lmap boundary fixes + opts

main
Dominik Madarász 2023-12-01 16:33:57 +01:00
parent b802036590
commit 17dae10084
2 changed files with 198 additions and 159 deletions

View File

@ -356,6 +356,7 @@ struct lm_context
{ {
GLuint texture; GLuint texture;
lm_ivec2 writePosition; lm_ivec2 writePosition;
int width, height;
lm_ivec2 *toLightmapLocation; lm_ivec2 *toLightmapLocation;
} storage; } storage;
} hemisphere; } hemisphere;
@ -616,10 +617,72 @@ static lm_bool lm_findNextConservativeTriangleRasterizerPosition(lm_context *ctx
return lm_findFirstConservativeTriangleRasterizerPosition(ctx); return lm_findFirstConservativeTriangleRasterizerPosition(ctx);
} }
static void lm_integrateHemisphereBatch(lm_context *ctx) static void lm_writeResultsToLightmap(lm_context* ctx)
{
// do the GPU->CPU transfer of downsampled hemispheres
float* hemi = (float*)LM_CALLOC(ctx->hemisphere.storage.width * ctx->hemisphere.storage.height, 4 * sizeof(float));
glBindTexture(GL_TEXTURE_2D, ctx->hemisphere.storage.texture);
glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_FLOAT, hemi);
// write results to lightmap texture
for (int y = 0; y < ctx->hemisphere.storage.writePosition.y + (int)ctx->hemisphere.fbHemiCountY; y++)
{
for (int x = 0; x < ctx->hemisphere.storage.width; x++)
{
int index = y * ctx->hemisphere.storage.width + x;
lm_ivec2 lmUV = ctx->hemisphere.storage.toLightmapLocation[index];
if (lmUV.x >= 0)
{
float* c = hemi + index * 4;
float validity = c[3];
float* lm = ctx->lightmap.data + (lmUV.y * ctx->lightmap.width + lmUV.x) * ctx->lightmap.channels;
if (!lm[0] && validity > 0.9)
{
float scale = 1.0f / validity;
switch (ctx->lightmap.channels)
{
case 1:
lm[0] = lm_maxf((c[0] + c[1] + c[2]) * scale / 3.0f, FLT_MIN);
break;
case 2:
lm[0] = lm_maxf((c[0] + c[1] + c[2]) * scale / 3.0f, FLT_MIN);
lm[1] = 1.0f; // do we want to support this format?
break;
case 3:
lm[0] = lm_maxf(c[0] * scale, FLT_MIN);
lm[1] = lm_maxf(c[1] * scale, FLT_MIN);
lm[2] = lm_maxf(c[2] * scale, FLT_MIN);
break;
case 4:
lm[0] = lm_maxf(c[0] * scale, FLT_MIN);
lm[1] = lm_maxf(c[1] * scale, FLT_MIN);
lm[2] = lm_maxf(c[2] * scale, FLT_MIN);
lm[3] = 1.0f;
break;
default:
assert(LM_FALSE);
break;
}
#ifdef LM_DEBUG_INTERPOLATION
// set sampled pixel to red in debug output
ctx->lightmap.debug[(lmUV.y * ctx->lightmap.width + lmUV.x) * 3 + 0] = 255;
#endif
}
}
ctx->hemisphere.storage.toLightmapLocation[index].x = -1; // reset
}
}
LM_FREE(hemi);
ctx->hemisphere.storage.writePosition = lm_i2(0, 0);
}
static lm_bool lm_integrateHemisphereBatch(lm_context *ctx)
{ {
if (!ctx->hemisphere.fbHemiIndex) if (!ctx->hemisphere.fbHemiIndex)
return; // nothing to do return LM_FALSE; // nothing to do
glDisable(GL_DEPTH_TEST); glDisable(GL_DEPTH_TEST);
glBindVertexArray(ctx->hemisphere.vao); glBindVertexArray(ctx->hemisphere.vao);
@ -687,83 +750,30 @@ static void lm_integrateHemisphereBatch(lm_context *ctx)
{ {
int sx = ctx->hemisphere.storage.writePosition.x + x; int sx = ctx->hemisphere.storage.writePosition.x + x;
unsigned int hemiIndex = y * ctx->hemisphere.fbHemiCountX + x; unsigned int hemiIndex = y * ctx->hemisphere.fbHemiCountX + x;
if (hemiIndex >= ctx->hemisphere.fbHemiIndex) ctx->hemisphere.storage.toLightmapLocation[sy * ctx->hemisphere.storage.width + sx] =
ctx->hemisphere.storage.toLightmapLocation[sy * ctx->lightmap.width + sx] = lm_i2(-1, -1); (hemiIndex >= ctx->hemisphere.fbHemiIndex) ?
else lm_i2(-1, -1) :
ctx->hemisphere.storage.toLightmapLocation[sy * ctx->lightmap.width + sx] = ctx->hemisphere.fbHemiToLightmapLocation[hemiIndex]; ctx->hemisphere.fbHemiToLightmapLocation[hemiIndex];
} }
} }
lm_bool needWrite = LM_TRUE;
// advance storage texture write position // advance storage texture write position
ctx->hemisphere.storage.writePosition.x += ctx->hemisphere.fbHemiCountX; ctx->hemisphere.storage.writePosition.x += ctx->hemisphere.fbHemiCountX;
if (ctx->hemisphere.storage.writePosition.x + (int)ctx->hemisphere.fbHemiCountX > ctx->lightmap.width) if (ctx->hemisphere.storage.writePosition.x + (int)ctx->hemisphere.fbHemiCountX > ctx->hemisphere.storage.width)
{ {
ctx->hemisphere.storage.writePosition.x = 0; ctx->hemisphere.storage.writePosition.x = 0;
// storage is full
if (ctx->hemisphere.storage.writePosition.y + (int)ctx->hemisphere.fbHemiCountY >= ctx->hemisphere.storage.height) {
lm_writeResultsToLightmap(ctx); // read storage data from gpu memory and write it to the lightmap
needWrite = LM_FALSE;
} else {
ctx->hemisphere.storage.writePosition.y += ctx->hemisphere.fbHemiCountY; ctx->hemisphere.storage.writePosition.y += ctx->hemisphere.fbHemiCountY;
assert(ctx->hemisphere.storage.writePosition.y + (int)ctx->hemisphere.fbHemiCountY < ctx->lightmap.height); }
} }
ctx->hemisphere.fbHemiIndex = 0; ctx->hemisphere.fbHemiIndex = 0;
} return needWrite;
static void lm_writeResultsToLightmap(lm_context *ctx)
{
// do the GPU->CPU transfer of downsampled hemispheres
float *hemi = (float*)LM_CALLOC(ctx->lightmap.width * ctx->lightmap.height, 4 * sizeof(float));
glBindTexture(GL_TEXTURE_2D, ctx->hemisphere.storage.texture);
glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_FLOAT, hemi);
// write results to lightmap texture
for (int y = 0; y < ctx->hemisphere.storage.writePosition.y + (int)ctx->hemisphere.fbHemiCountY; y++)
{
for (int x = 0; x < ctx->lightmap.width; x++)
{
lm_ivec2 lmUV = ctx->hemisphere.storage.toLightmapLocation[y * ctx->lightmap.width + x];
if (lmUV.x >= 0)
{
float *c = hemi + (y * ctx->lightmap.width + x) * 4;
float validity = c[3];
float *lm = ctx->lightmap.data + (lmUV.y * ctx->lightmap.width + lmUV.x) * ctx->lightmap.channels;
if (!lm[0] && validity > 0.9)
{
float scale = 1.0f / validity;
switch (ctx->lightmap.channels)
{
case 1:
lm[0] = lm_maxf((c[0] + c[1] + c[2]) * scale / 3.0f, FLT_MIN);
break;
case 2:
lm[0] = lm_maxf((c[0] + c[1] + c[2]) * scale / 3.0f, FLT_MIN);
lm[1] = 1.0f; // do we want to support this format?
break;
case 3:
lm[0] = lm_maxf(c[0] * scale, FLT_MIN);
lm[1] = lm_maxf(c[1] * scale, FLT_MIN);
lm[2] = lm_maxf(c[2] * scale, FLT_MIN);
break;
case 4:
lm[0] = lm_maxf(c[0] * scale, FLT_MIN);
lm[1] = lm_maxf(c[1] * scale, FLT_MIN);
lm[2] = lm_maxf(c[2] * scale, FLT_MIN);
lm[3] = 1.0f;
break;
default:
assert(LM_FALSE);
break;
}
#ifdef LM_DEBUG_INTERPOLATION
// set sampled pixel to red in debug output
ctx->lightmap.debug[(lmUV.y * ctx->lightmap.width + lmUV.x) * 3 + 0] = 255;
#endif
}
}
ctx->hemisphere.storage.toLightmapLocation[y * ctx->lightmap.width + x].x = -1; // reset
}
}
LM_FREE(hemi);
ctx->hemisphere.storage.writePosition = lm_i2(0, 0);
} }
static void lm_setView( static void lm_setView(
@ -1040,6 +1050,7 @@ static void lm_setMeshPosition(lm_context *ctx, unsigned int indicesTriangleBase
// TODO: signed formats // TODO: signed formats
case LM_FLOAT: { case LM_FLOAT: {
n = *(const lm_vec3*)nPtr; n = *(const lm_vec3*)nPtr;
n = lm_normalize3(lm_transformNormal(ctx->mesh.normalMatrix, n));
} break; } break;
case LM_NONE: { case LM_NONE: {
n = flatNormal; n = flatNormal;
@ -1048,7 +1059,7 @@ static void lm_setMeshPosition(lm_context *ctx, unsigned int indicesTriangleBase
assert(LM_FALSE); assert(LM_FALSE);
} break; } break;
} }
ctx->meshPosition.triangle.n[i] = lm_normalize3(lm_transformNormal(ctx->mesh.normalMatrix, n)); ctx->meshPosition.triangle.n[i] = n;
} }
// calculate area of interest (on lightmap) for conservative rasterization // calculate area of interest (on lightmap) for conservative rasterization
@ -1405,16 +1416,13 @@ void lmSetHemisphereWeights(lm_context *ctx, lm_weight_func f, void *userdata)
LM_FREE(weights); LM_FREE(weights);
} }
void lmSetTargetLightmap(lm_context *ctx, float *outLightmap, int w, int h, int c) static void lm_initStorage(lm_context *ctx, int w, int h)
{ {
ctx->lightmap.data = outLightmap;
ctx->lightmap.width = w;
ctx->lightmap.height = h;
ctx->lightmap.channels = c;
// allocate storage texture // allocate storage texture
if (!ctx->hemisphere.storage.texture) if (!ctx->hemisphere.storage.texture)
glGenTextures(1, &ctx->hemisphere.storage.texture); glGenTextures(1, &ctx->hemisphere.storage.texture);
ctx->hemisphere.storage.width = w;
ctx->hemisphere.storage.height = h;
glBindTexture(GL_TEXTURE_2D, ctx->hemisphere.storage.texture); glBindTexture(GL_TEXTURE_2D, ctx->hemisphere.storage.texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
@ -1429,6 +1437,18 @@ void lmSetTargetLightmap(lm_context *ctx, float *outLightmap, int w, int h, int
// invalidate all positions // invalidate all positions
for (int i = 0; i < w * h; i++) for (int i = 0; i < w * h; i++)
ctx->hemisphere.storage.toLightmapLocation[i].x = -1; ctx->hemisphere.storage.toLightmapLocation[i].x = -1;
}
void lmSetTargetLightmap(lm_context *ctx, float *outLightmap, int w, int h, int c)
{
ctx->lightmap.data = outLightmap;
ctx->lightmap.width = w;
ctx->lightmap.height = h;
ctx->lightmap.channels = c;
unsigned int sw = w > ctx->hemisphere.fbHemiCountX ? w : ctx->hemisphere.fbHemiCountX;
unsigned int sh = h > ctx->hemisphere.fbHemiCountY ? h : ctx->hemisphere.fbHemiCountY;
lm_initStorage(ctx, sw, sh);
#ifdef LM_DEBUG_INTERPOLATION #ifdef LM_DEBUG_INTERPOLATION
if (ctx->lightmap.debug) if (ctx->lightmap.debug)
@ -1482,7 +1502,7 @@ lm_bool lmBegin(lm_context *ctx, int* outViewport4, float* outView4x4, float* ou
} }
else else
{ // ...and there are no triangles left: finish { // ...and there are no triangles left: finish
lm_integrateHemisphereBatch(ctx); // integrate and store last batch if (lm_integrateHemisphereBatch(ctx)) // integrate and store last batch
lm_writeResultsToLightmap(ctx); // read storage data from gpu memory and write it to the lightmap lm_writeResultsToLightmap(ctx); // read storage data from gpu memory and write it to the lightmap
if (++ctx->meshPosition.pass == ctx->meshPosition.passCount) if (++ctx->meshPosition.pass == ctx->meshPosition.passCount)

View File

@ -329403,6 +329403,7 @@ struct lm_context
{ {
GLuint texture; GLuint texture;
lm_ivec2 writePosition; lm_ivec2 writePosition;
int width, height;
lm_ivec2 *toLightmapLocation; lm_ivec2 *toLightmapLocation;
} storage; } storage;
} hemisphere; } hemisphere;
@ -329663,10 +329664,72 @@ static lm_bool lm_findNextConservativeTriangleRasterizerPosition(lm_context *ctx
return lm_findFirstConservativeTriangleRasterizerPosition(ctx); return lm_findFirstConservativeTriangleRasterizerPosition(ctx);
} }
static void lm_integrateHemisphereBatch(lm_context *ctx) static void lm_writeResultsToLightmap(lm_context* ctx)
{
// do the GPU->CPU transfer of downsampled hemispheres
float* hemi = (float*)LM_CALLOC(ctx->hemisphere.storage.width * ctx->hemisphere.storage.height, 4 * sizeof(float));
glBindTexture(GL_TEXTURE_2D, ctx->hemisphere.storage.texture);
glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_FLOAT, hemi);
// write results to lightmap texture
for (int y = 0; y < ctx->hemisphere.storage.writePosition.y + (int)ctx->hemisphere.fbHemiCountY; y++)
{
for (int x = 0; x < ctx->hemisphere.storage.width; x++)
{
int index = y * ctx->hemisphere.storage.width + x;
lm_ivec2 lmUV = ctx->hemisphere.storage.toLightmapLocation[index];
if (lmUV.x >= 0)
{
float* c = hemi + index * 4;
float validity = c[3];
float* lm = ctx->lightmap.data + (lmUV.y * ctx->lightmap.width + lmUV.x) * ctx->lightmap.channels;
if (!lm[0] && validity > 0.9)
{
float scale = 1.0f / validity;
switch (ctx->lightmap.channels)
{
case 1:
lm[0] = lm_maxf((c[0] + c[1] + c[2]) * scale / 3.0f, FLT_MIN);
break;
case 2:
lm[0] = lm_maxf((c[0] + c[1] + c[2]) * scale / 3.0f, FLT_MIN);
lm[1] = 1.0f; // do we want to support this format?
break;
case 3:
lm[0] = lm_maxf(c[0] * scale, FLT_MIN);
lm[1] = lm_maxf(c[1] * scale, FLT_MIN);
lm[2] = lm_maxf(c[2] * scale, FLT_MIN);
break;
case 4:
lm[0] = lm_maxf(c[0] * scale, FLT_MIN);
lm[1] = lm_maxf(c[1] * scale, FLT_MIN);
lm[2] = lm_maxf(c[2] * scale, FLT_MIN);
lm[3] = 1.0f;
break;
default:
assert(LM_FALSE);
break;
}
#ifdef LM_DEBUG_INTERPOLATION
// set sampled pixel to red in debug output
ctx->lightmap.debug[(lmUV.y * ctx->lightmap.width + lmUV.x) * 3 + 0] = 255;
#endif
}
}
ctx->hemisphere.storage.toLightmapLocation[index].x = -1; // reset
}
}
LM_FREE(hemi);
ctx->hemisphere.storage.writePosition = lm_i2(0, 0);
}
static lm_bool lm_integrateHemisphereBatch(lm_context *ctx)
{ {
if (!ctx->hemisphere.fbHemiIndex) if (!ctx->hemisphere.fbHemiIndex)
return; // nothing to do return LM_FALSE; // nothing to do
glDisable(GL_DEPTH_TEST); glDisable(GL_DEPTH_TEST);
glBindVertexArray(ctx->hemisphere.vao); glBindVertexArray(ctx->hemisphere.vao);
@ -329734,83 +329797,30 @@ static void lm_integrateHemisphereBatch(lm_context *ctx)
{ {
int sx = ctx->hemisphere.storage.writePosition.x + x; int sx = ctx->hemisphere.storage.writePosition.x + x;
unsigned int hemiIndex = y * ctx->hemisphere.fbHemiCountX + x; unsigned int hemiIndex = y * ctx->hemisphere.fbHemiCountX + x;
if (hemiIndex >= ctx->hemisphere.fbHemiIndex) ctx->hemisphere.storage.toLightmapLocation[sy * ctx->hemisphere.storage.width + sx] =
ctx->hemisphere.storage.toLightmapLocation[sy * ctx->lightmap.width + sx] = lm_i2(-1, -1); (hemiIndex >= ctx->hemisphere.fbHemiIndex) ?
else lm_i2(-1, -1) :
ctx->hemisphere.storage.toLightmapLocation[sy * ctx->lightmap.width + sx] = ctx->hemisphere.fbHemiToLightmapLocation[hemiIndex]; ctx->hemisphere.fbHemiToLightmapLocation[hemiIndex];
} }
} }
lm_bool needWrite = LM_TRUE;
// advance storage texture write position // advance storage texture write position
ctx->hemisphere.storage.writePosition.x += ctx->hemisphere.fbHemiCountX; ctx->hemisphere.storage.writePosition.x += ctx->hemisphere.fbHemiCountX;
if (ctx->hemisphere.storage.writePosition.x + (int)ctx->hemisphere.fbHemiCountX > ctx->lightmap.width) if (ctx->hemisphere.storage.writePosition.x + (int)ctx->hemisphere.fbHemiCountX > ctx->hemisphere.storage.width)
{ {
ctx->hemisphere.storage.writePosition.x = 0; ctx->hemisphere.storage.writePosition.x = 0;
// storage is full
if (ctx->hemisphere.storage.writePosition.y + (int)ctx->hemisphere.fbHemiCountY >= ctx->hemisphere.storage.height) {
lm_writeResultsToLightmap(ctx); // read storage data from gpu memory and write it to the lightmap
needWrite = LM_FALSE;
} else {
ctx->hemisphere.storage.writePosition.y += ctx->hemisphere.fbHemiCountY; ctx->hemisphere.storage.writePosition.y += ctx->hemisphere.fbHemiCountY;
assert(ctx->hemisphere.storage.writePosition.y + (int)ctx->hemisphere.fbHemiCountY < ctx->lightmap.height); }
} }
ctx->hemisphere.fbHemiIndex = 0; ctx->hemisphere.fbHemiIndex = 0;
} return needWrite;
static void lm_writeResultsToLightmap(lm_context *ctx)
{
// do the GPU->CPU transfer of downsampled hemispheres
float *hemi = (float*)LM_CALLOC(ctx->lightmap.width * ctx->lightmap.height, 4 * sizeof(float));
glBindTexture(GL_TEXTURE_2D, ctx->hemisphere.storage.texture);
glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_FLOAT, hemi);
// write results to lightmap texture
for (int y = 0; y < ctx->hemisphere.storage.writePosition.y + (int)ctx->hemisphere.fbHemiCountY; y++)
{
for (int x = 0; x < ctx->lightmap.width; x++)
{
lm_ivec2 lmUV = ctx->hemisphere.storage.toLightmapLocation[y * ctx->lightmap.width + x];
if (lmUV.x >= 0)
{
float *c = hemi + (y * ctx->lightmap.width + x) * 4;
float validity = c[3];
float *lm = ctx->lightmap.data + (lmUV.y * ctx->lightmap.width + lmUV.x) * ctx->lightmap.channels;
if (!lm[0] && validity > 0.9)
{
float scale = 1.0f / validity;
switch (ctx->lightmap.channels)
{
case 1:
lm[0] = lm_maxf((c[0] + c[1] + c[2]) * scale / 3.0f, FLT_MIN);
break;
case 2:
lm[0] = lm_maxf((c[0] + c[1] + c[2]) * scale / 3.0f, FLT_MIN);
lm[1] = 1.0f; // do we want to support this format?
break;
case 3:
lm[0] = lm_maxf(c[0] * scale, FLT_MIN);
lm[1] = lm_maxf(c[1] * scale, FLT_MIN);
lm[2] = lm_maxf(c[2] * scale, FLT_MIN);
break;
case 4:
lm[0] = lm_maxf(c[0] * scale, FLT_MIN);
lm[1] = lm_maxf(c[1] * scale, FLT_MIN);
lm[2] = lm_maxf(c[2] * scale, FLT_MIN);
lm[3] = 1.0f;
break;
default:
assert(LM_FALSE);
break;
}
#ifdef LM_DEBUG_INTERPOLATION
// set sampled pixel to red in debug output
ctx->lightmap.debug[(lmUV.y * ctx->lightmap.width + lmUV.x) * 3 + 0] = 255;
#endif
}
}
ctx->hemisphere.storage.toLightmapLocation[y * ctx->lightmap.width + x].x = -1; // reset
}
}
LM_FREE(hemi);
ctx->hemisphere.storage.writePosition = lm_i2(0, 0);
} }
static void lm_setView( static void lm_setView(
@ -330087,6 +330097,7 @@ static void lm_setMeshPosition(lm_context *ctx, unsigned int indicesTriangleBase
// TODO: signed formats // TODO: signed formats
case LM_FLOAT: { case LM_FLOAT: {
n = *(const lm_vec3*)nPtr; n = *(const lm_vec3*)nPtr;
n = lm_normalize3(lm_transformNormal(ctx->mesh.normalMatrix, n));
} break; } break;
case LM_NONE: { case LM_NONE: {
n = flatNormal; n = flatNormal;
@ -330095,7 +330106,7 @@ static void lm_setMeshPosition(lm_context *ctx, unsigned int indicesTriangleBase
assert(LM_FALSE); assert(LM_FALSE);
} break; } break;
} }
ctx->meshPosition.triangle.n[i] = lm_normalize3(lm_transformNormal(ctx->mesh.normalMatrix, n)); ctx->meshPosition.triangle.n[i] = n;
} }
// calculate area of interest (on lightmap) for conservative rasterization // calculate area of interest (on lightmap) for conservative rasterization
@ -330452,16 +330463,13 @@ void lmSetHemisphereWeights(lm_context *ctx, lm_weight_func f, void *userdata)
LM_FREE(weights); LM_FREE(weights);
} }
void lmSetTargetLightmap(lm_context *ctx, float *outLightmap, int w, int h, int c) static void lm_initStorage(lm_context *ctx, int w, int h)
{ {
ctx->lightmap.data = outLightmap;
ctx->lightmap.width = w;
ctx->lightmap.height = h;
ctx->lightmap.channels = c;
// allocate storage texture // allocate storage texture
if (!ctx->hemisphere.storage.texture) if (!ctx->hemisphere.storage.texture)
glGenTextures(1, &ctx->hemisphere.storage.texture); glGenTextures(1, &ctx->hemisphere.storage.texture);
ctx->hemisphere.storage.width = w;
ctx->hemisphere.storage.height = h;
glBindTexture(GL_TEXTURE_2D, ctx->hemisphere.storage.texture); glBindTexture(GL_TEXTURE_2D, ctx->hemisphere.storage.texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
@ -330476,6 +330484,18 @@ void lmSetTargetLightmap(lm_context *ctx, float *outLightmap, int w, int h, int
// invalidate all positions // invalidate all positions
for (int i = 0; i < w * h; i++) for (int i = 0; i < w * h; i++)
ctx->hemisphere.storage.toLightmapLocation[i].x = -1; ctx->hemisphere.storage.toLightmapLocation[i].x = -1;
}
void lmSetTargetLightmap(lm_context *ctx, float *outLightmap, int w, int h, int c)
{
ctx->lightmap.data = outLightmap;
ctx->lightmap.width = w;
ctx->lightmap.height = h;
ctx->lightmap.channels = c;
unsigned int sw = w > ctx->hemisphere.fbHemiCountX ? w : ctx->hemisphere.fbHemiCountX;
unsigned int sh = h > ctx->hemisphere.fbHemiCountY ? h : ctx->hemisphere.fbHemiCountY;
lm_initStorage(ctx, sw, sh);
#ifdef LM_DEBUG_INTERPOLATION #ifdef LM_DEBUG_INTERPOLATION
if (ctx->lightmap.debug) if (ctx->lightmap.debug)
@ -330529,7 +330549,7 @@ lm_bool lmBegin(lm_context *ctx, int* outViewport4, float* outView4x4, float* ou
} }
else else
{ // ...and there are no triangles left: finish { // ...and there are no triangles left: finish
lm_integrateHemisphereBatch(ctx); // integrate and store last batch if (lm_integrateHemisphereBatch(ctx)) // integrate and store last batch
lm_writeResultsToLightmap(ctx); // read storage data from gpu memory and write it to the lightmap lm_writeResultsToLightmap(ctx); // read storage data from gpu memory and write it to the lightmap
if (++ctx->meshPosition.pass == ctx->meshPosition.passCount) if (++ctx->meshPosition.pass == ctx->meshPosition.passCount)
@ -330805,7 +330825,6 @@ lm_bool lmImageSaveTGAf(const char *filename, const float *image, int w, int h,
return success; return success;
} }
#endif // LIGHTMAPPER_IMPLEMENTATION #endif // LIGHTMAPPER_IMPLEMENTATION#line 0
#line 0
#endif // V4K_3RD #endif // V4K_3RD