shaderlib wip

main
Dominik Madarász 2024-08-24 15:24:44 +02:00
parent d835b83aec
commit 4e346fdd9d
8 changed files with 563 additions and 440 deletions

View File

@ -37,6 +37,7 @@ int main() {
texture_t t2 = texture("matcaps/material3", 0);
// load model
model_t m1 = model("suzanne.obj", MODEL_NO_ANIMATIONS);
model_t m5 = model("suzanne.obj", MODEL_NO_ANIMATIONS);
model_t m2 = model("suzanne.obj", MODEL_NO_ANIMATIONS|MODEL_MATCAPS);
model_t m3 = model("damagedhelmet.gltf", MODEL_NO_ANIMATIONS|MODEL_PBR);
// model_t m3 = model("Scutum_low.fbx", MODEL_NO_ANIMATIONS|MODEL_PBR);
@ -72,7 +73,7 @@ int main() {
// spawn object3 (video)
object_t* obj3 = scene_spawn();
object_model(obj3, m1);
object_model(obj3, m5);
object_diffuse(obj3, video_textures(v)[0]);
object_scale(obj3, vec3(3,3,3));
object_move(obj3, vec3(-10+5*1,0,-10));

View File

@ -0,0 +1,232 @@
#ifdef SHADING_PBR
uniform vec2 resolution; /// set:640,480 // debug options below use this (USE_MAP_DEBUGGING, USE_AMBIENT_DEBUGGING)
#define USE_BRUTEFORCE_IRRADIANCE false // Samples irradiance from tex_skysphere when enabled.
#define USE_WRAPAROUND_SPECULAR true // Makes silhouettes more reflective to avoid black pixels.
#define USE_SPECULAR_AO_ATTENUATION true // Dampens IBL specular ambient with AO if enabled.
#define USE_NORMAL_VARIATION_TO_ROUGHNESS true // Increases roughness if normal map has variation and was minified.
#define USE_MAP_DEBUGGING false // Shows all ColorMaps as horizontal bars
#define USE_AMBIENT_DEBUGGING false // Splits the screen in two and shows image-based specular (left), full shading (middle), diffuse shading (right).
#define BOOST_LIGHTING 2.00f // Multiplies analytic light's color with this constant because otherwise they look really pathetic.
#define BOOST_SPECULAR 1.50f
#define BOOST_NOISE 2.50f
struct ColorMap
{
bool has_tex;
vec4 color;
};
uniform ColorMap map_albedo; uniform sampler2D map_albedo_tex;
uniform ColorMap map_diffuse; uniform sampler2D map_diffuse_tex;
uniform ColorMap map_specular; uniform sampler2D map_specular_tex; // not used
uniform ColorMap map_normals; uniform sampler2D map_normals_tex;
uniform ColorMap map_roughness; uniform sampler2D map_roughness_tex;
uniform ColorMap map_metallic; uniform sampler2D map_metallic_tex;
uniform ColorMap map_ao; uniform sampler2D map_ao_tex;
uniform ColorMap map_ambient; uniform sampler2D map_ambient_tex;
uniform ColorMap map_emissive; uniform sampler2D map_emissive_tex;
#define sample_colormap(ColorMap_, uv_) \
(ColorMap_.has_tex ? texture( ColorMap_##_tex, uv_ ) : ColorMap_.color)
uniform float skysphere_rotation; /// set:0
uniform float skysphere_mip_count;
uniform float exposure; /// set:1
uniform uint frame_count;
uniform float specular_shininess;
uniform sampler2D tex_skysphere;
uniform sampler2D tex_skyenv;
uniform sampler2D tex_brdf_lut;
uniform bool has_tex_skysphere;
uniform bool has_tex_skyenv;
const float PI = 3.1415926536;
// MurMurHash 3 finalizer. Implementation is in public domain.
uint hash( uint h )
{
h ^= h >> 16;
h *= 0x85ebca6bU;
h ^= h >> 13;
h *= 0xc2b2ae35U;
h ^= h >> 16;
return h;
}
// Random function using the idea of StackOverflow user "Spatial" https://stackoverflow.com/a/17479300
// Creates random 23 bits and puts them into the fraction bits of an 32-bit float.
float random( uvec3 h )
{
uint m = hash(h.x ^ hash( h.y ) ^ hash( h.z ));
return uintBitsToFloat( ( m & 0x007FFFFFu ) | 0x3f800000u ) - 1.;
}
float random( vec3 v )
{
return random(floatBitsToUint( v ));
}
vec3 fresnel_schlick( vec3 H, vec3 V, vec3 F0 )
{
float cosTheta = clamp( dot( H, V ), 0., 1. );
return F0 + ( vec3( 1.0 ) - F0 ) * pow( 1. - cosTheta, 5.0 );
}
// A Fresnel term that dampens rough specular reflections.
// https://seblagarde.wordpress.com/2011/08/17/hello-world/
vec3 fresnel_schlick_roughness( vec3 H, vec3 V, vec3 F0, float roughness )
{
float cosTheta = clamp( dot( H, V ), 0., 1. );
return F0 + ( max( vec3( 1.0 - roughness ), F0 ) - F0 ) * pow( 1. - cosTheta, 5.0 );
}
float distribution_ggx( vec3 N, vec3 H, float roughness )
{
float a = roughness * roughness;
float a2 = a * a;
float NdotH = max( 0., dot( N, H ) );
float factor = NdotH * NdotH * ( a2 - 1. ) + 1.;
return a2 / ( PI * factor * factor );
}
float geometry_schlick_ggx( vec3 N, vec3 V, float k )
{
float NdotV = max( 0., dot( N, V ) );
return NdotV / (NdotV * ( 1. - k ) + k );
}
float geometry_smith( vec3 N, vec3 V, vec3 L, float roughness )
{
#if 1 // original
float r = roughness + 1.;
float k = (r * r) / 8.;
#elif 0 // vries
float a = roughness;
float k = (a * a) / 2.0;
#elif 0 // vries improved?
float a = roughness * roughness;
float k = a / 2.0;
#endif
return geometry_schlick_ggx( N, V, k ) * geometry_schlick_ggx( N, L, k );
}
vec2 sphere_to_polar( vec3 normal ) {
normal = normalize( normal );
return vec2( 1-atan( normal.z, normal.x ) / PI + 0.5 , acos( normal.y ) / PI );
}
// Our vertically GL_CLAMPed textures seem to blend towards black when sampling the half-pixel edge.
// Not sure if it has a border, or this if is a driver bug, but can repro on multiple nvidia cards.
// Knowing the texture height we can limit sampling to the centers of the top and bottom pixel rows.
vec2 sphere_to_polar_clamp_y( vec3 normal, float texture_height )
{
normal = normalize( normal );
return vec2( ( atan( normal.z, normal.x ) + skysphere_rotation ) / PI / 2.0 + 0.5, clamp(acos( normal.y ) / PI, 0.5 / texture_height, 1.0 - 0.5 / texture_height) );
}
vec3 sample_sky( vec3 normal )
{
vec2 polar = sphere_to_polar( normal );
return texture( tex_skysphere, polar ).rgb * exposure;
}
// Takes samples around the hemisphere, converts them to radiances via weighting and
// returns a normalized sum.
vec3 sample_irradiance_slow( vec3 normal, vec3 vertex_tangent )
{
float delta = 0.10;
vec3 up = abs( normal.y ) < 0.999 ? vec3( 0., 1., 0. ) : vec3( 0., 0., 1. );
vec3 tangent_x = normalize( cross( up, normal ) );
vec3 tangent_y = cross( normal, tangent_x );
int numIrradianceSamples = 0;
vec3 irradiance = vec3(0.);
for ( float phi = 0.; phi < 2. * PI ; phi += delta )
{
for ( float theta = 0.; theta < 0.5 * PI; theta += delta )
{
vec3 tangent_space = vec3(
sin( theta ) * cos( phi ),
sin( theta ) * sin( phi ),
cos( theta ) );
vec3 world_space = tangent_space.x * tangent_x + tangent_space.y + tangent_y + tangent_space.z * normal;
vec3 color = sample_sky( world_space );
irradiance += color * cos( theta ) * sin( theta );
numIrradianceSamples++;
}
}
irradiance = PI * irradiance / float( numIrradianceSamples );
return irradiance;
}
vec3 sample_irradiance_fast( vec3 normal, vec3 vertex_tangent )
{
// Sample the irradiance map if it exists, otherwise fall back to blurred reflection map.
if ( has_tex_skyenv )
{
vec2 polar = sphere_to_polar( normal );
return textureLod( tex_skyenv, polar, 0.0 ).rgb * exposure;
}
else
{
vec2 polar = sphere_to_polar( normal );
return textureLod( tex_skysphere, polar, 0.80 * skysphere_mip_count ).rgb * exposure;
}
}
vec3 specular_ibl( vec3 V, vec3 N, float roughness, vec3 fresnel )
{
// What we'd like to do here is take a LOT of skybox samples around the reflection
// vector R according to the BRDF lobe.
//
// Unfortunately it's not possible in real time so we use the following UE4 style approximations:
// 1. Integrate incoming light and BRDF separately ("split sum approximation")
// 2. Assume V = R = N so that we can just blur the skybox and sample that.
// 3. Bake the BRDF integral into a lookup texture so that it can be computed in constant time.
//
// Here we also simplify approximation #2 by using bilinear mipmaps with a magic formula instead
// of properly convolving it with a GGX lobe.
//
// For details, see Brian Karis, "Real Shading in Unreal Engine 4", 2013.
vec3 R = 2. * dot( V, N ) * N - V;
vec2 polar = sphere_to_polar( R );
// Map roughness from range [0, 1] into a mip LOD [0, skysphere_mip_count].
// The magic numbers were chosen empirically.
float mip = 0.9 * skysphere_mip_count * pow(roughness, 0.25 * BOOST_SPECULAR);
vec3 prefiltered = textureLod( tex_skysphere, polar, mip ).rgb * exposure;
float NdotV = dot( N, V );
// dot( N, V ) seems to produce negative values so we can try to stretch it a bit behind the silhouette
// to avoid black pixels.
if (USE_WRAPAROUND_SPECULAR)
{
NdotV = NdotV * 0.9 + 0.1;
}
NdotV = min(0.99, max(0.01, NdotV));
// A precomputed lookup table contains a scale and a bias term for specular intensity (called "fresnel" here).
// See equation (8) in Karis' course notes mentioned above.
vec2 envBRDF = texture( tex_brdf_lut, vec2(NdotV, 1.0-roughness) ).xy; // (NdotV,1-roughtness) for green top-left (NdotV,roughness) for green bottom-left
vec3 specular = prefiltered * (fresnel * envBRDF.x + vec3(envBRDF.y));
return specular;
}
#endif

View File

@ -0,0 +1,43 @@
uniform mat4 model, view;
uniform sampler2D u_texture2d;
uniform vec3 u_coefficients_sh[9];
uniform bool u_textured; /// set:1
uniform bool u_lit; /// set:0
uniform bool u_matcaps; /// set:0
uniform vec4 u_diffuse; /// set:1,1,1,1
// lightmapping
uniform sampler2D u_lightmap;
uniform bool u_texlit;
uniform bool u_texmod; /// set:1
uniform float u_litboost; /// set:1
in vec3 v_position;
in vec3 v_position_ws;
#ifdef RIM
uniform mat4 M; // RIM
uniform vec3 u_rimcolor; /// set:0.05,0.05,0.05
uniform vec3 u_rimrange; /// set:0.11,0.98,0.5
uniform vec3 u_rimpivot; /// set:0,0,0
uniform bool u_rimambient; /// set:1
#endif
in vec3 v_normal, v_normal_ws;
in vec2 v_texcoord, v_texcoord2;
in vec4 v_color;
in vec3 v_tangent;
in vec3 v_binormal;
in vec3 v_to_camera;
in vec3 v_vertcolor;
out vec4 fragcolor;
#include "shadowmap.glsl"
in vec4 vpeye;
in vec4 vneye;
in vec4 sc;
vec4 shadowing() {
return shadowmap(vpeye, vneye, v_texcoord, sc);
}
uniform vec3 u_cam_pos;
uniform vec3 u_cam_dir;

View File

@ -0,0 +1,148 @@
#ifndef MAX_BONES
#define MAX_BONES 110
#endif
uniform mat3x4 vsBoneMatrix[MAX_BONES];
uniform bool SKINNED; /// set:0
uniform mat4 M; // RIM
uniform mat4 VP;
uniform mat4 P;
uniform vec3 u_cam_dir;
uniform int u_billboard;
#if 0
// Fetch blend channels from all attached blend deformers.
for (size_t di = 0; di < mesh->blend_deformers.count; di++) {
ufbx_blend_deformer *deformer = mesh->blend_deformers.data[di];
for (size_t ci = 0; ci < deformer->channels.count; ci++) {
ufbx_blend_channel *chan = deformer->channels.data[ci];
if (chan->keyframes.count == 0) continue;
if (num_blend_shapes < MAX_BLEND_SHAPES) {
blend_channels[num_blend_shapes] = chan;
vmesh->blend_channel_indices[num_blend_shapes] = (int32_t)chan->typed_id;
num_blend_shapes++;
}
}
}
if (num_blend_shapes > 0) {
vmesh->blend_shape_image = pack_blend_channels_to_image(mesh, blend_channels, num_blend_shapes);
vmesh->num_blend_shapes = num_blend_shapes;
}
ubo.f_num_blend_shapes = (float)mesh->num_blend_shapes;
for (size_t i = 0; i < mesh->num_blend_shapes; i++) {
ubo.blend_weights[i] = view->scene.blend_channels[mesh->blend_channel_indices[i]].weight;
}
sg_image blend_shapes = mesh->num_blend_shapes > 0 ? mesh->blend_shape_image : view->empty_blend_shape_image;
#endif
// for blendshapes
#ifndef MAX_BLENDSHAPES
#define MAX_BLENDSHAPES 16
#endif
uniform vec4 blend_weights[MAX_BLENDSHAPES]; // @todo: implement me
uniform float f_num_blend_shapes; // @todo: implement me
uniform MEDIUMP sampler2DArray blend_shapes; // @todo: implement me
in vec3 att_position; // @todo: reorder ass2iqe to emit p3 n3 u2 t3 b3 c4B i4 w4 instead
in vec2 att_texcoord;
in vec3 att_normal;
in vec4 att_tangent; // vec3 + bi sign
in mat4 att_instanced_matrix; // for instanced rendering
in vec4 att_indexes; // @fixme: gles might use ivec4 instead?
in vec4 att_weights; // @todo: downgrade from float to byte
in float att_vertexindex; // for blendshapes
in vec4 att_color;
in vec3 att_bitangent; // @todo: remove? also, ass2iqe might output this
in vec2 att_texcoord2;
out vec4 v_color;
out vec3 v_position, v_position_ws;
out vec3 v_normal, v_normal_ws;
out vec2 v_texcoord, v_texcoord2;
out vec3 v_tangent;
out vec3 v_binormal;
out vec3 v_viewpos;
out vec3 v_to_camera;
out vec3 v_vertcolor;
// shadow
uniform mat4 model, view, inv_view;
uniform mat4 cameraToShadowProjector;
out vec4 vneye;
out vec4 vpeye;
out vec4 sc;
void do_shadow() {
vneye = view * model * vec4(att_normal, 0.0f);
vpeye = view * model * vec4(att_position, 1.0);
sc = cameraToShadowProjector * model * vec4(att_position, 1.0f);
}
// blendshapes
vec3 evaluate_blend_shape(int vertex_index) {
ivec2 coord = ivec2(vertex_index & (2048 - 1), vertex_index >> 11);
int num_blend_shapes = int(f_num_blend_shapes);
vec3 offset = vec3(0.0);
for (int i = 0; i < num_blend_shapes; i++) {
vec4 packedw = blend_weights[i >> 2];
float weight = packedw[i & 3];
offset += weight * texelFetch(blend_shapes, ivec3(coord, i), 0).xyz;
}
return offset;
}
vec3 get_object_pos() {
vec3 objPos;
if(!SKINNED) {
objPos = att_position;
v_normal = att_normal;
} else {
mat3x4 m = vsBoneMatrix[int(att_indexes.x)] * att_weights.x;
m += vsBoneMatrix[int(att_indexes.y)] * att_weights.y;
m += vsBoneMatrix[int(att_indexes.z)] * att_weights.z;
m += vsBoneMatrix[int(att_indexes.w)] * att_weights.w;
objPos = vec4(att_position, 1.0) * m;
// blendshapes
// objPos += evaluate_blend_shape(int(att_vertexindex));
v_normal = vec4(att_normal, 0.0) * m;
//@todo: tangents
}
return objPos;
}
void setup_billboards(mat4 modelView, mat4 l_model) {
if(u_billboard > 0) {
vec3 cameraPosition = -transpose(mat3(view)) * view[3].xyz;
vec3 lookDir = normalize(cameraPosition - v_position_ws);
vec3 up = vec3(modelView[0][1], modelView[1][1], modelView[2][1]);
vec3 right = normalize(cross(up, lookDir));
up = cross(lookDir, right);
vec3 scale;
scale.x = length(vec3(l_model[0]));
scale.y = length(vec3(l_model[1]));
scale.z = length(vec3(l_model[2]));
// scale.x *= sign(l_model[0][0]);
// scale.y *= sign(l_model[1][1]);
// scale.z *= sign(l_model[2][2]);
mat4 billboardRotation = mat4(
vec4(right * scale.x, 0.0),
vec4(-up * scale.y, 0.0),
vec4(-lookDir * scale.z, 0.0),
vec4(0.0, 0.0, 0.0, 1.0)
);
if((u_billboard & 0x4) != 0) l_model[0] = billboardRotation[0];
if((u_billboard & 0x2) != 0) l_model[1] = billboardRotation[1];
if((u_billboard & 0x1) != 0) l_model[2] = billboardRotation[2];
modelView = view * l_model;
}
}

View File

@ -1,300 +1,7 @@
//version 400
uniform mat4 model, view;
uniform sampler2D u_texture2d;
uniform vec3 u_coefficients_sh[9];
uniform bool u_textured; /// set:1
uniform bool u_lit; /// set:0
uniform bool u_matcaps; /// set:0
uniform vec4 u_diffuse; /// set:1,1,1,1
// lightmapping
uniform sampler2D u_lightmap;
uniform bool u_texlit;
uniform bool u_texmod; /// set:1
uniform float u_litboost; /// set:1
in vec3 v_position;
in vec3 v_position_ws;
#ifdef RIM
uniform mat4 M; // RIM
uniform vec3 u_rimcolor; /// set:0.05,0.05,0.05
uniform vec3 u_rimrange; /// set:0.11,0.98,0.5
uniform vec3 u_rimpivot; /// set:0,0,0
uniform bool u_rimambient; /// set:1
#endif
in vec3 v_normal, v_normal_ws;
in vec2 v_texcoord, v_texcoord2;
in vec4 v_color;
in vec3 v_tangent;
in vec3 v_binormal;
in vec3 v_to_camera;
in vec3 v_vertcolor;
out vec4 fragcolor;
{{include-shadowmap}}
in vec4 vpeye;
in vec4 vneye;
in vec4 sc;
vec4 shadowing() {
return shadowmap(vpeye, vneye, v_texcoord, sc);
}
uniform vec3 u_cam_pos;
uniform vec3 u_cam_dir;
#include "model_fs.glsl"
#include "light.glsl"
#ifdef SHADING_PBR
uniform vec2 resolution; /// set:640,480 // debug options below use this (USE_MAP_DEBUGGING, USE_AMBIENT_DEBUGGING)
#define USE_BRUTEFORCE_IRRADIANCE false // Samples irradiance from tex_skysphere when enabled.
#define USE_WRAPAROUND_SPECULAR true // Makes silhouettes more reflective to avoid black pixels.
#define USE_SPECULAR_AO_ATTENUATION true // Dampens IBL specular ambient with AO if enabled.
#define USE_NORMAL_VARIATION_TO_ROUGHNESS true // Increases roughness if normal map has variation and was minified.
#define USE_MAP_DEBUGGING false // Shows all ColorMaps as horizontal bars
#define USE_AMBIENT_DEBUGGING false // Splits the screen in two and shows image-based specular (left), full shading (middle), diffuse shading (right).
#define BOOST_LIGHTING 2.00f // Multiplies analytic light's color with this constant because otherwise they look really pathetic.
#define BOOST_SPECULAR 1.50f
#define BOOST_NOISE 2.50f
struct ColorMap
{
bool has_tex;
vec4 color;
};
uniform ColorMap map_albedo; uniform sampler2D map_albedo_tex;
uniform ColorMap map_diffuse; uniform sampler2D map_diffuse_tex;
uniform ColorMap map_specular; uniform sampler2D map_specular_tex; // not used
uniform ColorMap map_normals; uniform sampler2D map_normals_tex;
uniform ColorMap map_roughness; uniform sampler2D map_roughness_tex;
uniform ColorMap map_metallic; uniform sampler2D map_metallic_tex;
uniform ColorMap map_ao; uniform sampler2D map_ao_tex;
uniform ColorMap map_ambient; uniform sampler2D map_ambient_tex;
uniform ColorMap map_emissive; uniform sampler2D map_emissive_tex;
#define sample_colormap(ColorMap_, uv_) \
(ColorMap_.has_tex ? texture( ColorMap_##_tex, uv_ ) : ColorMap_.color)
uniform float skysphere_rotation; /// set:0
uniform float skysphere_mip_count;
uniform float exposure; /// set:1
uniform uint frame_count;
uniform float specular_shininess;
uniform sampler2D tex_skysphere;
uniform sampler2D tex_skyenv;
uniform sampler2D tex_brdf_lut;
uniform bool has_tex_skysphere;
uniform bool has_tex_skyenv;
const float PI = 3.1415926536;
// MurMurHash 3 finalizer. Implementation is in public domain.
uint hash( uint h )
{
h ^= h >> 16;
h *= 0x85ebca6bU;
h ^= h >> 13;
h *= 0xc2b2ae35U;
h ^= h >> 16;
return h;
}
// Random function using the idea of StackOverflow user "Spatial" https://stackoverflow.com/a/17479300
// Creates random 23 bits and puts them into the fraction bits of an 32-bit float.
float random( uvec3 h )
{
uint m = hash(h.x ^ hash( h.y ) ^ hash( h.z ));
return uintBitsToFloat( ( m & 0x007FFFFFu ) | 0x3f800000u ) - 1.;
}
float random( vec3 v )
{
return random(floatBitsToUint( v ));
}
vec3 fresnel_schlick( vec3 H, vec3 V, vec3 F0 )
{
float cosTheta = clamp( dot( H, V ), 0., 1. );
return F0 + ( vec3( 1.0 ) - F0 ) * pow( 1. - cosTheta, 5.0 );
}
// A Fresnel term that dampens rough specular reflections.
// https://seblagarde.wordpress.com/2011/08/17/hello-world/
vec3 fresnel_schlick_roughness( vec3 H, vec3 V, vec3 F0, float roughness )
{
float cosTheta = clamp( dot( H, V ), 0., 1. );
return F0 + ( max( vec3( 1.0 - roughness ), F0 ) - F0 ) * pow( 1. - cosTheta, 5.0 );
}
float distribution_ggx( vec3 N, vec3 H, float roughness )
{
float a = roughness * roughness;
float a2 = a * a;
float NdotH = max( 0., dot( N, H ) );
float factor = NdotH * NdotH * ( a2 - 1. ) + 1.;
return a2 / ( PI * factor * factor );
}
float geometry_schlick_ggx( vec3 N, vec3 V, float k )
{
float NdotV = max( 0., dot( N, V ) );
return NdotV / (NdotV * ( 1. - k ) + k );
}
float geometry_smith( vec3 N, vec3 V, vec3 L, float roughness )
{
#if 1 // original
float r = roughness + 1.;
float k = (r * r) / 8.;
#elif 0 // vries
float a = roughness;
float k = (a * a) / 2.0;
#elif 0 // vries improved?
float a = roughness * roughness;
float k = a / 2.0;
#endif
return geometry_schlick_ggx( N, V, k ) * geometry_schlick_ggx( N, L, k );
}
vec2 sphere_to_polar( vec3 normal ) {
normal = normalize( normal );
return vec2( 1-atan( normal.z, normal.x ) / PI + 0.5 , acos( normal.y ) / PI );
}
// Our vertically GL_CLAMPed textures seem to blend towards black when sampling the half-pixel edge.
// Not sure if it has a border, or this if is a driver bug, but can repro on multiple nvidia cards.
// Knowing the texture height we can limit sampling to the centers of the top and bottom pixel rows.
vec2 sphere_to_polar_clamp_y( vec3 normal, float texture_height )
{
normal = normalize( normal );
return vec2( ( atan( normal.z, normal.x ) + skysphere_rotation ) / PI / 2.0 + 0.5, clamp(acos( normal.y ) / PI, 0.5 / texture_height, 1.0 - 0.5 / texture_height) );
}
vec3 sample_sky( vec3 normal )
{
vec2 polar = sphere_to_polar( normal );
return texture( tex_skysphere, polar ).rgb * exposure;
}
// Takes samples around the hemisphere, converts them to radiances via weighting and
// returns a normalized sum.
vec3 sample_irradiance_slow( vec3 normal, vec3 vertex_tangent )
{
float delta = 0.10;
vec3 up = abs( normal.y ) < 0.999 ? vec3( 0., 1., 0. ) : vec3( 0., 0., 1. );
vec3 tangent_x = normalize( cross( up, normal ) );
vec3 tangent_y = cross( normal, tangent_x );
int numIrradianceSamples = 0;
vec3 irradiance = vec3(0.);
for ( float phi = 0.; phi < 2. * PI ; phi += delta )
{
for ( float theta = 0.; theta < 0.5 * PI; theta += delta )
{
vec3 tangent_space = vec3(
sin( theta ) * cos( phi ),
sin( theta ) * sin( phi ),
cos( theta ) );
vec3 world_space = tangent_space.x * tangent_x + tangent_space.y + tangent_y + tangent_space.z * normal;
vec3 color = sample_sky( world_space );
irradiance += color * cos( theta ) * sin( theta );
numIrradianceSamples++;
}
}
irradiance = PI * irradiance / float( numIrradianceSamples );
return irradiance;
}
vec3 sample_irradiance_fast( vec3 normal, vec3 vertex_tangent )
{
// Sample the irradiance map if it exists, otherwise fall back to blurred reflection map.
if ( has_tex_skyenv )
{
vec2 polar = sphere_to_polar( normal );
return textureLod( tex_skyenv, polar, 0.0 ).rgb * exposure;
}
else
{
vec2 polar = sphere_to_polar( normal );
return textureLod( tex_skysphere, polar, 0.80 * skysphere_mip_count ).rgb * exposure;
}
}
vec3 specular_ibl( vec3 V, vec3 N, float roughness, vec3 fresnel )
{
// What we'd like to do here is take a LOT of skybox samples around the reflection
// vector R according to the BRDF lobe.
//
// Unfortunately it's not possible in real time so we use the following UE4 style approximations:
// 1. Integrate incoming light and BRDF separately ("split sum approximation")
// 2. Assume V = R = N so that we can just blur the skybox and sample that.
// 3. Bake the BRDF integral into a lookup texture so that it can be computed in constant time.
//
// Here we also simplify approximation #2 by using bilinear mipmaps with a magic formula instead
// of properly convolving it with a GGX lobe.
//
// For details, see Brian Karis, "Real Shading in Unreal Engine 4", 2013.
vec3 R = 2. * dot( V, N ) * N - V;
vec2 polar = sphere_to_polar( R );
// Map roughness from range [0, 1] into a mip LOD [0, skysphere_mip_count].
// The magic numbers were chosen empirically.
float mip = 0.9 * skysphere_mip_count * pow(roughness, 0.25 * BOOST_SPECULAR);
vec3 prefiltered = textureLod( tex_skysphere, polar, mip ).rgb * exposure;
float NdotV = dot( N, V );
// dot( N, V ) seems to produce negative values so we can try to stretch it a bit behind the silhouette
// to avoid black pixels.
if (USE_WRAPAROUND_SPECULAR)
{
NdotV = NdotV * 0.9 + 0.1;
}
NdotV = min(0.99, max(0.01, NdotV));
// A precomputed lookup table contains a scale and a bias term for specular intensity (called "fresnel" here).
// See equation (8) in Karis' course notes mentioned above.
vec2 envBRDF = texture( tex_brdf_lut, vec2(NdotV, 1.0-roughness) ).xy; // (NdotV,1-roughtness) for green top-left (NdotV,roughness) for green bottom-left
vec3 specular = prefiltered * (fresnel * envBRDF.x + vec3(envBRDF.y));
return specular;
}
#endif
vec3 sh_lighting(vec3 n) {
vec3 SHLightResult[9];
SHLightResult[0] = 0.282095f * u_coefficients_sh[0];
SHLightResult[1] = -0.488603f * u_coefficients_sh[1] * n.y;
SHLightResult[2] = 0.488603f * u_coefficients_sh[2] * n.z;
SHLightResult[3] = -0.488603f * u_coefficients_sh[3] * n.x;
SHLightResult[4] = 1.092548f * u_coefficients_sh[4] * n.x * n.y;
SHLightResult[5] = -1.092548f * u_coefficients_sh[5] * n.y * n.z;
SHLightResult[6] = 0.315392f * u_coefficients_sh[6] * (3.0f * n.z * n.z - 1.0f);
SHLightResult[7] = -1.092548f * u_coefficients_sh[7] * n.x * n.z;
SHLightResult[8] = 0.546274f * u_coefficients_sh[8] * (n.x * n.x - n.y * n.y);
vec3 result = vec3(0.0);
for (int i = 0; i < 9; ++i)
result += SHLightResult[i];
return result;
}
#include "brdf.glsl"
#include "sh_lighting.glsl"
#ifdef LIGHTMAP_BAKING
void main() {

View File

@ -0,0 +1,16 @@
vec3 sh_lighting(vec3 n) {
vec3 SHLightResult[9];
SHLightResult[0] = 0.282095f * u_coefficients_sh[0];
SHLightResult[1] = -0.488603f * u_coefficients_sh[1] * n.y;
SHLightResult[2] = 0.488603f * u_coefficients_sh[2] * n.z;
SHLightResult[3] = -0.488603f * u_coefficients_sh[3] * n.x;
SHLightResult[4] = 1.092548f * u_coefficients_sh[4] * n.x * n.y;
SHLightResult[5] = -1.092548f * u_coefficients_sh[5] * n.y * n.z;
SHLightResult[6] = 0.315392f * u_coefficients_sh[6] * (3.0f * n.z * n.z - 1.0f);
SHLightResult[7] = -1.092548f * u_coefficients_sh[7] * n.x * n.z;
SHLightResult[8] = 0.546274f * u_coefficients_sh[8] * (n.x * n.x - n.y * n.y);
vec3 result = vec3(0.0);
for (int i = 0; i < 9; ++i)
result += SHLightResult[i];
return result;
}

View File

@ -0,0 +1,112 @@
// uniform mat4 view = mat4(1.0);
uniform vec3 lightPos; /// set:1,1,1
uniform float doTexture; /// set:1
#ifdef VSMCUBE
uniform samplerCube shadowMap; // VSMCUBE
#else
uniform sampler2D shadowMap; // !VSMCUBE
#endif
struct light {
vec3 position; // world-space
vec4 diffuse;
vec4 specular;
float constantAttenuation, linearAttenuation, quadraticAttenuation;
};
light light0 = light(
vec3(1,1,1), // lightPos
vec4(1,1,1,1), // diffuse
vec4(1,1,1,1), // specular
1.0, 0.0, 0.0 // attenuation (const, linear, quad)
);
// From http://fabiensanglard.net/shadowmappingVSM/index.php
#ifdef VSMCUBE
float chebyshevUpperBound(float distance, vec3 dir) {
distance = distance/20 ;
vec2 moments = texture(shadowMap, dir).rg;
#else
float chebyshevUpperBound(float distance, vec4 scPostW) {
vec2 moments = texture(shadowMap,scPostW.xy).rg;
#endif
// Surface is fully lit. as the current fragment is before the light occluder
if (distance <= moments.x)
return 1.0;
// The fragment is either in shadow or penumbra. We now use chebyshev's upperBound to check
// How likely this pixel is to be lit (p_max)
float variance = moments.y - (moments.x*moments.x);
//variance = max(variance, 0.000002);
variance = max(variance, 0.00002);
float d = distance - moments.x;
float p_max = variance / (variance + d*d);
return p_max;
}
vec4 shadowmap(in vec4 vpeye, in vec4 vneye, in vec2 uv, in vec4 sc) {
#ifndef VSMCUBE
return vec4(1.);
#else
vec3 fragment = vec3(vpeye);
vec3 normal = vec3(normalize(vneye));
vec3 viewDir = normalize(-fragment);
// Lighting
// Convert to eye-space
vec3 light = vec3(view * vec4(light0.position, 1.0));
#ifdef VSMCUBE
// Vectors
vec3 fragmentToLight = light - fragment;
vec3 fragmentToLightDir = normalize(fragmentToLight);
// Shadows
vec4 fragmentToLight_world = inverse(view) * vec4(fragmentToLightDir, 0.0);
float shadowFactor = chebyshevUpperBound(length(fragmentToLight), -fragmentToLight_world.xyz);
#else
// Shadows
vec4 scPostW = sc / sc.w;
scPostW = scPostW * 0.5 + 0.5;
float shadowFactor = 1.0; // Not in shadow
bool outsideShadowMap = sc.w <= 0.0f || (scPostW.x < 0 || scPostW.y < 0) || (scPostW.x >= 1 || scPostW.y >= 1);
if (!outsideShadowMap) {
shadowFactor = chebyshevUpperBound(scPostW.z, scPostW);
}
#endif
vec4 diffColor = vec4(1,1,1,1);
#ifdef VSMCUBE
if(doTexture != 0) diffColor = vec4(vec3(texture(shadowMap, -fragmentToLight_world.xyz).r), 1.0);
#else
if(doTexture != 0) diffColor = vec4(vec3(texture(shadowMap, vec2(uv.x, 1.0 - uv.y)).r), 1.0);
#endif
#if 1
vec3 positionToLight = light - fragment;
vec3 lightDir = normalize(positionToLight);
// Angle between fragment-normal and incoming light
float cosAngIncidence = dot(lightDir, normal);
cosAngIncidence = clamp(cosAngIncidence, 0, 1);
float attenuation = 1.0f;
attenuation = 1.0 / (light0.constantAttenuation + light0.linearAttenuation * length(positionToLight) + light0.quadraticAttenuation * pow(length(positionToLight),2));
vec4 diffuse = diffColor * light0.diffuse * cosAngIncidence * attenuation;
vec4 total_lighting;
total_lighting += vec4(0.1, 0.1, 0.1, 1.0) * diffColor; // Ambient
total_lighting += diffuse * shadowFactor; // Diffuse
#else
vec4 total_lighting = diffColor;
#endif
return vec4(clamp(vec3(total_lighting), 0., 1.), 1.0);
#endif
}

View File

@ -1,124 +1,11 @@
#ifndef MAX_BONES
#define MAX_BONES 110
#endif
uniform mat3x4 vsBoneMatrix[MAX_BONES];
uniform bool SKINNED; /// set:0
uniform mat4 M; // RIM
uniform mat4 VP;
uniform mat4 P;
uniform vec3 u_cam_dir;
uniform int u_billboard;
#if 0
// Fetch blend channels from all attached blend deformers.
for (size_t di = 0; di < mesh->blend_deformers.count; di++) {
ufbx_blend_deformer *deformer = mesh->blend_deformers.data[di];
for (size_t ci = 0; ci < deformer->channels.count; ci++) {
ufbx_blend_channel *chan = deformer->channels.data[ci];
if (chan->keyframes.count == 0) continue;
if (num_blend_shapes < MAX_BLEND_SHAPES) {
blend_channels[num_blend_shapes] = chan;
vmesh->blend_channel_indices[num_blend_shapes] = (int32_t)chan->typed_id;
num_blend_shapes++;
}
}
}
if (num_blend_shapes > 0) {
vmesh->blend_shape_image = pack_blend_channels_to_image(mesh, blend_channels, num_blend_shapes);
vmesh->num_blend_shapes = num_blend_shapes;
}
ubo.f_num_blend_shapes = (float)mesh->num_blend_shapes;
for (size_t i = 0; i < mesh->num_blend_shapes; i++) {
ubo.blend_weights[i] = view->scene.blend_channels[mesh->blend_channel_indices[i]].weight;
}
sg_image blend_shapes = mesh->num_blend_shapes > 0 ? mesh->blend_shape_image : view->empty_blend_shape_image;
#endif
// for blendshapes
#ifndef MAX_BLENDSHAPES
#define MAX_BLENDSHAPES 16
#endif
uniform vec4 blend_weights[MAX_BLENDSHAPES]; // @todo: implement me
uniform float f_num_blend_shapes; // @todo: implement me
uniform MEDIUMP sampler2DArray blend_shapes; // @todo: implement me
in vec3 att_position; // @todo: reorder ass2iqe to emit p3 n3 u2 t3 b3 c4B i4 w4 instead
in vec2 att_texcoord;
in vec3 att_normal;
in vec4 att_tangent; // vec3 + bi sign
in mat4 att_instanced_matrix; // for instanced rendering
in vec4 att_indexes; // @fixme: gles might use ivec4 instead?
in vec4 att_weights; // @todo: downgrade from float to byte
in float att_vertexindex; // for blendshapes
in vec4 att_color;
in vec3 att_bitangent; // @todo: remove? also, ass2iqe might output this
in vec2 att_texcoord2;
out vec4 v_color;
out vec3 v_position, v_position_ws;
out vec3 v_normal, v_normal_ws;
out vec2 v_texcoord, v_texcoord2;
out vec3 v_tangent;
out vec3 v_binormal;
out vec3 v_viewpos;
out vec3 v_to_camera;
out vec3 v_vertcolor;
#include "model_vs.glsl"
// lights
#include "light.glsl"
// shadow
uniform mat4 model, view, inv_view;
uniform mat4 cameraToShadowProjector;
out vec4 vneye;
out vec4 vpeye;
out vec4 sc;
void do_shadow() {
vneye = view * model * vec4(att_normal, 0.0f);
vpeye = view * model * vec4(att_position, 1.0);
sc = cameraToShadowProjector * model * vec4(att_position, 1.0f);
}
// blendshapes
vec3 evaluate_blend_shape(int vertex_index) {
ivec2 coord = ivec2(vertex_index & (2048 - 1), vertex_index >> 11);
int num_blend_shapes = int(f_num_blend_shapes);
vec3 offset = vec3(0.0);
for (int i = 0; i < num_blend_shapes; i++) {
vec4 packedw = blend_weights[i >> 2];
float weight = packedw[i & 3];
offset += weight * texelFetch(blend_shapes, ivec3(coord, i), 0).xyz;
}
return offset;
}
void main() {
vec3 objPos;
if(!SKINNED) {
objPos = att_position;
v_normal = att_normal;
} else {
mat3x4 m = vsBoneMatrix[int(att_indexes.x)] * att_weights.x;
m += vsBoneMatrix[int(att_indexes.y)] * att_weights.y;
m += vsBoneMatrix[int(att_indexes.z)] * att_weights.z;
m += vsBoneMatrix[int(att_indexes.w)] * att_weights.w;
objPos = vec4(att_position, 1.0) * m;
vec3 objPos = get_object_pos();
// blendshapes
// objPos += evaluate_blend_shape(int(att_vertexindex));
v_normal = vec4(att_normal, 0.0) * m;
//@todo: tangents
}
// vec3 tangent = att_tangent.xyz;
// vec3 bitangent = cross(att_normal, att_tangent.xyz) * att_tangent.w;
v_normal_ws = normalize(vec3(att_instanced_matrix * vec4(v_normal, 0.))); // normal to world/model space
v_normal = normalize(v_normal);
v_position = att_position;
@ -129,36 +16,11 @@ void main() {
mat4 l_model = att_instanced_matrix;
v_position_ws = (l_model * vec4( objPos, 1.0 )).xyz;
if(u_billboard > 0) {
vec3 cameraPosition = -transpose(mat3(view)) * view[3].xyz;
vec3 lookDir = normalize(cameraPosition - v_position_ws);
setup_billboards(modelView, l_model);
vec3 up = vec3(modelView[0][1], modelView[1][1], modelView[2][1]);
vec3 right = normalize(cross(up, lookDir));
up = cross(lookDir, right);
vec3 scale;
scale.x = length(vec3(l_model[0]));
scale.y = length(vec3(l_model[1]));
scale.z = length(vec3(l_model[2]));
// scale.x *= sign(l_model[0][0]);
// scale.y *= sign(l_model[1][1]);
// scale.z *= sign(l_model[2][2]);
mat4 billboardRotation = mat4(
vec4(right * scale.x, 0.0),
vec4(-up * scale.y, 0.0),
vec4(-lookDir * scale.z, 0.0),
vec4(0.0, 0.0, 0.0, 1.0)
);
if((u_billboard & 0x4) != 0) l_model[0] = billboardRotation[0];
if((u_billboard & 0x2) != 0) l_model[1] = billboardRotation[1];
if((u_billboard & 0x1) != 0) l_model[2] = billboardRotation[2];
modelView = view * l_model;
}
v_position_ws = (l_model * vec4( objPos, 1.0 )).xyz;
v_tangent = normalize(mat3(att_instanced_matrix) * att_tangent.xyz);
#if 0
// compute tangent T and bitangent B
vec3 Q1 = dFdx(att_position);
@ -172,7 +34,9 @@ void main() {
#else
vec3 binormal = cross(att_normal, att_tangent.xyz) * att_tangent.w;
#endif
v_binormal = normalize(mat3(att_instanced_matrix) * binormal);
vec4 finalPos = modelView * vec4( objPos, 1.0 );
vec3 to_camera = normalize( -finalPos.xyz );
v_to_camera = mat3( inv_view ) * to_camera;