content texture_update(t, w, h, 4, NULL, TEXTURE_RGBA); if(!t->fbo) t->fbo = fbo(t->id, 0, 0); } // bind fbo to texture fbo_bind(t->fbo); return true; } return false; } void texture_rec_end(texture_t *t) { fbo_unbind(); } // ktx texture loader // - rlyeh, public domain // // [ref] https://developer.nvidia.com/astc-texture-compression-for-game-assets // // # Compatibility and modes. What to choose. // - iOS: PVRTC1_4_RGB or PVRTC1_4 (RGBA) with q:pvrtcnormal. // - Desktop (OSX/Linux/Windows): BC1, BC1a or BC3 with q:normal. // - Android: ETC2_RGB or ETC2_RGBA with q:etcfast. ASTC_4x4 or ASTC_8x8 with q:astcmedium, as a fallback. #if 0 enum { // for glFormat GLFORMAT_RED = 0x1903, GLFORMAT_RG = 0x8227, GLFORMAT_RGB = 0x1907, GLFORMAT_RGBA = 0x1908, //GLFORMAT_ALPHA = 0x1906, // 8 //GLFORMAT_LUMINANCE = 0x1909, // 8 //GLFORMAT_LUMINANCE_ALPHA = 0x190A, // 88 // for glType GLTYPE_UNSIGNED_BYTE = 0x1401, // for glInternalFormat: RAW // @todo: SRGB, SRGBA, SBGR, SBGRA UNCOMPRESSED_RGB = 0x8051, // 888, GL_RGB8_EXT UNCOMPRESSED_RGB_565 = 0x8363, UNCOMPRESSED_RGBA = 0x8058, // 8888, GL_RGBA8_EXT UNCOMPRESSED_RGBA_4444 = 0x8033, UNCOMPRESSED_RGBA_5551 = 0x8034, UNCOMPRESSED_BGR = 0x80E0, // 888 UNCOMPRESSED_BGRA = 0x80E1, // 8888 // for glInternalFormat: S3TC/DXTn/BCn // @todo: BC4,5,6,7* COMPRESSED_RGB_BC1 = 0x83F0, // DXT1 COMPRESSED_RGBA_BC1 = 0x83F1, // DXT1a, BC1a COMPRESSED_RGBA_BC2 = 0x83F2, // DXT3 COMPRESSED_RGBA_BC3 = 0x83F3, // DXT5 COMPRESSED_RGBA_BC7 = 0x8E8C, // COMPRESSED_RGBA_BPTC_UNORM_ARB COMPRESSED_SRGB_BC1 = 0x8C4C, COMPRESSED_SRGBA_BC1 = 0x8C4D, COMPRESSED_SRGBA_BC2 = 0x8C4E, COMPRESSED_SRGBA_BC3 = 0x8C4F, // RGB_BC7f COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB // RGB_BC7uf COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB // RGBA_BC7 COMPRESSED_RGBA_BPTC_UNORM_ARB // SRGBA_BC7 COMPRESSED_SRGBA_BPTC_UNORM_ARB // for glInternalFormat: ETC2+EAC COMPRESSED_R_EAC = 0x9270, // 4bpp COMPRESSED_R_EAC_SIGNED = 0x9271, // 4bpp. can preserve 0 COMPRESSED_RG_EAC = 0x9272, // 8bpp COMPRESSED_RG_EAC_SIGNED = 0x9273, // 8bbp. can preserve 0 COMPRESSED_RGB_ETC2 = 0x9274, // 4bpp COMPRESSED_RGBA_ETC2 = 0x9276, // 4bpp A1 COMPRESSED_RGBA_ETC2_EAC = 0x9278, // 8bpp COMPRESSED_SRGB_ETC2 = 0x9275, // 4bpp COMPRESSED_SRGBA_ETC2 = 0x9277, // 4bpp A1 COMPRESSED_SRGBA_ETC2_EAC = 0x9279, // 8bpp // for glInternalFormat: PVR COMPRESSED_RGB_PVR1_2 = 0x8C01, COMPRESSED_RGB_PVR1_4 = 0x8C00, COMPRESSED_RGBA_PVR1_2 = 0x8C03, COMPRESSED_RGBA_PVR1_4 = 0x8C02, COMPRESSED_SRGB_PVR1_2 = 0x8A54, // _EXT COMPRESSED_SRGB_PVR1_4 = 0x8A55, // _EXT COMPRESSED_SRGBA_PVR1_2 = 0x8A56, // _EXT COMPRESSED_SRGBA_PVR1_4 = 0x8A57, // _EXT COMPRESSED_RGBA_PVR2_2 = 0x9137, COMPRESSED_RGBA_PVR2_4 = 0x9138, COMPRESSED_SRGBA_PVR2_2 = 0x93F0, COMPRESSED_SRGBA_PVR2_4 = 0x93F1, // for glInternalFormat: ASTC COMPRESSED_RGBA_ASTC4x4 = 0x93B0, // 8.00bpp COMPRESSED_RGBA_ASTC5x4 = 0x93B1, // 6.40bpp COMPRESSED_RGBA_ASTC5x5 = 0x93B2, // 5.12bpp COMPRESSED_RGBA_ASTC6x5 = 0x93B3, // 4.27bpp COMPRESSED_RGBA_ASTC6x6 = 0x93B4, // 3.56bpp COMPRESSED_RGBA_ASTC8x5 = 0x93B5, // 3.20bpp COMPRESSED_RGBA_ASTC8x6 = 0x93B6, // 2.67bpp COMPRESSED_RGBA_ASTC8x8 = 0x93B7, // 2.56bpp COMPRESSED_RGBA_ASTC10x5 = 0x93B8, // 2.13bpp COMPRESSED_RGBA_ASTC10x6 = 0x93B9, // 2.00bpp COMPRESSED_RGBA_ASTC10x8 = 0x93BA, // 1.60bpp COMPRESSED_RGBA_ASTC10x10 = 0x93BB, // 1.28bpp COMPRESSED_RGBA_ASTC12x10 = 0x93BC, // 1.07bpp COMPRESSED_RGBA_ASTC12x12 = 0x93BD, // 0.89bpp COMPRESSED_SRGBA_ASTC4x4 = 0x93D0, // 8.00bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC5x4 = 0x93D1, // 6.40bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC5x5 = 0x93D2, // 5.12bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC6x5 = 0x93D3, // 4.27bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC6x6 = 0x93D4, // 3.56bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC8x5 = 0x93D5, // 3.20bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC8x6 = 0x93D6, // 2.67bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC8x8 = 0x93D7, // 2.56bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC10x5 = 0x93D8, // 2.13bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC10x6 = 0x93D9, // 2.00bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC10x8 = 0x93DA, // 1.60bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC10x10 = 0x93DB, // 1.28bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC12x10 = 0x93DC, // 1.07bpp SRGB8 A8 COMPRESSED_SRGBA_ASTC12x12 = 0x93DD, // 0.89bpp SRGB8 A8 // others: // COMPRESSED_RED_RGTC1 // COMPRESSED_SIGNED_RED_RGTC1 // COMPRESSED_RG_RGTC2 // COMPRESSED_SIGNED_RG_RGTC2 }; #endif #pragma pack(push, 1) // not really needed. the struct is exactly 64 bytes, and all members are 32-bit unsigned typedef struct ktx_header { unsigned identifier[3]; // "«KTX 11»\r\n\x1A\n" unsigned endianness; // 0x04030201 if match unsigned glType; // 0 if compressed; otherwise: UNSIGNED_BYTE, UNSIGNED_SHORT_5_6_5, etc. unsigned glTypeSize; // 1 if compressed; otherwise, size in bytes of glType for endianness conversion. not needed. unsigned glFormat; // STENCIL_INDEX, DEPTH_COMPONENT, DEPTH_STENCIL, RED, GREEN, BLUE, RG, RGB, RGBA, BGR, BGRA, RED_INTEGER, GREEN_INTEGER, BLUE_INTEGER, RG_INTEGER, RGB_INTEGER, RGBA_INTEGER, BGR_INTEGER, BGRA_INTEGER, unsigned glInternalFormat; // COMPRESSED_RED, COMPRESSED_RG, COMPRESSED_RGB, COMPRESSED_RGBA, COMPRESSED_SRGB, COMPRESSED_SRGB_ALPHA, COMPRESSED_RED_RGTC1, COMPRESSED_SIGNED_RED_RGTC1, COMPRESSED_RG_RGTC2, COMPRESSED_SIGNED_RG_RGTC2, COMPRESSED_RGBA_BPTC_UNORM, COMPRESSED_SRGB_ALPHA_BPTC_UNORM, COMPRESSED_RGB_BPTC_SIGNED_FLOAT, COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT, COMPRESSED_RGB8_ETC2, COMPRESSED_SRGB8_ETC2, COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2, COMPRESSED_RGBA8_ETC2_EAC, COMPRESSED_SRGB8_ALPHA8_ETC2_EAC, COMPRESSED_R11_EAC, COMPRESSED_SIGNED_R11_EAC, COMPRESSED_RG11_EAC, COMPRESSED_SIGNED_RG11_EAC, unsigned glBaseInternalFormat; // DEPTH_COMPONENT, DEPTH_STENCIL, RED, RG, RGB, RGBA, STENCIL_INDEX, unsigned width; unsigned height; unsigned depth; unsigned num_surfaces; // >1 for material unsigned num_faces; // =6 for cubemaps (+X,-X,+Y,-Y,+Z,-Z order), 1 otherwise unsigned num_mipmaps; // >1 for mipmaps unsigned metadata_size; // length of following header // struct ktx_metadata { // unsigned key_and_value_size; // char key_and_value[key_and_value_size]; // char value_padding[3 - ((key_and_value_size + 3) % 4)]; // }; // struct ktx_texture_data { // unsigned size; // char data[0]; // } tx; } ktx_header; #pragma pack(pop) typedef struct ktx_texture { unsigned width; unsigned height; unsigned depth; unsigned size; const char* data; } ktx_texture; typedef struct ktx { ktx_header hdr; const char *error; } ktx; static __thread array(ktx_texture) ktx_textures; static ktx ktx_load(const void *data, unsigned int len) { ktx ctx = {0}; // check ktx signature bool is_ktx = (len > sizeof(ktx_header)) && !memcmp(data, "\xABKTX 11\xBB\r\n\x1A\n", 12); if( !is_ktx ) { return ctx.error = "ERROR_BAD_KTX_FILE", ctx; } // copy texture header ktx_header *hdr = &ctx.hdr; *hdr = *((const ktx_header *)data); // sanity checks STATIC_ASSERT(sizeof(ktx_header) == (16*4)); for( int i = 0; i < sizeof(ktx_header)/4; ++i) { i[(unsigned*)hdr] = lil32(i[(unsigned*)hdr]); } if( hdr->endianness != 0x04030201 ) { return ctx.error = "ERROR_BAD_ENDIANNESS", ctx; } if( (hdr->num_faces != 1) && (hdr->num_faces != 6) ) { return ctx.error = "ERROR_BAD_NUMBER_OF_FACES", ctx; } // normalize glInternalFormat if uncompressed. if( hdr->glType != 0 ) { hdr->glInternalFormat = hdr->glBaseInternalFormat; } // normalize [1..N] range hdr->num_mipmaps += !hdr->num_mipmaps; hdr->num_surfaces += !hdr->num_surfaces; hdr->num_faces += !hdr->num_faces; // basically, // for each level in num_mipmaps { UInt32 imageSize; // for each surface in num_surfaces { // for each face in num_faces { // for each slice in depth { // for each row in height { // for each pixel in width { // byte data[size_based_on_pixelformat] // byte facePadding[0-3] }}} // } // Byte mipPadding[0-3] } array_resize(ktx_textures, hdr->num_mipmaps * hdr->num_surfaces * hdr->num_faces); const char *bitmap = ((const char*)data) + sizeof(ktx_header) + hdr->metadata_size; for( unsigned m = 0; m < hdr->num_mipmaps; ++m ) { for( unsigned s = 0; s < hdr->num_surfaces; ++s ) { for( unsigned f = 0; f < hdr->num_faces; ++f ) { ktx_texture *t = &ktx_textures[f+s*hdr->num_faces+m*hdr->num_faces*hdr->num_surfaces]; // set dimensions [1..N] t->width = (hdr->width >> m) + !(hdr->width >> m); t->height = (hdr->height >> m) + !(hdr->height >> m); t->depth = (hdr->depth >> m) + !(hdr->depth >> m); // seek to mip const char *ptr = bitmap; for( int i = 0; i <= m; i++ ) { // if cubemap, *ptr holds unpadded size of single face, // else, *ptr holds size of all surfaces+faces+slices for whole mipmap. unsigned size = lil32(*(unsigned*)ptr); unsigned padding = 3 - ((size + 3) % 4); // seek to data t->data = ptr + 4 + (size * f); // seek to next mipmap ptr = ptr + 4 + (size * hdr->num_faces) + padding; // adjust size t->size = (uintptr_t)(ptr - t->data); // -padding; needed? } // ensure we're in bounds ASSERT(t->data < ((char*)data + len), "%p < %p", t->data, ((char*)data + len)); ASSERT(((char*)t->data+t->size) <= ((char*)data + len), "%p < %p", (char*)t->data + t->size, ((char*)data + len)); } } } return ctx; } // --- texture_t texture_compressed_from_mem(const void *data, int len, unsigned flags) { ktx ctx = ktx_load(data, len); if( ctx.error ) { // puts(ctx.error); // return texture_checker(); return texture_from_mem(data, len, flags); } ktx_header hdr = ctx.hdr; // flags int target = hdr.num_faces == 6 ? GL_TEXTURE_CUBE_MAP : hdr.depth > 0 ? GL_TEXTURE_3D : GL_TEXTURE_2D; int dimensions = target == GL_TEXTURE_3D ? 3 : target == GL_TEXTURE_2D || target == GL_TEXTURE_CUBE_MAP ? 2 : 1; // create texture GLuint id; glGenTextures(1, &id); glBindTexture(target, id); // filtering glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(target, GL_TEXTURE_MIN_FILTER, hdr.num_mipmaps > 1 ? GL_LINEAR_MIPMAP_LINEAR : GL_LINEAR); // wrapping if( dimensions > 0 ) glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_REPEAT); if( dimensions > 1 ) glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_REPEAT); if( dimensions > 2 ) glTexParameteri(target, GL_TEXTURE_WRAP_R, GL_REPEAT); if( target == GL_TEXTURE_CUBE_MAP ) target = GL_TEXTURE_CUBE_MAP_POSITIVE_X; // GLenum internalFormat = flags & TEXTURE_SRGB ? GL_SRGB8_ALPHA8 : GL_RGBA8; // @fixme int bytes = 0; enum { border = 0 }; for( int m = 0; m < hdr.num_mipmaps; ++m ) { for( int s = 0; s < hdr.num_surfaces; ++s ) { for( int f = 0; f < hdr.num_faces; ++f ) { int d3 = target == GL_TEXTURE_3D, compr = hdr.glType == 0, mode = d3+compr*2; ktx_texture *t = &ktx_textures[f+s*hdr.num_faces+m*hdr.num_faces*hdr.num_surfaces]; /**/ if(mode==0) glTexImage2D(target+f,m,hdr.glInternalFormat,t->width,t->height, border,hdr.glFormat,hdr.glType,t->data); else if(mode==1) glTexImage3D(target ,m,hdr.glInternalFormat,t->width,t->height,t->depth, border,hdr.glFormat,hdr.glType,t->data); else if(mode==2) glCompressedTexImage2D(target+f,m,hdr.glInternalFormat,t->width,t->height, border,t->size,t->data); else if(mode==3) glCompressedTexImage3D(target ,m,hdr.glInternalFormat,t->width,t->height,t->depth,border,t->size,t->data); bytes += t->size; } } } // if( !hdr.num_mipmaps ) // if( flags & TEXTURE_MIPMAPS ) glGenerateMipmap(target); texture_t t = {0}; t.id = id; t.w = ktx_textures[0].width; t.h = ktx_textures[0].height; t.d = ktx_textures[0].depth; // @todo: reconstruct flags PRINTF("dims:%dx%dx%d,size:%.2fMiB,mips:%d,layers:%d,faces:%d\n", t.w, t.h, t.d, bytes / 1024.0 / 1024.0, hdr.num_mipmaps, hdr.num_surfaces, hdr.num_faces); return t; } texture_t texture_compressed(const char *pathfile, unsigned flags) { //const char *fname = vfs_remap(pathfile); int size = 0; char *data = vfs_load(pathfile, &size); return texture_compressed_from_mem(data, size, flags); } // ----------------------------------------------------------------------------- // shadowmaps shadowmap_t shadowmap(int texture_width) { // = 1024 shadowmap_t s = {0}; s.texture_width = texture_width; glGetIntegerv(GL_DRAW_FRAMEBUFFER_BINDING, &s.saved_fb); glGenFramebuffers(1, &s.fbo); glBindFramebuffer(GL_FRAMEBUFFER, s.fbo); glActiveTexture(GL_TEXTURE0); glGenTextures(1, &s.texture); glBindTexture(GL_TEXTURE_2D, s.texture); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, texture_width, texture_width, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, s.texture, 0); #if is(ems) GLenum nones[] = { GL_NONE }; glDrawBuffers(1, nones); glReadBuffer(GL_NONE); #else glDrawBuffer(GL_NONE); glReadBuffer(GL_NONE); #endif glBindFramebuffer(GL_FRAMEBUFFER, s.saved_fb); return s; } void shadowmap_destroy(shadowmap_t *s) { if (s->texture) { glDeleteTextures(1, &s->texture); } if (s->fbo) { glDeleteFramebuffers(1, &s->fbo); } shadowmap_t z = {0}; *s = z; } void shadowmap_set_shadowmatrix(shadowmap_t *s, vec3 aLightPos, vec3 aLightAt, vec3 aLightUp, const mat44 projection) { copy44(s->proj, projection); s->light_position = vec4(aLightPos.x, aLightPos.y, aLightPos.z, 1); lookat44(s->mv, aLightPos, aLightAt, aLightUp); mat44 bias = { 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 }; // s->shadowmatrix = bias; // s->shadowmatrix *= s->proj; // s->shadowmatrix *= s->mv; // multiply44x3(s->shadowmatrix, s->mv, s->proj, bias); multiply44x3(s->shadowmatrix, bias, s->proj, s->mv); // mvp = projection * s->mv; // multiply44x2(s->mvp, s->mv, projection); multiply44x2(s->mvp, projection, s->mv); } void shadowmap_begin(shadowmap_t *s) { glGetIntegerv(GL_VIEWPORT, &s->saved_viewport[0]); glGetIntegerv(GL_DRAW_FRAMEBUFFER_BINDING, &s->saved_fb); glBindFramebuffer(GL_FRAMEBUFFER, s->fbo); glViewport(0, 0, s->texture_width, s->texture_width); glClearDepth(1); glClear(GL_DEPTH_BUFFER_BIT); } void shadowmap_end(shadowmap_t *s) { glViewport(s->saved_viewport[0], s->saved_viewport[1], s->saved_viewport[2], s->saved_viewport[3]); glBindFramebuffer(GL_FRAMEBUFFER, s->saved_fb); } // shadowmap utils void shadowmatrix_proj(mat44 shm_proj, float aLightFov, float znear, float zfar) { perspective44(shm_proj, aLightFov, 1.0f, znear, zfar); } void shadowmatrix_ortho(mat44 shm_proj, float left, float right, float bottom, float top, float znear, float zfar) { ortho44(shm_proj, left, right, bottom, top, znear, zfar); } // ----------------------------------------------------------------------------- // fullscreen quads // usage: bind empty vao & commit call for 6 (quad) or 3 vertices (tri). // ie, glBindVertexArray(empty_vao); glDrawArrays(GL_TRIANGLES, 0, 3); void fullscreen_quad_rgb( texture_t texture, float gamma ) { static int program = -1, vao = -1, u_inv_gamma = -1; if( program < 0 ) { const char* vs = vs_0_2_fullscreen_quad_B_flipped; const char* fs = fs_2_4_texel_inv_gamma; program = shader(vs, fs, "", "fragcolor" ); u_inv_gamma = glGetUniformLocation(program, "u_inv_gamma"); glGenVertexArrays( 1, (GLuint*)&vao ); } GLenum texture_type = texture.flags & TEXTURE_ARRAY ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D; // glEnable( GL_BLEND ); glUseProgram( program ); glUniform1f( u_inv_gamma, 1.0f / (gamma + !gamma) ); glBindVertexArray( vao ); glActiveTexture( GL_TEXTURE0 ); glBindTexture( texture_type, texture.id ); glDrawArrays( GL_TRIANGLES, 0, 6 ); profile_incstat("Render.num_drawcalls", +1); profile_incstat("Render.num_triangles", +2); glBindTexture( texture_type, 0 ); glBindVertexArray( 0 ); glUseProgram( 0 ); // glDisable( GL_BLEND ); } void fullscreen_quad_ycbcr( texture_t textureYCbCr[3], float gamma ) { static int program = -1, vao = -1, u_gamma = -1, uy = -1, ucb = -1, ucr = -1; if( program < 0 ) { const char* vs = vs_0_2_fullscreen_quad_B_flipped; const char* fs = fs_2_4_texel_ycbr_gamma_saturation; program = shader(vs, fs, "", "fragcolor" ); u_gamma = glGetUniformLocation(program, "u_gamma"); uy = glGetUniformLocation(program, "u_texture_y"); ucb = glGetUniformLocation(program, "u_texture_cb"); ucr = glGetUniformLocation(program, "u_texture_cr"); glGenVertexArrays( 1, (GLuint*)&vao ); } // glEnable( GL_BLEND ); glUseProgram( program ); glUniform1f( u_gamma, gamma ); glBindVertexArray( vao ); glUniform1i(uy, 0); glActiveTexture( GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, textureYCbCr[0].id ); glUniform1i(ucb, 1); glActiveTexture( GL_TEXTURE1 ); glBindTexture( GL_TEXTURE_2D, textureYCbCr[1].id ); glUniform1i(ucr, 2); glActiveTexture( GL_TEXTURE2 ); glBindTexture( GL_TEXTURE_2D, textureYCbCr[2].id ); glDrawArrays( GL_TRIANGLES, 0, 6 ); profile_incstat("Render.num_drawcalls", +1); profile_incstat("Render.num_triangles", +2); glBindTexture( GL_TEXTURE_2D, 0 ); glBindVertexArray( 0 ); glUseProgram( 0 ); // glDisable( GL_BLEND ); } // ---------------------------------------------------------------------------- // sprites typedef struct sprite_t { float px, py, pz; // origin x, y, depth float ox, oy, cos, sin; // offset x, offset y, cos/sin of rotation degree float sx, sy; // scale x,y uint32_t rgba; // vertex color float cellw, cellh; // dimensions of any cell in spritesheet union { struct { int frame, ncx, ncy; // frame in a (num cellx, num celly) spritesheet }; struct { float x, y, w, h; // normalized[0..1] within texture bounds }; }; } sprite_t; // sprite batching typedef struct batch_t { array(sprite_t) sprites; mesh_t mesh; int dirty; } batch_t; typedef map(int, batch_t) batch_group_t; // mapkey is anything that forces a flush. texture_id for now, might be texture_id+program_id soon // sprite stream typedef struct sprite_vertex { vec3 pos; vec2 uv; uint32_t rgba; } sprite_vertex; typedef struct sprite_index { GLuint triangle[3]; } sprite_index; #define sprite_vertex(...) C_CAST(sprite_vertex, __VA_ARGS__) #define sprite_index(...) C_CAST(sprite_index, __VA_ARGS__) // sprite impl static int sprite_count = 0; static int sprite_program = -1; static array(sprite_index) sprite_indices = 0; static array(sprite_vertex) sprite_vertices = 0; static batch_group_t sprite_additive_group = {0}; // (w/2,h/2) centered static batch_group_t sprite_translucent_group = {0}; // (w/2,h/2) centered static batch_group_t sprite_00_translucent_group = {0}; // (0,0) centered void sprite( texture_t texture, float position[3], float rotation, uint32_t color ) { float offset[2] = {0,0}, scale[2] = {1,1}, spritesheet[3] = {0,0,0}; sprite_sheet( texture, spritesheet, position, rotation, offset, scale, 0, color, false ); } // rect(x,y,w,h) is [0..1] normalized, z-index, pos(x,y,scale), rotation (degrees), color (rgba) void sprite_rect( texture_t t, vec4 rect, float zindex, vec3 pos, float tilt_deg, unsigned tint_rgba) { // @todo: no need to queue if alpha or scale are zero sprite_t s = {0}; s.x = rect.x, s.y = rect.y, s.w = rect.z, s.h = rect.w; s.cellw = s.w * t.w, s.cellh = s.h * t.h; s.px = pos.x, s.py = pos.y, s.pz = zindex; s.sx = s.sy = pos.z; s.rgba = tint_rgba; s.ox = 0/*ox*/ * s.sx; s.oy = 0/*oy*/ * s.sy; if( tilt_deg ) { tilt_deg = (tilt_deg + 0) * ((float)C_PI / 180); s.cos = cosf(tilt_deg); s.sin = sinf(tilt_deg); } else { s.cos = 1; s.sin = 0; } batch_group_t *batches = &sprite_00_translucent_group; batch_t *found = map_find_or_add(*batches, t.id, (batch_t){0}); array_push(found->sprites, s); } void sprite_sheet( texture_t texture, float spritesheet[3], float position[3], float rotation, float offset[2], float scale[2], int is_additive, uint32_t rgba, int resolution_independant) { const float px = position[0], py = position[1], pz = position[2]; const float ox = offset[0], oy = offset[1], sx = scale[0], sy = scale[1]; const float frame = spritesheet[0], xcells = spritesheet[1], ycells = spritesheet[2]; if (frame < 0) return; if (frame > 0 && frame >= (xcells * ycells)) return; // no need to queue if alpha or scale are zero if( sx && sy && alpha(rgba) ) { vec3 bak = camera_get_active()->position; if( resolution_independant ) { // @todo: optimize me sprite_flush(); camera_get_active()->position = vec3(window_width()/2,window_height()/2,1); } sprite_t s; s.px = px; s.py = py; s.pz = pz; s.frame = frame; s.ncx = xcells ? xcells : 1; s.ncy = ycells ? ycells : 1; s.sx = sx; s.sy = sy; s.ox = ox * sx; s.oy = oy * sy; s.cellw = (texture.x * sx / s.ncx); s.cellh = (texture.y * sy / s.ncy); s.rgba = rgba; s.cos = 1; s.sin = 0; if(rotation) { rotation = (rotation + 0) * ((float)C_PI / 180); s.cos = cosf(rotation); s.sin = sinf(rotation); } batch_group_t *batches = is_additive ? &sprite_additive_group : &sprite_translucent_group; #if 0 batch_t *found = map_find(*batches, texture.id); if( !found ) found = map_insert(*batches, texture.id, (batch_t){0}); #else batch_t *found = map_find_or_add(*batches, texture.id, (batch_t){0}); #endif array_push(found->sprites, s); if( resolution_independant ) { // @todo: optimize me sprite_flush(); camera_get_active()->position = bak; } } } static void sprite_rebuild_meshes() { sprite_count = 0; batch_group_t* list[] = { &sprite_additive_group, &sprite_translucent_group }; for( int l = 0; l < countof(list); ++l) { for each_map_ptr(*list[l], int,_, batch_t,bt) { bt->dirty = array_count(bt->sprites) ? 1 : 0; if( !bt->dirty ) continue; int index = 0; array_clear(sprite_indices); array_clear(sprite_vertices); array_foreach_ptr(bt->sprites, sprite_t,it ) { float x0 = it->ox - it->cellw/2, x3 = x0 + it->cellw; float y0 = it->oy - it->cellh/2, y3 = y0; float x1 = x0, x2 = x3; float y1 = y0 + it->cellh, y2 = y1; // @todo: move this affine transform into glsl shader vec3 v0 = { it->px + ( x0 * it->cos - y0 * it->sin ), it->py + ( x0 * it->sin + y0 * it->cos ), it->pz }; vec3 v1 = { it->px + ( x1 * it->cos - y1 * it->sin ), it->py + ( x1 * it->sin + y1 * it->cos ), it->pz }; vec3 v2 = { it->px + ( x2 * it->cos - y2 * it->sin ), it->py + ( x2 * it->sin + y2 * it->cos ), it->pz }; vec3 v3 = { it->px + ( x3 * it->cos - y3 * it->sin ), it->py + ( x3 * it->sin + y3 * it->cos ), it->pz }; float cx = (1.0f / it->ncx) - 1e-9f; float cy = (1.0f / it->ncy) - 1e-9f; int idx = (int)it->frame; int px = idx % it->ncx; int py = idx / it->ncx; float ux = px * cx, uy = py * cy; float vx = ux + cx, vy = uy + cy; vec2 uv0 = vec2(ux, uy); vec2 uv1 = vec2(ux, vy); vec2 uv2 = vec2(vx, vy); vec2 uv3 = vec2(vx, uy); array_push( sprite_vertices, sprite_vertex(v0, uv0, it->rgba) ); // Vertex 0 (A) array_push( sprite_vertices, sprite_vertex(v1, uv1, it->rgba) ); // Vertex 1 (B) array_push( sprite_vertices, sprite_vertex(v2, uv2, it->rgba) ); // Vertex 2 (C) array_push( sprite_vertices, sprite_vertex(v3, uv3, it->rgba) ); // Vertex 3 (D) // A--B A A-B // quad | | becomes triangle |\ and triangle \| // D--C D-C C GLuint A = (index+0), B = (index+1), C = (index+2), D = (index+3); index += 4; array_push( sprite_indices, sprite_index(C, D, A) ); // Triangle 1 array_push( sprite_indices, sprite_index(C, A, B) ); // Triangle 2 } mesh_update(&bt->mesh, "p3 t2 c4B", 0,array_count(sprite_vertices),sprite_vertices, 3*array_count(sprite_indices),sprite_indices, MESH_STATIC); // clear elements from queue sprite_count += array_count(bt->sprites); array_clear(bt->sprites); } } batch_group_t* list2[] = { &sprite_00_translucent_group }; for( int l = 0; l < countof(list2); ++l) { for each_map_ptr(*list2[l], int,_, batch_t,bt) { bt->dirty = array_count(bt->sprites) ? 1 : 0; if( !bt->dirty ) continue; int index = 0; array_clear(sprite_indices); array_clear(sprite_vertices); array_foreach_ptr(bt->sprites, sprite_t,it ) { float x0 = it->ox - it->cellw/2, x3 = x0 + it->cellw; float y0 = it->oy - it->cellh/2, y3 = y0; float x1 = x0, x2 = x3; float y1 = y0 + it->cellh, y2 = y1; // @todo: move this affine transform into glsl shader vec3 v0 = { it->px + ( x0 * it->cos - y0 * it->sin ), it->py + ( x0 * it->sin + y0 * it->cos ), it->pz }; vec3 v1 = { it->px + ( x1 * it->cos - y1 * it->sin ), it->py + ( x1 * it->sin + y1 * it->cos ), it->pz }; vec3 v2 = { it->px + ( x2 * it->cos - y2 * it->sin ), it->py + ( x2 * it->sin + y2 * it->cos ), it->pz }; vec3 v3 = { it->px + ( x3 * it->cos - y3 * it->sin ), it->py + ( x3 * it->sin + y3 * it->cos ), it->pz }; float ux = it->x, vx = ux + it->w; float uy = it->y, vy = uy + it->h; vec2 uv0 = vec2(ux, uy); vec2 uv1 = vec2(ux, vy); vec2 uv2 = vec2(vx, vy); vec2 uv3 = vec2(vx, uy); array_push( sprite_vertices, sprite_vertex(v0, uv0, it->rgba) ); // Vertex 0 (A) array_push( sprite_vertices, sprite_vertex(v1, uv1, it->rgba) ); // Vertex 1 (B) array_push( sprite_vertices, sprite_vertex(v2, uv2, it->rgba) ); // Vertex 2 (C) array_push( sprite_vertices, sprite_vertex(v3, uv3, it->rgba) ); // Vertex 3 (D) // A--B A A-B // quad | | becomes triangle |\ and triangle \| // D--C D-C C GLuint A = (index+0), B = (index+1), C = (index+2), D = (index+3); index += 4; array_push( sprite_indices, sprite_index(C, D, A) ); // Triangle 1 array_push( sprite_indices, sprite_index(C, A, B) ); // Triangle 2 } mesh_update(&bt->mesh, "p3 t2 c4B", 0,array_count(sprite_vertices),sprite_vertices, 3*array_count(sprite_indices),sprite_indices, MESH_STATIC); // clear elements from queue sprite_count += array_count(bt->sprites); array_clear(bt->sprites); } } } static void sprite_render_meshes() { if( map_count(sprite_additive_group) <= 0 ) if( map_count(sprite_translucent_group) <= 0 ) if( map_count(sprite_00_translucent_group) <= 0 ) return; if( sprite_program < 0 ) { sprite_program = shader( vs_324_24_sprite, fs_24_4_sprite, "att_Position,att_TexCoord,att_Color", "fragColor" ); } // use the shader and bind the texture @ unit 0 shader_bind(sprite_program); glActiveTexture(GL_TEXTURE0); // setup rendering state glEnable(GL_DEPTH_TEST); glEnable(GL_BLEND); glDepthFunc(GL_LEQUAL); // try to help with zfighting // update camera // camera_fps(camera_get_active(), 0,0); vec3 pos = camera_get_active()->position; float zoom = absf(pos.z); if(zoom < 0.1f) zoom = 0.1f; zoom = 1.f / (zoom + !zoom); float width = window_width(); float height = window_height(); // set mvp in the uniform. (0,0) is center of screen. mat44 mvp2d; float zdepth_max = window_height(); // 1; float l = pos.x - width * zoom / 2; float r = pos.x + width * zoom / 2; float b = pos.y + height * zoom / 2; float t = pos.y - height * zoom / 2; ortho44(mvp2d, l,r,b,t, -zdepth_max, +zdepth_max); shader_mat44("u_mvp", mvp2d); // set (unit 0) in the uniform texture sampler, and render batch // for all additive then translucent groups if( map_count(sprite_additive_group) > 0 ) { glBlendFunc( GL_SRC_ALPHA, GL_ONE ); for each_map_ptr(sprite_additive_group, int,texture_id, batch_t,bt) { if( bt->dirty ) { shader_texture_unit("u_texture", *texture_id, 0); mesh_render(&bt->mesh); } } // map_clear(sprite_additive_group); } if( map_count(sprite_translucent_group) > 0 ) { glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA ); for each_map_ptr(sprite_translucent_group, int,texture_id, batch_t,bt) { if( bt->dirty ) { shader_texture_unit("u_texture", *texture_id, 0); mesh_render(&bt->mesh); } } // map_clear(sprite_translucent_group); } if( map_count(sprite_00_translucent_group) > 0 ) { glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA ); for each_map_ptr(sprite_00_translucent_group, int,texture_id, batch_t,bt) { if( bt->dirty ) { shader_texture_unit("u_texture", *texture_id, 0); mesh_render(&bt->mesh); } } // map_clear(sprite_00_translucent_group); } glDisable(GL_DEPTH_TEST); glDisable(GL_BLEND); glDepthFunc(GL_LESS); glUseProgram(0); } static void sprite_init() { do_once { map_init(sprite_00_translucent_group, less_int, hash_int); map_init(sprite_translucent_group, less_int, hash_int); map_init(sprite_additive_group, less_int, hash_int); } } void sprite_flush() { profile("Sprite.rebuild_time") { sprite_rebuild_meshes(); } profile("Sprite.render_time") { sprite_render_meshes(); } } // ----------------------------------------------------------------------------- // tilemaps tilemap_t tilemap(const char *map, int blank_chr, int linefeed_chr) { tilemap_t t = {0}; t.tint = ~0u; // WHITE t.blank_chr = blank_chr; for( ; *map ; ++map ) { if( map[0] == linefeed_chr ) ++t.rows; else { array_push(t.map, map[0]); ++t.cols; } } return t; } void tilemap_render_ext( tilemap_t m, tileset_t t, float zindex, float xy_zoom[3], float tilt, unsigned tint, bool is_additive ) { vec3 old_pos = camera_get_active()->position; sprite_flush(); camera_get_active()->position = vec3(window_width()/2,window_height()/2,1); float scale[2] = {xy_zoom[2], xy_zoom[2]}; xy_zoom[2] = zindex; float offset[2] = {0,0}; float spritesheet[3] = {0,t.cols,t.rows}; // selected tile index and spritesheet dimensions (cols,rows) for( unsigned y = 0, c = 0; y < m.rows; ++y ) { for( unsigned x = 0; x < m.cols; ++x, ++c ) { if( m.map[c] != m.blank_chr ) { spritesheet[0] = m.map[c]; sprite_sheet(t.tex, spritesheet, xy_zoom, tilt, offset, scale, is_additive, tint, false); } offset[0] += t.tile_w; } offset[0] = 0, offset[1] += t.tile_h; } sprite_flush(); camera_get_active()->position = old_pos; } void tilemap_render( tilemap_t map, tileset_t set ) { map.position.x += set.tile_w; map.position.y += set.tile_h; tilemap_render_ext( map, set, map.zindex, &map.position.x, map.tilt, map.tint, map.is_additive ); } tileset_t tileset(texture_t tex, unsigned tile_w, unsigned tile_h, unsigned cols, unsigned rows) { tileset_t t = {0}; t.tex = tex; t.cols = cols, t.rows = rows; t.tile_w = tile_w, t.tile_h = tile_h; return t; } int tileset_ui( tileset_t t ) { ui_subimage(va("Selection #%d (%d,%d)", t.selected, t.selected % t.cols, t.selected / t.cols), t.tex.id, t.tex.w, t.tex.h, (t.selected % t.cols) * t.tile_w, (t.selected / t.cols) * t.tile_h, t.tile_w, t.tile_h); int choice; if( (choice = ui_image(0, t.tex.id, t.tex.w,t.tex.h)) ) { int px = ((choice / 100) / 100.f) * t.tex.w / t.tile_w; int py = ((choice % 100) / 100.f) * t.tex.h / t.tile_h; t.selected = px + py * t.cols; } // if( (choice = ui_buttons(3, "load", "save", "clear")) ) {} return t.selected; } // ----------------------------------------------------------------------------- // tiled tiled_t tiled(const char *file_tmx) { tiled_t zero = {0}, ti = zero; // read file and parse json if( !xml_push(file_tmx) ) return zero; // sanity checks bool supported = !strcmp(xml_string("/map/@orientation"), "orthogonal") && !strcmp(xml_string("/map/@renderorder"), "right-down"); if( !supported ) return xml_pop(), zero; // tileset const char *file_tsx = xml_string("/map/tileset/@source"); if( !xml_push(vfs_read(file_tsx)) ) return zero; const char *set_src = xml_string("/tileset/image/@source"); int set_w = xml_int("/tileset/@tilewidth"); int set_h = xml_int("/tileset/@tileheight"); int set_c = xml_int("/tileset/@columns"); int set_r = xml_int("/tileset/@tilecount") / set_c; tileset_t set = tileset(texture(set_src,0), set_w, set_h, set_c, set_r ); xml_pop(); // actual parsing ti.w = xml_int("/map/@width"); ti.h = xml_int("/map/@height"); ti.tilew = xml_int("/map/@tilewidth"); ti.tileh = xml_int("/map/@tileheight"); ti.first_gid = xml_int("/map/tileset/@firstgid"); ti.map_name = STRDUP( xml_string("/map/tileset/@source") ); // @leak for(int l = 0, layers = xml_count("/map/layer"); l < layers; ++l ) { if( strcmp(xml_string("/map/layer[%d]/data/@encoding",l), "base64") || strcmp(xml_string("/map/layer[%d]/data/@compression",l), "zlib") ) { PRINTF("Warning: layer encoding not supported: '%s' -> layer '%s'\n", file_tmx, *array_back(ti.names)); continue; } int cols = xml_int("/map/layer[%d]/@width",l); int rows = xml_int("/map/layer[%d]/@height",l); tilemap_t tm = tilemap("", ' ', '\n'); tm.blank_chr = ~0u; //ti.first_gid - 1; tm.cols = cols; tm.rows = rows; array_resize(tm.map, tm.cols * tm.rows); memset(tm.map, 0xFF, tm.cols * tm.rows * sizeof(int)); for( int c = 0, chunks = xml_count("/map/layer[%d]/data/chunk", l); c <= chunks; ++c ) { int cw, ch; int cx, cy; array(char) b64 = 0; if( !chunks ) { // non-infinite mode b64 = xml_blob("/map/layer[%d]/data/$",l); cw = tm.cols, ch = tm.rows; cx = 0, cy = 0; } else { // infinite mode b64 = xml_blob("/map/layer[%d]/data/chunk[%d]/$",l,c); cw = xml_int("/map/layer[%d]/data/chunk[%d]/@width",l,c), ch = xml_int("/map/layer[%d]/data/chunk[%d]/@height",l,c); // 20x20 cx = xml_int("/map/layer[%d]/data/chunk[%d]/@x",l,c), cy = xml_int("/map/layer[%d]/data/chunk[%d]/@y",l,c); // (-16,-32) cx = abs(cx), cy = abs(cy); } int outlen = cw * ch * 4; static __thread int *out = 0; out = (int *)REALLOC( 0, outlen + zexcess(COMPRESS_ZLIB) ); // @leak if( zdecode( out, outlen, b64, array_count(b64), COMPRESS_ZLIB ) > 0 ) { for( int y = 0, p = 0; y < ch; ++y ) { for( int x = 0; x < cw; ++x, ++p ) { if( out[p] >= ti.first_gid ) { int offset = (x + cx) + (y + cy) * tm.cols; if( offset >= 0 && offset < (cw * ch) ) tm.map[ offset ] = out[ p ] - ti.first_gid; } } } } else { PRINTF("Warning: bad zlib stream: '%s' -> layer #%d -> chunk #%d\n", file_tmx, l, c); } array_free(b64); } array_push(ti.layers, tm); array_push(ti.names, STRDUP(xml_string("/map/layer[%d]/@name",l))); array_push(ti.visible, true); array_push(ti.sets, set); } xml_pop(); return ti; } void tiled_render(tiled_t tmx, vec3 pos) { for( unsigned i = 0, end = array_count(tmx.layers); i < end; ++i ) { tmx.layers[i].position = pos; // add3(camera_get_active()->position, pos); if( tmx.parallax ) tmx.layers[i].position.x /= (3+i), tmx.layers[i].position.y /= (5+i); if( tmx.visible[i] ) tilemap_render(tmx.layers[i], tmx.sets[i]); } } void tiled_ui(tiled_t *t) { ui_label2("Loaded map", t->map_name ? t->map_name : "(none)"); ui_label2("Map dimensions", va("%dx%d", t->w, t->h)); ui_label2("Tile dimensions", va("%dx%d", t->tilew, t->tileh)); ui_separator(); ui_bool("Parallax", &t->parallax); ui_separator(); ui_label2("Layers", va("%d", array_count(t->layers))); for( int i = 0; i < array_count(t->layers); ++i ) { if( ui_label2_toolbar(va("- %s (%dx%d)", t->names[i], t->layers[i].cols, t->layers[i].rows ), t->visible[i] ? "\xee\xa3\xb4" : "\xee\xa3\xb5") > 0 ) { // ICON_MD_VISIBILITY / ICON_MD_VISIBILITY_OFF t->visible[i] ^= true; } } ui_separator(); if( ui_collapse(va("Sets: %d", array_count(t->layers)), va("%p",t))) { for( int i = 0; i < array_count(t->layers); ++i ) { if( ui_collapse(va("%d", i+1), va("%p%d",t,i)) ) { t->sets[i].selected = tileset_ui( t->sets[i] ); ui_collapse_end(); } } ui_collapse_end(); } } // ----------------------------------------------------------------------------- // spine json loader (wip) // - rlyeh, public domain // // [ref] http://es.esotericsoftware.com/spine-json-format // // notable misses: // - mesh deforms // - cubic beziers // - shears // - bounding boxes enum { SPINE_MAX_BONES = 64 }; // max bones typedef struct spine_bone_t { char *name, *parent; struct spine_bone_t *parent_bone; float z; // draw order usually matches bone-id. ie, zindex == bone_id .. root(0) < chest (mid) < finger(top) float len; float x, y, deg; // base float x2, y2, deg2; // accum / temporaries during bone transform time float x3, y3, deg3; // values from timeline unsigned rect_id; unsigned atlas_id; } spine_bone_t; typedef struct spine_slot_t { char *name, *bone, *attach; } spine_slot_t; typedef struct spine_rect_t { char *name; float x,y,w,h,sx,sy,deg; } spine_rect_t; typedef struct spine_skin_t { char *name; array(spine_rect_t) rects; } spine_skin_t; typedef struct spine_animkey_t { // offline; only during loading float time, curve[4]; // time is mandatory, curve is optional union { char *name; // type: attachment (mode-1) struct { float deg; }; // type: rotate (mode-2) struct { float x,y; }; // type: translate (mode-3) }; } spine_animkey_t; #if 0 typedef struct spine_pose_t { // runtime; only during playing unsigned frame; array(vec4) xform; // entry per bone. translation(x,y),rotation(z),attachment-id(w) } spine_pose_t; #endif typedef struct spine_anim_t { char *name; union { #if 0 struct { unsigned frames; array(spine_pose_t) poses; }; #endif struct { array(spine_animkey_t) attach_keys[SPINE_MAX_BONES]; array(spine_animkey_t) rotate_keys[SPINE_MAX_BONES]; array(spine_animkey_t) translate_keys[SPINE_MAX_BONES]; }; }; } spine_anim_t; typedef struct spine_atlas_t { char *name; float x,y,w,h,deg; } spine_atlas_t; typedef struct spine_t { char *name; texture_t texture; unsigned skin; array(spine_bone_t) bones; array(spine_slot_t) slots; array(spine_skin_t) skins; array(spine_anim_t) anims; array(spine_atlas_t) atlas; // anim controller unsigned inuse; float time, maxtime; unsigned debug_atlas_id; } spine_t; // --- static void spine_convert_animkeys_to_animpose(spine_anim_t *input) { spine_anim_t copy = *input; // @todo // @leak: attach/rot/tra keys } static int find_bone_id(spine_t *s, const char *bone_name) { for( unsigned i = 0, end = array_count(s->bones); i < end; ++i ) if( !strcmp(s->bones[i].name, bone_name)) return i; return -1; } static spine_bone_t *find_bone(spine_t *s, const char *bone_name) { int bone_id = find_bone_id(s, bone_name); return bone_id >= 0 ? &s->bones[bone_id] : NULL; } void spine_skin(spine_t *p, unsigned skin) { if( !p->texture.id ) return; if( skin >= array_count(p->skins) ) return; p->skin = skin; char *skin_name = va("%s/", p->skins[skin].name); int header = strlen(skin_name); for( int i = 0; i < array_count(p->atlas); ++i) { if(!strbeg(p->atlas[i].name, skin_name)) continue; int bone_id = find_bone_id(p, p->atlas[i].name+header ); if( bone_id < 0 ) continue; p->bones[bone_id].atlas_id = i; } for( int i = 0; i < array_count(p->skins[p->skin].rects); ++i) { int bone_id = find_bone_id(p, p->skins[p->skin].rects[i].name ); if( bone_id < 0 ) continue; p->bones[bone_id].rect_id = i; } } static bool spine_(spine_t *t, const char *file_json, const char *file_atlas, unsigned flags) { char *atlas = vfs_read(file_atlas); if(!atlas || !atlas[0]) return false; memset(t, 0, sizeof(spine_t)); // goblins.png // size: 1024, 128 // filter: Linear, Linear // pma: true // dagger // bounds: 2, 18, 26, 108 // goblin/eyes-closed // bounds: 2, 4, 34, 12 spine_atlas_t *sa = 0; const char *last_id = 0; const char *texture_name = 0; const char *texture_filter = 0; const char *texture_format = 0; const char *texture_repeat = 0; float texture_width = 0, texture_height = 0, temp; for each_substring(atlas, "\r\n", it) { it += strspn(it, " \t\f\v"); /**/ if( strbeg(it, "pma:" ) || strbeg(it, "index:") ) {} // ignored else if( strbeg(it, "size:" ) ) sscanf(it+5, "%f,%f", &texture_width, &texture_height); else if( strbeg(it, "rotate:" ) ) { float tmp; tmp=sa->w,sa->w=sa->h,sa->h=tmp; sa->deg = 90; } // assert(val==90) else if( strbeg(it, "repeat:" ) ) texture_repeat = it+7; // temp string else if( strbeg(it, "filter:" ) ) texture_filter = it+7; // temp string else if( strbeg(it, "format:" ) ) texture_format = it+7; // temp string else if( strbeg(it, "bounds:" ) ) { sscanf(it+7, "%f,%f,%f,%f", &sa->x, &sa->y, &sa->w, &sa->h); } else if( !texture_name ) texture_name = va("%s", it); else { array_push(t->atlas, ((spine_atlas_t){0}) ); sa = &t->atlas[array_count(t->atlas) - 1]; sa->name = STRDUP(it); } } for( int i = 0; i < array_count(t->atlas); ++i ) { sa = &t->atlas[i]; sa->x /= texture_width, sa->y /= texture_height; sa->w /= texture_width, sa->h /= texture_height; } if(!texture_name) return false; t->texture = texture(texture_name, TEXTURE_LINEAR); json_push(vfs_read(file_json)); // @fixme: json_push_from_file() ? array_resize(t->bones, json_count("/bones")); array_reserve(t->slots, json_count("/slots")); array_resize(t->skins, json_count("/skins")); array_resize(t->anims, json_count("/animations")); for( int i = 0, end = json_count("/bones"); i < end; ++i ) { spine_bone_t v = {0}; v.name = STRDUP(json_string("/bones[%d]/name", i)); v.parent = STRDUP(json_string("/bones[%d]/parent", i)); v.x = json_float("/bones[%d]/x", i); v.y = json_float("/bones[%d]/y", i); v.z = i; v.len = json_float("/bones[%d]/length", i); v.deg = json_float("/bones[%d]/rotation", i); t->bones[i] = v; for( int j = i-1; j > 0; --j ) { if( strcmp(t->bones[j].name,v.parent) ) continue; t->bones[i].parent_bone = &t->bones[j]; break; } } for( int i = 0, end = json_count("/slots"); i < end; ++i ) { spine_slot_t v = {0}; v.name = STRDUP(json_string("/slots[%d]/name", i)); v.bone = STRDUP(json_string("/slots[%d]/bone", i)); v.attach = STRDUP(json_string("/slots[%d]/attachment", i)); array_push(t->slots, v); // slots define draw-order. so, update draw-order/zindex in bone spine_bone_t *b = find_bone(t, v.name); if( b ) b->z = i; } for( int i = 0, end = json_count("/skins"); i < end; ++i ) { spine_skin_t v = {0}; v.name = STRDUP(json_string("/skins[%d]/name", i)); for( int j = 0, jend = json_count("/skins[%d]/attachments",i); j < jend; ++j ) // /skins/default/ for( int k = 0, kend = json_count("/skins[%d]/attachments[%d]",i,j); k < kend; ++k ) { // /skins/default/left hand item/ spine_rect_t r = {0}; r.name = STRDUP(json_key("/skins[%d]/attachments[%d][%d]",i,j,k)); // stringf("%s-%s-%s", json_key("/skins[%d]",i), json_key("/skins[%d][%d]",i,j), json_key("/skins[%d][%d][%d]",i,j,k)); r.x = json_float("/skins[%d]/attachments[%d][%d]/x",i,j,k); r.y = json_float("/skins[%d]/attachments[%d][%d]/y",i,j,k); r.sx= json_float("/skins[%d]/attachments[%d][%d]/scaleX",i,j,k); r.sx += !r.sx; r.sy= json_float("/skins[%d]/attachments[%d][%d]/scaleY",i,j,k); r.sy += !r.sy; r.w = json_float("/skins[%d]/attachments[%d][%d]/width",i,j,k); r.h = json_float("/skins[%d]/attachments[%d][%d]/height",i,j,k); r.deg = json_float("/skins[%d]/attachments[%d][%d]/rotation",i,j,k); array_push(v.rects, r); } t->skins[i] = v; } #if 1 // simplify: // merge /skins/default into existing /skins/*, then delete /skins/default if( array_count(t->skins) > 1 ) { for( int i = 1; i < array_count(t->skins); ++i ) { for( int j = 0; j < array_count(t->skins[0].rects); ++j ) { array_push(t->skins[i].rects, t->skins[0].rects[j]); } } // @leak @fixme: free(t->skins[0]) for( int i = 0; i < array_count(t->skins)-1; ++i ) { t->skins[i] = t->skins[i+1]; } array_pop(t->skins); } #endif for( int i = 0, end = json_count("/animations"); i < end; ++i ) { int id; const char *name; spine_anim_t v = {0}; v.name = STRDUP(json_key("/animations[%d]", i)); // slots / attachments for( int j = 0, jend = json_count("/animations[%d]/slots",i); j < jend; ++j ) for( int k = 0, kend = json_count("/animations[%d]/slots[%d]",i,j); k < kend; ++k ) // ids { int bone_id = find_bone_id(t, json_key("/animations[%d]/bones[%d]",i,j)); if( bone_id < 0 ) continue; for( int l = 0, lend = json_count("/animations[%d]/slots[%d][%d]",i,j,k); l < lend; ++l ) { // channels (rot,tra,attach) spine_animkey_t key = {0}; key.name = STRDUP(json_string("/animations[%d]/slots[%d][%d][%d]/name",i,j,k,l)); key.time = json_float("/animations[%d]/slots[%d][%d][%d]/time",i,j,k,l); if( json_count("/animations[%d]/slots[%d][%d][%d]/curve",i,j,k,l) == 4 ) { key.curve[0] = json_float("/animations[%d]/slots[%d][%d][%d]/curve[0]",i,j,k,l); key.curve[1] = json_float("/animations[%d]/slots[%d][%d][%d]/curve[1]",i,j,k,l); key.curve[2] = json_float("/animations[%d]/slots[%d][%d][%d]/curve[2]",i,j,k,l); key.curve[3] = json_float("/animations[%d]/slots[%d][%d][%d]/curve[3]",i,j,k,l); } // @todo: convert name to id // for(id = 0; t->bones[id].name && strcmp(t->bones[id].name,key.name); ++id) // printf("%s vs %s\n", key.name, t->bones[id].name); array_push(v.attach_keys[bone_id], key); } } // bones for( int j = 0, jend = json_count("/animations[%d]/bones",i); j < jend; ++j ) // slots or bones for( int k = 0, kend = json_count("/animations[%d]/bones[%d]",i,j); k < kend; ++k ) { // bone ids int bone_id = find_bone_id(t, json_key("/animations[%d]/bones[%d]",i,j)); if( bone_id < 0 ) continue; // parse bones for( int l = 0, lend = json_count("/animations[%d]/bones[%d][%d]",i,j,k); l < lend; ++l ) { // channels (rot,tra,attach) const char *channel = json_key("/animations[%d]/bones[%d][%d]",i,j,k); int track = !strcmp(channel, "rotate") ? 1 : !strcmp(channel, "translate") ? 2 : 0; if( !track ) continue; spine_animkey_t key = {0}; key.time = json_float("/animations[%d]/bones[%d][%d][%d]/time",i,j,k,l); if( json_count("/animations[%d]/bones[%d][%d][%d]/curve",i,j,k,l) == 4 ) { key.curve[0] = json_float("/animations[%d]/bones[%d][%d][%d]/curve[0]",i,j,k,l); key.curve[1] = json_float("/animations[%d]/bones[%d][%d][%d]/curve[1]",i,j,k,l); key.curve[2] = json_float("/animations[%d]/bones[%d][%d][%d]/curve[2]",i,j,k,l); key.curve[3] = json_float("/animations[%d]/bones[%d][%d][%d]/curve[3]",i,j,k,l); } if( track == 1 ) key.deg = json_float("/animations[%d]/bones[%d][%d][%d]/value",i,j,k,l), // "/angle" array_push(v.rotate_keys[bone_id], key); else key.x = json_float("/animations[%d]/bones[%d][%d][%d]/x",i,j,k,l), key.y = json_float("/animations[%d]/bones[%d][%d][%d]/y",i,j,k,l), array_push(v.translate_keys[bone_id], key); } } t->anims[i] = v; } json_pop(); spine_skin(t, 0); return true; } spine_t* spine(const char *file_json, const char *file_atlas, unsigned flags) { spine_t *t = MALLOC(sizeof(spine_t)); if( !spine_(t, file_json, file_atlas, flags) ) return FREE(t), NULL; return t; } void spine_render(spine_t *p, vec3 offset, unsigned flags) { if( !p->texture.id ) return; if( !flags ) return; ddraw_push_2d(); // if( flags & 2 ) ddraw_line(vec3(0,0,0), vec3(window_width(),window_height(),0)); // if( flags & 2 ) ddraw_line(vec3(window_width(),0,0), vec3(0,window_height(),0)); // int already_computed[SPINE_MAX_BONES] = {0}; // @fixme: optimize: update longest chains first, then remnant branches for( int i = 1; i < array_count(p->bones); ++i ) { spine_bone_t *self = &p->bones[i]; if( !self->rect_id ) continue; int num_bones = 0; static array(spine_bone_t*) chain = 0; array_resize(chain, 0); for( spine_bone_t *next = self; next ; next = next->parent_bone, ++num_bones ) { array_push(chain, next); } vec3 target = {0}, prev = {0}; for( int j = 0, end = array_count(chain); j < end; ++j ) { // traverse from root(skipped) -> `i` bone direction int j_opposite = end - 1 - j; spine_bone_t *b = chain[j_opposite]; // bone spine_bone_t *pb = b->parent_bone; // parent bone float pb_x2 = 0, pb_y2 = 0, pb_deg2 = 0; if( pb ) pb_x2 = pb->x2, pb_y2 = pb->y2, pb_deg2 = pb->deg2; const float deg2rad = C_PI / 180; b->x2 = b->x3 + pb_x2 + b->x * cos( -pb_deg2 * deg2rad ) - b->y * sin( -pb_deg2 * deg2rad ); b->y2 = -b->y3 + pb_y2 - b->y * cos( pb_deg2 * deg2rad ) + b->x * sin( pb_deg2 * deg2rad ); b->deg2 = -b->deg3 + pb_deg2 - b->deg; prev = target; target = vec3(b->x2,b->y2,b->deg2); } target.z = 0; target = add3(target, offset); prev.z = 0; prev = add3(prev, offset); if( flags & 2 ) { ddraw_point( target ); ddraw_text( target, -0.25f, self->name ); ddraw_bone( prev, target ); // from parent to bone } if( flags & 1 ) { spine_atlas_t *a = &p->atlas[self->atlas_id]; spine_rect_t *r = &p->skins[p->skin].rects[self->rect_id]; vec4 rect = ptr4(&a->x); float zindex = self->z; float offsx = 0; float offsy = 0; float tilt = self->deg2 + (a->deg - r->deg); unsigned tint = self->atlas_id == p->debug_atlas_id ? 0xFF<<24 | 0xFF : ~0u; if( 1 ) { vec3 dir = vec3(r->x,r->y,0); dir = rotatez3(dir, self->deg2); offsx = dir.x * r->sx; offsy = dir.y * r->sy; } sprite_rect(p->texture, rect, zindex, add3(vec3(target.x,target.y,1),vec3(offsx,offsy,0)), tilt, tint); } } ddraw_pop_2d(); ddraw_flush(); } static void spine_animate_(spine_t *p, float *time, float *maxtime, float delta) { if( !p->texture.id ) return; if( delta > 1/120.f ) delta = 1/120.f; if( *time >= *maxtime ) *time = 0; else *time += delta; // reset root // needed? p->bones[0].x2 = 0; p->bones[0].y2 = 0; p->bones[0].deg2 = 0; p->bones[0].x3 = 0; p->bones[0].y3 = 0; p->bones[0].deg3 = 0; for( int i = 0, end = array_count(p->bones); i < end; ++i) { // @todo: attach channel // @todo: per channel: if curve == linear || curve == stepped || array_count(curve) == 4 {...} for each_array_ptr(p->anims[p->inuse].rotate_keys[i], spine_animkey_t, r) { double r0 = r->time; *maxtime = maxf( *maxtime, r0 ); if( absf(*time - r0) < delta ) { p->bones[i].deg3 = r->deg; } } for each_array_ptr(p->anims[p->inuse].translate_keys[i], spine_animkey_t, r) { double r0 = r->time; *maxtime = maxf( *maxtime, r0 ); if( absf(*time - r0) < delta ) { p->bones[i].x3 = r->x; p->bones[i].y3 = r->y; } } } } void spine_animate(spine_t *p, float delta) { spine_animate_(p, &p->time, &p->maxtime, delta); } void spine_ui(spine_t *p) { if( ui_collapse(va("Anims: %d", array_count(p->anims)), va("%p-a", p))) { for each_array_ptr(p->anims, spine_anim_t, q) { if(ui_slider2("", &p->time, va("%.2f/%.0f %.2f%%", p->time, p->maxtime, p->time * 100.f))) { spine_animate(p, 0); } int choice = ui_label2_toolbar(q->name, ICON_MD_PAUSE_CIRCLE " " ICON_MD_PLAY_CIRCLE); if( choice == 1 ) window_pause( 0 ); // play if( choice == 2 ) window_pause( 1 ); // pause for( int i = 0; i < SPINE_MAX_BONES; ++i ) { ui_separator(); ui_label(va("Bone %d: Attachment keys", i)); for each_array_ptr(q->attach_keys[i], spine_animkey_t, r) { ui_label(va("%.2f [%.2f %.2f %.2f %.2f] %s", r->time, r->curve[0], r->curve[1], r->curve[2], r->curve[3], r->name)); } ui_label(va("Bone %d: Rotate keys", i)); for each_array_ptr(q->rotate_keys[i], spine_animkey_t, r) { ui_label(va("%.2f [%.2f %.2f %.2f %.2f] %.2f deg", r->time, r->curve[0], r->curve[1], r->curve[2], r->curve[3], r->deg)); } ui_label(va("Bone %d: Translate keys", i)); for each_array_ptr(q->translate_keys[i], spine_animkey_t, r) { ui_label(va("%.2f [%.2f %.2f %.2f %.2f] (%.2f,%.2f)", r->time, r->curve[0], r->curve[1], r->curve[2], r->curve[3], r->x, r->y)); } } } ui_collapse_end(); } if( ui_collapse(va("Bones: %d", array_count(p->bones)), va("%p-b", p))) { for each_array_ptr(p->bones, spine_bone_t, q) if( ui_collapse(q->name, va("%p-b2", q)) ) { ui_label2("Parent:", q->parent); ui_label2("X:", va("%.2f", q->x)); ui_label2("Y:", va("%.2f", q->y)); ui_label2("Length:", va("%.2f", q->len)); ui_label2("Rotation:", va("%.2f", q->deg)); ui_collapse_end(); } ui_collapse_end(); } if( ui_collapse(va("Slots: %d", array_count(p->slots)), va("%p-s", p))) { for each_array_ptr(p->slots, spine_slot_t, q) if( ui_collapse(q->name, va("%p-s2", q)) ) { ui_label2("Bone:", q->bone); ui_label2("Attachment:", q->attach); ui_collapse_end(); } ui_collapse_end(); } if( ui_collapse(va("Skins: %d", array_count(p->skins)), va("%p-k", p))) { for each_array_ptr(p->skins, spine_skin_t, q) if( ui_collapse(q->name, va("%p-k2", q)) ) { for each_array_ptr(q->rects, spine_rect_t, r) if( ui_collapse(r->name, va("%p-k3", r)) ) { ui_label2("X:", va("%.2f", r->x)); ui_label2("Y:", va("%.2f", r->y)); ui_label2("Scale X:", va("%.2f", r->sx)); ui_label2("Scale Y:", va("%.2f", r->sy)); ui_label2("Width:", va("%.2f", r->w)); ui_label2("Height:", va("%.2f", r->h)); ui_label2("Rotation:", va("%.2f", r->deg)); ui_collapse_end(); spine_bone_t *b = find_bone(p, r->name); if( b ) { p->debug_atlas_id = b->atlas_id; static float tilt = 0; if( input(KEY_LCTRL) ) tilt += 60*1/60.f; else tilt = 0; spine_atlas_t *r = p->atlas + b->atlas_id; sprite_flush(); camera_get_active()->position = vec3(0,0,2); vec4 rect = ptr4(&r->x); float zindex = 0; vec3 xy_zoom = vec3(0,0,0); unsigned tint = ~0u; sprite_rect(p->texture, // rect: vec4(r->x*1.0/p->texture.w,r->y*1.0/p->texture.h,(r->x+r->w)*1.0/p->texture.w,(r->y+r->h)*1.0/p->texture.h), ptr4(&r->x), // atlas 0, vec3(0,0,0), r->deg + tilt, tint); sprite_flush(); camera_get_active()->position = vec3(+window_width()/3,window_height()/2.25,2); } } ui_collapse_end(); } ui_collapse_end(); } if( ui_int("Use skin", &p->skin) ) { p->skin = clampf(p->skin, 0, array_count(p->skins) - 1); spine_skin(p, p->skin); } if( p->texture.id ) ui_texture(0, p->texture); } // ----------------------------------------------------------------------------- // cubemaps // project cubemap coords into sphere normals static vec3 cubemap2polar(int face, int x, int y, int texture_width) { float u = (x / (texture_width - 1.f)) * 2 - 1; float v = (y / (texture_width - 1.f)) * 2 - 1; /**/ if( face == 0 ) return vec3( u, -1, -v); else if( face == 1 ) return vec3(-v, -u, 1); else if( face == 2 ) return vec3(-1, -u, -v); else if( face == 3 ) return vec3(-u, 1, -v); else if( face == 4 ) return vec3( v, -u, -1); else return vec3( 1, u, -v); } // project normal in a sphere as 2d texcoord static vec2 polar2uv(vec3 n) { n = norm3(n); float theta = atan2(n.y, n.x); float phi = atan2(n.z, hypot(n.x, n.y)); float u = (theta + C_PI) / C_PI; float v = (C_PI/2 - phi) / C_PI; return vec2(u, v); } // equirectangular panorama (2:1) to cubemap - in RGB, out RGB static void panorama2cubemap_(image_t out[6], const image_t in, int width){ int face; #pragma omp parallel for for( face = 0; face < 6; ++face ) { out[face] = image_create(width, width, IMAGE_RGB); for (int j=0; j < width; ++j) { uint32_t *line = &out[ face ].pixels32[ 0 + j * width ]; for (int i=0; i < width; ++i) { vec3 polar = cubemap2polar(face, i, j, width); vec2 uv = polar2uv(polar); uv = scale2(uv, in.h-1); // source coords (assumes 2:1, 2*h == w) vec3 rgb = bilinear(in, uv); union color { struct { uint8_t r,g,b,a; }; uint32_t rgba; } c = { rgb.x, rgb.y, rgb.z, 255 }; line[i] = c.rgba; } } } } // equirectangular panorama (2:1) to cubemap - in RGB, out RGBA void panorama2cubemap(image_t out[6], const image_t in, int width) { int face; #pragma omp parallel for for( face = 0; face < 6; ++face ) { out[face] = image_create(width, width, IMAGE_RGBA); for (int j=0; j < width; ++j) { uint32_t *line = &out[ face ].pixels32[ 0 + j * width ]; for (int i=0; i < width; ++i) { vec3 polar = cubemap2polar(face, i, j, width); vec2 uv = polar2uv(polar); uv = scale2(uv, in.h-1); // source coords (assumes 2:1, 2*h == w) vec3 rgb = bilinear(in, uv); union color { struct { uint8_t r,g,b,a; }; uint32_t rgba; } c = { rgb.x, rgb.y, rgb.z, 255 }; line[i] = c.rgba; } } } } cubemap_t cubemap6( const image_t images[6], int flags ) { cubemap_t c = {0}, z = {0}; glGenTextures(1, &c.id); glBindTexture(GL_TEXTURE_CUBE_MAP, c.id); int samples = 0; for (int i = 0; i < 6; i++) { image_t img = images[i]; //image(textures[i], IMAGE_RGB); glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB, img.w, img.h, 0, img.n == 3 ? GL_RGB : GL_RGBA, GL_UNSIGNED_BYTE, img.pixels); // calculate SH coefficients (@ands) const vec3 skyDir[] = {{ 1, 0, 0},{-1, 0, 0},{ 0, 1, 0},{ 0,-1, 0},{ 0, 0, 1},{ 0, 0,-1}}; const vec3 skyX[] = {{ 0, 0,-1},{ 0, 0, 1},{ 1, 0, 0},{ 1, 0, 0},{ 1, 0, 0},{-1, 0, 0}}; const vec3 skyY[] = {{ 0, 1, 0},{ 0, 1, 0},{ 0, 0,-1},{ 0, 0, 1},{ 0, 1, 0},{ 0, 1, 0}}; int step = 16; for (int y = 0; y < img.h; y += step) { unsigned char *p = (unsigned char*)img.pixels + y * img.w * img.n; for (int x = 0; x < img.w; x += step) { vec3 n = add3( add3( scale3(skyX[i], 2.0f * (x / (img.w - 1.0f)) - 1.0f), scale3(skyY[i], -2.0f * (y / (img.h - 1.0f)) + 1.0f)), skyDir[i]); // texelDirection; float l = len3(n); vec3 light = scale3(vec3(p[0], p[1], p[2]), 1 / (255.0f * l * l * l)); // texelSolidAngle * texel_radiance; n = norm3(n); c.sh[0] = add3(c.sh[0], scale3(light, 0.282095f)); c.sh[1] = add3(c.sh[1], scale3(light, -0.488603f * n.y * 2.0 / 3.0)); c.sh[2] = add3(c.sh[2], scale3(light, 0.488603f * n.z * 2.0 / 3.0)); c.sh[3] = add3(c.sh[3], scale3(light, -0.488603f * n.x * 2.0 / 3.0)); c.sh[4] = add3(c.sh[4], scale3(light, 1.092548f * n.x * n.y / 4.0)); c.sh[5] = add3(c.sh[5], scale3(light, -1.092548f * n.y * n.z / 4.0)); c.sh[6] = add3(c.sh[6], scale3(light, 0.315392f * (3.0f * n.z * n.z - 1.0f) / 4.0)); c.sh[7] = add3(c.sh[7], scale3(light, -1.092548f * n.x * n.z / 4.0)); c.sh[8] = add3(c.sh[8], scale3(light, 0.546274f * (n.x * n.x - n.y * n.y) / 4.0)); p += img.n * step; samples++; } } } for (int s = 0; s < 9; s++) { c.sh[s] = scale3(c.sh[s], 32.f / samples); } // if( glGenerateMipmap ) glGenerateMipmap(GL_TEXTURE_CUBE_MAP); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, /* glGenerateMipmap ?*/ GL_LINEAR_MIPMAP_LINEAR /*: GL_LINEAR*/); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_CUBE_MAP, 0); return c; } cubemap_t cubemap( const image_t in, int flags ) { ASSERT( in.n == 4 ); image_t out[6]; panorama2cubemap(out, in, in.h); image_t swap[6] = { out[0],out[3],out[1],out[4],out[2],out[5] }; cubemap_t c = cubemap6(swap, flags); int i; #pragma omp parallel for for( i = 0; i < 6; ++i) image_destroy(&out[i]); return c; } void cubemap_destroy(cubemap_t *c) { glDeleteTextures(1, &c->id); c->id = 0; // do not destroy SH coefficients still. they might be useful in the future. } static cubemap_t *last_cubemap; cubemap_t* cubemap_get_active() { return last_cubemap; } // ----------------------------------------------------------------------------- // skyboxes skybox_t skybox(const char *asset, int flags) { skybox_t sky = {0}; // sky mesh vec3 vertices[] = {{+1,-1,+1},{+1,+1,+1},{+1,+1,-1},{-1,+1,-1},{+1,-1,-1},{-1,-1,-1},{-1,-1,+1},{-1,+1,+1}}; unsigned indices[] = { 0, 1, 2, 3, 4, 5, 6, 3, 7, 1, 6, 0, 4, 2 }; mesh_update(&sky.geometry, "p3", 0,countof(vertices),vertices, countof(indices),indices, MESH_TRIANGLE_STRIP); // sky program sky.flags = flags ? flags : !!asset; // either cubemap or rayleigh sky.program = shader(vs_3_3_skybox, sky.flags ? fs_3_4_skybox : fs_3_4_skybox_rayleigh, "att_position", "fragcolor"); // sky cubemap & SH if( asset ) { int is_panorama = vfs_size( asset ); if( is_panorama ) { stbi_hdr_to_ldr_gamma(1.2f); image_t panorama = image( asset, IMAGE_RGBA ); sky.cubemap = cubemap( panorama, 0 ); // RGBA required image_destroy(&panorama); } else { // is folder image_t images[6] = {0}; images[0] = image( va("%s/posx", asset), IMAGE_RGB ); // cubepx images[1] = image( va("%s/negx", asset), IMAGE_RGB ); // cubenx images[2] = image( va("%s/posy", asset), IMAGE_RGB ); // cubepy images[3] = image( va("%s/negy", asset), IMAGE_RGB ); // cubeny images[4] = image( va("%s/posz", asset), IMAGE_RGB ); // cubepz images[5] = image( va("%s/negz", asset), IMAGE_RGB ); // cubenz sky.cubemap = cubemap6( images, 0 ); for( int i = 0; i < countof(images); ++i ) image_destroy(&images[i]); } } return sky; } int skybox_push_state(skybox_t *sky, mat44 proj, mat44 view) { last_cubemap = &sky->cubemap; //glClear(GL_DEPTH_BUFFER_BIT); //glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); //glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); mat44 mvp; multiply44x2(mvp, proj, view); //glDepthMask(GL_FALSE); shader_bind(sky->program); shader_mat44("u_mvp", mvp); if( sky->flags ) { shader_cubemap("u_cubemap", sky->cubemap.id); } return 0; // @fixme: return sortable hash here? } int skybox_pop_state() { //glDepthMask(GL_TRUE); //glClear(GL_DEPTH_BUFFER_BIT); return 0; } int skybox_render(skybox_t *sky, mat44 proj, mat44 view) { skybox_push_state(sky, proj, view); glEnable(GL_DEPTH_TEST); mesh_render(&sky->geometry); skybox_pop_state(); return 0; } void skybox_destroy(skybox_t *sky) { glDeleteProgram(sky->program); cubemap_destroy(&sky->cubemap); mesh_destroy(&sky->geometry); } // ----------------------------------------------------------------------------- // meshes mesh_t mesh() { mesh_t z = {0}; return z; } void mesh_update(mesh_t *m, const char *format, int vertex_stride,int vertex_count,const void *vertex_data, int index_count,const void *index_data, int flags) { m->flags = flags; // setup unsigned sizeof_index = sizeof(GLuint); unsigned sizeof_vertex = 0; m->index_count = index_count; m->vertex_count = vertex_count; // iterate vertex attributes { position, normal + uv + tangent + bitangent + ... } struct vertex_descriptor { int vertex_type, num_attribute, num_components, alt_normalized; int stride, offset; } descriptor[16] = {0}, *dc = &descriptor[0]; do switch( *format ) { break; case '*': dc->alt_normalized = 1; break; case '0': dc->num_components = 0; break; case '1': dc->num_components = 1; break; case '2': dc->num_components = 2; break; case '3': dc->num_components = 3; break; case '4': dc->num_components = 4; break; case 'F': dc->vertex_type = GL_FLOAT; break; case 'U': case 'I': dc->vertex_type = GL_UNSIGNED_INT; break; case 'B': if(format[-1] >= '0' && format[-1] <= '9') dc->vertex_type = GL_UNSIGNED_BYTE; //else bitangent. break; case ' ': while (format[1] == ' ') format++; case '\0': if (!dc->vertex_type) dc->vertex_type = GL_FLOAT; dc->offset = sizeof_vertex; sizeof_vertex += (dc->stride = dc->num_components * (dc->vertex_type == GL_UNSIGNED_BYTE ? 1 : 4)); ++dc; break; default: if( !strchr("pntbcwai", *format) ) PANIC("unsupported vertex type '%c'", *format); } while (*format++); if(vertex_stride > 0) sizeof_vertex = vertex_stride; // layout if(!m->vao) glGenVertexArrays(1, &m->vao); glBindVertexArray(m->vao); // index data if( index_data && index_count ) { m->index_count = index_count; if(!m->ibo) glGenBuffers(1, &m->ibo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m->ibo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, m->index_count * sizeof_index, index_data, flags & MESH_STREAM ? GL_STREAM_DRAW : GL_STATIC_DRAW); } // vertex data if( vertex_data && vertex_count ) { m->vertex_count = vertex_count; if(!m->vbo) glGenBuffers(1, &m->vbo); glBindBuffer(GL_ARRAY_BUFFER, m->vbo); glBufferData(GL_ARRAY_BUFFER, m->vertex_count * sizeof_vertex, vertex_data, flags & MESH_STREAM ? GL_STREAM_DRAW : GL_STATIC_DRAW); } for( int i = 0; i < 8; ++i ) { // glDisableVertexAttribArray(i); } // vertex setup: iterate descriptors for( int i = 0; i < countof(descriptor); ++i ) { if( descriptor[i].num_components ) { glDisableVertexAttribArray(i); glVertexAttribPointer(i, descriptor[i].num_components, descriptor[i].vertex_type, (descriptor[i].vertex_type == GL_UNSIGNED_BYTE ? GL_TRUE : GL_FALSE) ^ (descriptor[i].alt_normalized ? GL_TRUE : GL_FALSE), sizeof_vertex, (GLchar*)NULL + descriptor[i].offset); glEnableVertexAttribArray(i); } else { glDisableVertexAttribArray(i); } } glBindVertexArray(0); } void mesh_render(mesh_t *sm) { if( sm->vao ) { glBindVertexArray(sm->vao); if( sm->ibo ) { // with indices glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, sm->ibo); // <-- why intel? glDrawElements(sm->flags & MESH_TRIANGLE_STRIP ? GL_TRIANGLE_STRIP : GL_TRIANGLES, sm->index_count, GL_UNSIGNED_INT, (char*)0); profile_incstat("Render.num_drawcalls", +1); profile_incstat("Render.num_triangles", sm->index_count/3); } else { // with vertices only glDrawArrays(sm->flags & MESH_TRIANGLE_STRIP ? GL_TRIANGLE_STRIP : GL_TRIANGLES, 0, sm->vertex_count /* / 3 */); profile_incstat("Render.num_drawcalls", +1); profile_incstat("Render.num_triangles", sm->vertex_count/3); } } } void mesh_destroy(mesh_t *m) { // @todo (void)m; } // ----------------------------------------------------------------------------- // screenshots void* screenshot( int n ) { // 3 RGB, 4 RGBA, -3 BGR, -4 BGRA // sync, 10 ms -- pixel perfect int w = window_width(), h = window_height(); int mode = n == 3 ? GL_RGB : n == -3 ? GL_BGR : n == 4 ? GL_RGBA : GL_BGRA; static __thread uint8_t *pixels = 0; pixels = (uint8_t*)REALLOC(pixels, w * h * 4 ); // @leak per thread glBindBuffer(GL_PIXEL_PACK_BUFFER, 0); // disable any pbo, in case somebody did for us glPixelStorei(GL_PACK_ALIGNMENT, 1); glReadBuffer(GL_FRONT); glReadPixels(0, 0, w, h, mode, GL_UNSIGNED_BYTE, pixels); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); return pixels; } void* screenshot_async( int n ) { // 3 RGB, 4 RGBA, -3 BGR, -4 BGRA #if is(ems) return screenshot(n); // no glMapBuffer() on emscripten #else // async, 0 ms -- @fixme: MSAA can cause some artifacts with PBOs: either use glDisable(GL_MULTISAMPLE) when recording or do not create window with WINDOW_MSAAx options at all. int w = window_width(), h = window_height(); int mode = n == 3 ? GL_RGB : n == -3 ? GL_BGR : n == 4 ? GL_RGBA : GL_BGRA; static __thread uint8_t *pixels = 0; pixels = (uint8_t*)REALLOC(pixels, w * h * 4 ); // @leak per thread enum { NUM_PBOS = 16 }; static __thread GLuint pbo[NUM_PBOS] = {0}, lastw = 0, lasth = 0, bound = 0; if( lastw != w || lasth != h ) { lastw = w, lasth = h; bound = 0; for( int i = 0; i < NUM_PBOS; ++i ) { if(!pbo[i]) glGenBuffers(1, &pbo[i]); glBindBuffer(GL_PIXEL_PACK_BUFFER, pbo[i]); glBufferData(GL_PIXEL_PACK_BUFFER, w * h * 4, NULL, GL_STREAM_READ); // GL_STATIC_READ); //glReadPixels(0, 0, w, h, mode, GL_UNSIGNED_BYTE, (GLvoid*)((GLchar*)NULL+0)); } } // read from oldest bound pbo glBindBuffer(GL_PIXEL_PACK_BUFFER, pbo[bound]); void *ptr = glMapBuffer(GL_PIXEL_PACK_BUFFER, GL_READ_ONLY); memcpy(pixels, ptr, w * h * abs(n)); glUnmapBuffer(GL_PIXEL_PACK_BUFFER); // trigger next read glReadBuffer(GL_FRONT); glReadPixels(0, 0, w, h, mode, GL_UNSIGNED_BYTE, (GLvoid*)((GLchar*)NULL+0)); glBindBuffer(GL_PIXEL_PACK_BUFFER, 0); bound = (bound + 1) % NUM_PBOS; return pixels; #endif } // ----------------------------------------------------------------------------- // viewports void viewport_color3(vec3 color3) { glClearColor(color3.x, color3.y, color3.z, 1); } void viewport_color(uint32_t rgba) { float b = ((rgba >> 0) & 255) / 255.f; float g = ((rgba >> 8) & 255) / 255.f; float r = ((rgba >> 16) & 255) / 255.f; glClearColor(r, g, b, 1); } void viewport_clear(bool color, bool depth) { glClearDepthf(1); glClearStencil(0); glClear((color ? GL_COLOR_BUFFER_BIT : 0) | (depth ? GL_DEPTH_BUFFER_BIT : 0)); } void viewport_clip(vec2 from, vec2 to) { float x = from.x, y = from.y, w = to.x-from.x, h = to.y-from.y; y = window_height()-y-h; glViewport(x, y, w, h); glScissor(x, y, w, h); } // ----------------------------------------------------------------------------- // fbos unsigned fbo(unsigned color_texture_id, unsigned depth_texture_id, int flags) { GLuint fbo; glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); if( color_texture_id ) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, color_texture_id, 0); if( depth_texture_id ) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth_texture_id, 0); #if 0 // this is working; it's just not enabled for now else { // create a non-sampleable renderbuffer object for depth and stencil attachments unsigned int rbo; glGenRenderbuffers(1, &rbo); glBindRenderbuffer(GL_RENDERBUFFER, rbo); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, color.width, color.height); // use a single renderbuffer object for both a depth AND stencil buffer. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_RENDERBUFFER, rbo); // now actually attach it } #endif #if is(ems) GLenum nones[] = { GL_NONE }; if(flags) glDrawBuffers(1, nones); if(flags) glReadBuffer(GL_NONE); #else if(flags) glDrawBuffer(GL_NONE); if(flags) glReadBuffer(GL_NONE); #endif #if 1 GLenum result = glCheckFramebufferStatus(GL_FRAMEBUFFER); if( GL_FRAMEBUFFER_COMPLETE != result ) { PANIC("ERROR: Framebuffer not complete."); } #else switch (glCheckFramebufferStatus(GL_FRAMEBUFFER)) { case GL_FRAMEBUFFER_COMPLETE: break; case GL_FRAMEBUFFER_UNDEFINED: PANIC("GL_FRAMEBUFFER_UNDEFINED"); case GL_FRAMEBUFFER_UNSUPPORTED: PANIC("GL_FRAMEBUFFER_UNSUPPORTED"); case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: PANIC("GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT"); case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER: PANIC("GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER"); case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER: PANIC("GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER"); case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE: PANIC("GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE"); // case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT: PANIC("GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT"); case GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS: PANIC("GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS"); // case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT: PANIC("GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT"); case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: PANIC("GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT"); default: PANIC("ERROR: Framebuffer not complete. glCheckFramebufferStatus returned %x", glCheckFramebufferStatus(GL_FRAMEBUFFER)); } #endif glBindFramebuffer (GL_FRAMEBUFFER, 0); return fbo; } void fbo_bind(unsigned id) { glBindFramebuffer(GL_FRAMEBUFFER, id); } void fbo_unbind() { fbo_bind(0); } void fbo_destroy(unsigned id) { // glDeleteRenderbuffers(1, &renderbuffer); glDeleteFramebuffers(1, &id); } // ----------------------------------------------------------------------------- // post-fxs swapchain typedef struct passfx passfx; typedef struct postfx postfx; void postfx_create(postfx *fx, int flags); void postfx_destroy(postfx *fx); bool postfx_load(postfx *fx, const char *name, const char *fragment); bool postfx_begin(postfx *fx, int width, int height); bool postfx_end(postfx *fx); bool postfx_enabled(postfx *fx, int pass_number); bool postfx_enable(postfx *fx, int pass_number, bool enabled); // bool postfx_toggle(postfx *fx, int pass_number); void postfx_clear(postfx *fx); char* postfx_name(postfx *fx, int slot); struct passfx { mesh_t m; char *name; unsigned program; int uniforms[16]; }; struct postfx { // renderbuffers: color & depth textures unsigned fb[2]; texture_t diffuse[2], depth[2]; // shader passes passfx pass[64]; uint64_t mask; // global enable flag bool enabled; // int num_loaded; }; enum { u_color, u_depth, u_time, u_frame, u_width, u_height, u_mousex, u_mousey, u_channelres0x, u_channelres0y, u_channelres1x, u_channelres1y, }; void postfx_create(postfx *fx, int flags) { postfx z = {0}; *fx = z; fx->enabled = 1; (void)flags; } void postfx_destroy( postfx *fx ) { for( int i = 0; i < 64; ++i ) { FREE(fx->pass[i].name); } texture_destroy(&fx->diffuse[0]); texture_destroy(&fx->diffuse[1]); texture_destroy(&fx->depth[0]); texture_destroy(&fx->depth[1]); fbo_destroy(fx->fb[0]); fbo_destroy(fx->fb[1]); postfx z = {0}; *fx = z; } char* postfx_name(postfx *fx, int slot) { return slot < 0 ? "" : fx->pass[ slot & 63 ].name; } int postfx_find(postfx *fx, const char *name) { name = file_name(name); for( int i = 0; i < 64; ++i) if(!strcmpi(fx->pass[i].name, name)) return i; return -1; } int postfx_load_from_mem( postfx *fx, const char *name, const char *fs ) { PRINTF("%s\n", name); if(!fs || !fs[0]) return -1; // PANIC("!invalid fragment shader"); int slot = fx->num_loaded++; passfx *p = &fx->pass[ slot & 63 ]; p->name = STRDUP(name); const char *vs = vs_0_2_fullscreen_quad_B; // patch fragment char *fs2 = (char*)CALLOC(1, 128*1024); strcat(fs2, fs_2_4_preamble); if( strstr(fs, "mainImage") ) { strcat(fs2, fs_main_shadertoy ); } strcat(fs2, fs); p->program = shader(vs, fs2, "vtexcoord", "fragColor" ); FREE(fs2); glUseProgram(p->program); // needed? for( int i = 0; i < countof(p->uniforms); ++i ) p->uniforms[i] = -1; if( p->uniforms[u_time] == -1 ) p->uniforms[u_time] = glGetUniformLocation(p->program, "iTime"); if( p->uniforms[u_frame] == -1 ) p->uniforms[u_frame] = glGetUniformLocation(p->program, "iFrame"); if( p->uniforms[u_width] == -1 ) p->uniforms[u_width] = glGetUniformLocation(p->program, "iWidth"); if( p->uniforms[u_height] == -1 ) p->uniforms[u_height] = glGetUniformLocation(p->program, "iHeight"); if( p->uniforms[u_mousex] == -1 ) p->uniforms[u_mousex] = glGetUniformLocation(p->program, "iMousex"); if( p->uniforms[u_mousey] == -1 ) p->uniforms[u_mousey] = glGetUniformLocation(p->program, "iMousey"); if( p->uniforms[u_color] == -1 ) p->uniforms[u_color] = glGetUniformLocation(p->program, "tex"); if( p->uniforms[u_color] == -1 ) p->uniforms[u_color] = glGetUniformLocation(p->program, "tex0"); if( p->uniforms[u_color] == -1 ) p->uniforms[u_color] = glGetUniformLocation(p->program, "tColor"); if( p->uniforms[u_color] == -1 ) p->uniforms[u_color] = glGetUniformLocation(p->program, "tDiffuse"); if( p->uniforms[u_color] == -1 ) p->uniforms[u_color] = glGetUniformLocation(p->program, "iChannel0"); if( p->uniforms[u_depth] == -1 ) p->uniforms[u_depth] = glGetUniformLocation(p->program, "tex1"); if( p->uniforms[u_depth] == -1 ) p->uniforms[u_depth] = glGetUniformLocation(p->program, "tDepth"); if( p->uniforms[u_depth] == -1 ) p->uniforms[u_depth] = glGetUniformLocation(p->program, "iChannel1"); if( p->uniforms[u_channelres0x] == -1 ) p->uniforms[u_channelres0x] = glGetUniformLocation(p->program, "iChannelRes0x"); if( p->uniforms[u_channelres0y] == -1 ) p->uniforms[u_channelres0y] = glGetUniformLocation(p->program, "iChannelRes0y"); if( p->uniforms[u_channelres1x] == -1 ) p->uniforms[u_channelres1x] = glGetUniformLocation(p->program, "iChannelRes1x"); if( p->uniforms[u_channelres1y] == -1 ) p->uniforms[u_channelres1y] = glGetUniformLocation(p->program, "iChannelRes1y"); // set quad glGenVertexArrays(1, &p->m.vao); return slot; } bool postfx_enable(postfx *fx, int pass, bool enabled) { if( pass < 0 ) return false; fx->mask = enabled ? fx->mask | (1ull << pass) : fx->mask & ~(1ull << pass); fx->enabled = !!popcnt64(fx->mask); return fx->enabled; } bool postfx_enabled(postfx *fx, int pass) { if( pass < 0 ) return false; return (!!(fx->mask & (1ull << pass))); } bool postfx_toggle(postfx *fx, int pass) { if( pass < 0 ) return false; return postfx_enable(fx, pass, 1 ^ postfx_enabled(fx, pass)); } void postfx_clear(postfx *fx) { fx->mask = fx->enabled = 0; } bool postfx_begin(postfx *fx, int width, int height) { width += !width; height += !height; // resize if needed if( fx->diffuse[0].w != width || fx->diffuse[0].h != height ) { texture_destroy(&fx->diffuse[0]); texture_destroy(&fx->diffuse[1]); texture_destroy(&fx->depth[0]); texture_destroy(&fx->depth[1]); fbo_destroy(fx->fb[0]); fbo_destroy(fx->fb[1]); // create texture, set texture parameters and content fx->diffuse[0] = texture_create(width, height, 4, NULL, TEXTURE_RGBA); fx->depth[0] = texture_create(width, height, 1, NULL, TEXTURE_DEPTH|TEXTURE_FLOAT); fx->fb[0] = fbo(fx->diffuse[0].id, fx->depth[0].id, 0); // create texture, set texture parameters and content fx->diffuse[1] = texture_create(width, height, 4, NULL, TEXTURE_RGBA); fx->depth[1] = texture_create(width, height, 1, NULL, TEXTURE_DEPTH|TEXTURE_FLOAT); fx->fb[1] = fbo(fx->diffuse[1].id, fx->depth[1].id, 0); } uint64_t num_active_passes = popcnt64(fx->mask); bool active = fx->enabled && num_active_passes; if( !active ) { fbo_unbind(); return false; } fbo_bind(fx->fb[1]); viewport_clear(true, true); viewport_clip(vec2(0,0), vec2(width, height)); fbo_bind(fx->fb[0]); viewport_clear(true, true); viewport_clip(vec2(0,0), vec2(width, height)); return true; } bool postfx_end(postfx *fx) { uint64_t num_active_passes = popcnt64(fx->mask); bool active = fx->enabled && num_active_passes; if( !active ) { return false; } fbo_unbind(); // disable depth test in 2d rendering bool is_depth_test_enabled = glIsEnabled(GL_DEPTH_TEST); glDisable(GL_DEPTH_TEST); int frame = 0; float t = time_ms() / 1000.f; float w = fx->diffuse[0].w; float h = fx->diffuse[0].h; float mx = input(MOUSE_X); float my = input(MOUSE_Y); for(int i = 0, e = countof(fx->pass); i < e; ++i) { if( fx->mask & (1ull << i) ) { passfx *pass = &fx->pass[i]; if( !pass->program ) { --num_active_passes; continue; } glUseProgram(pass->program); // bind texture to texture unit 0 // shader_texture_unit(fx->diffuse[frame], 0); glActiveTexture(GL_TEXTURE0 + 0); glBindTexture(GL_TEXTURE_2D, fx->diffuse[frame].id); glUniform1i(pass->uniforms[u_color], 0); glUniform1f(pass->uniforms[u_channelres0x], fx->diffuse[frame].w); glUniform1f(pass->uniforms[u_channelres0y], fx->diffuse[frame].h); // bind depth to texture unit 1 // shader_texture_unit(fx->depth[frame], 1); glActiveTexture(GL_TEXTURE0 + 1); glBindTexture(GL_TEXTURE_2D, fx->depth[frame].id); glUniform1i(pass->uniforms[u_depth], 1); // bind uniforms static unsigned f = 0; ++f; glUniform1f(pass->uniforms[u_time], t); glUniform1f(pass->uniforms[u_frame], f-1); glUniform1f(pass->uniforms[u_width], w); glUniform1f(pass->uniforms[u_height], h); glUniform1f(pass->uniforms[u_mousex], mx); glUniform1f(pass->uniforms[u_mousey], my); // bind the vao int bound = --num_active_passes; if( bound ) fbo_bind(fx->fb[frame ^= 1]); // fullscreen quad glBindVertexArray(pass->m.vao); glDrawArrays(GL_TRIANGLES, 0, 6); profile_incstat("Render.num_drawcalls", +1); profile_incstat("Render.num_triangles", +2); glBindVertexArray(0); if( bound ) fbo_unbind(); else glUseProgram(0); } } if(is_depth_test_enabled); glEnable(GL_DEPTH_TEST); return true; } static postfx fx; int fx_load_from_mem(const char *nameid, const char *content) { do_once postfx_create(&fx, 0); return postfx_load_from_mem(&fx, nameid, content); } int fx_load(const char *filemask) { static set(char*) added = 0; do_once set_init_str(added); for(const char **list = vfs_list(filemask); *list; list++) { if( set_find(added, (char*)*list) ) continue; char *name = STRDUP(*list); // @leak set_insert(added, name); (void)postfx_load_from_mem(&fx, file_name(name), vfs_read(name)); } return 1; } void fx_begin() { postfx_begin(&fx, window_width(), window_height()); } void fx_end() { postfx_end(&fx); } int fx_enabled(int pass) { return postfx_enabled(&fx, pass); } void fx_enable(int pass, int enabled) { postfx_enable(&fx, pass, enabled); } void fx_enable_all(int enabled) { for( int i = 0; i < fx.num_loaded; ++i ) fx_enable(i, enabled); } char *fx_name(int pass) { return postfx_name(&fx, pass); } int fx_find(const char *name) { return postfx_find(&fx, name); } // ----------------------------------------------------------------------------- // brdf static texture_t brdf = {0}; static void brdf_load() { const char *filename; filename = "Skyboxes/brdf_lut1k_256x256_32F.ktx"; filename = "Skyboxes/brdf_lut2k_512x512_32F.ktx"; brdf = texture_compressed( filename, TEXTURE_CLAMP | TEXTURE_NEAREST | TEXTURE_RG | TEXTURE_FLOAT | TEXTURE_SRGB ); ASSERT(brdf.id != texture_checker().id, "!Couldn't load BRDF lookup table '%s'!", filename ); } texture_t brdf_lut() { do_once brdf_load(); return brdf; } // ----------------------------------------------------------------------------- // materials bool colormap( colormap_t *cm, const char *material_file, bool load_as_srgb ) { if( !material_file ) return false; if( cm->texture ) { texture_destroy(cm->texture); FREE(cm->texture), cm->texture = NULL; } int srgb = load_as_srgb ? TEXTURE_SRGB : 0; int hdr = strendi(material_file, ".hdr") ? TEXTURE_FLOAT | TEXTURE_RGBA : 0; texture_t t = texture_compressed(material_file, TEXTURE_LINEAR | TEXTURE_MIPMAPS | TEXTURE_REPEAT | hdr | srgb); if( t.id == texture_checker().id ) { cm->texture = NULL; return false; } cm->texture = CALLOC(1, sizeof(texture_t)); *cm->texture = t; return true; } bool pbr_material(pbr_material_t *pbr, const char *material) { if( !material || !pbr ) return false; //pbr_material_destroy(pbr); *pbr = (pbr_material_t){0}; pbr->name = STRDUP(material); pbr->specular_shininess = 1.0f; /* if( const float *f = aiGetMaterialFloat(scn_material[i], aiMaterialTypeString(MATERIAL_SHININESS)) ) { pbr->specular_shininess = *f; } */ pbr->diffuse.color = vec4(0.5,0.5,0.5,0.5); pbr->normals.color = vec4(0,0,0,0); pbr->specular.color = vec4(0,0,0,0); pbr->albedo.color = vec4(0.5,0.5,0.5,1.0); pbr->roughness.color = vec4(1,1,1,1); pbr->metallic.color = vec4(0,0,0,0); pbr->ao.color = vec4(1,1,1,1); pbr->ambient.color = vec4(0,0,0,1); pbr->emissive.color = vec4(0,0,0,0); array(char*) tokens = strsplit(material, "+"); for( int j = 0, end = array_count(tokens); j < end; ++j ) { char *t = tokens[j]; if( strstri(t, "_D.") || strstri(t, "Diffuse") || strstri(t, "BaseColor") ) colormap(&pbr->diffuse, t, 1); if( strstri(t, "_N.") || strstri(t, "Normal") ) colormap(&pbr->normals, t, 0); if( strstri(t, "_S.") || strstri(t, "Specular") ) colormap(&pbr->specular, t, 0); if( strstri(t, "_A.") || strstri(t, "Albedo") ) colormap(&pbr->albedo, t, 1); // 0? if( strstri(t, "_MR.")|| strstri(t, "Roughness") ) colormap(&pbr->roughness, t, 0); else if( strstri(t, "_M.") || strstri(t, "Metallic") ) colormap(&pbr->metallic, t, 0); //if( strstri(t, "_S.") || strstri(t, "Shininess") ) colormap(&pbr->roughness, t, 0); //if( strstri(t, "_A.") || strstri(t, "Ambient") ) colormap(&pbr->ambient, t, 0); if( strstri(t, "_E.") || strstri(t, "Emissive") ) colormap(&pbr->emissive, t, 1); if( strstri(t, "_AO.") || strstri(t, "AO") || strstri(t, "Occlusion") ) colormap(&pbr->ao, t, 0); } return true; } void pbr_material_destroy(pbr_material_t *m) { if( m->name ) FREE(m->name), m->name = NULL; if( m->diffuse.texture) texture_destroy( m->diffuse.texture ); if( m->normals.texture) texture_destroy( m->normals.texture ); if( m->specular.texture) texture_destroy( m->specular.texture ); if( m->albedo.texture) texture_destroy( m->albedo.texture ); if( m->roughness.texture) texture_destroy( m->roughness.texture ); if( m->metallic.texture) texture_destroy( m->metallic.texture ); if( m->ao.texture ) texture_destroy( m->ao.texture ); if( m->ambient.texture ) texture_destroy( m->ambient.texture ); *m = (pbr_material_t){0}; } // ---------------------------------------------------------------------------- // shadertoys // // @todo: multipass // - https://www.shadertoy.com/view/Mst3Wr - la calanque // - https://www.shadertoy.com/view/XsyGWV - sirenian dawn // - https://www.shadertoy.com/view/Xst3zX - wordtoy // - https://www.shadertoy.com/view/MddGzf - bricks game // - https://www.shadertoy.com/view/Ms33WB - post process - ssao // - https://www.shadertoy.com/view/Xds3zN enum shadertoy_uniforms { iFrame, iTime, iDate, iGlobalTime, iGlobalFrame, iGlobalDelta, iChannel0, iChannel1, iChannel2, iChannel3, iResolution, iMouse, iOffset, iSampleRate, iChannelResolution, iChannelTime, // iCameraScreen // iCameraPosition // iCameraActive }; shadertoy_t shadertoy( const char *shaderfile, unsigned flags ) { shadertoy_t s = {0}; s.dims = flags; char *file = vfs_read(shaderfile); if( !file ) return s; glGenVertexArrays(1, &s.vao); // Uses gl_VertexID to draw a fullscreen quad without vbo const char *vs = "#version 130\n" "uniform vec2 iResolution; // viewport resolution (in pixels)\n" "out vec2 texCoord;\n" "void main() {\n" " texCoord = vec2( (gl_VertexID << 1) & 2, gl_VertexID & 2 );\n" " gl_Position = vec4( texCoord * 2.0 - 1.0, 0.0, 1.0 );\n" " texCoord = texCoord * iResolution;\n" "}\n"; const char *header = "#version 130\n" "#define texture2D texture\n" "uniform float iGlobalTime; // shader playback time (in seconds)\n" "uniform float iGlobalDelta; // ??\n" "uniform float iGlobalFrame; // ??\n" "uniform float iSampleRate; // ??\n" "uniform float iTime; // ??\n" "uniform int iFrame; // ??\n" "uniform float iChannelTime[4]; // channel playback time (in seconds)\n" "uniform vec2 iResolution; // viewport resolution (in pixels)\n" "uniform vec3 iChannelResolution[4]; // channel resolution (in pixels)\n" "uniform vec3 iOffset; // ?? (0,0,0)\n" "uniform vec4 iMouse; // mouse pixel coords. xy: hover, zw: LMB click)\n" "uniform vec4 iDate; // (year, month, day, time in seconds)\n" "uniform sampler2D iChannel0; // input channel 0\n" /*sampler%s*/ "uniform sampler2D iChannel1; // input channel 1\n" "uniform sampler2D iChannel2; // input channel 2\n" "uniform sampler2D iChannel3; // input channel 3\n" "in vec2 texCoord;\n" "out vec4 fragColor;\n" "void mainImage( out vec4 fragColor, in vec2 fragCoord );\n" "void main() {\n" " mainImage(fragColor, texCoord.xy);\n" "}\n"; char *fs = stringf("%s%s", header, file); s.program = shader(vs, fs, "", "fragColor"); FREE(fs); if( strstr(file, "noise3.jpg")) s.texture_channels[0] = texture("shadertoys/tex12.png", 0).id; else s.texture_channels[0] = texture("shadertoys/tex04.jpg", 0).id; s.uniforms[iFrame] = glGetUniformLocation(s.program, "iFrame"); s.uniforms[iTime] = glGetUniformLocation(s.program, "iTime"); s.uniforms[iDate] = glGetUniformLocation(s.program, "iDate"); s.uniforms[iGlobalTime] = glGetUniformLocation(s.program, "iGlobalTime"); s.uniforms[iGlobalDelta] = glGetUniformLocation(s.program, "iGlobalDelta"); s.uniforms[iGlobalFrame] = glGetUniformLocation(s.program, "iGlobalFrame"); s.uniforms[iResolution] = glGetUniformLocation(s.program, "iResolution"); s.uniforms[iChannel0] = glGetUniformLocation(s.program, "iChannel0"); s.uniforms[iChannel1] = glGetUniformLocation(s.program, "iChannel1"); s.uniforms[iChannel2] = glGetUniformLocation(s.program, "iChannel2"); s.uniforms[iChannel3] = glGetUniformLocation(s.program, "iChannel3"); s.uniforms[iMouse] = glGetUniformLocation(s.program, "iMouse"); s.uniforms[iOffset] = glGetUniformLocation(s.program, "iOffset"); s.uniforms[iSampleRate] = glGetUniformLocation(s.program, "iSampleRate"); s.uniforms[iChannelResolution] = glGetUniformLocation(s.program, "iChannelResolution"); s.uniforms[iChannelTime] = glGetUniformLocation(s.program, "iChannelTime"); return s; } shadertoy_t* shadertoy_render(shadertoy_t *s, float delta) { if( s->program && s->vao ) { if( s->dims && !texture_rec_begin(&s->tx, s->dims, s->dims) ) { return s; } float mx = input(MOUSE_X), my = input(MOUSE_Y); if(input(MOUSE_L)) s->clickx = mx, s->clicky = my; time_t tmsec = time(0); struct tm *tm = localtime(&tmsec); s->t += delta * 1000; glUseProgram(s->program); glUniform1f(s->uniforms[iGlobalTime], s->t / 1000.f ); glUniform1f(s->uniforms[iGlobalFrame], s->frame++); glUniform1f(s->uniforms[iGlobalDelta], delta / 1000.f ); glUniform2f(s->uniforms[iResolution], window_width(), window_height()); glUniform4f(s->uniforms[iMouse], mx, my, s->clickx, s->clicky ); glUniform1i(s->uniforms[iFrame], (int)window_frame()); glUniform1f(s->uniforms[iTime], time_ss()); glUniform4f(s->uniforms[iDate], tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_sec + tm->tm_min * 60 + tm->tm_hour * 3600); int unit = 0; for( int i = 0; i < 4; i++ ) { if( s->texture_channels[i] ) { glActiveTexture(GL_TEXTURE0 + unit); glBindTexture(GL_TEXTURE_2D, s->texture_channels[i]); glUniform1i(s->uniforms[iChannel0+i], unit); unit++; } } glBindVertexArray(s->vao); glDrawArrays(GL_TRIANGLES, 0, 3); if(s->dims) texture_rec_end(&s->tx); // texture_rec } return s; } // ----------------------------------------------------------------------------- // skeletal meshes (iqm) #define IQM_MAGIC "INTERQUAKEMODEL" #define IQM_VERSION 2 struct iqmheader { char magic[16]; unsigned version; unsigned filesize; unsigned flags; unsigned num_text, ofs_text; unsigned num_meshes, ofs_meshes; unsigned num_vertexarrays, num_vertexes, ofs_vertexarrays; unsigned num_triangles, ofs_triangles, ofs_adjacency; unsigned num_joints, ofs_joints; unsigned num_poses, ofs_poses; unsigned num_anims, ofs_anims; unsigned num_frames, num_framechannels, ofs_frames, ofs_bounds; unsigned num_comment, ofs_comment; unsigned num_extensions, ofs_extensions; }; struct iqmmesh { unsigned name; unsigned material; unsigned first_vertex, num_vertexes; unsigned first_triangle, num_triangles; }; enum { IQM_POSITION, IQM_TEXCOORD, IQM_NORMAL, IQM_TANGENT, IQM_BLENDINDEXES, IQM_BLENDWEIGHTS, IQM_COLOR, IQM_CUSTOM = 0x10 }; enum { IQM_BYTE, IQM_UBYTE, IQM_SHORT, IQM_USHORT, IQM_INT, IQM_UINT, IQM_HALF, IQM_FLOAT, IQM_DOUBLE, }; struct iqmtriangle { unsigned vertex[3]; }; struct iqmadjacency { unsigned triangle[3]; }; struct iqmjoint { unsigned name; int parent; float translate[3], rotate[4], scale[3]; }; struct iqmpose { int parent; unsigned mask; float channeloffset[10]; float channelscale[10]; }; struct iqmanim { unsigned name; unsigned first_frame, num_frames; float framerate; unsigned flags; }; enum { IQM_LOOP = 1<<0 }; struct iqmvertexarray { unsigned type; unsigned flags; unsigned format; unsigned size; unsigned offset; }; struct iqmbounds { union { struct { float bbmin[3], bbmax[3]; }; struct { vec3 min3, max3; }; aabb box; }; float xyradius, radius; }; // ----------------------------------------------------------------------------- typedef struct iqm_vertex { GLfloat position[3]; GLfloat texcoord[2]; GLfloat normal[3]; GLfloat tangent[4]; GLubyte blendindexes[4]; GLubyte blendweights[4]; GLfloat blendvertexindex; GLubyte color[4]; } iqm_vertex; typedef struct iqm_t { int nummeshes, numtris, numverts, numjoints, numframes, numanims; GLuint program; GLuint vao, ibo, vbo; GLuint *textures; uint8_t *buf, *meshdata, *animdata; struct iqmmesh *meshes; struct iqmjoint *joints; struct iqmpose *poses; struct iqmanim *anims; struct iqmbounds *bounds; mat34 *baseframe, *inversebaseframe, *outframe, *frames; GLint bonematsoffset; vec4 *colormaps; } iqm_t; #define program (q->program) #define meshdata (q->meshdata) #define animdata (q->animdata) #define nummeshes (q->nummeshes) #define numtris (q->numtris) #define numverts (q->numverts) #define numjoints (q->numjoints) #define numframes (q->numframes) #define numanims (q->numanims) #define meshes (q->meshes) #define textures (q->textures) #define joints (q->joints) #define poses (q->poses) #define anims (q->anims) #define baseframe (q->baseframe) #define inversebaseframe (q->inversebaseframe) #define outframe (q->outframe) #define frames (q->frames) #define vao (q->vao) #define ibo (q->ibo) #define vbo (q->vbo) #define bonematsoffset (q->bonematsoffset) #define buf (q->buf) #define bounds (q->bounds) #define colormaps (q->colormaps) void model_set_texture(model_t m, texture_t t) { if(!m.iqm) return; iqm_t *q = m.iqm; for( int i = 0; i < nummeshes; ++i) { // assume 1 texture per mesh textures[i] = t.id; } } static void model_set_uniforms(model_t m, int shader, mat44 mv, mat44 proj, mat44 view, mat44 model) { // @todo: cache uniform locs if(!m.iqm) return; iqm_t *q = m.iqm; glUseProgram(shader); int loc; //if( (loc = glGetUniformLocation(shader, "M")) >= 0 ) glUniformMatrix4fv( loc, 1, GL_FALSE/*GL_TRUE*/, m); // RIM if( (loc = glGetUniformLocation(shader, "MV")) >= 0 ) { glUniformMatrix4fv( loc, 1, GL_FALSE, mv); } else if( (loc = glGetUniformLocation(shader, "u_mv")) >= 0 ) { glUniformMatrix4fv( loc, 1, GL_FALSE, mv); } if( (loc = glGetUniformLocation(shader, "MVP")) >= 0 ) { mat44 mvp; multiply44x2(mvp, proj, mv); // multiply44x3(mvp, proj, view, model); glUniformMatrix4fv( loc, 1, GL_FALSE, mvp); } else if( (loc = glGetUniformLocation(shader, "u_mvp")) >= 0 ) { mat44 mvp; multiply44x2(mvp, proj, mv); // multiply44x3(mvp, proj, view, model); glUniformMatrix4fv( loc, 1, GL_FALSE, mvp); } if( (loc = glGetUniformLocation(shader, "VP")) >= 0 ) { mat44 vp; multiply44x2(vp, proj, view); glUniformMatrix4fv( loc, 1, GL_FALSE, vp); } else if( (loc = glGetUniformLocation(shader, "u_vp")) >= 0 ) { mat44 vp; multiply44x2(vp, proj, view); glUniformMatrix4fv( loc, 1, GL_FALSE, vp); } #if 0 // @todo: mat44 projview (useful?) #endif if ((loc = glGetUniformLocation(shader, "M")) >= 0) { glUniformMatrix4fv(loc, 1, GL_FALSE, model); } else if ((loc = glGetUniformLocation(shader, "model")) >= 0) { glUniformMatrix4fv(loc, 1, GL_FALSE, model); } if ((loc = glGetUniformLocation(shader, "V")) >= 0) { glUniformMatrix4fv(loc, 1, GL_FALSE, view); } else if ((loc = glGetUniformLocation(shader, "view")) >= 0) { glUniformMatrix4fv(loc, 1, GL_FALSE, view); } if ((loc = glGetUniformLocation(shader, "P")) >= 0) { glUniformMatrix4fv(loc, 1, GL_FALSE, proj); } else if ((loc = glGetUniformLocation(shader, "proj")) >= 0) { glUniformMatrix4fv(loc, 1, GL_FALSE, proj); } if( (loc = glGetUniformLocation(shader, "SKINNED")) >= 0 ) glUniform1i( loc, numanims ? GL_TRUE : GL_FALSE); if( numanims ) if( (loc = glGetUniformLocation(shader, "vsBoneMatrix")) >= 0 ) glUniformMatrix3x4fv( loc, numjoints, GL_FALSE, outframe[0]); if ((loc = glGetUniformLocation(shader, "u_matcaps")) >= 0) { glUniform1i(loc, m.flags & MODEL_MATCAPS ? GL_TRUE:GL_FALSE); } } static void model_set_state(model_t m) { if(!m.iqm) return; iqm_t *q = m.iqm; glBindVertexArray( vao ); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo); glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(iqm_vertex), (GLvoid*)offsetof(iqm_vertex, position) ); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(iqm_vertex), (GLvoid*)offsetof(iqm_vertex, texcoord) ); glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, sizeof(iqm_vertex), (GLvoid*)offsetof(iqm_vertex, normal) ); glVertexAttribPointer(3, 4, GL_FLOAT, GL_FALSE, sizeof(iqm_vertex), (GLvoid*)offsetof(iqm_vertex, tangent) ); glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); glEnableVertexAttribArray(2); glEnableVertexAttribArray(3); // vertex color glVertexAttribPointer(11, 4, GL_UNSIGNED_BYTE, GL_FALSE, sizeof(iqm_vertex), (GLvoid*)offsetof(iqm_vertex,color) ); glEnableVertexAttribArray(11); // animation if(numframes > 0) { glVertexAttribPointer( 8, 4, GL_UNSIGNED_BYTE, GL_FALSE, sizeof(iqm_vertex), (GLvoid*)offsetof(iqm_vertex,blendindexes) ); glVertexAttribPointer( 9, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(iqm_vertex), (GLvoid*)offsetof(iqm_vertex,blendweights) ); glVertexAttribPointer(10, 1, GL_FLOAT, GL_FALSE, sizeof(iqm_vertex), (GLvoid*)offsetof(iqm_vertex, blendvertexindex) ); glEnableVertexAttribArray(8); glEnableVertexAttribArray(9); glEnableVertexAttribArray(10); } // mat4 attribute; for instanced rendering if( 1 ) { unsigned vec4_size = sizeof(vec4); unsigned mat4_size = sizeof(vec4) * 4; // vertex buffer object glBindBuffer(GL_ARRAY_BUFFER, m.vao_instanced); glBufferData(GL_ARRAY_BUFFER, m.num_instances * mat4_size, m.instanced_matrices, GL_STATIC_DRAW); glVertexAttribPointer(4, 4, GL_FLOAT, GL_FALSE, 4 * vec4_size, (GLvoid*)(((char*)NULL)+(0 * vec4_size))); glVertexAttribPointer(5, 4, GL_FLOAT, GL_FALSE, 4 * vec4_size, (GLvoid*)(((char*)NULL)+(1 * vec4_size))); glVertexAttribPointer(6, 4, GL_FLOAT, GL_FALSE, 4 * vec4_size, (GLvoid*)(((char*)NULL)+(2 * vec4_size))); glVertexAttribPointer(7, 4, GL_FLOAT, GL_FALSE, 4 * vec4_size, (GLvoid*)(((char*)NULL)+(3 * vec4_size))); glEnableVertexAttribArray(4); glEnableVertexAttribArray(5); glEnableVertexAttribArray(6); glEnableVertexAttribArray(7); glVertexAttribDivisor(4, 1); glVertexAttribDivisor(5, 1); glVertexAttribDivisor(6, 1); glVertexAttribDivisor(7, 1); } // 7 bitangent? into texcoord.z? glBindVertexArray( 0 ); } static bool model_load_meshes(iqm_t *q, const struct iqmheader *hdr, model_t *m) { if(meshdata) return false; lil32p(&buf[hdr->ofs_vertexarrays], hdr->num_vertexarrays*sizeof(struct iqmvertexarray)/sizeof(uint32_t)); lil32p(&buf[hdr->ofs_triangles], hdr->num_triangles*sizeof(struct iqmtriangle)/sizeof(uint32_t)); lil32p(&buf[hdr->ofs_meshes], hdr->num_meshes*sizeof(struct iqmmesh)/sizeof(uint32_t)); lil32p(&buf[hdr->ofs_joints], hdr->num_joints*sizeof(struct iqmjoint)/sizeof(uint32_t)); meshdata = buf; nummeshes = hdr->num_meshes; numtris = hdr->num_triangles; numverts = hdr->num_vertexes; numjoints = hdr->num_joints; outframe = CALLOC(hdr->num_joints, sizeof(mat34)); float *inposition = NULL, *innormal = NULL, *intangent = NULL, *intexcoord = NULL, *invertexindex = NULL; uint8_t *inblendindex8 = NULL, *inblendweight8 = NULL; int *inblendindexi = NULL; float *inblendweightf = NULL; uint8_t *invertexcolor8 = NULL; struct iqmvertexarray *vas = (struct iqmvertexarray *)&buf[hdr->ofs_vertexarrays]; for(int i = 0; i < (int)hdr->num_vertexarrays; i++) { struct iqmvertexarray *va = &vas[i]; switch(va->type) { default: continue; // return PANIC("unknown iqm vertex type (%d)", va->type), false; break; case IQM_POSITION: ASSERT(va->format == IQM_FLOAT && va->size == 3); inposition = (float *)&buf[va->offset]; lil32pf(inposition, 3*hdr->num_vertexes); break; case IQM_NORMAL: ASSERT(va->format == IQM_FLOAT && va->size == 3); innormal = (float *)&buf[va->offset]; lil32pf(innormal, 3*hdr->num_vertexes); break; case IQM_TANGENT: ASSERT(va->format == IQM_FLOAT && va->size == 4); intangent = (float *)&buf[va->offset]; lil32pf(intangent, 4*hdr->num_vertexes); break; case IQM_TEXCOORD: ASSERT(va->format == IQM_FLOAT && va->size == 2); intexcoord = (float *)&buf[va->offset]; lil32pf(intexcoord, 2*hdr->num_vertexes); break; case IQM_COLOR: ASSERT(va->size == 4); ASSERT(va->format == IQM_UBYTE); invertexcolor8 = (uint8_t *)&buf[va->offset]; break; case IQM_BLENDINDEXES: ASSERT(va->size == 4); ASSERT(va->format == IQM_UBYTE || va->format == IQM_INT); if(va->format == IQM_UBYTE) inblendindex8 = (uint8_t *)&buf[va->offset]; else inblendindexi = (int *)&buf[va->offset]; break; case IQM_BLENDWEIGHTS: ASSERT(va->size == 4); ASSERT(va->format == IQM_UBYTE || va->format == IQM_FLOAT); if(va->format == IQM_UBYTE) inblendweight8 = (uint8_t *)&buf[va->offset]; else inblendweightf = (float *)&buf[va->offset]; invertexindex = (inblendweight8 ? (float*)(inblendweight8 + 4) : inblendweightf + 4 ); } } if (hdr->ofs_bounds) lil32p(buf + hdr->ofs_bounds, hdr->num_frames * sizeof(struct iqmbounds)); if (hdr->ofs_bounds) bounds = (struct iqmbounds *) &buf[hdr->ofs_bounds]; meshes = (struct iqmmesh *)&buf[hdr->ofs_meshes]; joints = (struct iqmjoint *)&buf[hdr->ofs_joints]; baseframe = CALLOC(hdr->num_joints, sizeof(mat34)); inversebaseframe = CALLOC(hdr->num_joints, sizeof(mat34)); for(int i = 0; i < (int)hdr->num_joints; i++) { struct iqmjoint *j = &joints[i]; compose34(baseframe[i], ptr3(j->translate), normq(ptrq(j->rotate)), ptr3(j->scale)); invert34(inversebaseframe[i], baseframe[i]); if(j->parent >= 0) { multiply34x2(baseframe[i], baseframe[j->parent], baseframe[i]); multiply34(inversebaseframe[i], inversebaseframe[j->parent]); } } struct iqmtriangle *tris = (struct iqmtriangle *)&buf[hdr->ofs_triangles]; glGenVertexArrays(1, &vao); glBindVertexArray(vao); if(!ibo) glGenBuffers(1, &ibo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, hdr->num_triangles*sizeof(struct iqmtriangle), tris, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); iqm_vertex *verts = CALLOC(hdr->num_vertexes, sizeof(iqm_vertex)); for(int i = 0; i < (int)hdr->num_vertexes; i++) { iqm_vertex *v = &verts[i]; if(inposition) memcpy(v->position, &inposition[i*3], sizeof(v->position)); if(innormal) memcpy(v->normal, &innormal[i*3], sizeof(v->normal)); if(intangent) memcpy(v->tangent, &intangent[i*4], sizeof(v->tangent)); if(intexcoord) memcpy(v->texcoord, &intexcoord[i*2], sizeof(v->texcoord)); if(inblendindex8) memcpy(v->blendindexes, &inblendindex8[i*4], sizeof(v->blendindexes)); if(inblendweight8) memcpy(v->blendweights, &inblendweight8[i*4], sizeof(v->blendweights)); if(inblendindexi) { uint8_t conv[4] = { inblendindexi[i*4], inblendindexi[i*4+1], inblendindexi[i*4+2], inblendindexi[i*4+3] }; memcpy(v->blendindexes, conv, sizeof(v->blendindexes)); } if(inblendweightf) { uint8_t conv[4] = { inblendweightf[i*4] * 255, inblendweightf[i*4+1] * 255, inblendweightf[i*4+2] * 255, inblendweightf[i*4+3] * 255 }; memcpy(v->blendweights, conv, sizeof(v->blendweights)); } if(invertexindex) { float conv = i; memcpy(&v->blendvertexindex, &conv, 4); } if(invertexcolor8) memcpy(v->color, &invertexcolor8[i*4], sizeof(v->color)); } if(!vbo) glGenBuffers(1, &vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, hdr->num_vertexes*sizeof(iqm_vertex), verts, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); m->stride = sizeof(iqm_vertex); #if 0 m->stride = 0; if(inposition) m->stride += sizeof(verts[0].position); if(innormal) m->stride += sizeof(verts[0].normal); if(intangent) m->stride += sizeof(verts[0].tangent); if(intexcoord) m->stride += sizeof(verts[0].texcoord); if(inblendindex8) m->stride += sizeof(verts[0].blendindexes); // no index8? bug? if(inblendweight8) m->stride += sizeof(verts[0].blendweights); // no weight8? bug? if(inblendindexi) m->stride += sizeof(verts[0].blendindexes); if(inblendweightf) m->stride += sizeof(verts[0].blendweights); if(invertexcolor8) m->stride += sizeof(verts[0].color); #endif //for( int i = 0; i < 16; ++i ) printf("%.9g%s", ((float*)verts)[i], (i % 3) == 2 ? "\n" : ","); //m->verts = verts; //FREE(verts); m->verts = 0; FREE(verts); textures = CALLOC(hdr->num_meshes * 8, sizeof(GLuint)); colormaps = CALLOC(hdr->num_meshes * 8, sizeof(vec4)); for(int i = 0; i < (int)hdr->num_meshes; i++) { int invalid = texture_checker().id; textures[i] = invalid; } const char *str = hdr->ofs_text ? (char *)&buf[hdr->ofs_text] : ""; for(int i = 0; i < (int)hdr->num_meshes; i++) { struct iqmmesh *m = &meshes[i]; PRINTF("loaded mesh: %s\n", &str[m->name]); } return true; } static bool model_load_anims(iqm_t *q, const struct iqmheader *hdr) { if((int)hdr->num_poses != numjoints) return false; if(animdata) { if(animdata != meshdata) FREE(animdata); FREE(frames); animdata = NULL; anims = NULL; frames = 0; numframes = 0; numanims = 0; } lil32p(&buf[hdr->ofs_poses], hdr->num_poses*sizeof(struct iqmpose)/sizeof(uint32_t)); lil32p(&buf[hdr->ofs_anims], hdr->num_anims*sizeof(struct iqmanim)/sizeof(uint32_t)); lil16p((uint16_t *)&buf[hdr->ofs_frames], hdr->num_frames*hdr->num_framechannels); animdata = buf; numanims = hdr->num_anims; numframes = hdr->num_frames; anims = (struct iqmanim *)&buf[hdr->ofs_anims]; poses = (struct iqmpose *)&buf[hdr->ofs_poses]; frames = CALLOC(hdr->num_frames * hdr->num_poses, sizeof(mat34)); uint16_t *framedata = (uint16_t *)&buf[hdr->ofs_frames]; for(int i = 0; i < (int)hdr->num_frames; i++) { for(int j = 0; j < (int)hdr->num_poses; j++) { struct iqmpose *p = &poses[j]; quat rotate; vec3 translate, scale; translate.x = p->channeloffset[0]; if(p->mask&0x01) translate.x += *framedata++ * p->channelscale[0]; translate.y = p->channeloffset[1]; if(p->mask&0x02) translate.y += *framedata++ * p->channelscale[1]; translate.z = p->channeloffset[2]; if(p->mask&0x04) translate.z += *framedata++ * p->channelscale[2]; rotate.x = p->channeloffset[3]; if(p->mask&0x08) rotate.x += *framedata++ * p->channelscale[3]; rotate.y = p->channeloffset[4]; if(p->mask&0x10) rotate.y += *framedata++ * p->channelscale[4]; rotate.z = p->channeloffset[5]; if(p->mask&0x20) rotate.z += *framedata++ * p->channelscale[5]; rotate.w = p->channeloffset[6]; if(p->mask&0x40) rotate.w += *framedata++ * p->channelscale[6]; scale.x = p->channeloffset[7]; if(p->mask&0x80) scale.x += *framedata++ * p->channelscale[7]; scale.y = p->channeloffset[8]; if(p->mask&0x100) scale.y += *framedata++ * p->channelscale[8]; scale.z = p->channeloffset[9]; if(p->mask&0x200) scale.z += *framedata++ * p->channelscale[9]; // Concatenate each pose with the inverse base pose to avoid doing this at animation time. // If the joint has a parent, then it needs to be pre-concatenated with its parent's base pose. // Thus it all negates at animation time like so: // (parentPose * parentInverseBasePose) * (parentBasePose * childPose * childInverseBasePose) => // parentPose * (parentInverseBasePose * parentBasePose) * childPose * childInverseBasePose => // parentPose * childPose * childInverseBasePose mat34 m; compose34(m, translate, normq(rotate), scale); if(p->parent >= 0) multiply34x3(frames[i*hdr->num_poses + j], baseframe[p->parent], m, inversebaseframe[j]); else multiply34x2(frames[i*hdr->num_poses + j], m, inversebaseframe[j]); } } const char *str = hdr->ofs_text ? (char *)&buf[hdr->ofs_text] : ""; for(int i = 0; i < (int)hdr->num_anims; i++) { struct iqmanim *a = &anims[i]; PRINTF("loaded anim[%d]: %s\n", i, &str[a->name]); } return true; } // prevents crash on osx when strcpy'ing non __restrict arguments static char* strcpy_safe(char *d, const char *s) { sprintf(d, "%s", s); return d; } static bool model_load_textures(iqm_t *q, const struct iqmheader *hdr, model_t *model) { textures = textures ? textures : CALLOC(hdr->num_meshes * 8, sizeof(GLuint)); // up to 8 textures per mesh colormaps = colormaps ? colormaps : CALLOC(hdr->num_meshes * 8, sizeof(vec4)); // up to 8 colormaps per mesh GLuint *out = textures; const char *str = hdr->ofs_text ? (char *)&buf[hdr->ofs_text] : ""; for(int i = 0; i < (int)hdr->num_meshes; i++) { struct iqmmesh *m = &meshes[i]; int flags = TEXTURE_MIPMAPS|TEXTURE_REPEAT; // LINEAR, NEAREST int invalid = texture_checker().id; #if 1 char *material_embedded_texture = strstr(&str[m->material], "+b64:"); if( material_embedded_texture ) { *material_embedded_texture = '\0'; material_embedded_texture += 5; array(char) embedded_texture = base64__decode(material_embedded_texture, strlen(material_embedded_texture)); //printf("%s %d\n", material_embedded_texture, array_count(embedded_texture)); //hexdump(embedded_texture, array_count(embedded_texture)); *out = texture_compressed_from_mem( embedded_texture, array_count(embedded_texture), 0 ).id; array_free(embedded_texture); } char* material_color_hex = strstr(&str[m->material], "+$"); vec4 material_color = vec4(1,1,1,1); if( material_color_hex ) { *material_color_hex = '\0'; material_color_hex += 2; material_color.r = ((material_color_hex[0] >= 'a') ? material_color_hex[0] - 'a' + 10 : material_color_hex[0] - '0') / 15.f; material_color.g = ((material_color_hex[1] >= 'a') ? material_color_hex[1] - 'a' + 10 : material_color_hex[1] - '0') / 15.f; material_color.b = ((material_color_hex[2] >= 'a') ? material_color_hex[2] - 'a' + 10 : material_color_hex[2] - '0') / 15.f; #if 0 // not enabled because of some .obj files like suzanne, with color_hex=9990 found if(material_color_hex[3]) material_color.a = ((material_color_hex[3] >= 'a') ? material_color_hex[3] - 'a' + 10 : material_color_hex[3] - '0') / 15.f; else #endif material_color.a = 1; } if( !material_embedded_texture ) { char* material_name; // remove any material+name from materials (.fbx) // try left token first if( 1 ) { material_name = va("%s", &str[m->material]); char* plus = strrchr(material_name, '+'); if (plus) { strcpy_safe(plus, file_ext(material_name)); } *out = texture_compressed(material_name, flags).id; } // else try right token if (*out == invalid) { material_name = file_normalize( va("%s", &str[m->material]) ); char* plus = strrchr(material_name, '+'), *slash = strrchr(material_name, '/'); if (plus) { strcpy_safe(slash ? slash + 1 : material_name, plus + 1); *out = texture_compressed(material_name, flags).id; } } // else last resort if (*out == invalid) { *out = texture_compressed(material_name, flags).id; // needed? } } if( *out != invalid) { PRINTF("loaded material[%d]: %s\n", i, &str[m->material]); } else { PRINTF("warn: material[%d] not found: %s\n", i, &str[m->material]); PRINTF("warn: using placeholder material[%d]=texture_checker\n", i); *out = texture_checker().id; // placeholder } { model->num_textures++; array_push(model->texture_names, STRDUP(&str[m->material])); material_t mt = {0}; mt.name = STRDUP(&str[m->material]); mt.layer[mt.count].color = material_color_hex ? material_color : vec4(1,1,1,1); mt.layer[mt.count++].texture = *out++; array_push(model->materials, mt); } #else material_t mt = {0}; mt.name = STRDUP(&str[m->material]); array(char*) tokens = strsplit(&str[m->material], "+"); for each_array(tokens, char*, it) { *out = texture(it, flags).id; if( *out == invalid ) { PRINTF("warn: material[%d] not found: %s\n", i, it); } else { PRINTF("loaded material[%d]: %s\n", i, it); mt.layer[mt.count++].texture = *out; ++out; } } // if no materials were loaded, try to signal a checkered placeholder if( out == textures ) { PRINTF("warn: using placeholder material[%d]=texture_checker\n", i); *out++ = invalid; } int count = (int)(intptr_t)(out - textures); model->num_textures += count; array_push(model->texture_names, STRDUP(&str[m->material])); array_push(model->materials, mt); #endif } if( array_count(model->materials) == 0 ) { material_t mt = {0}; mt.name = "placeholder"; mt.count = 1; mt.layer[0].color = vec4(1,1,1,1); mt.layer[0].texture = texture_checker().id; array_push(model->materials, mt); } return true; } model_t model_from_mem(const void *mem, int len, int flags) { model_t m = {0}; const char *ptr = (const char *)mem; static int shaderprog = -1; if( shaderprog < 0 ) { const char *symbols[] = { "{{include-shadowmap}}", fs_0_0_shadowmap_lit }; // #define RIM shaderprog = shader(strlerp(1,symbols,vs_323444143_16_332_model), strlerp(1,symbols,fs_32_4_model), //fs, "att_position,att_texcoord,att_normal,att_tangent,att_instanced_matrix,,,,att_indexes,att_weights,att_vertexindex,att_color,att_bitangent","fragColor"); } iqm_t *q = CALLOC(1, sizeof(iqm_t)); program = shaderprog; int error = 1; if( ptr && len ) { struct iqmheader hdr; memcpy(&hdr, ptr, sizeof(hdr)); ptr += sizeof(hdr); if( !memcmp(hdr.magic, IQM_MAGIC, sizeof(hdr.magic))) { lil32p(&hdr.version, (sizeof(hdr) - sizeof(hdr.magic))/sizeof(uint32_t)); if(hdr.version == IQM_VERSION) { buf = CALLOC(hdr.filesize, sizeof(uint8_t)); memcpy(buf + sizeof(hdr), ptr, hdr.filesize - sizeof(hdr)); error = 0; if( hdr.num_meshes > 0 && !(flags & MODEL_NO_MESHES) ) error |= !model_load_meshes(q, &hdr, &m); if( hdr.num_meshes > 0 && !(flags & MODEL_NO_TEXTURES) ) error |= !model_load_textures(q, &hdr, &m); if( hdr.num_anims > 0 && !(flags & MODEL_NO_ANIMATIONS) ) error |= !model_load_anims(q, &hdr); if( buf != meshdata && buf != animdata ) FREE(buf); } } } if( error ) { PRINTF("Error: cannot load %s", "model"); FREE(q), q = 0; } else { #undef vao #undef ibo #undef vbo m.vao = q->vao; m.ibo = q->ibo; m.vbo = q->vbo; m.num_verts = numverts; #define vao (q->vao) #define ibo (q->ibo) #define vbo (q->vbo) // m.boxes = bounds; // <@todo m.num_meshes = nummeshes; m.num_triangles = numtris; m.num_joints = numjoints; //m.num_poses = numposes; m.num_anims = numanims; m.num_frames = numframes; m.iqm = q; m.curframe = model_animate(m, 0); #undef program m.program = (q->program); #define program (q->program) //m.num_textures = nummeshes; // assume 1 texture only per mesh #undef textures m.textures = (q->textures); #define textures (q->textures) m.flags = flags; id44(m.pivot); m.num_instances = 0; m.instanced_matrices = m.pivot; glGenBuffers(1, &m.vao_instanced); model_set_state(m); } return m; } model_t model(const char *filename, int flags) { int len; // vfs_pushd(filedir(filename)) char *ptr = vfs_load(filename, &len); // + vfs_popd return model_from_mem( ptr, len, flags ); } bool model_get_bone_pose(model_t m, unsigned joint, mat34 *out) { if(!m.iqm) return false; iqm_t *q = m.iqm; if(joint >= numjoints) return false; multiply34x2(*out, outframe[joint], baseframe[joint]); return true; } anim_t clip(float minframe, float maxframe, float blendtime, unsigned flags) { return ((anim_t){minframe, maxframe, blendtime, flags, 1e6}); } anim_t loop(float minframe, float maxframe, float blendtime, unsigned flags) { return clip(minframe, maxframe, blendtime, flags | ANIM_LOOP); } static void anim_tick(anim_t *p, bool is_primary, float delta) { // delta can be negative (reverses anim) if( !is_primary ) p->active = 0; if( is_primary && !p->active ) { p->active = 1; p->timer = 0; p->alpha = 0; if( p->flags & ANIM_DONT_RESET_AFTER_USE ) {} else p->curframe = 1e6; } p->alpha = 1 - ease(p->timer / p->blendtime, p->easing); p->timer += window_delta(); p->curframe += delta; if(p->curframe < p->from || p->curframe > p->to ) p->curframe = delta >= 0 ? p->from : p->to; p->pose = pose(delta >= 0, p->curframe, p->from, p->to, p->flags & ANIM_LOOP, NULL); } float model_animate_blends(model_t m, anim_t *primary, anim_t *secondary, float delta) { if(!m.iqm) return -1; iqm_t *q = m.iqm; anim_tick(primary, 1, delta); anim_tick(secondary, 0, delta); float alpha = primary->alpha; // if( alpha <= 0 ) return model_animate(m, primary.pose.x); // if( alpha >= 1 ) return model_animate(m, secondary.pose.x); unsigned frame1 = primary->pose.x; unsigned frame2 = primary->pose.y; float alphaA = primary->pose.z; unsigned frame3 = secondary->pose.x; unsigned frame4 = secondary->pose.y; float alphaB = secondary->pose.z; mat34 *mat1 = &frames[frame1 * numjoints]; mat34 *mat2 = &frames[frame2 * numjoints]; mat34 *mat3 = &frames[frame3 * numjoints]; mat34 *mat4 = &frames[frame4 * numjoints]; for(int i = 0; i < numjoints; i++) { mat34 matA, matB, matF; lerp34(matA, mat1[i], mat2[i], alphaA); lerp34(matB, mat3[i], mat4[i], alphaB); lerp34(matF, matA, matB, alpha ); if(joints[i].parent >= 0) multiply34x2(outframe[i], outframe[joints[i].parent], matF); else copy34(outframe[i], matF); } return frame1 + alpha; } vec3 pose(bool forward_time, float curframe, int minframe, int maxframe, bool loop, float *retframe) { float offset = curframe - (int)curframe; #if 1 int frame1 = (int)curframe; int frame2 = frame1 + (forward_time ? 1 : -1); #else float frame1 = curframe; float frame2 = curframe + (forward_time ? 1 : -1); #endif if( loop ) { int distance = maxframe - minframe; frame1 = fmod(frame1 - minframe, distance) + minframe; // frame1 >= maxframe ? minframe : frame1 < minframe ? maxframe - clampf(minframe - frame1, 0, distance) : frame1; frame2 = fmod(frame2 - minframe, distance) + minframe; // frame2 >= maxframe ? minframe : frame2 < minframe ? maxframe - clampf(minframe - frame2, 0, distance) : frame2; if(retframe) *retframe = fmod(frame1 + offset - minframe, distance) + minframe; } else { frame1 = clampf(frame1, minframe, maxframe); frame2 = clampf(frame2, minframe, maxframe); if(retframe) *retframe = clampf(frame1 + offset, minframe, maxframe); } return vec3(frame1 + (offset > 0 && offset < 1 ? offset : 0),frame2,offset); } float model_animate_clip(model_t m, float curframe, int minframe, int maxframe, bool loop) { if(!m.iqm) return -1; iqm_t *q = m.iqm; float retframe = -1; if( numframes > 0 ) { vec3 p = pose(curframe >= m.curframe, curframe, minframe, maxframe, loop, &retframe); int frame1 = p.x; int frame2 = p.y; float offset = p.z; mat34 *mat1 = &frames[frame1 * numjoints]; mat34 *mat2 = &frames[frame2 * numjoints]; // @todo: add animation blending and inter-frame blending here for(int i = 0; i < numjoints; i++) { mat34 mat; lerp34(mat, mat1[i], mat2[i], offset); if(joints[i].parent >= 0) multiply34x2(outframe[i], outframe[joints[i].parent], mat); else copy34(outframe[i], mat); } } return retframe; } void model_render_skeleton(model_t m, mat44 M) { if(!m.iqm) return; iqm_t *q = m.iqm; if(!numjoints) return; ddraw_ontop_push(true); ddraw_color_push(RED); for( int joint = 0; joint < numjoints; joint++ ) { if( joints[joint].parent < 0) continue; // bone space... mat34 f; model_get_bone_pose(m, joint, &f); vec3 pos = vec3(f[3],f[7],f[11]); model_get_bone_pose(m, joints[joint].parent, &f); vec3 src = vec3(f[3],f[7],f[11]); // ...to model space src = transform344(M, src); pos = transform344(M, pos); // red line ddraw_color(RED); // ddraw_line(src, pos); ddraw_bone(src, pos); // green dot ddraw_color(GREEN); ddraw_point(pos); // yellow text ddraw_color(YELLOW); ddraw_text(pos, 0.005, va("%d", joint)); } ddraw_color_pop(); ddraw_ontop_pop(); } float model_animate(model_t m, float curframe) { if(!m.iqm) return -1; iqm_t *q = m.iqm; return model_animate_clip(m, curframe, 0, numframes-1, true); } static void model_draw_call(model_t m) { if(!m.iqm) return; iqm_t *q = m.iqm; glBindVertexArray( vao ); struct iqmtriangle *tris = NULL; for(int i = 0; i < nummeshes; i++) { struct iqmmesh *im = &meshes[i]; glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, textures[i] ); glUniform1i(glGetUniformLocation(program, "fsDiffTex"), 0 /*<-- unit!*/ ); int loc; if ((loc = glGetUniformLocation(program, "u_textured")) >= 0) { bool textured = !!textures[i] && textures[i] != texture_checker().id; // m.materials[i].layer[0].texture != texture_checker().id; glUniform1i(loc, textured ? GL_TRUE : GL_FALSE); if ((loc = glGetUniformLocation(program, "u_diffuse")) >= 0) { glUniform4f(loc, m.materials[i].layer[0].color.r, m.materials[i].layer[0].color.g, m.materials[i].layer[0].color.b, m.materials[i].layer[0].color.a); } } glDrawElementsInstanced(GL_TRIANGLES, 3*im->num_triangles, GL_UNSIGNED_INT, &tris[im->first_triangle], m.num_instances); profile_incstat("Render.num_drawcalls", +1); profile_incstat("Render.num_triangles", +im->num_triangles); } glBindVertexArray( 0 ); } void model_render_instanced(model_t m, mat44 proj, mat44 view, mat44* models, int shader, unsigned count) { if(!m.iqm) return; iqm_t *q = m.iqm; // @fixme: instanced billboards mat44 mv; multiply44x2(mv, view, models[0]); if( m.billboard ) { float d = sqrt(mv[4*0+0] * mv[4*0+0] + mv[4*1+1] * mv[4*1+1] + mv[4*2+2] * mv[4*2+2]); if(m.billboard & 4) mv[4*0+0] = d, mv[4*0+1] = 0, mv[4*0+2] = 0; if(m.billboard & 2) mv[4*1+0] = 0, mv[4*1+1] = -d, mv[4*1+2] = 0; if(m.billboard & 1) mv[4*2+0] = 0, mv[4*2+1] = 0, mv[4*2+2] = d; } if( count != m.num_instances ) { m.num_instances = count; m.instanced_matrices = (float*)models; model_set_state(m); } model_set_uniforms(m, shader > 0 ? shader : program, mv, proj, view, models[0]); model_draw_call(m); } void model_render(model_t m, mat44 proj, mat44 view, mat44 model, int shader) { model_render_instanced(m, proj, view, (mat44*)model, shader, 1); } // static aabb aabb_transform( aabb A, mat44 M ) { // Based on "Transforming Axis-Aligned Bounding Boxes" by Jim Arvo, 1990 aabb B = { {M[12],M[13],M[14]}, {M[12],M[13],M[14]} }; // extract translation from mat44 for( int i = 0; i < 3; i++ ) for( int j = 0; j < 3; j++ ) { float a = M[i*4+j] * j[&A.min.x]; // use mat33 from mat44 float b = M[i*4+j] * j[&A.max.x]; // use mat33 from mat44 if( a < b ) { i[&B.min.x] += a; i[&B.max.x] += b; } else { i[&B.min.x] += b; i[&B.max.x] += a; } } return B; } aabb model_aabb(model_t m, mat44 transform) { iqm_t *q = m.iqm; if( q && bounds ) { int f = ( (int)m.curframe ) % (numframes + !numframes); vec3 bbmin = ptr3(bounds[f].bbmin); vec3 bbmax = ptr3(bounds[f].bbmax); return aabb_transform(aabb(bbmin,bbmax), transform); } return aabb(vec3(0,0,0),vec3(0,0,0)); } void model_destroy(model_t m) { FREE(m.verts); for( int i = 0, end = array_count(m.texture_names); i < end; ++i ) { FREE(m.texture_names[i]); } array_free(m.texture_names); iqm_t *q = m.iqm; // if(m.mesh) mesh_destroy(m.mesh); FREE(outframe); FREE(colormaps); FREE(textures); FREE(baseframe); FREE(inversebaseframe); if(animdata != meshdata) FREE(animdata); //FREE(meshdata); FREE(frames); FREE(buf); FREE(q); } #undef program #undef meshdata #undef animdata #undef nummeshes #undef numtris #undef numverts #undef numjoints #undef numframes #undef numanims #undef meshes #undef textures #undef joints #undef poses #undef anims #undef baseframe #undef inversebaseframe #undef outframe #undef frames #undef vao #undef ibo #undef vbo #undef bonematsoffset #undef buf #undef bounds #undef colormaps