// ---------------------------------------------------------------------------- // time #if 0 uint64_t time_gpu() { GLint64 t = 123456789; glGetInteger64v(GL_TIMESTAMP, &t); return (uint64_t)t; } #endif uint64_t date() { time_t epoch = time(0); struct tm *ti = localtime(&epoch); return atoi64(va("%04d%02d%02d%02d%02d%02d",ti->tm_year+1900,ti->tm_mon+1,ti->tm_mday,ti->tm_hour,ti->tm_min,ti->tm_sec)); } char *date_string() { time_t epoch = time(0); struct tm *ti = localtime(&epoch); return va("%04d-%02d-%02d %02d:%02d:%02d",ti->tm_year+1900,ti->tm_mon+1,ti->tm_mday,ti->tm_hour,ti->tm_min,ti->tm_sec); } uint64_t date_epoch() { time_t epoch = time(0); return epoch; } #if 0 double time_ss() { return glfwGetTime(); } double time_ms() { return glfwGetTime() * 1000.0; } uint64_t time_us() { return (uint64_t)(glfwGetTime() * 1000000.0); // @fixme: use a high resolution timer instead, or time_gpu below } uint64_t sleep_us(uint64_t us) { // @fixme: use a high resolution sleeper instead return sleep_ms( us / 1000.0 ); } double sleep_ms(double ms) { double now = time_ms(); if( ms <= 0 ) { #if is(win32) Sleep(0); // yield #else usleep(0); #endif } else { #if is(win32) Sleep(ms); #else usleep(ms * 1000); #endif } return time_ms() - now; } double sleep_ss(double ss) { return sleep_ms( ss * 1000 ) / 1000.0; } #endif // high-perf functions #define TIMER_E3 1000ULL #define TIMER_E6 1000000ULL #define TIMER_E9 1000000000ULL #ifdef CLOCK_MONOTONIC_RAW #define TIME_MONOTONIC CLOCK_MONOTONIC_RAW #elif defined CLOCK_MONOTONIC #define TIME_MONOTONIC CLOCK_MONOTONIC #else // #define TIME_MONOTONIC CLOCK_REALTIME // untested #endif static uint64_t nanotimer(uint64_t *out_freq) { if( out_freq ) { #if is(win32) LARGE_INTEGER li; QueryPerformanceFrequency(&li); *out_freq = li.QuadPart; //#elif is(ANDROID) // *out_freq = CLOCKS_PER_SEC; #elif defined TIME_MONOTONIC *out_freq = TIMER_E9; #else *out_freq = TIMER_E6; #endif } #if is(win32) LARGE_INTEGER li; QueryPerformanceCounter(&li); return (uint64_t)li.QuadPart; //#elif is(ANDROID) // return (uint64_t)clock(); #elif defined TIME_MONOTONIC struct timespec ts; clock_gettime(TIME_MONOTONIC, &ts); return (TIMER_E9 * (uint64_t)ts.tv_sec) + ts.tv_nsec; #else struct timeval tv; gettimeofday(&tv, NULL); return (TIMER_E6 * (uint64_t)tv.tv_sec) + tv.tv_usec; #endif } uint64_t time_ns() { static __thread uint64_t epoch = 0; static __thread uint64_t freq = 0; if( !freq ) { epoch = nanotimer(&freq); } uint64_t a = nanotimer(NULL) - epoch; uint64_t b = TIMER_E9; uint64_t c = freq; // Computes (a*b)/c without overflow, as long as both (a*b) and the overall result fit into 64-bits. // [ref] https://github.com/rust-lang/rust/blob/3809bbf47c8557bd149b3e52ceb47434ca8378d5/src/libstd/sys_common/mod.rs#L124 uint64_t q = a / c; uint64_t r = a % c; return q * b + r * b / c; } uint64_t time_us() { return time_ns() / TIMER_E3; } uint64_t time_ms() { return time_ns() / TIMER_E6; } double time_ss() { return time_ns() / 1e9; // TIMER_E9; } double time_mm() { return time_ss() / 60; } double time_hh() { return time_mm() / 60; } void sleep_ns( double ns ) { #if is(win32) if( ns >= 100 ) { LARGE_INTEGER li; // Windows sleep in 100ns units HANDLE timer = CreateWaitableTimer(NULL, TRUE, NULL); li.QuadPart = (LONGLONG)(__int64)(-ns/100); // Negative for relative time SetWaitableTimer(timer, &li, 0, NULL, NULL, FALSE); WaitForSingleObject(timer, INFINITE); CloseHandle(timer); #else if( ns > 0 ) { struct timespec wait = {0}; wait.tv_sec = ns / 1e9; wait.tv_nsec = ns - wait.tv_sec * 1e9; nanosleep(&wait, NULL); #endif } else { #if is(win32) Sleep(0); // yield, Sleep(0), SwitchToThread #else usleep(0); #endif } } void sleep_us( double us ) { sleep_ns(us * 1e3); } void sleep_ms( double ms ) { sleep_ns(ms * 1e6); } void sleep_ss( double ss ) { sleep_ns(ss * 1e9); } // ---------------------------------------------------------------------------- // timer struct timer_internal_t { unsigned ms; unsigned (*callback)(unsigned interval, void *arg); void *arg; thread_ptr_t thd; }; static int timer_func(void *arg) { struct timer_internal_t *p = (struct timer_internal_t*)arg; sleep_ms( p->ms ); for( ;; ) { unsigned then = time_ms(); p->ms = p->callback(p->ms, p->arg); if( !p->ms ) break; unsigned now = time_ms(); unsigned lapse = now - then; int diff = p->ms - lapse; sleep_ms( diff <= 0 ? 0 : diff ); } thread_exit(0); return 0; } static __thread array(struct timer_internal_t *) timers; unsigned timer(unsigned ms, unsigned (*callback)(unsigned ms, void *arg), void *arg) { struct timer_internal_t *p = MALLOC( sizeof(struct timer_internal_t) ); p->ms = ms; p->callback = callback; p->arg = arg; p->thd = thread_init( timer_func, p, "", 0 ); array_push(timers, p); return array_count(timers); } void timer_destroy(unsigned i) { if( i-- ) { thread_join(timers[i]->thd); thread_term(timers[i]->thd); FREE(timers[i]); timers[i] = 0; } } // ---------------------------------------------------------------------------- // guid //typedef vec3i guid; guid guid_create() { static __thread unsigned counter = 0; static uint64_t appid = 0; do_once appid = hash_str(app_name()); union conv { struct { unsigned timestamp : 32; unsigned threadid : 16; // inverted order in LE unsigned appid : 16; // unsigned counter : 32; }; vec3i v3; } c; c.timestamp = date_epoch() - 0x65000000; c.appid = (unsigned)appid; c.threadid = (unsigned)(uintptr_t)thread_current_thread_id(); c.counter = ++counter; return c.v3; } // ---------------------------------------------------------------------------- // ease float ease_nop(float t) { return 0; } float ease_linear(float t) { return t; } float ease_out_sine(float t) { return sinf(t*(C_PI*0.5f)); } float ease_out_quad(float t) { return -(t*(t-2)); } float ease_out_cubic(float t) { float f=t-1; return f*f*f+1; } float ease_out_quart(float t) { float f=t-1; return f*f*f*(1-t)+1; } float ease_out_quint(float t) { float f=(t-1); return f*f*f*f*f+1; } float ease_out_expo(float t) { return (t >= 1) ? t : 1-powf(2,-10*t); } float ease_out_circ(float t) { return sqrtf((2-t)*t); } float ease_out_back(float t) { float f=1-t; return 1-(f*f*f-f*sinf(f*C_PI)); } float ease_out_elastic(float t) { return sinf(-13*(C_PI*0.5f)*(t+1))*powf(2,-10*t)+1; } float ease_out_bounce(float t) { return (t < 4.f/11) ? (121.f*t*t)/16 : (t < 8.f/11) ? (363.f/40*t*t)-(99.f/10*t)+17.f/5 : (t < 9.f/10) ? (4356.f/361*t*t)-(35442.f/1805*t)+16061.f/1805 : (54.f/5*t*t)-(513.f/25*t)+268.f/25; } float ease_in_sine(float t) { return 1+sinf((t-1)*(C_PI*0.5f)); } float ease_in_quad(float t) { return t*t; } float ease_in_cubic(float t) { return t*t*t; } float ease_in_quart(float t) { return t*t*t*t; } float ease_in_quint(float t) { return t*t*t*t*t; } float ease_in_expo(float t) { return (t <= 0) ? t : powf(2,10*(t-1)); } float ease_in_circ(float t) { return 1-sqrtf(1-(t*t)); } float ease_in_back(float t) { return t*t*t-t*sinf(t*C_PI); } float ease_in_elastic(float t) { return sinf(13*(C_PI*0.5f)*t)*powf(2,10*(t-1)); } float ease_in_bounce(float t) { return 1-ease_out_bounce(1-t); } float ease_inout_sine(float t) { return 0.5f*(1-cosf(t*C_PI)); } float ease_inout_quad(float t) { return (t < 0.5f) ? 2*t*t : (-2*t*t)+(4*t)-1; } float ease_inout_cubic(float t) { float f; return (t < 0.5f) ? 4*t*t*t : (f=(2*t)-2,0.5f*f*f*f+1); } float ease_inout_quart(float t) { float f; return (t < 0.5f) ? 8*t*t*t*t : (f=(t-1),-8*f*f*f*f+1); } float ease_inout_quint(float t) { float f; return (t < 0.5f) ? 16*t*t*t*t*t : (f=((2*t)-2),0.5f*f*f*f*f*f+1); } float ease_inout_expo(float t) { return (t <= 0 || t >= 1) ? t : t < 0.5f ? 0.5f*powf(2,(20*t)-10) : -0.5f*powf(2,(-20*t)+10)+1; } float ease_inout_circ(float t) { return t < 0.5f ? 0.5f*(1-sqrtf(1-4*(t*t))) : 0.5f*(sqrtf(-((2*t)-3)*((2*t)-1))+1); } float ease_inout_back(float t) { float f; return t < 0.5f ? (f=2*t,0.5f*(f*f*f-f*sinf(f*C_PI))) : (f=(1-(2*t-1)),0.5f*(1-(f*f*f-f*sinf(f*C_PI)))+0.5f); } float ease_inout_elastic(float t) { return t < 0.5f ? 0.5f*sinf(13*(C_PI*0.5f)*(2*t))*powf(2,10*((2*t)-1)) : 0.5f*(sinf(-13*(C_PI*0.5f)*((2*t-1)+1))*powf(2,-10*(2*t-1))+2); } float ease_inout_bounce(float t) { return t < 0.5f ? 0.5f*ease_in_bounce(t*2) : 0.5f*ease_out_bounce(t*2-1)+0.5f; } float ease_inout_perlin(float t) { float t3=t*t*t,t4=t3*t,t5=t4*t; return 6*t5-15*t4+10*t3; } float ease(float t01, unsigned mode) { typedef float (*easing)(float); easing modes[] = { ease_out_sine, ease_out_quad, ease_out_cubic, ease_out_quart, ease_out_quint, ease_out_expo, ease_out_circ, ease_out_back, ease_out_elastic, ease_out_bounce, ease_in_sine, ease_in_quad, ease_in_cubic, ease_in_quart, ease_in_quint, ease_in_expo, ease_in_circ, ease_in_back, ease_in_elastic, ease_in_bounce, ease_inout_sine, ease_inout_quad, ease_inout_cubic, ease_inout_quart, ease_inout_quint, ease_inout_expo, ease_inout_circ, ease_inout_back, ease_inout_elastic, ease_inout_bounce, ease_nop, ease_linear, ease_inout_perlin, }; return modes[clampi(mode, 0, countof(modes))](clampf(t01,0,1)); } float ease_pong(float t, unsigned fn) { return 1 - ease(t, fn); } float ease_ping_pong(float t, unsigned fn1, unsigned fn2) { return t < 0.5 ? ease(t*2,fn1) : ease(1-(t-0.5)*2,fn2); } float ease_pong_ping(float t, unsigned fn1, unsigned fn2) { return 1 - ease_ping_pong(t,fn1,fn2); } const char **ease_enums() { static const char *list[] = { "ease_out_sine", "ease_out_quad", "ease_out_cubic", "ease_out_quart", "ease_out_quint", "ease_out_expo", "ease_out_circ", "ease_out_back", "ease_out_elastic", "ease_out_bounce", "ease_in_sine", "ease_in_quad", "ease_in_cubic", "ease_in_quart", "ease_in_quint", "ease_in_expo", "ease_in_circ", "ease_in_back", "ease_in_elastic", "ease_in_bounce", "ease_inout_sine", "ease_inout_quad", "ease_inout_cubic", "ease_inout_quart", "ease_inout_quint", "ease_inout_expo", "ease_inout_circ", "ease_inout_back", "ease_inout_elastic", "ease_inout_bounce", "ease_nop", "ease_linear", "ease_inout_perlin", 0 }; return list; } const char *ease_enum(unsigned mode) { return mode[ ease_enums() ]; } /*AUTORUN { ENUM(EASE_LINEAR|EASE_OUT); ENUM(EASE_SINE|EASE_OUT); ENUM(EASE_QUAD|EASE_OUT); ENUM(EASE_CUBIC|EASE_OUT); ENUM(EASE_QUART|EASE_OUT); ENUM(EASE_QUINT|EASE_OUT); ENUM(EASE_EXPO|EASE_OUT); ENUM(EASE_CIRC|EASE_OUT); ENUM(EASE_BACK|EASE_OUT); ENUM(EASE_ELASTIC|EASE_OUT); ENUM(EASE_BOUNCE|EASE_OUT); ENUM(EASE_SINE|EASE_IN); ENUM(EASE_QUAD|EASE_IN); ENUM(EASE_CUBIC|EASE_IN); ENUM(EASE_QUART|EASE_IN); ENUM(EASE_QUINT|EASE_IN); ENUM(EASE_EXPO|EASE_IN); ENUM(EASE_CIRC|EASE_IN); ENUM(EASE_BACK|EASE_IN); ENUM(EASE_ELASTIC|EASE_IN); ENUM(EASE_BOUNCE|EASE_IN); ENUM(EASE_SINE|EASE_INOUT); ENUM(EASE_QUAD|EASE_INOUT); ENUM(EASE_CUBIC|EASE_INOUT); ENUM(EASE_QUART|EASE_INOUT); ENUM(EASE_QUINT|EASE_INOUT); ENUM(EASE_EXPO|EASE_INOUT); ENUM(EASE_CIRC|EASE_INOUT); ENUM(EASE_BACK|EASE_INOUT); ENUM(EASE_ELASTIC|EASE_INOUT); ENUM(EASE_BOUNCE|EASE_INOUT); ENUM(EASE_NOP); ENUM(EASE_LINEAR); ENUM(EASE_INOUT_PERLIN); };*/ // ---------------------------------------------------------------------------- // tween tween_t tween() { tween_t tw = {0}; return tw; } float tween_update(tween_t *tw, float dt) { if( !array_count(tw->keyframes) ) return 0.0f; for( int i = 0, end = array_count(tw->keyframes) - 1; i < end; ++i ) { tween_keyframe_t *kf1 = &tw->keyframes[i]; tween_keyframe_t *kf2 = &tw->keyframes[i + 1]; if (tw->time >= kf1->t && tw->time <= kf2->t) { float localT = (tw->time - kf1->t) / (kf2->t - kf1->t); float easedT = ease(localT, kf1->ease); tw->result = mix3(kf1->v, kf2->v, easedT); break; } } float done = (tw->time / tw->duration); tw->time += dt; return clampf(done, 0.0f, 1.0f); } void tween_reset(tween_t *tw) { tw->time = 0.0f; } void tween_destroy(tween_t *tw) { tween_t tw_ = {0}; array_free(tw->keyframes); *tw = tw_; } static INLINE int tween_comp_keyframes(const void *a, const void *b) { float t1 = ((const tween_keyframe_t*)a)->t; float t2 = ((const tween_keyframe_t*)b)->t; return (t1 > t2) - (t1 < t2); } void tween_setkey(tween_t *tw, float t, vec3 v, unsigned mode) { tween_keyframe_t keyframe = { t, v, mode }; array_push(tw->keyframes, keyframe); array_sort(tw->keyframes, tween_comp_keyframes); tw->duration = array_back(tw->keyframes)->t; } void tween_delkey(tween_t *tw, float t) { // @todo: untested for( int i = 0, end = array_count(tw->keyframes); i < end; i++ ) { if( tw->keyframes[i].t == t ) { array_erase_slow(tw->keyframes, i); tw->duration = array_back(tw->keyframes)->t; return; } } } // ---------------------------------------------------------------------------- // curve curve_t curve() { curve_t c = {0}; return c; } static INLINE vec3 catmull( vec3 p0, vec3 p1, vec3 p2, vec3 p3, float t ) { float t2 = t*t; float t3 = t*t*t; vec3 c; c.x = 0.5 * ((2 * p1.x) + (-p0.x + p2.x) * t + (2 * p0.x - 5 * p1.x + 4 * p2.x - p3.x) * t2 + (-p0.x + 3 * p1.x - 3 * p2.x + p3.x) * t3); c.y = 0.5 * ((2 * p1.y) + (-p0.y + p2.y) * t + (2 * p0.y - 5 * p1.y + 4 * p2.y - p3.y) * t2 + (-p0.y + 3 * p1.y - 3 * p2.y + p3.y) * t3); c.z = 0.5 * ((2 * p1.z) + (-p0.z + p2.z) * t + (2 * p0.z - 5 * p1.z + 4 * p2.z - p3.z) * t2 + (-p0.z + 3 * p1.z - 3 * p2.z + p3.z) * t3); return c; } void curve_add(curve_t *c, vec3 p) { array_push(c->points, p); } void curve_end( curve_t *c, int k ) { ASSERT( k > 0 ); array_free(c->lengths); array_free(c->samples); array_free(c->indices); array_free(c->colors); // refit points[N] to samples[K] int N = array_count(c->points); if( k < N ) { // truncate: expected k-points lesser or equal than existing N points for( int i = 0; i <= k; ++i ) { float s = (float)i / k; int t = s * (N-1); array_push(c->samples, c->points[t]); float p = fmod(i, N-1) / (N-1); // [0..1) int is_control_point = p <= 0 || p >= 1; array_push(c->colors, is_control_point ? ORANGE: BLUE); } } else { // interpolate: expected k-points greater than existing N-points --N; int upper = N - (k%N); int lower = (k%N); if(upper < lower) k += upper; else k -= lower; int points_per_segment = (k / N); ++N; int looped = len3sq(sub3(c->points[0], *array_back(c->points))) < 0.1; for( int i = 0; i <= k; ++i ) { int point = i % points_per_segment; float p = point / (float)points_per_segment; // [0..1) int t = i / points_per_segment; // linear vec3 l = mix3(c->points[t], c->points[t+(i!=k)], p); // printf("%d) %d>%d %f\n", i, t, t+(i!=k), p); ASSERT(p <= 1); // catmull int p0 = t - 1; int p1 = t + 0; int p2 = t + 1; int p3 = t + 2; if( looped ) { int M = N-1; if(p0<0) p0+=M; else if(p0>=M) p0-=M; if(p1<0) p1+=M; else if(p1>=M) p1-=M; if(p2<0) p2+=M; else if(p2>=M) p2-=M; if(p3<0) p3+=M; else if(p3>=M) p3-=M; } else { int M = N-1; if(p0<0) p0=0; else if(p0>=M) p0=M; if(p1<0) p1=0; else if(p1>=M) p1=M; if(p2<0) p2=0; else if(p2>=M) p2=M; if(p3<0) p3=0; else if(p3>=M) p3=M; } vec3 m = catmull(c->points[p0],c->points[p1],c->points[p2],c->points[p3],p); l = m; array_push(c->samples, l); int is_control_point = p <= 0 || p >= 1; array_push(c->colors, is_control_point ? ORANGE: BLUE); } } array_push(c->lengths, 0 ); for( int i = 1; i <= k; ++i ) { // approximate curve length at every sample point array_push(c->lengths, len3(sub3(c->samples[i], c->samples[i-1])) + c->lengths[i-1] ); } // normalize lengths to be between 0 and 1 float maxv = c->lengths[k]; for( int i = 1; i <= k; ++i ) c->lengths[i] /= maxv; array_push(c->indices, 0 ); for( int i = 0/*1*/; i indices) + 1; j lengths[j] lengths[j] > 0.01) array_push(c->indices, j ); } } vec3 curve_eval(curve_t *c, float dt, unsigned *color) { unsigned nil; if(!color) color = &nil; dt = clampf(dt, 0.0f, 1.0f); int l = (int)(array_count(c->indices) - 1); int p = (int)(dt * l); int t = c->indices[p]; t %= (array_count(c->indices)-1); vec3 pos = mix3(c->samples[t], c->samples[t+1], dt * l - p); *color = c->colors[t]; return pos; } void curve_destroy(curve_t *c) { array_free(c->lengths); array_free(c->colors); array_free(c->samples); array_free(c->points); array_free(c->indices); }