update ase2ini

main
Dominik Madarász 2023-11-26 16:32:25 +01:00
parent 6da10bec7c
commit d3f3abed02
7 changed files with 19 additions and 4212 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,886 +0,0 @@
// atlasc.c
// Copyright 2019 Sepehr Taghdisian (septag@github). All rights reserved.
// License: https://github.com/septag/atlasc#license-bsd-2-clause
//
// sx_math.h
// Copyright 2018 Sepehr Taghdisian (septag@github). All rights reserved.
// License: https://github.com/septag/sx#license-bsd-2-clause
#ifndef ATLASC_HEADER
#define ATLASC_HEADER
#define ATLASC_VERSION "1.2.3"
#include <stdbool.h>
#include <stdint.h>
#include <limits.h>
#ifndef __cplusplus
#define ATLAS_CAST
#else
#define ATLAS_CAST(T) T
extern "C" {
#endif
typedef union vec2 { struct { float x, y; }; float f[2]; } vec2;
typedef union vec3 { struct { float x, y, z; }; float f[3]; } vec3;
typedef union vec2i { struct { int x, y; }; int n[2]; } vec2i;
typedef union recti { struct { int xmin, ymin, xmax, ymax; }; struct { vec2i vmin, vmax; }; int f[4]; } recti;
typedef struct atlas_flags {
int alpha_threshold;
float dist_threshold;
int max_width;
int max_height;
int border;
int pot;
int padding;
int mesh;
int max_verts_per_mesh;
float scale;
} atlas_flags;
typedef struct atlas_image {
uint8_t* pixels; // only supports 32bpp RGBA format
int width;
int height;
char *name;
} atlas_image;
typedef struct atlas_sprite {
uint8_t* src_image; // RGBA image buffer (32bpp)
vec2i src_size; // widthxheight
recti sprite_rect; // cropped rectangle relative to sprite's source image (pixels)
recti sheet_rect; // rectangle in final sheet (pixels)
char *name;
unsigned frame;
// sprite-mesh data (if flag is set. see atlas_flags)
uint16_t num_tris;
int num_points;
vec2i* pts;
vec2i* uvs;
uint16_t* tris;
} atlas_sprite;
typedef struct atlas_t {
atlas_sprite* sprites;
int num_sprites;
int* frames;
int num_frames;
atlas_image output;
} atlas_t;
// receives input files and common arguments. returns atlas_t
// you have to free the data after use with `atlas_free`
atlas_t* atlas_loadfiles(array(char*) files, atlas_flags flags);
// receives input image buffers and common arguments. returns atlas_t
// you have to free the data after use with `atlas_free`
atlas_t* atlas_loadimages(array(atlas_image) images, atlas_flags flags);
//
bool atlas_save(const char *outfile, const atlas_t* atlas, atlas_flags flags);
// frees atlas_t memory
void atlas_free(atlas_t* atlas);
// returns the last error string
const char* atlas_last_error();
#ifdef __cplusplus
}
#endif
#endif // ATLASC_HEADER
//
#ifdef ATLASC_IMPLEMENTATION
#include <math.h>
#include <assert.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
// Types/Primitives
#define vec2(x,y) (ATLAS_CAST(vec2) { (float)(x), (float)(y) })
#define vec3(x,y,z) (ATLAS_CAST(vec3) { (float)(x), (float)(y), (float)(z) })
#define vec2i(x,y) (ATLAS_CAST(vec2i) { (int)(x), (int)(y) })
#define recti(x,y,X,Y) (ATLAS_CAST(recti) { (int)(x), (int)(y), (int)(X), (int)(Y) })
#define minf(a,b) ((a) < (b) ? (a) : (b))
#define maxf(a,b) ((a) > (b) ? (a) : (b))
#define clampf(a,b,c) ( (a) < (b) ? (b) : (a) > (c) ? (c) : (a))
static int nearest_pow2(int n) { return --n, n |= n >> 1, n |= n >> 2, n |= n >> 4, n |= n >> 8, n |= n >> 16, ++n; } // https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
static float sx_abs(float _a) { union { float f; unsigned int ui; } u = { _a }; return u.ui &= 0x7FFFFFFF, u.f; }
static bool equalf(float _a, float _b, float _epsilon) { const float lhs = sx_abs(_a - _b), aa = sx_abs(_a), ab = sx_abs(_b), rhs = _epsilon * maxf(1.0f, maxf(aa, ab)); return lhs <= rhs; } // http://realtimecollisiondetection.net/blog/?t=89
static vec3 cross3(const vec3 _a, const vec3 _b) { return vec3(_a.y * _b.z - _a.z * _b.y, _a.z * _b.x - _a.x * _b.z, _a.x * _b.y - _a.y * _b.x); }
static float dot2(const vec2 _a, const vec2 _b) { return _a.x * _b.x + _a.y * _b.y; }
static float len2(const vec2 _a) { return sqrt(dot2(_a, _a)); }
static vec2 norm2(const vec2 _a) { const float len = len2(_a); /*assert(len > 0 && "Divide by zero");*/ return vec2(_a.x / (len + !len), _a.y / (len + !len)); }
static vec2 add2(const vec2 _a, const vec2 _b) { return vec2(_a.x + _b.x, _a.y + _b.y); }
static vec2 sub2(const vec2 _a, const vec2 _b) { return vec2(_a.x - _b.x, _a.y - _b.y); }
static vec2 scale2(const vec2 _a, float _b) { return vec2(_a.x * _b, _a.y * _b); }
static vec2i add2i(const vec2i _a, const vec2i _b) { return vec2i(_a.x + _b.x, _a.y + _b.y); }
static vec2i sub2i(const vec2i _a, const vec2i _b) { return vec2i(_a.x - _b.x, _a.y - _b.y); }
static vec2i min2i(const vec2i _a, const vec2i _b) { return vec2i(minf(_a.x, _b.x), minf(_a.y, _b.y)); }
static vec2i max2i(const vec2i _a, const vec2i _b) { return vec2i(maxf(_a.x, _b.x), maxf(_a.y, _b.y)); }
static recti rectiwh(int _x, int _y, int _w, int _h) { return recti(_x, _y, _x + _w, _y + _h); }
static recti recti_expand(const recti rc, const vec2i expand) { return recti(rc.xmin - expand.x, rc.ymin - expand.y, rc.xmax + expand.x, rc.ymax + expand.y); }
static void recti_add_point(recti* rc, const vec2i pt) { rc->vmin = min2i(rc->vmin, pt); rc->vmax = max2i(rc->vmax, pt); }
// ----------------------------------------------------------------------------
#ifndef ATLAS_REALLOC
#define ATLAS_REALLOC realloc
#endif
#ifndef ATLAS_MSIZE
#define ATLAS_MSIZE _msize
#endif
#ifndef ATLAS_CALLOC
#define ATLAS_CALLOC(n,m) memset(ATLAS_REALLOC(0, (n)*(m)), 0, (n)*(m))
#endif
#ifndef ATLAS_FREE
#define ATLAS_FREE(ptr) ((ptr) = ATLAS_REALLOC((ptr), 0))
#endif
#define align_mask(_value, _mask) (((_value) + (_mask)) & ((~0) & (~(_mask))))
static void panic_if(int fail) { if(fail) exit(-fprintf(stderr, "out of memory!\n")); }
static void path_unixpath(char *buf, unsigned buflen, const char *inpath) {
snprintf(buf, buflen, "%s", inpath);
while( strchr(buf, '\\') ) *strchr(buf, '\\') = '/';
}
static void path_basename(char *buf, unsigned buflen, const char *inpath) {
const char *a = strrchr(inpath, '\\');
const char *b = strrchr(inpath, '/');
snprintf(buf, buflen, "%s", a > b ? a+1 : b > a ? b+1 : inpath );
}
static bool path_isfile(const char* filepath) {
FILE *f = fopen(filepath, "rb");
return f ? fclose(f), 1 : 0;
}
static char g_error_str[512];
const char* atlas_last_error()
{
return g_error_str;
}
static void atlas__free_sprites(atlas_sprite* sprites, int num_sprites)
{
for (int i = 0; i < num_sprites; i++) {
if (sprites[i].src_image) {
stbi_image_free(sprites[i].src_image);
}
if (sprites[i].tris) {
ATLAS_FREE(sprites[i].tris);
}
if (sprites[i].pts) {
ATLAS_FREE(sprites[i].pts);
}
if (sprites[i].uvs) {
ATLAS_FREE(sprites[i].uvs);
}
if (sprites[i].name) {
ATLAS_FREE(sprites[i].name);
}
}
ATLAS_FREE(sprites);
}
static void atlas__blit(uint8_t* dst, int dst_x, int dst_y, int dst_pitch, const uint8_t* src,
int src_x, int src_y, int src_w, int src_h, int src_pitch, int bpp)
{
assert(dst);
assert(src);
const int pixel_sz = bpp / 8;
const uint8_t* src_ptr = src + src_y * src_pitch + src_x * pixel_sz;
uint8_t* dst_ptr = dst + dst_y * dst_pitch + dst_x * pixel_sz;
for (int y = src_y; y < (src_y + src_h); y++) {
memcpy(dst_ptr, src_ptr, src_w * pixel_sz);
src_ptr += src_pitch;
dst_ptr += dst_pitch;
}
}
static vec2 atlas__itof2(const s2o_point p)
{
return vec2((float)p.x, (float)p.y);
}
// modified version of:
// https://github.com/anael-seghezzi/Maratis-Tiny-C-library/blob/master/include/m_raster.h
static bool atlas__test_line(const uint8_t* buffer, int w, int h, s2o_point p0, s2o_point p1)
{
const uint8_t* data = buffer;
int x0 = p0.x;
int y0 = p0.y;
int x1 = p1.x;
int y1 = p1.y;
int dx = abs(x1 - x0), sx = x0 < x1 ? 1 : -1;
int dy = -abs(y1 - y0), sy = y0 < y1 ? 1 : -1;
int err = dx + dy, e2;
while (1) {
if (x0 > -1 && y0 > -1 && x0 < w && y0 < h) {
const uint8_t* pixel = data + (y0 * w + x0);
if (*pixel)
return true; // line intersects with image data
}
if (x0 == x1 && y0 == y1)
break;
e2 = 2 * err;
if (e2 >= dy) {
err += dy;
x0 += sx;
}
if (e2 <= dx) {
err += dx;
y0 += sy;
}
}
return false;
}
// returns true if 'pts' buffer is changed
static bool atlas__offset_pt(s2o_point* pts, int num_pts, int pt_idx, float amount, int w, int h)
{
s2o_point ipt = pts[pt_idx];
s2o_point _ipt = ipt;
vec2 pt = atlas__itof2(ipt);
vec2 prev_pt = (pt_idx > 0) ? atlas__itof2(pts[pt_idx - 1]) : atlas__itof2(pts[num_pts - 1]);
vec2 next_pt = (pt_idx + 1) < num_pts ? atlas__itof2(pts[pt_idx + 1]) : atlas__itof2(pts[0]);
vec2 edge1 = norm2(sub2(prev_pt, pt));
vec2 edge2 = norm2(sub2(next_pt, pt));
// calculate normal vector to move the point away from the polygon
vec2 n;
vec3 c = cross3(vec3(edge1.x, edge1.y, 0), vec3(edge2.x, edge2.y, 0));
if (equalf(c.z, 0.0f, 0.00001f)) {
n = scale2(vec2(-edge1.y, edge1.x), amount);
} else {
// c.z < 0 -> point intersecting convex edges
// c.z > 0 -> point intersecting concave edges
float k = c.z < 0.0f ? -1.0f : 1.0f;
n = scale2(norm2(add2(edge1, edge2)), k * amount);
}
pt = add2(pt, n);
ipt.x = (int)pt.x;
ipt.y = (int)pt.y;
ipt.x = clampf(ipt.x, 0, w);
ipt.y = clampf(ipt.y, 0, h);
pts[pt_idx] = ipt;
return (_ipt.x != ipt.x) || (_ipt.y != ipt.y);
}
static void atlas__fix_outline_pts(const uint8_t* thresholded, int tw, int th, s2o_point* pts,
int num_pts)
{
// NOTE: winding is assumed to be CW
const float offset_amount = 2.0f;
for (int i = 0; i < num_pts; i++) {
s2o_point pt = pts[i];
int next_i = (i + 1) < num_pts ? (i + 1) : 0;
// assert(!thresholded[pt.y * tw + pt.x]); // point shouldn't be inside threshold
s2o_point next_pt = pts[next_i];
while (atlas__test_line(thresholded, tw, th, pt, next_pt)) {
if (!atlas__offset_pt(pts, num_pts, i, offset_amount, tw, th))
break;
atlas__offset_pt(pts, num_pts, next_i, offset_amount, tw, th);
// refresh points for the new line intersection test
pt = pts[i];
next_pt = pts[next_i];
}
}
}
static void atlas__make_mesh(atlas_sprite* spr, const s2o_point* pts, int pt_count, int max_verts,
const uint8_t* thresholded, int width, int height)
{
s2o_point* temp_pts = ATLAS_CALLOC(pt_count,sizeof(s2o_point));
panic_if(!temp_pts);
memcpy(temp_pts, pts, sizeof(s2o_point)*pt_count);
int num_verts = pt_count;
if (width > 1 && height > 1) {
const float delta = 0.5f;
const float threshold_start = 0.5f;
float threshold = threshold_start;
for(;;) {
s2o_distance_based_path_simplification(temp_pts, &num_verts, threshold);
if(num_verts <= max_verts) break;
memcpy(temp_pts, pts, sizeof(s2o_point)*pt_count);
num_verts = pt_count;
threshold += delta;
}
// fix any collisions with the actual image // @r-lyeh: method below is buggy. will return dupe points
atlas__fix_outline_pts(thresholded, width, height, temp_pts, num_verts);
}
//< @r-lyeh: remove dupes
for (int i = 0; i < num_verts - 1; i++) {
for (int j = i + 1; j < num_verts; j++) {
if( temp_pts[i].x == temp_pts[j].x && temp_pts[i].y == temp_pts[j].y ) {
temp_pts[j].x = temp_pts[num_verts - 1].x;
temp_pts[j].y = temp_pts[num_verts - 1].y;
--num_verts;
--j;
}
}
}
//<
// triangulate
del_point2d_t* dpts = ATLAS_CALLOC(num_verts, sizeof(del_point2d_t));
panic_if(!dpts);
for (int i = 0; i < num_verts; i++) {
dpts[i].x = (double)temp_pts[i].x;
dpts[i].y = (double)temp_pts[i].y;
//printf("%d) %f,%f\n", i, dpts[i].x, dpts[i].y); //< @r-lyeh: debug dupe points
}
delaunay2d_t* polys = delaunay2d_from(dpts, num_verts);
assert(polys);
tri_delaunay2d_t* tris = tri_delaunay2d_from(polys);
assert(tris);
ATLAS_FREE(dpts);
delaunay2d_release(polys);
assert(tris->num_triangles < UINT16_MAX);
spr->tris = ATLAS_CALLOC(tris->num_triangles * 3,sizeof(uint16_t));
spr->pts = ATLAS_CALLOC(tris->num_points, sizeof(vec2i));
assert(spr->tris);
assert(spr->pts);
for (unsigned int i = 0; i < tris->num_triangles; i++) {
unsigned int index = i * 3;
spr->tris[index] = (uint16_t)tris->tris[index];
spr->tris[index + 1] = (uint16_t)tris->tris[index + 1];
spr->tris[index + 2] = (uint16_t)tris->tris[index + 2];
}
for (unsigned int i = 0; i < tris->num_points; i++) {
spr->pts[i] = vec2i((int)tris->points[i].x, (int)tris->points[i].y);
}
spr->num_tris = (uint16_t)tris->num_triangles;
spr->num_points = (int)tris->num_points;
tri_delaunay2d_release(tris);
ATLAS_FREE(temp_pts);
}
atlas_t* atlas_loadimages(array(atlas_image) images, atlas_flags flags)
{
assert(images);
array(int) frames = 0;
array(atlas_sprite) sprites = 0;
for (int i = 0; i < array_count(images); i++) {
// find is_cached
{
int found = 0, k = 0;
static array(uint64_t) cache = 0;
static array(uint64_t) index = 0;
uint64_t hash = hash_init;
hash = hash_bin(&images[i].width, sizeof(images[i].width), hash);
hash = hash_bin(&images[i].height, sizeof(images[i].height), hash);
hash = hash_bin((char*)images[i].pixels, images[i].width * images[i].height * 4, hash);
for (; k < array_count(cache); ++k)
if (cache[k] == hash) { found = 1; break; }
if (found) {
array_push(frames, index[k]);
continue;
} else {
array_push(cache, hash);
array_push(index, k);
array_push(frames, k);
}
//printf("%d) %llx\n", array_count(cache), hash);
}
atlas_sprite zero = {0};
atlas_sprite* spr = &zero;
if(images[i].name) spr->name = STRDUP(images[i].name);
spr->frame = i;
spr->src_size.x = images[i].width;
spr->src_size.y = images[i].height;
assert(images[i].width > 0 && images[i].height > 0);
assert(images[i].pixels);
uint8_t* pixels = images[i].pixels;
// rescale
if (!equalf(flags.scale, 1.0f, 0.0001f)) {
int target_w = (int)((float)spr->src_size.x * flags.scale);
int target_h = (int)((float)spr->src_size.y * flags.scale);
uint8_t* resized_pixels = ATLAS_CALLOC(1, 4 * target_w * target_h);
panic_if(!resized_pixels);
if (!stbir_resize_uint8(pixels, spr->src_size.x, spr->src_size.y, 4 * spr->src_size.x,
resized_pixels, target_w, target_h, 4 * target_w, 4)) {
snprintf(g_error_str, sizeof(g_error_str), "could not resize image: #%d", i + 1);
atlas__free_sprites(sprites, array_count(sprites));
return NULL;
}
stbi_image_free(pixels);
spr->src_size.x = target_w;
spr->src_size.y = target_h;
pixels = resized_pixels;
}
spr->src_image = pixels;
recti sprite_rect = {0};
int pt_count = 0;
s2o_point* pts = 0;
uint8_t* alpha = s2o_rgba_to_alpha(spr->src_image, spr->src_size.x, spr->src_size.y);
uint8_t* thresholded = s2o_alpha_to_thresholded(alpha, spr->src_size.x, spr->src_size.y, flags.alpha_threshold);
free(alpha);
if (flags.mesh && spr->src_size.x > 1 && spr->src_size.y > 1) {
uint8_t* dilate_thres = s2o_dilate_thresholded(thresholded, spr->src_size.x, spr->src_size.y);
uint8_t* outlined = s2o_thresholded_to_outlined(dilate_thres, spr->src_size.x, spr->src_size.y);
free(dilate_thres);
pts = s2o_extract_outline_path(outlined, spr->src_size.x, spr->src_size.y, &pt_count, NULL);
free(outlined);
//< @r-lyeh @fixme: many sprites will return extremely low num of points (like 8) even if the sprite is complex enough.
//< this will lead to produce here a nearly zero sprite_rect, then sheet_rect, then eventually an empty frame at end of pipeline.
// calculate cropped rectangle
sprite_rect = recti(INT_MAX, INT_MAX, INT_MIN, INT_MIN);
for (int k = 0; k < pt_count; k++) {
recti_add_point(&sprite_rect, vec2i(pts[k].x, pts[k].y));
}
sprite_rect.xmax++;
sprite_rect.ymax++;
} else {
sprite_rect = recti(0, 0, spr->src_size.x, spr->src_size.y);
pt_count = 4;
pts = ATLAS_CALLOC(pt_count, sizeof(s2o_point));
pts[0] = (s2o_point) {0, 0};
pts[1] = (s2o_point) {spr->src_size.x, 0};
pts[2] = (s2o_point) {spr->src_size.x, spr->src_size.y};
pts[3] = (s2o_point) {0, spr->src_size.y};
}
// generate mesh if set in arguments
if (flags.mesh) {
atlas__make_mesh(spr, pts, pt_count, flags.max_verts_per_mesh, thresholded,
spr->src_size.x, spr->src_size.y);
}
ATLAS_FREE(pts);
free(thresholded);
spr->sprite_rect = sprite_rect;
array_push(sprites, *spr);
}
int num_sprites = array_count(sprites);
// pack sprites into a sheet
stbrp_context rp_ctx = {0};
int max_width = flags.max_width;
int max_height = flags.max_height;
int num_rp_nodes = max_width + max_height;
stbrp_rect* rp_rects = ATLAS_CALLOC(num_sprites, sizeof(stbrp_rect));
stbrp_node* rp_nodes = ATLAS_CALLOC(num_rp_nodes, sizeof(stbrp_node));
panic_if(!rp_rects || !rp_nodes);
for (int i = 0; i < num_sprites; i++) {
recti rc = sprites[i].sprite_rect;
int rc_resize = (flags.border + flags.padding) * 2;
rp_rects[i].w = (rc.xmax - rc.xmin) + rc_resize;
rp_rects[i].h = (rc.ymax - rc.ymin) + rc_resize;
}
stbrp_init_target(&rp_ctx, max_width, max_height, rp_nodes, num_rp_nodes);
recti final_rect = recti(INT_MAX, INT_MAX, INT_MIN, INT_MIN);
if (stbrp_pack_rects(&rp_ctx, rp_rects, num_sprites)) {
for (int i = 0; i < num_sprites; i++) {
atlas_sprite* spr = &sprites[i];
recti sheet_rect = rectiwh(rp_rects[i].x, rp_rects[i].y, rp_rects[i].w, rp_rects[i].h);
// calculate the total size of output image
recti_add_point(&final_rect, sheet_rect.vmin);
recti_add_point(&final_rect, sheet_rect.vmax);
// shrink back rect and set the real sheet_rect for the sprite
spr->sheet_rect =
recti_expand(sheet_rect, vec2i(-flags.border, -flags.border));
}
}
int dst_w = final_rect.xmax - final_rect.xmin;
int dst_h = final_rect.ymax - final_rect.ymin;
// make output size divide by 4 by default
dst_w = align_mask(dst_w, 3);
dst_h = align_mask(dst_h, 3);
if (flags.pot) {
dst_w = nearest_pow2(dst_w);
dst_h = nearest_pow2(dst_h);
}
uint8_t* dst = ATLAS_CALLOC(1, dst_w * dst_h * 4);
panic_if(!dst);
// calculate UVs for sprite meshes
if (flags.mesh) {
for (int i = 0; i < num_sprites; i++) {
atlas_sprite* spr = &sprites[i];
// if sprite has mesh, calculate UVs for it
if (spr->pts && spr->num_points) {
const int padding = flags.padding;
vec2i offset = spr->sprite_rect.vmin;
vec2i sheet_pos =
vec2i(spr->sheet_rect.xmin + padding, spr->sheet_rect.ymin + padding);
vec2i* uvs = ATLAS_CALLOC(spr->num_points, sizeof(vec2i));
assert(uvs);
for (int pi = 0; pi < spr->num_points; pi++) {
vec2i pt = spr->pts[pi];
uvs[pi] = add2i(sub2i(pt, offset), sheet_pos);
}
spr->uvs = uvs;
} // generate uvs
}
}
for (int i = 0; i < num_sprites; i++) {
const atlas_sprite* spr = &sprites[i];
// calculate UVs for sprite-meshes
// remove padding and blit from src_image to dst
recti dstrc = recti_expand(spr->sheet_rect, vec2i(-flags.padding, -flags.padding));
recti srcrc = spr->sprite_rect;
atlas__blit(dst, dstrc.xmin, dstrc.ymin, dst_w * 4, spr->src_image, srcrc.xmin, srcrc.ymin,
srcrc.xmax - srcrc.xmin, srcrc.ymax - srcrc.ymin, spr->src_size.x * 4, 32);
}
atlas_t* atlas = ATLAS_CALLOC(1, sizeof(atlas_t));
panic_if(!atlas);
atlas->output.pixels = dst;
atlas->output.width = dst_w;
atlas->output.height = dst_h;
atlas->sprites = sprites;
atlas->num_sprites = num_sprites;
atlas->frames = frames;
atlas->num_frames = array_count(frames);
ATLAS_FREE(rp_nodes);
ATLAS_FREE(rp_rects);
return atlas;
}
static char *atlas_anims = 0;
static char *atlas_slices = 0;
static char *atlas_current_anim = 0;
atlas_t* atlas_loadfiles(array(char*) files, atlas_flags flags)
{
assert(files);
array(atlas_image) images = 0;
for (int i = 0; i < array_count(files); ++i) {
if (!path_isfile(files[i])) {
snprintf(g_error_str, sizeof(g_error_str), "input image not found: %s", files[i]);
goto err_cleanup;
}
int comp;
atlas_image img = {0};
img.pixels = stbi_load(files[i], &img.width, &img.height, &comp, 4);
#ifdef CUTE_ASEPRITE_H
if (!img.pixels) {
bool loaded = 0;
for( ase_t* ase = cute_aseprite_load_from_file(files[i], NULL); ase; cute_aseprite_free(ase), ase = 0, loaded = 1) {
ase_tag_t *parent = ase->tags + 0;
//< abc/def/ghi.aseprite -> ghi
if( atlas_current_anim ) *atlas_current_anim = '\0';
strcatf(&atlas_current_anim, files[i]);
path_basename(atlas_current_anim, strlen(atlas_current_anim), files[i]);
if( strrchr(atlas_current_anim, '.')) *strrchr(atlas_current_anim, '.') = '\0';
trimspace(atlas_current_anim);
//<
for( int f = 0; f < ase->frame_count; ++f) {
ase_frame_t *frame = ase->frames + f;
// find rect
int x = INT_MAX, y = INT_MAX, x2 = INT_MIN, y2 = INT_MIN;
for( int c = 0; c < frame->cel_count; ++c ) {
ase_cel_t *cel = frame->cels + c;
if( cel->layer->flags & ASE_LAYER_FLAGS_VISIBLE ) {
if( cel->x < x ) x = cel->x;
if( cel->h < y ) y = cel->y;
if( (cel->x + cel->w) > x2 ) x2 = cel->x + cel->w;
if( (cel->y + cel->h) > y2 ) y2 = cel->y + cel->h;
}
}
if (x2 <= 0 || y2 <= 0) { // submit empty frame
img.width = 1;
img.height = 1;
img.pixels = calloc(1, 1*1*4);
array_push(images, img);
continue;
}
int cx = x;
int cy = y;
int cw = x2-x;
int ch = y2-y;
int tn = 4;
int tw = ase->w;
// find clip
img.width = cw;
img.height = ch;
img.pixels = calloc(1, cw*ch*4); // @fixme: because of a stbi_image_free() within rescale section, this should be allocated with stbi allocator
for( unsigned y = 0; y < ch; ++y )
memcpy((char *)img.pixels + (0+(0+y)*cw)*tn, (char*)frame->pixels + (cx+(cy+y)*tw)*tn, cw*tn);
array_push(images, img);
}
static int slice_idx = -1;
static int slice_frame_idx = 0;
static const char *slice_name = 0;
if(!atlas_slices) strcatf(&atlas_slices, "[slices]\n");
for( int t = 0; t < ase->slice_count; ++t) {
ase_slice_t *slice = ase->slices + t;
if (!slice_name || strcmp(slice_name, slice->name)) {
++slice_idx;
strcatf(&atlas_slices, "[%d].sl_name=%s\n", slice_idx, slice->name);
strcatf(&atlas_slices, "[%d].sl_frames=", slice_idx);
for( int u = 0; u < ase->slice_count; ++u) {
if (!strcmp(slice->name, ase->slices[u].name)) {
strcatf(&atlas_slices, "%d,", u);
}
}
strcatf(&atlas_slices, "\n");
}
strcatf(&atlas_slices, "[%d].sl_bounds=%d,%d,%d,%d\n", slice_idx, slice->origin_x, slice->origin_y, slice->w, slice->h);
strcatf(&atlas_slices, "[%d].sl_9slice=%d\n", slice_idx, slice->has_center_as_9_slice);
if (slice->has_center_as_9_slice)
strcatf(&atlas_slices, "[%d].sl_core=%d,%d,%d,%d\n", slice_idx, slice->center_x, slice->center_y, slice->center_w, slice->center_h);
slice_name = slice->name;
++slice_frame_idx;
}
static int anim_idx = 0;
if(!atlas_anims) strcatf(&atlas_anims, "[anims]\n");
for( int t = 0; t < ase->tag_count; ++t) {
ase_tag_t *tag = ase->tags + t;
// find full name
int range[2] = {tag->from_frame, tag->to_frame};
char name[256] = {0};
for( int tt = 0; tt < ase->tag_count; ++tt ) {
ase_tag_t *ttag = ase->tags + tt;
if( range[0] >= ttag->from_frame && range[1] <= ttag->to_frame )
strcat(name, "."), strcat(name, ttag->name);
}
trimspace(name);
char *sep = "";
strcatf(&atlas_anims, "[%d].name=%s.%s\n", anim_idx, atlas_current_anim, name+1);
strcatf(&atlas_anims, "[%d].frames=", anim_idx);
if( tag->loop_animation_direction != ASE_ANIMATION_DIRECTION_BACKWARDS)
for( int from = tag->from_frame; from <= tag->to_frame; ++from ) {
strcatf(&atlas_anims, "%s%d,%d", sep, from, ase->frames[from].duration_milliseconds), sep = ",";
}
sep = "";
if( tag->loop_animation_direction != ASE_ANIMATION_DIRECTION_FORWARDS)
for( int from = tag->from_frame; from <= tag->to_frame; ++from ) {
strcatf(&atlas_anims, "%s%d,%d", sep, from, ase->frames[from].duration_milliseconds), sep = ",";
}
strcatf(&atlas_anims,"\n");
++anim_idx;
}
}
if( loaded ) continue;
}
#endif
if (!img.pixels) {
continue; //< @r-lyeh: keep going
snprintf(g_error_str, sizeof(g_error_str), "invalid image format: %s", files[i]);
goto err_cleanup;
}
if( !img.name ) img.name = STRDUP(files[i]);
array_push(images, img);
}
atlas_t* atlas = atlas_loadimages(images, flags);
return atlas;
err_cleanup:
for (int i = 0; i < array_count(images); i++) {
if (images[i].pixels) {
stbi_image_free(images[i].pixels);
}
if (images[i].name) {
ATLAS_FREE(images[i].name);
}
}
array_free(images);
return NULL;
}
void atlas_free(atlas_t* atlas)
{
assert(atlas);
if (atlas->sprites)
atlas__free_sprites(atlas->sprites, atlas->num_sprites);
if (atlas->frames)
ATLAS_FREE(atlas->frames);
if (atlas->output.pixels)
ATLAS_FREE(atlas->output.pixels);
ATLAS_FREE(atlas);
}
// custom write function
typedef struct {
int offset;
void *buffer;
} stbi_mem_context;
static void stbi_write_mem(void *context, void *data, int size) {
stbi_mem_context *ctx = (stbi_mem_context*)context;
memcpy( ctx->buffer, data, size );
ctx->offset += size;
}
bool atlas_save(const char *outfile, const atlas_t *atlas, atlas_flags flags)
{
assert(outfile);
const bool is_file = strcmp(outfile, "stdout");
const atlas_sprite* sprites = atlas->sprites;
const int* frames = atlas->frames;
const int num_frames = atlas->num_frames;
const int num_sprites = atlas->num_sprites;
const uint8_t* dst = atlas->output.pixels;
const int dst_w = atlas->output.width;
const int dst_h = atlas->output.height;
char image_filepath[256];
char image_filename[256];
snprintf(image_filepath, sizeof(image_filepath), "%s.png", outfile);
path_basename(image_filename, sizeof(image_filename), image_filepath);
stbi_write_png_compression_level = 5; // 8
// write texture, if needed
if( is_file ) {
if (!stbi_write_png(image_filepath, dst_w, dst_h, 4, dst, dst_w * 4)) {
fprintf(stderr, "could not write image file `%s`\n", image_filepath);
return false;
}
}
// write atlas description into .ini file
FILE *writer = is_file ? fopen(outfile, "wt") : stdout;
if (!writer) {
fprintf(stderr, "could not write ini file `%s`\n", outfile);
return false;
}
fprintf(writer, "[atlas]\n");
if (is_file) {
fprintf(writer, "file=%s\n", image_filepath);
} else {
stbi_mem_context ctx = {0, ATLAS_CALLOC(1, dst_w*dst_h*4+256) };
int result = stbi_write_png_to_func(stbi_write_mem, &ctx, dst_w, dst_h, 4, dst, dst_w*4);
char *b64 = base64_encode(ctx.buffer, ctx.offset);
fprintf(writer, "bitmap=%s\n", b64); // %d:%s\n", ctx.offset, b64);
// ATLAS_FREE(ctx.buffer);
// free(b64);
}
fprintf(writer, "size=%d,%d\n", dst_w, dst_h);
fprintf(writer, "border=%d,%d\n", flags.border, flags.border);
fprintf(writer, "padding=%d,%d\n", flags.padding, flags.padding);
for( int i = 0; i < num_frames; i++ ) {
const atlas_sprite* spr = sprites + frames[i];
char name[256];
path_unixpath(name, sizeof(name), spr->name ? spr->name : "");
if(name[0])
fprintf(writer, "[%d].name=%s\n", i, name);
fprintf(writer, "[%d].frame=%u\n", i, spr->frame);
//fprintf(writer, "[%d].size=%d,%d\n", i, spr->src_size.n[0], spr->src_size.n[1]);
//fprintf(writer, "[%d].rect=%u,%u,%u,%u\n", i, spr->sprite_rect.f[0], spr->sprite_rect.f[1], spr->sprite_rect.f[2], spr->sprite_rect.f[3]);
fprintf(writer, "[%d].sheet=%u,%u,%u,%u\n", i, spr->sheet_rect.f[0], spr->sheet_rect.f[1], spr->sheet_rect.f[2], spr->sheet_rect.f[3]);
if( spr->num_tris ) {
fprintf(writer, "[%d].indices=", i); // %d:", i, (int)spr->num_tris * 3);
for( int j = 0, jend = (int)spr->num_tris * 3; j < jend; ++j )
fprintf(writer, "%u%s", spr->tris[j], j < (jend-1) ? "," : "\n");
fprintf(writer, "[%d].coords=", i); // %d:", i, spr->num_points*2);
for( int j = 0, jend = spr->num_points; j < jend; j++ )
fprintf(writer, "%.f,%.f%s", (double)spr->pts[j].x, (double)spr->pts[j].y, j < (jend-1) ? ",":"\n" );
fprintf(writer, "[%d].uvs=", i); // %d:", i, spr->num_points*2);
for( int j = 0, jend = spr->num_points; j < jend; j++ )
fprintf(writer, "%.f,%.f%s", (double)spr->uvs[j].x, (double)spr->uvs[j].y, j < (jend-1) ? ",":"\n" );
}
}
if( atlas_anims ) fprintf(writer, "%s\n", atlas_anims);
if( atlas_slices ) fprintf(writer, "%s\n", atlas_slices);
if(writer != stdout) fclose(writer);
return true;
}
#endif // ATLASC_IMPLEMENTATION

File diff suppressed because it is too large Load Diff

View File

@ -1,464 +0,0 @@
/*
------------------------------------------------------------------------------
Licensing information can be found at the end of the file.
------------------------------------------------------------------------------
mid.h - v0.1 - Midi playback library using the TinySoundFont library.
Do this:
#define MID_IMPLEMENTATION
before you include this file in *one* C/C++ file to create the implementation.
*/
#ifndef mid_h
#define mid_h
#define _CRT_NONSTDC_NO_DEPRECATE
#define _CRT_SECURE_NO_WARNINGS
#include <stddef.h>
typedef struct mid_t mid_t;
typedef struct tsf tsf;
mid_t* mid_create( void const* midi_data, size_t midi_size, void* memctx );
void mid_destroy( mid_t* mid );
int mid_render_short( mid_t* mid, short* sample_pairs, int sample_pairs_count, tsf* sound_font );
int mid_render_float( mid_t* mid, float* sample_pairs, int sample_pairs_count, tsf* sound_font );
void mid_skip_leading_silence( mid_t* mid, tsf* sound_font );
#endif /* mid_h */
#ifdef MID_ENABLE_RAW
#ifndef mid_raw_h
#define mid_raw_h
#ifndef MID_U8
#define MID_U8 unsigned char
#endif
#ifndef MID_U16
#define MID_U16 unsigned short
#endif
#ifndef MID_U32
#define MID_U32 unsigned int
#endif
#ifndef MID_U64
#define MID_U64 unsigned long long
#endif
typedef struct mid_event_t
{
MID_U32 delay_us;
MID_U8 channel;
MID_U8 type;
union
{
struct { MID_U8 program; } program_change;
struct { MID_U8 note; MID_U8 velocity; } note_on;
struct { MID_U8 note; } note_off;
struct { MID_U8 key; MID_U8 key_pressure; } key_pressure;
struct { MID_U16 value; } pitch_bend;
struct { MID_U8 control, control_value; } control_change;
struct { MID_U8 channel_pressure; } channel_pressure;
} data;
} mid_event_t;
typedef struct mid_song_t
{
int event_count;
mid_event_t* events;
} mid_song_t;
struct mid_t
{
void* memctx;
mid_song_t song;
int percussion_preset;
MID_U64 playback_accumulated_time_us;
int playback_sample_pos;
int playback_event_pos;
};
int mid_init_raw( mid_t* mid, void const* raw_data, size_t raw_size );
size_t mid_save_raw( mid_t* mid, void* data, size_t capacity );
#endif /* MID_ENABLE_RAW */
#endif /* mid_raw_h */
/*
----------------------
IMPLEMENTATION
----------------------
*/
#ifdef MID_IMPLEMENTATION
#undef MID_IMPLEMENTATION
#ifndef MID_U8
#define MID_U8 unsigned char
#endif
#ifndef MID_U16
#define MID_U16 unsigned short
#endif
#ifndef MID_U32
#define MID_U32 unsigned int
#endif
#ifndef MID_U64
#define MID_U64 unsigned long long
#endif
#ifndef MID_MALLOC
#define _CRT_NONSTDC_NO_DEPRECATE
#define _CRT_SECURE_NO_WARNINGS
#include <stdlib.h>
#if defined(_cplusplus)
#define MID_MALLOC( ctx, size ) ( ::malloc( size ) )
#define MID_FREE( ctx, ptr ) ( ::free( ptr ) )
#else
#define MID_MALLOC( ctx, size ) ( malloc( size ) )
#define MID_FREE( ctx, ptr ) ( free( ptr ) )
#endif
#endif
#include <assert.h>
#define MID_LOG(...) (void) __VA_ARGS__
#include <string.h>
#pragma warning( push )
#pragma warning( disable: 4242 )
#pragma warning( disable: 4244 )
#pragma warning( disable: 4365 )
#pragma warning( disable: 4668 )
#pragma warning( disable: 4701 )
#pragma warning( disable: 4703 )
#ifndef MID_NO_TSF_IMPLEMENTATION
#define TSF_NO_STDIO
#define TSF_IMPLEMENTATION
#endif
#include "3rd_tsf.h"
#pragma warning( disable: 4201 )
#ifndef MID_NO_TML_IMPLEMENTATION
#define TML_NO_STDIO
#define TML_IMPLEMENTATION
#endif
#include "3rd_tml.h"
#pragma warning( pop )
#ifndef MID_ENABLE_RAW
typedef struct mid_event_t
{
MID_U32 delay_us;
MID_U8 channel;
MID_U8 type;
union
{
struct { MID_U8 program; } program_change;
struct { MID_U8 note; MID_U8 velocity; } note_on;
struct { MID_U8 note; } note_off;
struct { MID_U8 key; MID_U8 key_pressure; } key_pressure;
struct { MID_U16 value; } pitch_bend;
struct { MID_U8 control, control_value; } control_change;
struct { MID_U8 channel_pressure; } channel_pressure;
} data;
} mid_event_t;
typedef struct mid_song_t
{
int event_count;
mid_event_t* events;
} mid_song_t;
struct mid_t
{
void* memctx;
mid_song_t song;
int percussion_preset;
MID_U64 playback_accumulated_time_us;
int playback_sample_pos;
int playback_event_pos;
};
#endif /* MID_ENABLE_RAW */
mid_t* mid_create( void const* midi_data, size_t midi_size, void* memctx )
{
tml_message* mid_file = tml_load_memory( midi_data, (int) midi_size );
if( !mid_file ) return NULL;
int count = 0;
tml_message* iter = mid_file;
while( iter )
{
if( iter->type == TML_PROGRAM_CHANGE || iter->type == TML_NOTE_ON || iter->type == TML_NOTE_OFF ||
iter->type == TML_PITCH_BEND || iter->type == TML_CONTROL_CHANGE )
{
++count;
}
iter = iter->next;
}
mid_event_t* events = (mid_event_t*) malloc( sizeof( mid_event_t ) * count );
int events_count = 0;
unsigned int time = 0;
tml_message* msg = mid_file;
while( msg )
{
if( msg->type == TML_PROGRAM_CHANGE || msg->type == TML_NOTE_ON || msg->type == TML_NOTE_OFF ||
msg->type == TML_PITCH_BEND || msg->type == TML_CONTROL_CHANGE )
{
mid_event_t* event = &events[ events_count++ ];
event->delay_us = ( msg->time - time ) * 1000;
time = msg->time;
event->channel = msg->channel;
event->type = msg->type;
switch( msg->type )
{
case TML_PROGRAM_CHANGE:
event->data.program_change.program = (MID_U8) msg->program;
break;
case TML_NOTE_ON: //play a note
event->data.note_on.note = (MID_U8) msg->key;
event->data.note_on.velocity = (MID_U8) msg->velocity;
break;
case TML_NOTE_OFF: //stop a note
event->data.note_off.note = (MID_U8) msg->key;
break;
case TML_PITCH_BEND: //pitch wheel modification
event->data.pitch_bend.value = (MID_U16) msg->pitch_bend;
break;
case TML_CONTROL_CHANGE: //MIDI controller messages
event->data.control_change.control = (MID_U8) msg->control;
event->data.control_change.control_value = (MID_U8) msg->control_value;
break;
}
}
msg = msg->next;
}
tml_free( mid_file );
mid_t* mid = (mid_t*) MID_MALLOC( memctx, sizeof( mid_t ) );
mid->memctx = memctx;
mid->song.event_count = events_count;
mid->song.events = events;
mid->playback_accumulated_time_us = 0ull;
mid->playback_sample_pos = 0;
mid->playback_event_pos = 0;
return mid;
}
void mid_destroy( mid_t* mid )
{
if( mid->song.events ) MID_FREE( mid->memctx, mid->song.events );
MID_FREE( mid->memctx, mid );
}
int mid_init_raw( mid_t* mid, void const* raw_data, size_t raw_size )
{
int events_count = *(int*)raw_data;
if( sizeof( mid_event_t ) * events_count != raw_size - sizeof( int ) ) return 0;
mid->memctx = NULL;
mid->song.event_count = events_count;
mid->song.events = (mid_event_t*)( ( (int*)raw_data ) + 1 );
mid->playback_accumulated_time_us = 0ull;
mid->playback_sample_pos = 0;
mid->playback_event_pos = 0;
return 1;
}
size_t mid_save_raw( mid_t* mid, void* data, size_t capacity )
{
size_t size = sizeof( mid_event_t ) * mid->song.event_count + sizeof( int );
if( data && capacity >= size )
{
*(int*)data = mid->song.event_count;
memcpy( ( (int*)data ) + 1, mid->song.events, sizeof( mid_event_t ) * mid->song.event_count );
}
return size;
}
void mid_skip_leading_silence( mid_t* mid, tsf* sound_font )
{
(void) sound_font;
for( ; ; )
{
MID_U64 next_event_delay_us = mid->song.events[ mid->playback_event_pos ].delay_us;
MID_U64 playback_time_us = ( mid->playback_sample_pos * 1000000ull ) / 44100ull;
MID_U64 next_event_time_us = mid->playback_accumulated_time_us + next_event_delay_us;
assert( next_event_time_us >= playback_time_us );
MID_U64 time_until_next_event = next_event_time_us - playback_time_us;
int samples_until_next_event = (int)( ( time_until_next_event * 44100ull ) / 1000000ull );
mid_event_t* event = &mid->song.events[ mid->playback_event_pos ];
switch( event->type )
{
case TML_PROGRAM_CHANGE:
tsf_channel_set_presetnumber( sound_font, event->channel, event->data.program_change.program, ( event->channel == 9 ) );
break;
case TML_NOTE_ON:
return;
case TML_NOTE_OFF: //stop a note
tsf_channel_note_off( sound_font, event->channel, event->data.note_off.note );
break;
case TML_PITCH_BEND: //pitch wheel modification
tsf_channel_set_pitchwheel( sound_font, event->channel, event->data.pitch_bend.value );
break;
case TML_CONTROL_CHANGE: //MIDI controller messages
tsf_channel_midi_control( sound_font, event->channel, event->data.control_change.control, event->data.control_change.control_value );
break;
}
mid->playback_sample_pos += samples_until_next_event;
mid->playback_accumulated_time_us += next_event_delay_us;
mid->playback_event_pos++;
}
}
int mid_render_short( mid_t* mid, short* sample_pairs, int sample_pairs_count, tsf* sound_font )
{
int samples_rendered = 0;
memset( sample_pairs, 0, sample_pairs_count * sizeof( short ) * 2 );
while( samples_rendered < sample_pairs_count )
{
MID_U64 next_event_delay_us = mid->song.events[ mid->playback_event_pos ].delay_us;
MID_U64 playback_time_us = ( mid->playback_sample_pos * 1000000ull ) / 44100ull;
MID_U64 next_event_time_us = mid->playback_accumulated_time_us + next_event_delay_us;
assert( next_event_time_us >= playback_time_us );
MID_U64 time_until_next_event = next_event_time_us - playback_time_us;
int samples_until_next_event = (int)( ( time_until_next_event * 44100ull ) / 1000000ull );
int samples_to_render = samples_until_next_event;
if( samples_to_render > sample_pairs_count - samples_rendered )
{
samples_to_render = sample_pairs_count - samples_rendered;
tsf_render_short( sound_font, sample_pairs + samples_rendered * 2,
samples_to_render, 1 );
samples_rendered += samples_to_render;
mid->playback_sample_pos += samples_to_render;
return samples_rendered;
}
else
{
tsf_render_short( sound_font, sample_pairs + samples_rendered * 2,
samples_to_render, 1 );
samples_rendered += samples_to_render;
mid->playback_sample_pos += samples_to_render;
}
mid->playback_accumulated_time_us += next_event_delay_us;
mid_event_t* event = &mid->song.events[ mid->playback_event_pos++ ];
switch( event->type )
{
case TML_PROGRAM_CHANGE:
tsf_channel_set_presetnumber( sound_font, event->channel, event->data.program_change.program, ( event->channel == 9 ) );
break;
case TML_NOTE_ON:
tsf_channel_note_on( sound_font, event->channel, event->data.note_on.note, event->data.note_on.velocity / 127.0f );
break;
case TML_NOTE_OFF: //stop a note
tsf_channel_note_off( sound_font, event->channel, event->data.note_off.note );
break;
case TML_PITCH_BEND: //pitch wheel modification
tsf_channel_set_pitchwheel( sound_font, event->channel, event->data.pitch_bend.value );
break;
case TML_CONTROL_CHANGE: //MIDI controller messages
tsf_channel_midi_control( sound_font, event->channel, event->data.control_change.control, event->data.control_change.control_value );
break;
}
}
return samples_rendered;
}
#endif /* MID_IMPLEMENTATION */
/*
------------------------------------------------------------------------------
This software is available under 2 licenses - you may choose the one you like.
------------------------------------------------------------------------------
ALTERNATIVE A - MIT License
Copyright (c) 2016 Mattias Gustavsson
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
------------------------------------------------------------------------------
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
------------------------------------------------------------------------------
*/

View File

@ -1,441 +0,0 @@
/* sproutline - v0.10 - public domain sprite outline detector - http://github.org/ands/sproutline
no warranty implied; use at your own risk
Do this:
#define S2O_IMPLEMENTATION
before you include this file in *one* C or C++ file to create the implementation.
// i.e. it should look like this:
#include ...
#include ...
#include ...
#define S2O_IMPLEMENTATION
#include "sproutline.h"
You can #define S2O_MALLOC to avoid using malloc
QUICK NOTES:
Primarily of interest to game developers.
- Recommended to be used with stb_image.
- Detects outlines in sprite images with alpha channels.
- Extracts outlines as clockwise paths.
- Simplifies outlines based on a distance metric.
Full documentation under "DOCUMENTATION" below.
Revision 0.10 release notes:
- Initial release of sproutline.h.
- Added S2O_MALLOC macro for replacing the memory allocator.
Unlike most STB libraries, this macro doesn't support a context parameter,
so if you need to pass a context in to the allocator, you'll have to
store it in a global or a thread-local variable.
Revision history:
0.10 (2015-10-22) initial version
============================ Contributors =========================
Andreas Mantler (ands)
License:
This software is in the public domain. Where that dedication is not
recognized, you are granted a perpetual, irrevocable license to copy
and modify this file however you want.
*/
#ifndef S2O_INCLUDE_SPROUTLINE_H
#define S2O_INCLUDE_SPROUTLINE_H
// DOCUMENTATION
//
// Limitations:
// - currently only works with images that have alpha channels
//
// Basic usage (with stb_image):
// int w, h, n, l;
// unsigned char *rgba = stbi_load(filename, &w, &h, &n, 4);
// unsigned char *alpha = s2o_rgba_to_alpha(rgba, w, h);
// unsigned char *thresholded = s2o_alpha_to_thresholded(alpha, w, h, ALPHA_THRESHOLD);
// unsigned char *outlined = s2o_thresholded_to_outlined(thresholded, w, h);
// s2o_point *outline = s2o_extract_outline_path(outlined, w, h, &l, 0);
// while(l)
// {
// s2o_distance_based_path_simplification(outline, &l, DISTANCE_THRESHOLD);
// // ... process outline here ...
// // ... l = number of points in outline
// // ... ALPHA_THRESHOLD = 1..255 (the min value to be considered solid)
// // ... DISTANCE_THRESHOLD = 0.0f..Inf (~0.5f is a suitable value)
// // ... a greater value results in fewer points in the output
//
// outline = s2o_extract_outline_path(outlined, w, h, &l, outline);
// };
// free(outline);
// free(outlined);
// free(thresholded);
// free(alpha);
// free(rgba);
//
// s2o_rgba_to_alpha:
// Expects an 'unsigned char *' to memory of w * h 4-byte pixels in 'RGBA' order.
// The return value is an 'unsigned char *' to memory of w * h 1-byte pixel alpha components.
//
// s2o_alpha_to_thresholded:
// Expects an 'unsigned char *' to memory of w * h 1-byte pixel alpha components.
// The return value is an 'unsigned char *' to memory of w * h 1-byte values
// that are 255 if the corresponding input is >= the specified threshold, otherwise 0.
//
// s2o_thresholded_to_outlined:
// Expects an 'unsigned char *' to memory of w * h 1-byte pixels indicating their solidity {0, nonzero}.
// The return value is an 'unsigned char *' to memory of w * h 1-byte pixels that indicate if the
// corresponding input value is part of an outline (= is solid and has a non-solid neighbour).
//
// s2o_extract_outline_path:
// Expects an 'unsigned char *' to memory of w * h 1-byte pixels indicating their outline membership.
// The return value is an 's2o_point *' to memory of l s2o_point values consisting of a short x and y value.
// The procedure scans the input data from top to bottom and starts extracting the first outline it finds.
// The pixels corresponding to the extracted outline are set to 0 in the input, so that a subsequent call to
// s2o_extract_outline_path extracts a different outline.
// The length is set to 0 if no outline was found.
//
// s2o_distance_based_path_simplification:
// Expects an 's2o_point *' to memory of l outline points.
// The procedure throws out points in place that lie on or close to linear sections of the outline.
// The distanceThreshold parameter specifies the min distance value for points to remain in the outline.
//
// ===========================================================================
//
// Philosophy
//
// This library is designed with the stb philosophy in mind.
// stb libraries are designed with the following priorities:
//
// 1. easy to use
// 2. easy to maintain
// 3. good performance
//
// Some secondary priorities arise directly from the first two, some of which
// make more explicit reasons why performance can't be emphasized.
//
// - Portable ("ease of use")
// - Small footprint ("easy to maintain")
// - No dependencies ("ease of use")
//
typedef unsigned char s2o_uc;
#ifdef __cplusplus
extern "C" {
#endif
#ifdef S2O_STATIC
#define S2ODEF static
#else
#define S2ODEF extern
#endif
//////////////////////////////////////////////////////////////////////////////
//
// PRIMARY API
//
S2ODEF s2o_uc * s2o_rgba_to_alpha (const s2o_uc *data, int w, int h);
S2ODEF s2o_uc * s2o_alpha_to_thresholded (const s2o_uc *data, int w, int h, s2o_uc threshold);
S2ODEF s2o_uc * s2o_thresholded_to_outlined(const s2o_uc *data, int w, int h);
typedef struct { short x, y; } s2o_point;
S2ODEF s2o_point * s2o_extract_outline_path(s2o_uc *data, int w, int h, int *point_count, s2o_point *reusable_outline);
S2ODEF void s2o_distance_based_path_simplification(s2o_point *outline, int *outline_length, float distance_threshold);
#ifdef __cplusplus
}
#endif
//
//
//// end header file /////////////////////////////////////////////////////
#endif // S2O_INCLUDE_SPROUTLINE_H
#ifdef S2O_IMPLEMENTATION
#include <math.h> // sqrtf, abs
#ifndef S2O_MALLOC
#include <stdlib.h> // malloc
#define S2O_MALLOC(sz) malloc(sz)
#endif
///////////////////////////////////////////////
//
// locally used types
typedef int s2o_bool;
// 2d point type helpers
#define S2O_POINT_ADD(result, a, b) { (result).x = (a).x + (b).x; (result).y = (a).y + (b).y; }
#define S2O_POINT_SUB(result, a, b) { (result).x = (a).x - (b).x; (result).y = (a).y - (b).y; }
#define S2O_POINT_IS_INSIDE(a, w, h) ((a).x >= 0 && (a).y >= 0 && (a).x < (w) && (a).y < (h))
#define S2O_POINT_IS_NEXT_TO(a, b) ((a).x - (b).x <= 1 && (a).x - (b).x >= -1 && (a).y - (b).y <= 1 && (a).y - (b).y >= -1)
// direction type
typedef int s2o_direction; // 8 cw directions: >, _|, v, |_, <, |", ^, "|
#define S2O_DIRECTION_OPPOSITE(dir) ((dir + 4) & 7)
static const s2o_point s2o_direction_to_pixel_offset[] = { {1,0}, {1,-1}, {0,-1}, {-1,-1}, {-1,0}, {-1,1}, {0,1}, {1,1} };
// image manipulation functions
S2ODEF s2o_uc * s2o_rgba_to_alpha(const s2o_uc *data, int w, int h)
{
s2o_uc *result = (s2o_uc*)S2O_MALLOC(w * h);
int x, y;
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
result[y * w + x] = data[(y * w + x) * 4 + 3];
return result;
}
S2ODEF s2o_uc * s2o_alpha_to_thresholded(const s2o_uc *data, int w, int h, s2o_uc threshold)
{
s2o_uc *result = (s2o_uc*)S2O_MALLOC(w * h);
int x, y;
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
result[y * w + x] = data[y * w + x] >= threshold ? 255 : 0;
return result;
}
S2ODEF s2o_uc * s2o_dilate_thresholded(const s2o_uc *data, int w, int h)
{
int x, y, dx, dy, cx, cy;
s2o_uc *result = (s2o_uc*)S2O_MALLOC(w * h);
for (y = 0; y < h; y++)
{
for (x = 0; x < w; x++)
{
result[y * w + x] = 0;
for (dy = -1; dy <= 1; dy++)
{
for (dx = -1; dx <= 1; dx++)
{
cx = x + dx;
cy = y + dy;
if (cx >= 0 && cx < w && cy >= 0 && cy < h)
{
if (data[cy * w + cx])
{
result[y * w + x] = 255;
dy = 1;
break;
}
}
}
}
}
}
return result;
}
S2ODEF s2o_uc * s2o_thresholded_to_outlined(const s2o_uc *data, int w, int h)
{
s2o_uc *result = (s2o_uc*)S2O_MALLOC(w * h);
int x, y;
for (x = 0; x < w; x++)
{
result[x] = data[x];
result[(h - 1) * w + x] = data[(h - 1) * w + x];
}
for (y = 1; y < h - 1; y++)
{
result[y * w] = data[y * w];
for (x = 1; x < w - 1; x++)
{
if (data[y * w + x] &&
(
!data[y * w + x - 1] ||
!data[y * w + x + 1] ||
!data[y * w + x - w] ||
!data[y * w + x + w]
))
{
result[y * w + x] = 255;
}
else
{
result[y * w + x] = 0;
}
}
result[y * w + w - 1] = data[y * w + w - 1];
}
return result;
}
// outline path procedures
static s2o_bool s2o_find_first_filled_pixel(const s2o_uc *data, int w, int h, s2o_point *first)
{
int x, y;
for (y = 0; y < h; y++)
{
for (x = 0; x < w; x++)
{
if (data[y * w + x])
{
first->x = (short)x;
first->y = (short)y;
return 1;
}
}
}
return 0;
}
static s2o_bool s2o_find_next_filled_pixel(const s2o_uc *data, int w, int h, s2o_point current, s2o_direction *dir, s2o_point *next)
{
// turn around 180°, then make a clockwise scan for a filled pixel
*dir = S2O_DIRECTION_OPPOSITE(*dir);
int i;
for (i = 0; i < 8; i++)
{
S2O_POINT_ADD(*next, current, s2o_direction_to_pixel_offset[*dir]);
if (S2O_POINT_IS_INSIDE(*next, w, h) && data[next->y * w + next->x])
return 1;
// move to next angle (clockwise)
*dir = *dir - 1;
if (*dir < 0)
*dir = 7;
}
return 0;
}
S2ODEF s2o_point * s2o_extract_outline_path(s2o_uc *data, int w, int h, int *point_count, s2o_point *reusable_outline)
{
s2o_point *outline = reusable_outline;
if (!outline)
outline = (s2o_point*)S2O_MALLOC(w * h * sizeof(s2o_point));
s2o_point current, next;
restart:
if (!s2o_find_first_filled_pixel(data, w, h, &current))
{
*point_count = 0;
return outline;
}
int count = 0;
s2o_direction dir = 0;
while(S2O_POINT_IS_INSIDE(current, w, h) && count < (w*h)) //< @r-lyeh: buffer overflow: add count<w*h
{
data[current.y * w + current.x] = 0; // clear the visited path
outline[count++] = current; // add our current point to the outline
if (!s2o_find_next_filled_pixel(data, w, h, current, &dir, &next))
{
// find loop connection
s2o_bool found = 0;
int i;
for (i = 0; i < count / 2; i++) // only allow big loops
{
if (S2O_POINT_IS_NEXT_TO(current, outline[i]))
{
found = 1;
break;
}
}
if (found)
{
break;
}
else
{
// go backwards until we see outline pixels again
dir = S2O_DIRECTION_OPPOSITE(dir);
count--; // back up
int prev;
for(prev = count; prev >= 0 && count < (w * h); prev--) //< @r-lyeh: buffer overflow: add count<w*h
{
current = outline[prev];
outline[count++] = current; // add our current point to the outline again
if (s2o_find_next_filled_pixel(data, w, h, current, &dir, &next))
break;
}
}
}
current = next;
}
if (count <= 2) // too small, discard and try again!
goto restart;
*point_count = count;
return outline;
}
S2ODEF void s2o_distance_based_path_simplification(s2o_point *outline, int *outline_length, float distance_threshold)
{
int length = *outline_length;
int l;
for (l = length / 2 /*length - 1*/; l > 1; l--)
{
int a, b = l;
for (a = 0; a < length; a++)
{
s2o_point ab;
S2O_POINT_SUB(ab, outline[b], outline[a]);
float lab = sqrtf((float)(ab.x * ab.x + ab.y * ab.y));
float ilab = 1.0f / lab;
float abnx = ab.x * ilab, abny = ab.y * ilab;
if (lab != 0.0f)
{
s2o_bool found = 1;
int i = (a + 1) % length;
while (i != b)
{
s2o_point ai;
S2O_POINT_SUB(ai, outline[i], outline[a]);
float t = (abnx * ai.x + abny * ai.y) * ilab;
float distance = -abny * ai.x + abnx * ai.y;
if (t < 0.0f || t > 1.0f || distance > distance_threshold || -distance > distance_threshold)
{
found = 0;
break;
}
if (++i == length)
i = 0;
}
if (found)
{
int i;
if (a < b)
{
for (i = 0; i < length - b; i++)
outline[a + i + 1] = outline[b + i];
length -= b - a - 1;
}
else
{
length = a - b + 1;
for (i = 0; i < length; i++)
outline[i] = outline[b + i];
}
if (l >= length)
l = length - 1;
}
}
if (++b >= length)
b = 0;
}
}
*outline_length = length;
}
#endif // S2O_IMPLEMENTATION

View File

@ -52,7 +52,9 @@ size_t vlen( void* p ) {
return p ? 0[ (size_t*)p - 2 ] : 0; return p ? 0[ (size_t*)p - 2 ] : 0;
} }
char *STRDUP(const char *s) { size_t n = strlen(s)+1; return ((char*)memcpy(ATLAS_REALLOC(0,n), s, n)); } ///- char *vstrdup(const char *s) { size_t n = strlen(s)+1; return ((char*)memcpy(ATLAS_REALLOC(0,n), s, n)); } ///-
#define STRDUP vstrdup
static unsigned array_c; static unsigned array_c;
#define array(t) t* #define array(t) t*
@ -126,6 +128,7 @@ char* strcatf(char **src_, const char *fmt, ...) {
#define ATLASC_IMPLEMENTATION #define ATLASC_IMPLEMENTATION
#include "3rd_atlasc.h" #include "3rd_atlasc.h"
#if defined _WIN32 && defined _MSC_VER #if defined _WIN32 && defined _MSC_VER
__declspec(dllexport) __declspec(dllexport)
#elif defined _WIN32 && defined __GNUC__ #elif defined _WIN32 && defined __GNUC__
@ -164,7 +167,6 @@ int main(int argc, char* argv[]) {
for( int i = 1; i < argc; ++i) { for( int i = 1; i < argc; ++i) {
const char *arg = argv[i]; const char *arg = argv[i];
if( arg[0] != '-' ) { if( arg[0] != '-' ) {
assert(array_count(files) == 0);
if( path_isfile(arg) ) if( path_isfile(arg) )
array_push(files, STRDUP(arg)); array_push(files, STRDUP(arg));
else else
@ -174,7 +176,6 @@ int main(int argc, char* argv[]) {
array_push(files, STRDUP(dir_name(d, i))); array_push(files, STRDUP(dir_name(d, i)));
} }
} }
assert(array_count(files) == 1);
} }
else else
switch( arg[1] ) { switch( arg[1] ) {
@ -209,19 +210,23 @@ int main(int argc, char* argv[]) {
char *error = g_error_str; char *error = g_error_str;
atlas_t* atlas = atlas_loadfiles(files, flags); if( !files ) {
if ( atlas ) { error = "No input file(s)";
bool r = atlas_save(outfile, atlas, flags); } else {
if( r ) { atlas_t* atlas = atlas_loadfiles(files, flags);
// fprintf(stderr, "Written: %d->%d\n", flags.num_files, !!r); if ( atlas ) {
error = 0; bool r = atlas_save(outfile, atlas, flags);
if( r ) {
// fprintf(stderr, "Written: %d->%d\n", flags.num_files, !!r);
error = 0;
}
atlas_free(atlas);
} }
atlas_free(atlas);
}
// for( int i = 0; i < array_count(files); ++i) for( int i = 0; i < array_count(files); ++i)
// ATLAS_REALLOC(files[i], 0); ATLAS_REALLOC(files[i], 0);
// array_free(files); array_free(files);
}
return error ? fprintf(stderr, "%s\n", error), -1 : 0; return error ? fprintf(stderr, "%s\n", error), -1 : 0;
} }

Binary file not shown.