2024-08-12 14:55:46 +00:00
|
|
|
/* Progressive Mesh type Polygon Reduction Algorithm
|
|
|
|
*
|
|
|
|
* 1998: Original version by Stan Melax (c) 1998
|
|
|
|
* Permission to use any of this code wherever you want is granted..
|
|
|
|
* Although, please do acknowledge authorship if appropriate.
|
|
|
|
*
|
|
|
|
* 2014: Code style upgraded to be more consistent with graphics/gamedev conventions. Relicensed as MIT/PD.
|
|
|
|
* Stan Melax: "Yes, this code can be licensed with the same license as the original. That should be fine."
|
|
|
|
*
|
|
|
|
* 2020: C version by Cloud Wu (c) 2020. Licensed as MIT/PD.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static inline void array_find_and_remove(array(int) arr, int v) {
|
|
|
|
for( int i = 0, end = array_count(arr); i < end; i++ )
|
|
|
|
if( arr[i] == v ) { array_erase_fast(arr, i); --end; break; }
|
|
|
|
}
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
struct triangle_n {
|
|
|
|
int vertex[3]; // the 3 points (id) that make this tri
|
|
|
|
vec3 normal; // unit vector othogonal to this face
|
|
|
|
};
|
|
|
|
|
|
|
|
struct vertex {
|
|
|
|
vec3 position; // location of point in euclidean space
|
|
|
|
array(int) neighbor; // adjacent vertices
|
|
|
|
array(int) face; // adjacent triangles
|
|
|
|
int id; // place of vertex in original Array
|
|
|
|
int collapse; // candidate vertex (id) for collapse
|
|
|
|
float objdist; // cached cost of collapsing edge
|
|
|
|
};
|
|
|
|
|
|
|
|
struct mesh {
|
|
|
|
struct vertex *v;
|
|
|
|
struct triangle_n *t;
|
|
|
|
int n_face;
|
|
|
|
int n_vertex;
|
|
|
|
};
|
|
|
|
|
|
|
|
// array
|
|
|
|
|
|
|
|
static inline struct vertex *Vertex(struct mesh *M, int id) { return M->v + id; }
|
|
|
|
static inline struct triangle_n *Triangle(struct mesh *M, int id) { return M->t + id; }
|
|
|
|
static inline struct triangle_n *Face(struct mesh *M, struct vertex *v, int idx) { return M->t + v->face[idx]; }
|
|
|
|
|
|
|
|
static void AddVertex(struct mesh *M, const float *v) {
|
|
|
|
int id = M->n_vertex++;
|
|
|
|
struct vertex * tmp = Vertex(M, id);
|
|
|
|
tmp->position = ptr3(v);
|
|
|
|
tmp->neighbor = NULL;
|
|
|
|
tmp->face = NULL;
|
|
|
|
tmp->id = id;
|
|
|
|
tmp->collapse = -1;
|
|
|
|
tmp->objdist = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void RemoveVertex(struct mesh *M, int id) {
|
|
|
|
struct vertex * v = Vertex(M, id);
|
|
|
|
ASSERT(v->id == id);
|
|
|
|
ASSERT(array_count(v->face) == 0);
|
|
|
|
for (int i=0;i<array_count(v->face);i++) {
|
|
|
|
struct vertex * nv = Vertex(M, v->face[i]);
|
|
|
|
array_find_and_remove(nv->neighbor, id);
|
|
|
|
}
|
|
|
|
v->id = -1; // invalid vertex id
|
|
|
|
array_free(v->neighbor);
|
|
|
|
array_free(v->face);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ComputeNormal(struct mesh *M, struct triangle_n *t) {
|
|
|
|
struct vertex * v0 = Vertex(M, t->vertex[0]);
|
|
|
|
struct vertex * v1 = Vertex(M, t->vertex[1]);
|
|
|
|
struct vertex * v2 = Vertex(M, t->vertex[2]);
|
|
|
|
vec3 a = sub3(v1->position, v0->position);
|
|
|
|
vec3 b = sub3(v2->position, v1->position);
|
|
|
|
t->normal = norm3(cross3(a,b));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void AddNeighbor(struct mesh *M, int vid, int id) {
|
|
|
|
struct vertex *v = Vertex(M, vid);
|
|
|
|
for (int i=0;i<array_count(v->neighbor);i++) {
|
|
|
|
if (v->neighbor[i] == id)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
array_push(v->neighbor, id);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void AddTriangle(struct mesh *M, const int v[3]) {
|
|
|
|
if (v[0] == v[1] || v[0] == v[2] || v[1] == v[2])
|
|
|
|
return;
|
|
|
|
ASSERT(v[0] < M->n_vertex);
|
|
|
|
ASSERT(v[1] < M->n_vertex);
|
|
|
|
ASSERT(v[2] < M->n_vertex);
|
|
|
|
int id = M->n_face++;
|
|
|
|
struct triangle_n * tmp = Triangle(M, id);
|
|
|
|
tmp->vertex[0] = v[0];
|
|
|
|
tmp->vertex[1] = v[1];
|
|
|
|
tmp->vertex[2] = v[2];
|
|
|
|
ComputeNormal(M, tmp);
|
|
|
|
|
|
|
|
for(int i=0;i<3;i++) {
|
|
|
|
struct vertex *obj = Vertex(M, v[i]);
|
|
|
|
array_push(obj->face, id);
|
|
|
|
}
|
|
|
|
|
|
|
|
AddNeighbor(M, v[0], v[1]);
|
|
|
|
AddNeighbor(M, v[0], v[2]);
|
|
|
|
AddNeighbor(M, v[1], v[0]);
|
|
|
|
AddNeighbor(M, v[1], v[2]);
|
|
|
|
AddNeighbor(M, v[2], v[0]);
|
|
|
|
AddNeighbor(M, v[2], v[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int HasVertex(struct triangle_n * t, int vid) {
|
|
|
|
return (t->vertex[0] == vid || t->vertex[1] == vid || t->vertex[2] == vid);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void RemoveIfNonNeighbor_(struct mesh *M, struct vertex *v, int id) {
|
|
|
|
for (int i=0;i<array_count(v->neighbor);i++) {
|
|
|
|
if (v->neighbor[i] == id) {
|
|
|
|
for (int j=0;j<array_count(v->face);j++) {
|
|
|
|
if (HasVertex(Face(M, v, j), id))
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// remove from neighbors
|
|
|
|
array_erase_fast(v->neighbor, i);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void RemoveIfNonNeighbor(struct mesh *M, struct vertex *v0, struct vertex *v1) {
|
|
|
|
if (v0 == NULL || v1 == NULL)
|
|
|
|
return;
|
|
|
|
RemoveIfNonNeighbor_(M, v0, v1->id);
|
|
|
|
RemoveIfNonNeighbor_(M, v1, v0->id);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void RemoveTriangle(struct mesh *M, int id) {
|
|
|
|
struct triangle_n * face = Triangle(M, id);
|
|
|
|
struct vertex * v[3];
|
|
|
|
for (int i=0;i<3;i++) {
|
|
|
|
v[i] = Vertex(M, face->vertex[i]);
|
|
|
|
if (v[i]->id < 0)
|
|
|
|
v[i] = NULL;
|
|
|
|
else {
|
|
|
|
array_find_and_remove(v[i]->face, id);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
RemoveIfNonNeighbor(M, v[0], v[1]);
|
|
|
|
RemoveIfNonNeighbor(M, v[1], v[2]);
|
|
|
|
RemoveIfNonNeighbor(M, v[2], v[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ReplaceVertex(struct mesh *M, int faceid, int oldid, int newid) {
|
|
|
|
struct triangle_n * face = Triangle(M, faceid);
|
|
|
|
ASSERT(oldid >=0 && newid >= 0);
|
|
|
|
ASSERT(HasVertex(face, oldid));
|
|
|
|
ASSERT(!HasVertex(face, newid));
|
|
|
|
if(oldid==face->vertex[0]){
|
|
|
|
face->vertex[0]=newid;
|
|
|
|
} else if(oldid==face->vertex[1]){
|
|
|
|
face->vertex[1]=newid;
|
|
|
|
} else {
|
|
|
|
face->vertex[2]=newid;
|
|
|
|
}
|
|
|
|
struct vertex *vold = Vertex(M, oldid);
|
|
|
|
struct vertex *vnew = Vertex(M, newid);
|
|
|
|
|
|
|
|
array_find_and_remove(vold->face, faceid);
|
|
|
|
array_push(vnew->face, faceid);
|
|
|
|
|
|
|
|
RemoveIfNonNeighbor(M, vold, Vertex(M, face->vertex[0]));
|
|
|
|
RemoveIfNonNeighbor(M, vold, Vertex(M, face->vertex[1]));
|
|
|
|
RemoveIfNonNeighbor(M, vold, Vertex(M, face->vertex[2]));
|
|
|
|
|
|
|
|
AddNeighbor(M, face->vertex[0], face->vertex[1]);
|
|
|
|
AddNeighbor(M, face->vertex[0], face->vertex[2]);
|
|
|
|
AddNeighbor(M, face->vertex[1], face->vertex[0]);
|
|
|
|
AddNeighbor(M, face->vertex[1], face->vertex[2]);
|
|
|
|
AddNeighbor(M, face->vertex[2], face->vertex[0]);
|
|
|
|
AddNeighbor(M, face->vertex[2], face->vertex[1]);
|
|
|
|
|
|
|
|
ComputeNormal(M, face);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void MeshInit(struct mesh *M, int vert_n, int tri_n) {
|
|
|
|
M->n_face = 0;
|
|
|
|
M->n_vertex = 0;
|
|
|
|
M->v = (struct vertex *)MALLOC(vert_n * sizeof(struct vertex));
|
|
|
|
M->t = (struct triangle_n *)MALLOC(tri_n * sizeof(struct triangle));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void MeshFree(struct mesh *M) {
|
|
|
|
FREE(M->v);
|
|
|
|
FREE(M->t);
|
|
|
|
}
|
|
|
|
|
|
|
|
static float ComputeEdgeCollapseCost(struct mesh *M, struct vertex *u, int vid) {
|
|
|
|
// if we collapse edge uv by moving u to v then how
|
|
|
|
// much different will the model change, i.e. how much "error".
|
|
|
|
// Texture, vertex normal, and border vertex code was removed
|
|
|
|
// to keep this demo as simple as possible.
|
|
|
|
// The method of determining cost was designed in order
|
|
|
|
// to exploit small and coplanar regions for
|
|
|
|
// effective polygon reduction.
|
|
|
|
// Is is possible to add some checks here to see if "folds"
|
|
|
|
// would be generated. i.e. normal of a remaining face gets
|
|
|
|
// flipped. I never seemed to run into this problem and
|
|
|
|
// therefore never added code to detect this case.
|
|
|
|
struct vertex *v = Vertex(M, vid);
|
|
|
|
vec3 tmp = sub3(v->position, u->position);
|
|
|
|
float edgelength = len3(tmp);
|
|
|
|
float curvature=0;
|
|
|
|
|
|
|
|
// find the "sides" triangles that are on the edge uv
|
|
|
|
array(int) sides = 0;
|
|
|
|
for (int i = 0; i<array_count(u->face); i++) {
|
|
|
|
if (HasVertex(Face(M, u, i), vid)) {
|
|
|
|
array_push(sides, u->face[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// use the triangle facing most away from the sides
|
|
|
|
// to determine our curvature term
|
|
|
|
for (int i = 0; i<array_count(u->face); i++) {
|
|
|
|
float mincurv=1; // curve for face i and closer side to it
|
|
|
|
for (int j = 0; j<array_count(sides); j++) {
|
|
|
|
float dotprod = dot3(Triangle(M, u->face[i])->normal,
|
|
|
|
Triangle(M, sides[j])->normal); // use dot product of face normals.
|
|
|
|
float t = (1-dotprod)/2.0f;
|
|
|
|
if (t < mincurv) {
|
|
|
|
mincurv = t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (mincurv > curvature)
|
|
|
|
curvature = mincurv;
|
|
|
|
}
|
|
|
|
array_free(sides);
|
|
|
|
// the more coplanar the lower the curvature term
|
|
|
|
return edgelength * curvature;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ComputeEdgeCostAtVertex(struct mesh *M, struct vertex *v) {
|
|
|
|
// compute the edge collapse cost for all edges that start
|
|
|
|
// from vertex v. Since we are only interested in reducing
|
|
|
|
// the object by selecting the min cost edge at each step, we
|
|
|
|
// only cache the cost of the least cost edge at this vertex
|
|
|
|
// (in member variable collapse) as well as the value of the
|
|
|
|
// cost (in member variable objdist).
|
|
|
|
if (array_count(v->neighbor) == 0) {
|
|
|
|
// v doesn't have neighbors so it costs nothing to collapse
|
|
|
|
v->collapse=-1;
|
|
|
|
v->objdist=-0.01f;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
v->objdist = 1000000;
|
|
|
|
v->collapse=-1;
|
|
|
|
// search all neighboring edges for "least cost" edge
|
|
|
|
for (int i = 0; i<array_count(v->neighbor); i++) {
|
|
|
|
float dist = ComputeEdgeCollapseCost(M, v, v->neighbor[i]);
|
|
|
|
if(dist<v->objdist) {
|
|
|
|
v->collapse=v->neighbor[i]; // candidate for edge collapse
|
|
|
|
v->objdist=dist; // cost of the collapse
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ComputeAllEdgeCollapseCosts(struct mesh *M) {
|
|
|
|
// For all the edges, compute the difference it would make
|
|
|
|
// to the model if it was collapsed. The least of these
|
|
|
|
// per vertex is cached in each vertex object.
|
|
|
|
for (int i = 0; i<M->n_vertex; i++) {
|
|
|
|
ComputeEdgeCostAtVertex(M, Vertex(M, i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void Collapse(struct mesh *M, int uid, int vid) {
|
|
|
|
// Collapse the edge uv by moving vertex u onto v
|
|
|
|
// Actually remove tris on uv, then update tris that
|
|
|
|
// have u to have v, and then remove u.
|
|
|
|
struct vertex *u = Vertex(M, uid);
|
|
|
|
if(vid < 0) {
|
|
|
|
// u is a vertex all by itself so just delete it
|
|
|
|
RemoveVertex(M, uid);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
array(int) tmp = 0;
|
|
|
|
|
|
|
|
// make tmp a Array of all the neighbors of u
|
|
|
|
for (int i = 0; i<array_count(u->neighbor); i++) {
|
|
|
|
array_push(tmp, u->neighbor[i]);
|
|
|
|
}
|
|
|
|
// delete triangles on edge uv:
|
|
|
|
for( int i = array_count(u->face); i--; ) {
|
|
|
|
if (HasVertex(Face(M, u, i), vid)) {
|
|
|
|
RemoveTriangle(M, u->face[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// update remaining triangles to have v instead of u
|
|
|
|
for( int i = array_count(u->face); i--; ) {
|
|
|
|
ReplaceVertex(M, u->face[i], uid, vid);
|
|
|
|
}
|
|
|
|
RemoveVertex(M, uid);
|
|
|
|
// recompute the edge collapse costs for neighboring vertices
|
|
|
|
for (int i = 0; i<array_count(tmp); i++) {
|
|
|
|
ComputeEdgeCostAtVertex(M, Vertex(M, tmp[i]));
|
|
|
|
}
|
|
|
|
|
|
|
|
array_free(tmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct vertex *MinimumCostEdge(struct mesh *M) {
|
|
|
|
// Find the edge that when collapsed will affect model the least.
|
|
|
|
// This function actually returns a Vertex, the second vertex
|
|
|
|
// of the edge (collapse candidate) is stored in the vertex data.
|
|
|
|
// Serious optimization opportunity here: this function currently
|
|
|
|
// does a sequential search through an unsorted Array :-(
|
|
|
|
// Our algorithm could be O(n*lg(n)) instead of O(n*n)
|
|
|
|
struct vertex *mn = NULL;
|
|
|
|
for (int i = 0; i<M->n_vertex; i++) {
|
|
|
|
struct vertex *v = Vertex(M, i);
|
|
|
|
if (v->id >=0) {
|
|
|
|
if (mn == NULL || v->objdist < mn->objdist) {
|
|
|
|
mn = v;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return mn;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The function ProgressiveMesh() takes a model in an "indexed face
|
|
|
|
* set" sort of way. i.e. Array of vertices and Array of triangles.
|
|
|
|
* The function then does the polygon reduction algorithm
|
|
|
|
* internally and reduces the model all the way down to 0
|
|
|
|
* vertices and then returns the order in which the
|
|
|
|
* vertices are collapsed and to which neighbor each vertex
|
|
|
|
* is collapsed to. More specifically the returned "permutation"
|
|
|
|
* indicates how to reorder your vertices so you can render
|
|
|
|
* an object by using the first n vertices (for the n
|
|
|
|
* vertex version). After permuting your vertices, the
|
|
|
|
* map Array indicates to which vertex each vertex is collapsed to.
|
|
|
|
*/
|
|
|
|
|
|
|
|
API void ProgressiveMesh(int vert_n, int vert_stride, const float *v, int tri_n, const int *tri, int *map, int *permutation) {
|
|
|
|
struct mesh M;
|
|
|
|
MeshInit(&M, vert_n, tri_n);
|
|
|
|
|
|
|
|
// put input data into our data structures M
|
|
|
|
const char * tmp = (const char *)v;
|
|
|
|
for (int i=0;i<vert_n;i++, tmp += vert_stride ) {
|
|
|
|
AddVertex(&M, (const float *)tmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i=0;i<tri_n;i++) {
|
|
|
|
AddTriangle(&M, &tri[i*3]);
|
|
|
|
}
|
|
|
|
|
|
|
|
ComputeAllEdgeCollapseCosts(&M); // cache all edge collapse costs
|
|
|
|
|
|
|
|
for (int i = vert_n-1; i>=0; i--) {
|
|
|
|
// get the next vertex to collapse
|
|
|
|
struct vertex *mn = MinimumCostEdge(&M);
|
|
|
|
// keep track of this vertex, i.e. the collapse ordering
|
|
|
|
permutation[mn->id] = i;
|
|
|
|
// keep track of vertex to which we collapse to
|
|
|
|
map[i] = mn->collapse;
|
|
|
|
// Collapse this edge
|
|
|
|
Collapse(&M, mn->id, mn->collapse);
|
|
|
|
}
|
|
|
|
|
|
|
|
// reorder the map Array based on the collapse ordering
|
|
|
|
for (int i = 0; i<vert_n; i++) {
|
|
|
|
map[i] = (map[i]==-1)?0:permutation[map[i]];
|
|
|
|
}
|
|
|
|
// The caller of this function should reorder their vertices
|
|
|
|
// according to the returned "permutation".
|
|
|
|
|
|
|
|
MeshFree(&M);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The MIT License (MIT)
|
|
|
|
*
|
|
|
|
* Copyright (c) 2014 Stan Melax
|
|
|
|
* Copyright (c) 2020 Cloud Wu
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
|
|
* in the Software without restriction, including without limitation the rights
|
|
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
|
|
* copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
* SOFTWARE.
|
|
|
|
*/
|