v4k-git-backup/engine/split/3rd_enet.h

6139 lines
246 KiB
C
Raw Normal View History

/**
* include/enet.h - a Single-Header auto-generated variant of enet.h library.
*
* Usage:
* #define ENET_IMPLEMENTATION exactly in ONE source file right BEFORE including the library, like:
*
* #define ENET_IMPLEMENTATION
* #include <enet.h>
*
* License:
* The MIT License (MIT)
*
* Copyright (c) 2002-2016 Lee Salzman
* Copyright (c) 2017-2021 Vladyslav Hrytsenko, Dominik Madarรกsz
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
/*
## Disclaimer
This is a fork of the original library [lsalzman/enet](https://github.com/lsalzman/enet). While original repo offers a stable, time-tested wonderful library,
we are trying to change some things, things, which can't be reflected on the main repo, like:
* integrated ipv6 support
* added monotonic time
* applied project-wide code style change
* cleaned up project
* single-header style code
* NPM package distribution
* removed a lot of older methods
* and many other various changes
*/
#ifndef ENET_INCLUDE_H
#define ENET_INCLUDE_H
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include <time.h>
#define ENET_VERSION_MAJOR 2
#define ENET_VERSION_MINOR 3
#define ENET_VERSION_PATCH 0
#define ENET_VERSION_CREATE(major, minor, patch) (((major)<<16) | ((minor)<<8) | (patch))
#define ENET_VERSION_GET_MAJOR(version) (((version)>>16)&0xFF)
#define ENET_VERSION_GET_MINOR(version) (((version)>>8)&0xFF)
#define ENET_VERSION_GET_PATCH(version) ((version)&0xFF)
#define ENET_VERSION ENET_VERSION_CREATE(ENET_VERSION_MAJOR, ENET_VERSION_MINOR, ENET_VERSION_PATCH)
#define ENET_TIME_OVERFLOW 86400000
#define ENET_TIME_LESS(a, b) ((a) - (b) >= ENET_TIME_OVERFLOW)
#define ENET_TIME_GREATER(a, b) ((b) - (a) >= ENET_TIME_OVERFLOW)
#define ENET_TIME_LESS_EQUAL(a, b) (! ENET_TIME_GREATER (a, b))
#define ENET_TIME_GREATER_EQUAL(a, b) (! ENET_TIME_LESS (a, b))
#define ENET_TIME_DIFFERENCE(a, b) ((a) - (b) >= ENET_TIME_OVERFLOW ? (b) - (a) : (a) - (b))
// =======================================================================//
// !
// ! System differences
// !
// =======================================================================//
#if defined(_WIN32)
#if defined(_MSC_VER) && defined(ENET_IMPLEMENTATION)
#pragma warning (disable: 4267) // size_t to int conversion
#pragma warning (disable: 4244) // 64bit to 32bit int
#pragma warning (disable: 4018) // signed/unsigned mismatch
#pragma warning (disable: 4146) // unary minus operator applied to unsigned type
#endif
#ifndef ENET_NO_PRAGMA_LINK
#pragma comment(lib, "ws2_32") //< @r-lyeh removed .lib (tcc support)
#pragma comment(lib, "winmm") //< @r-lyeh removed .lib (tcc support)
#endif
#if _MSC_VER >= 1910
/* It looks like there were changes as of Visual Studio 2017 and there are no 32/64 bit
versions of _InterlockedExchange[operation], only InterlockedExchange[operation]
(without leading underscore), so we have to distinguish between compiler versions */
#define NOT_UNDERSCORED_INTERLOCKED_EXCHANGE
#endif
#ifdef __GNUC__
#if (_WIN32_WINNT < 0x0501)
#undef _WIN32_WINNT
#define _WIN32_WINNT 0x0501
#endif
#endif
#include <winsock2.h>
#include <ws2tcpip.h>
#include <mmsystem.h>
#include <intrin.h>
#if defined(_MSC_VER) && _MSC_VER < 1900 //< @r-lyeh
typedef struct timespec {
long tv_sec;
long tv_nsec;
};
#endif
#ifndef __MINGW32__
#define CLOCK_MONOTONIC 0 //< @r-lyeh, tcc support
#endif
typedef SOCKET ENetSocket;
#define ENET_SOCKET_NULL INVALID_SOCKET
#define ENET_HOST_TO_NET_16(value) (htons(value))
#define ENET_HOST_TO_NET_32(value) (htonl(value))
#define ENET_NET_TO_HOST_16(value) (ntohs(value))
#define ENET_NET_TO_HOST_32(value) (ntohl(value))
typedef struct {
size_t dataLength;
void * data;
} ENetBuffer;
#define ENET_CALLBACK __cdecl
#ifdef ENET_DLL
#ifdef ENET_IMPLEMENTATION
#define ENET_API __declspec( dllexport )
#else
#define ENET_API __declspec( dllimport )
#endif // ENET_IMPLEMENTATION
#else
#define ENET_API extern
#endif // ENET_DLL
typedef fd_set ENetSocketSet;
#define ENET_SOCKETSET_EMPTY(sockset) FD_ZERO(&(sockset))
#define ENET_SOCKETSET_ADD(sockset, socket) FD_SET(socket, &(sockset))
#define ENET_SOCKETSET_REMOVE(sockset, socket) FD_CLR(socket, &(sockset))
#define ENET_SOCKETSET_CHECK(sockset, socket) FD_ISSET(socket, &(sockset))
#else
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <poll.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <netdb.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#ifdef __APPLE__
#include <mach/clock.h>
#include <mach/mach.h>
#include <Availability.h>
#endif
#ifndef MSG_NOSIGNAL
#define MSG_NOSIGNAL 0
#endif
#ifdef MSG_MAXIOVLEN
#define ENET_BUFFER_MAXIMUM MSG_MAXIOVLEN
#endif
typedef int ENetSocket;
#define ENET_SOCKET_NULL -1
#define ENET_HOST_TO_NET_16(value) (htons(value)) /**< macro that converts host to net byte-order of a 16-bit value */
#define ENET_HOST_TO_NET_32(value) (htonl(value)) /**< macro that converts host to net byte-order of a 32-bit value */
#define ENET_NET_TO_HOST_16(value) (ntohs(value)) /**< macro that converts net to host byte-order of a 16-bit value */
#define ENET_NET_TO_HOST_32(value) (ntohl(value)) /**< macro that converts net to host byte-order of a 32-bit value */
typedef struct {
void * data;
size_t dataLength;
} ENetBuffer;
#define ENET_CALLBACK
#define ENET_API extern
typedef fd_set ENetSocketSet;
#define ENET_SOCKETSET_EMPTY(sockset) FD_ZERO(&(sockset))
#define ENET_SOCKETSET_ADD(sockset, socket) FD_SET(socket, &(sockset))
#define ENET_SOCKETSET_REMOVE(sockset, socket) FD_CLR(socket, &(sockset))
#define ENET_SOCKETSET_CHECK(sockset, socket) FD_ISSET(socket, &(sockset))
#endif
#ifdef __GNUC__
#define ENET_DEPRECATED(func) func __attribute__ ((deprecated))
#elif defined(_MSC_VER)
#define ENET_DEPRECATED(func) __declspec(deprecated) func
#else
#pragma message("WARNING: Please ENET_DEPRECATED for this compiler")
#define ENET_DEPRECATED(func) func
#endif
#ifndef ENET_BUFFER_MAXIMUM
#define ENET_BUFFER_MAXIMUM (1 + 2 * ENET_PROTOCOL_MAXIMUM_PACKET_COMMANDS)
#endif
#define ENET_UNUSED(x) (void)x;
#define ENET_MAX(x, y) ((x) > (y) ? (x) : (y))
#define ENET_MIN(x, y) ((x) < (y) ? (x) : (y))
#define ENET_IPV6 1
const struct in6_addr enet_v4_anyaddr = {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 }}};
const struct in6_addr enet_v4_noaddr = {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}};
const struct in6_addr enet_v4_localhost = {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x7f, 0x00, 0x00, 0x01 }}};
const struct in6_addr enet_v6_anyaddr = {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }}};
const struct in6_addr enet_v6_noaddr = {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}};
const struct in6_addr enet_v6_localhost = {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }}};
#define ENET_HOST_ANY in6addr_any
#define ENET_HOST_BROADCAST 0xFFFFFFFFU
#define ENET_PORT_ANY 0
#ifdef __cplusplus
extern "C" {
#endif
// =======================================================================//
// !
// ! Basic stuff
// !
// =======================================================================//
typedef uint8_t enet_uint8; /**< unsigned 8-bit type */
typedef uint16_t enet_uint16; /**< unsigned 16-bit type */
typedef uint32_t enet_uint32; /**< unsigned 32-bit type */
typedef uint64_t enet_uint64; /**< unsigned 64-bit type */
typedef enet_uint32 ENetVersion;
typedef struct _ENetPacket ENetPacket;
typedef struct _ENetCallbacks {
void *(ENET_CALLBACK *malloc) (size_t size);
void (ENET_CALLBACK *free) (void *memory);
void (ENET_CALLBACK *no_memory) (void);
ENetPacket *(ENET_CALLBACK *packet_create) (const void *data, size_t dataLength, enet_uint32 flags);
void (ENET_CALLBACK *packet_destroy) (ENetPacket *packet);
} ENetCallbacks;
extern void *enet_malloc(size_t);
extern void enet_free(void *);
extern ENetPacket* enet_packet_create(const void*,size_t,enet_uint32);
extern ENetPacket* enet_packet_copy(ENetPacket*);
extern void enet_packet_destroy(ENetPacket*);
// =======================================================================//
// !
// ! List
// !
// =======================================================================//
typedef struct _ENetListNode {
struct _ENetListNode *next;
struct _ENetListNode *previous;
} ENetListNode;
typedef ENetListNode *ENetListIterator;
typedef struct _ENetList {
ENetListNode sentinel;
} ENetList;
extern ENetListIterator enet_list_insert(ENetListIterator, void *);
extern ENetListIterator enet_list_move(ENetListIterator, void *, void *);
extern void *enet_list_remove(ENetListIterator);
extern void enet_list_clear(ENetList *);
extern size_t enet_list_size(ENetList *);
#define enet_list_begin(list) ((list)->sentinel.next)
#define enet_list_end(list) (&(list)->sentinel)
#define enet_list_empty(list) (enet_list_begin(list) == enet_list_end(list))
#define enet_list_next(iterator) ((iterator)->next)
#define enet_list_previous(iterator) ((iterator)->previous)
#define enet_list_front(list) ((void *)(list)->sentinel.next)
#define enet_list_back(list) ((void *)(list)->sentinel.previous)
// =======================================================================//
// !
// ! Protocol
// !
// =======================================================================//
enum {
ENET_PROTOCOL_MINIMUM_MTU = 576,
ENET_PROTOCOL_MAXIMUM_MTU = 4096,
ENET_PROTOCOL_MAXIMUM_PACKET_COMMANDS = 32,
ENET_PROTOCOL_MINIMUM_WINDOW_SIZE = 4096,
ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE = 65536,
ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT = 1,
ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT = 255,
ENET_PROTOCOL_MAXIMUM_PEER_ID = 0xFFF,
ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT = 1024 * 1024
};
typedef enum _ENetProtocolCommand {
ENET_PROTOCOL_COMMAND_NONE = 0,
ENET_PROTOCOL_COMMAND_ACKNOWLEDGE = 1,
ENET_PROTOCOL_COMMAND_CONNECT = 2,
ENET_PROTOCOL_COMMAND_VERIFY_CONNECT = 3,
ENET_PROTOCOL_COMMAND_DISCONNECT = 4,
ENET_PROTOCOL_COMMAND_PING = 5,
ENET_PROTOCOL_COMMAND_SEND_RELIABLE = 6,
ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE = 7,
ENET_PROTOCOL_COMMAND_SEND_FRAGMENT = 8,
ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED = 9,
ENET_PROTOCOL_COMMAND_BANDWIDTH_LIMIT = 10,
ENET_PROTOCOL_COMMAND_THROTTLE_CONFIGURE = 11,
ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT = 12,
ENET_PROTOCOL_COMMAND_COUNT = 13,
ENET_PROTOCOL_COMMAND_MASK = 0x0F
} ENetProtocolCommand;
typedef enum _ENetProtocolFlag {
ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE = (1 << 7),
ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED = (1 << 6),
ENET_PROTOCOL_HEADER_FLAG_COMPRESSED = (1 << 14),
ENET_PROTOCOL_HEADER_FLAG_SENT_TIME = (1 << 15),
ENET_PROTOCOL_HEADER_FLAG_MASK = ENET_PROTOCOL_HEADER_FLAG_COMPRESSED | ENET_PROTOCOL_HEADER_FLAG_SENT_TIME,
ENET_PROTOCOL_HEADER_SESSION_MASK = (3 << 12),
ENET_PROTOCOL_HEADER_SESSION_SHIFT = 12
} ENetProtocolFlag;
#ifdef _MSC_VER
#pragma pack(push, 1)
#define ENET_PACKED
#elif defined(__GNUC__) || defined(__clang__)
#define ENET_PACKED __attribute__ ((packed))
#else
#define ENET_PACKED
#endif
typedef struct _ENetProtocolHeader {
enet_uint16 peerID;
enet_uint16 sentTime;
} ENET_PACKED ENetProtocolHeader;
typedef struct _ENetProtocolCommandHeader {
enet_uint8 command;
enet_uint8 channelID;
enet_uint16 reliableSequenceNumber;
} ENET_PACKED ENetProtocolCommandHeader;
typedef struct _ENetProtocolAcknowledge {
ENetProtocolCommandHeader header;
enet_uint16 receivedReliableSequenceNumber;
enet_uint16 receivedSentTime;
} ENET_PACKED ENetProtocolAcknowledge;
typedef struct _ENetProtocolConnect {
ENetProtocolCommandHeader header;
enet_uint16 outgoingPeerID;
enet_uint8 incomingSessionID;
enet_uint8 outgoingSessionID;
enet_uint32 mtu;
enet_uint32 windowSize;
enet_uint32 channelCount;
enet_uint32 incomingBandwidth;
enet_uint32 outgoingBandwidth;
enet_uint32 packetThrottleInterval;
enet_uint32 packetThrottleAcceleration;
enet_uint32 packetThrottleDeceleration;
enet_uint32 connectID;
enet_uint32 data;
} ENET_PACKED ENetProtocolConnect;
typedef struct _ENetProtocolVerifyConnect {
ENetProtocolCommandHeader header;
enet_uint16 outgoingPeerID;
enet_uint8 incomingSessionID;
enet_uint8 outgoingSessionID;
enet_uint32 mtu;
enet_uint32 windowSize;
enet_uint32 channelCount;
enet_uint32 incomingBandwidth;
enet_uint32 outgoingBandwidth;
enet_uint32 packetThrottleInterval;
enet_uint32 packetThrottleAcceleration;
enet_uint32 packetThrottleDeceleration;
enet_uint32 connectID;
} ENET_PACKED ENetProtocolVerifyConnect;
typedef struct _ENetProtocolBandwidthLimit {
ENetProtocolCommandHeader header;
enet_uint32 incomingBandwidth;
enet_uint32 outgoingBandwidth;
} ENET_PACKED ENetProtocolBandwidthLimit;
typedef struct _ENetProtocolThrottleConfigure {
ENetProtocolCommandHeader header;
enet_uint32 packetThrottleInterval;
enet_uint32 packetThrottleAcceleration;
enet_uint32 packetThrottleDeceleration;
} ENET_PACKED ENetProtocolThrottleConfigure;
typedef struct _ENetProtocolDisconnect {
ENetProtocolCommandHeader header;
enet_uint32 data;
} ENET_PACKED ENetProtocolDisconnect;
typedef struct _ENetProtocolPing {
ENetProtocolCommandHeader header;
} ENET_PACKED ENetProtocolPing;
typedef struct _ENetProtocolSendReliable {
ENetProtocolCommandHeader header;
enet_uint16 dataLength;
} ENET_PACKED ENetProtocolSendReliable;
typedef struct _ENetProtocolSendUnreliable {
ENetProtocolCommandHeader header;
enet_uint16 unreliableSequenceNumber;
enet_uint16 dataLength;
} ENET_PACKED ENetProtocolSendUnreliable;
typedef struct _ENetProtocolSendUnsequenced {
ENetProtocolCommandHeader header;
enet_uint16 unsequencedGroup;
enet_uint16 dataLength;
} ENET_PACKED ENetProtocolSendUnsequenced;
typedef struct _ENetProtocolSendFragment {
ENetProtocolCommandHeader header;
enet_uint16 startSequenceNumber;
enet_uint16 dataLength;
enet_uint32 fragmentCount;
enet_uint32 fragmentNumber;
enet_uint32 totalLength;
enet_uint32 fragmentOffset;
} ENET_PACKED ENetProtocolSendFragment;
typedef union _ENetProtocol {
ENetProtocolCommandHeader header;
ENetProtocolAcknowledge acknowledge;
ENetProtocolConnect connect;
ENetProtocolVerifyConnect verifyConnect;
ENetProtocolDisconnect disconnect;
ENetProtocolPing ping;
ENetProtocolSendReliable sendReliable;
ENetProtocolSendUnreliable sendUnreliable;
ENetProtocolSendUnsequenced sendUnsequenced;
ENetProtocolSendFragment sendFragment;
ENetProtocolBandwidthLimit bandwidthLimit;
ENetProtocolThrottleConfigure throttleConfigure;
} ENET_PACKED ENetProtocol;
#ifdef _MSC_VER
#pragma pack(pop)
#endif
// =======================================================================//
// !
// ! General ENet structs/enums
// !
// =======================================================================//
typedef enum _ENetSocketType {
ENET_SOCKET_TYPE_STREAM = 1,
ENET_SOCKET_TYPE_DATAGRAM = 2
} ENetSocketType;
typedef enum _ENetSocketWait {
ENET_SOCKET_WAIT_NONE = 0,
ENET_SOCKET_WAIT_SEND = (1 << 0),
ENET_SOCKET_WAIT_RECEIVE = (1 << 1),
ENET_SOCKET_WAIT_INTERRUPT = (1 << 2)
} ENetSocketWait;
typedef enum _ENetSocketOption {
ENET_SOCKOPT_NONBLOCK = 1,
ENET_SOCKOPT_BROADCAST = 2,
ENET_SOCKOPT_RCVBUF = 3,
ENET_SOCKOPT_SNDBUF = 4,
ENET_SOCKOPT_REUSEADDR = 5,
ENET_SOCKOPT_RCVTIMEO = 6,
ENET_SOCKOPT_SNDTIMEO = 7,
ENET_SOCKOPT_ERROR = 8,
ENET_SOCKOPT_NODELAY = 9,
ENET_SOCKOPT_IPV6_V6ONLY = 10,
} ENetSocketOption;
typedef enum _ENetSocketShutdown {
ENET_SOCKET_SHUTDOWN_READ = 0,
ENET_SOCKET_SHUTDOWN_WRITE = 1,
ENET_SOCKET_SHUTDOWN_READ_WRITE = 2
} ENetSocketShutdown;
/**
* Portable internet address structure.
*
* The host must be specified in network byte-order, and the port must be in host
* byte-order. The constant ENET_HOST_ANY may be used to specify the default
* server host. The constant ENET_HOST_BROADCAST may be used to specify the
* broadcast address (255.255.255.255). This makes sense for enet_host_connect,
* but not for enet_host_create. Once a server responds to a broadcast, the
* address is updated from ENET_HOST_BROADCAST to the server's actual IP address.
*/
typedef struct _ENetAddress {
struct in6_addr host;
enet_uint16 port;
enet_uint16 sin6_scope_id;
} ENetAddress;
#define in6_equal(in6_addr_a, in6_addr_b) (memcmp(&in6_addr_a, &in6_addr_b, sizeof(struct in6_addr)) == 0)
/**
* Packet flag bit constants.
*
* The host must be specified in network byte-order, and the port must be in
* host byte-order. The constant ENET_HOST_ANY may be used to specify the
* default server host.
*
* @sa ENetPacket
*/
typedef enum _ENetPacketFlag {
ENET_PACKET_FLAG_RELIABLE = (1 << 0), /** packet must be received by the target peer and resend attempts should be made until the packet is delivered */
ENET_PACKET_FLAG_UNSEQUENCED = (1 << 1), /** packet will not be sequenced with other packets not supported for reliable packets */
ENET_PACKET_FLAG_NO_ALLOCATE = (1 << 2), /** packet will not allocate data, and user must supply it instead */
ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT = (1 << 3), /** packet will be fragmented using unreliable (instead of reliable) sends if it exceeds the MTU */
ENET_PACKET_FLAG_SENT = (1 << 8), /** whether the packet has been sent from all queues it has been entered into */
} ENetPacketFlag;
typedef void (ENET_CALLBACK *ENetPacketFreeCallback)(void *);
/**
* ENet packet structure.
*
* An ENet data packet that may be sent to or received from a peer. The shown
* fields should only be read and never modified. The data field contains the
* allocated data for the packet. The dataLength fields specifies the length
* of the allocated data. The flags field is either 0 (specifying no flags),
* or a bitwise-or of any combination of the following flags:
*
* ENET_PACKET_FLAG_RELIABLE - packet must be received by the target peer and resend attempts should be made until the packet is delivered
* ENET_PACKET_FLAG_UNSEQUENCED - packet will not be sequenced with other packets (not supported for reliable packets)
* ENET_PACKET_FLAG_NO_ALLOCATE - packet will not allocate data, and user must supply it instead
* ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT - packet will be fragmented using unreliable (instead of reliable) sends if it exceeds the MTU
* ENET_PACKET_FLAG_SENT - whether the packet has been sent from all queues it has been entered into
* @sa ENetPacketFlag
*/
typedef struct _ENetPacket {
size_t referenceCount; /**< internal use only */
enet_uint32 flags; /**< bitwise-or of ENetPacketFlag constants */
enet_uint8 * data; /**< allocated data for packet */
size_t dataLength; /**< length of data */
ENetPacketFreeCallback freeCallback; /**< function to be called when the packet is no longer in use */
void * userData; /**< application private data, may be freely modified */
} ENetPacket;
typedef struct _ENetAcknowledgement {
ENetListNode acknowledgementList;
enet_uint32 sentTime;
ENetProtocol command;
} ENetAcknowledgement;
typedef struct _ENetOutgoingCommand {
ENetListNode outgoingCommandList;
enet_uint16 reliableSequenceNumber;
enet_uint16 unreliableSequenceNumber;
enet_uint32 sentTime;
enet_uint32 roundTripTimeout;
enet_uint32 roundTripTimeoutLimit;
enet_uint32 fragmentOffset;
enet_uint16 fragmentLength;
enet_uint16 sendAttempts;
ENetProtocol command;
ENetPacket * packet;
} ENetOutgoingCommand;
typedef struct _ENetIncomingCommand {
ENetListNode incomingCommandList;
enet_uint16 reliableSequenceNumber;
enet_uint16 unreliableSequenceNumber;
ENetProtocol command;
enet_uint32 fragmentCount;
enet_uint32 fragmentsRemaining;
enet_uint32 *fragments;
ENetPacket * packet;
} ENetIncomingCommand;
typedef enum _ENetPeerState {
ENET_PEER_STATE_DISCONNECTED = 0,
ENET_PEER_STATE_CONNECTING = 1,
ENET_PEER_STATE_ACKNOWLEDGING_CONNECT = 2,
ENET_PEER_STATE_CONNECTION_PENDING = 3,
ENET_PEER_STATE_CONNECTION_SUCCEEDED = 4,
ENET_PEER_STATE_CONNECTED = 5,
ENET_PEER_STATE_DISCONNECT_LATER = 6,
ENET_PEER_STATE_DISCONNECTING = 7,
ENET_PEER_STATE_ACKNOWLEDGING_DISCONNECT = 8,
ENET_PEER_STATE_ZOMBIE = 9
} ENetPeerState;
enum {
ENET_HOST_RECEIVE_BUFFER_SIZE = 256 * 1024,
ENET_HOST_SEND_BUFFER_SIZE = 256 * 1024,
ENET_HOST_BANDWIDTH_THROTTLE_INTERVAL = 1000,
ENET_HOST_DEFAULT_MTU = 1400,
ENET_HOST_DEFAULT_MAXIMUM_PACKET_SIZE = 32 * 1024 * 1024,
ENET_HOST_DEFAULT_MAXIMUM_WAITING_DATA = 32 * 1024 * 1024,
ENET_PEER_DEFAULT_ROUND_TRIP_TIME = 500,
ENET_PEER_DEFAULT_PACKET_THROTTLE = 32,
ENET_PEER_PACKET_THROTTLE_SCALE = 32,
ENET_PEER_PACKET_THROTTLE_COUNTER = 7,
ENET_PEER_PACKET_THROTTLE_ACCELERATION = 2,
ENET_PEER_PACKET_THROTTLE_DECELERATION = 2,
ENET_PEER_PACKET_THROTTLE_INTERVAL = 5000,
ENET_PEER_PACKET_LOSS_SCALE = (1 << 16),
ENET_PEER_PACKET_LOSS_INTERVAL = 10000,
ENET_PEER_WINDOW_SIZE_SCALE = 64 * 1024,
ENET_PEER_TIMEOUT_LIMIT = 32,
ENET_PEER_TIMEOUT_MINIMUM = 5000,
ENET_PEER_TIMEOUT_MAXIMUM = 30000,
ENET_PEER_PING_INTERVAL = 500,
ENET_PEER_UNSEQUENCED_WINDOWS = 64,
ENET_PEER_UNSEQUENCED_WINDOW_SIZE = 1024,
ENET_PEER_FREE_UNSEQUENCED_WINDOWS = 32,
ENET_PEER_RELIABLE_WINDOWS = 16,
ENET_PEER_RELIABLE_WINDOW_SIZE = 0x1000,
ENET_PEER_FREE_RELIABLE_WINDOWS = 8
};
typedef struct _ENetChannel {
enet_uint16 outgoingReliableSequenceNumber;
enet_uint16 outgoingUnreliableSequenceNumber;
enet_uint16 usedReliableWindows;
enet_uint16 reliableWindows[ENET_PEER_RELIABLE_WINDOWS];
enet_uint16 incomingReliableSequenceNumber;
enet_uint16 incomingUnreliableSequenceNumber;
ENetList incomingReliableCommands;
ENetList incomingUnreliableCommands;
} ENetChannel;
/**
* An ENet peer which data packets may be sent or received from.
*
* No fields should be modified unless otherwise specified.
*/
typedef struct _ENetPeer {
ENetListNode dispatchList;
struct _ENetHost *host;
enet_uint16 outgoingPeerID;
enet_uint16 incomingPeerID;
enet_uint32 connectID;
enet_uint8 outgoingSessionID;
enet_uint8 incomingSessionID;
ENetAddress address; /**< Internet address of the peer */
void * data; /**< Application private data, may be freely modified */
ENetPeerState state;
ENetChannel * channels;
size_t channelCount; /**< Number of channels allocated for communication with peer */
enet_uint32 incomingBandwidth; /**< Downstream bandwidth of the client in bytes/second */
enet_uint32 outgoingBandwidth; /**< Upstream bandwidth of the client in bytes/second */
enet_uint32 incomingBandwidthThrottleEpoch;
enet_uint32 outgoingBandwidthThrottleEpoch;
enet_uint32 incomingDataTotal;
enet_uint64 totalDataReceived;
enet_uint32 outgoingDataTotal;
enet_uint64 totalDataSent;
enet_uint32 lastSendTime;
enet_uint32 lastReceiveTime;
enet_uint32 nextTimeout;
enet_uint32 earliestTimeout;
enet_uint32 packetLossEpoch;
enet_uint32 packetsSent;
enet_uint64 totalPacketsSent; /**< total number of packets sent during a session */
enet_uint32 packetsLost;
enet_uint32 totalPacketsLost; /**< total number of packets lost during a session */
enet_uint32 packetLoss; /**< mean packet loss of reliable packets as a ratio with respect to the constant ENET_PEER_PACKET_LOSS_SCALE */
enet_uint32 packetLossVariance;
enet_uint32 packetThrottle;
enet_uint32 packetThrottleLimit;
enet_uint32 packetThrottleCounter;
enet_uint32 packetThrottleEpoch;
enet_uint32 packetThrottleAcceleration;
enet_uint32 packetThrottleDeceleration;
enet_uint32 packetThrottleInterval;
enet_uint32 pingInterval;
enet_uint32 timeoutLimit;
enet_uint32 timeoutMinimum;
enet_uint32 timeoutMaximum;
enet_uint32 lastRoundTripTime;
enet_uint32 lowestRoundTripTime;
enet_uint32 lastRoundTripTimeVariance;
enet_uint32 highestRoundTripTimeVariance;
enet_uint32 roundTripTime; /**< mean round trip time (RTT), in milliseconds, between sending a reliable packet and receiving its acknowledgement */
enet_uint32 roundTripTimeVariance;
enet_uint32 mtu;
enet_uint32 windowSize;
enet_uint32 reliableDataInTransit;
enet_uint16 outgoingReliableSequenceNumber;
ENetList acknowledgements;
ENetList sentReliableCommands;
ENetList sentUnreliableCommands;
ENetList outgoingReliableCommands;
ENetList outgoingUnreliableCommands;
ENetList dispatchedCommands;
int needsDispatch;
enet_uint16 incomingUnsequencedGroup;
enet_uint16 outgoingUnsequencedGroup;
enet_uint32 unsequencedWindow[ENET_PEER_UNSEQUENCED_WINDOW_SIZE / 32];
enet_uint32 eventData;
size_t totalWaitingData;
} ENetPeer;
/** An ENet packet compressor for compressing UDP packets before socket sends or receives. */
typedef struct _ENetCompressor {
/** Context data for the compressor. Must be non-NULL. */
void *context;
/** Compresses from inBuffers[0:inBufferCount-1], containing inLimit bytes, to outData, outputting at most outLimit bytes. Should return 0 on failure. */
size_t(ENET_CALLBACK * compress) (void *context, const ENetBuffer * inBuffers, size_t inBufferCount, size_t inLimit, enet_uint8 * outData, size_t outLimit);
/** Decompresses from inData, containing inLimit bytes, to outData, outputting at most outLimit bytes. Should return 0 on failure. */
size_t(ENET_CALLBACK * decompress) (void *context, const enet_uint8 * inData, size_t inLimit, enet_uint8 * outData, size_t outLimit);
/** Destroys the context when compression is disabled or the host is destroyed. May be NULL. */
void (ENET_CALLBACK * destroy)(void *context);
} ENetCompressor;
/** Callback that computes the checksum of the data held in buffers[0:bufferCount-1] */
typedef enet_uint32 (ENET_CALLBACK * ENetChecksumCallback)(const ENetBuffer *buffers, size_t bufferCount);
/** Callback for intercepting received raw UDP packets. Should return 1 to intercept, 0 to ignore, or -1 to propagate an error. */
typedef int (ENET_CALLBACK * ENetInterceptCallback)(struct _ENetHost *host, void *event);
/** An ENet host for communicating with peers.
*
* No fields should be modified unless otherwise stated.
*
* @sa enet_host_create()
* @sa enet_host_destroy()
* @sa enet_host_connect()
* @sa enet_host_service()
* @sa enet_host_flush()
* @sa enet_host_broadcast()
* @sa enet_host_compress()
* @sa enet_host_channel_limit()
* @sa enet_host_bandwidth_limit()
* @sa enet_host_bandwidth_throttle()
*/
typedef struct _ENetHost {
ENetSocket socket;
ENetAddress address; /**< Internet address of the host */
enet_uint32 incomingBandwidth; /**< downstream bandwidth of the host */
enet_uint32 outgoingBandwidth; /**< upstream bandwidth of the host */
enet_uint32 bandwidthThrottleEpoch;
enet_uint32 mtu;
enet_uint32 randomSeed;
int recalculateBandwidthLimits;
ENetPeer * peers; /**< array of peers allocated for this host */
size_t peerCount; /**< number of peers allocated for this host */
size_t channelLimit; /**< maximum number of channels allowed for connected peers */
enet_uint32 serviceTime;
ENetList dispatchQueue;
int continueSending;
size_t packetSize;
enet_uint16 headerFlags;
ENetProtocol commands[ENET_PROTOCOL_MAXIMUM_PACKET_COMMANDS];
size_t commandCount;
ENetBuffer buffers[ENET_BUFFER_MAXIMUM];
size_t bufferCount;
ENetChecksumCallback checksum; /**< callback the user can set to enable packet checksums for this host */
ENetCompressor compressor;
enet_uint8 packetData[2][ENET_PROTOCOL_MAXIMUM_MTU];
ENetAddress receivedAddress;
enet_uint8 * receivedData;
size_t receivedDataLength;
enet_uint32 totalSentData; /**< total data sent, user should reset to 0 as needed to prevent overflow */
enet_uint32 totalSentPackets; /**< total UDP packets sent, user should reset to 0 as needed to prevent overflow */
enet_uint32 totalReceivedData; /**< total data received, user should reset to 0 as needed to prevent overflow */
enet_uint32 totalReceivedPackets; /**< total UDP packets received, user should reset to 0 as needed to prevent overflow */
ENetInterceptCallback intercept; /**< callback the user can set to intercept received raw UDP packets */
size_t connectedPeers;
size_t bandwidthLimitedPeers;
size_t duplicatePeers; /**< optional number of allowed peers from duplicate IPs, defaults to ENET_PROTOCOL_MAXIMUM_PEER_ID */
size_t maximumPacketSize; /**< the maximum allowable packet size that may be sent or received on a peer */
size_t maximumWaitingData; /**< the maximum aggregate amount of buffer space a peer may use waiting for packets to be delivered */
} ENetHost;
/**
* An ENet event type, as specified in @ref ENetEvent.
*/
typedef enum _ENetEventType {
/** no event occurred within the specified time limit */
ENET_EVENT_TYPE_NONE = 0,
/** a connection request initiated by enet_host_connect has completed.
* The peer field contains the peer which successfully connected.
*/
ENET_EVENT_TYPE_CONNECT = 1,
/** a peer has disconnected. This event is generated on a successful
* completion of a disconnect initiated by enet_peer_disconnect, if
* a peer has timed out. The peer field contains the peer
* which disconnected. The data field contains user supplied data
* describing the disconnection, or 0, if none is available.
*/
ENET_EVENT_TYPE_DISCONNECT = 2,
/** a packet has been received from a peer. The peer field specifies the
* peer which sent the packet. The channelID field specifies the channel
* number upon which the packet was received. The packet field contains
* the packet that was received; this packet must be destroyed with
* enet_packet_destroy after use.
*/
ENET_EVENT_TYPE_RECEIVE = 3,
/** a peer is disconnected because the host didn't receive the acknowledgment
* packet within certain maximum time out. The reason could be because of bad
* network connection or host crashed.
*/
ENET_EVENT_TYPE_DISCONNECT_TIMEOUT = 4,
} ENetEventType;
/**
* An ENet event as returned by enet_host_service().
*
* @sa enet_host_service
*/
typedef struct _ENetEvent {
ENetEventType type; /**< type of the event */
ENetPeer * peer; /**< peer that generated a connect, disconnect or receive event */
enet_uint8 channelID; /**< channel on the peer that generated the event, if appropriate */
enet_uint32 data; /**< data associated with the event, if appropriate */
ENetPacket * packet; /**< packet associated with the event, if appropriate */
} ENetEvent;
// =======================================================================//
// !
// ! Public API
// !
// =======================================================================//
/**
* Initializes ENet globally. Must be called prior to using any functions in ENet.
* @returns 0 on success, < 0 on failure
*/
ENET_API int enet_initialize(void);
/**
* Initializes ENet globally and supplies user-overridden callbacks. Must be called prior to using any functions in ENet. Do not use enet_initialize() if you use this variant. Make sure the ENetCallbacks structure is zeroed out so that any additional callbacks added in future versions will be properly ignored.
*
* @param version the constant ENET_VERSION should be supplied so ENet knows which version of ENetCallbacks struct to use
* @param inits user-overridden callbacks where any NULL callbacks will use ENet's defaults
* @returns 0 on success, < 0 on failure
*/
ENET_API int enet_initialize_with_callbacks(ENetVersion version, const ENetCallbacks * inits);
/**
* Shuts down ENet globally. Should be called when a program that has initialized ENet exits.
*/
ENET_API void enet_deinitialize(void);
/**
* Gives the linked version of the ENet library.
* @returns the version number
*/
ENET_API ENetVersion enet_linked_version(void);
/** Returns the monotonic time in milliseconds. Its initial value is unspecified unless otherwise set. */
ENET_API enet_uint32 enet_time_get(void);
/** ENet socket functions */
ENET_API ENetSocket enet_socket_create(ENetSocketType);
ENET_API int enet_socket_bind(ENetSocket, const ENetAddress *);
ENET_API int enet_socket_get_address(ENetSocket, ENetAddress *);
ENET_API int enet_socket_listen(ENetSocket, int);
ENET_API ENetSocket enet_socket_accept(ENetSocket, ENetAddress *);
ENET_API int enet_socket_connect(ENetSocket, const ENetAddress *);
ENET_API int enet_socket_send(ENetSocket, const ENetAddress *, const ENetBuffer *, size_t);
ENET_API int enet_socket_receive(ENetSocket, ENetAddress *, ENetBuffer *, size_t);
ENET_API int enet_socket_wait(ENetSocket, enet_uint32 *, enet_uint64);
ENET_API int enet_socket_set_option(ENetSocket, ENetSocketOption, int);
ENET_API int enet_socket_get_option(ENetSocket, ENetSocketOption, int *);
ENET_API int enet_socket_shutdown(ENetSocket, ENetSocketShutdown);
ENET_API void enet_socket_destroy(ENetSocket);
ENET_API int enet_socketset_select(ENetSocket, ENetSocketSet *, ENetSocketSet *, enet_uint32);
/** Attempts to parse the printable form of the IP address in the parameter hostName
and sets the host field in the address parameter if successful.
@param address destination to store the parsed IP address
@param hostName IP address to parse
@retval 0 on success
@retval < 0 on failure
@returns the address of the given hostName in address on success
*/
ENET_API int enet_address_set_host_ip_old(ENetAddress * address, const char * hostName);
/** Attempts to resolve the host named by the parameter hostName and sets
the host field in the address parameter if successful.
@param address destination to store resolved address
@param hostName host name to lookup
@retval 0 on success
@retval < 0 on failure
@returns the address of the given hostName in address on success
*/
ENET_API int enet_address_set_host_old(ENetAddress * address, const char * hostName);
/** Gives the printable form of the IP address specified in the address parameter.
@param address address printed
@param hostName destination for name, must not be NULL
@param nameLength maximum length of hostName.
@returns the null-terminated name of the host in hostName on success
@retval 0 on success
@retval < 0 on failure
*/
ENET_API int enet_address_get_host_ip_old(const ENetAddress * address, char * hostName, size_t nameLength);
/** Attempts to do a reverse lookup of the host field in the address parameter.
@param address address used for reverse lookup
@param hostName destination for name, must not be NULL
@param nameLength maximum length of hostName.
@returns the null-terminated name of the host in hostName on success
@retval 0 on success
@retval < 0 on failure
*/
ENET_API int enet_address_get_host_old(const ENetAddress * address, char * hostName, size_t nameLength);
ENET_API int enet_address_set_host_ip_new(ENetAddress * address, const char * hostName);
ENET_API int enet_address_set_host_new(ENetAddress * address, const char * hostName);
ENET_API int enet_address_get_host_ip_new(const ENetAddress * address, char * hostName, size_t nameLength);
ENET_API int enet_address_get_host_new(const ENetAddress * address, char * hostName, size_t nameLength);
#ifdef ENET_FEATURE_ADDRESS_MAPPING
#define enet_address_set_host_ip enet_address_set_host_ip_new
#define enet_address_set_host enet_address_set_host_new
#define enet_address_get_host_ip enet_address_get_host_ip_new
#define enet_address_get_host enet_address_get_host_new
#else
#define enet_address_set_host_ip enet_address_set_host_ip_old
#define enet_address_set_host enet_address_set_host_old
#define enet_address_get_host_ip enet_address_get_host_ip_old
#define enet_address_get_host enet_address_get_host_old
#endif
ENET_API enet_uint32 enet_host_get_peers_count(ENetHost *);
ENET_API enet_uint32 enet_host_get_packets_sent(ENetHost *);
ENET_API enet_uint32 enet_host_get_packets_received(ENetHost *);
ENET_API enet_uint32 enet_host_get_bytes_sent(ENetHost *);
ENET_API enet_uint32 enet_host_get_bytes_received(ENetHost *);
ENET_API enet_uint32 enet_host_get_received_data(ENetHost *, enet_uint8** data);
ENET_API enet_uint32 enet_host_get_mtu(ENetHost *);
ENET_API enet_uint32 enet_peer_get_id(ENetPeer *);
ENET_API enet_uint32 enet_peer_get_ip(ENetPeer *, char * ip, size_t ipLength);
ENET_API enet_uint16 enet_peer_get_port(ENetPeer *);
ENET_API enet_uint32 enet_peer_get_rtt(ENetPeer *);
ENET_API enet_uint64 enet_peer_get_packets_sent(ENetPeer *);
ENET_API enet_uint32 enet_peer_get_packets_lost(ENetPeer *);
ENET_API enet_uint64 enet_peer_get_bytes_sent(ENetPeer *);
ENET_API enet_uint64 enet_peer_get_bytes_received(ENetPeer *);
ENET_API ENetPeerState enet_peer_get_state(ENetPeer *);
ENET_API void * enet_peer_get_data(ENetPeer *);
ENET_API void enet_peer_set_data(ENetPeer *, const void *);
ENET_API void * enet_packet_get_data(ENetPacket *);
ENET_API enet_uint32 enet_packet_get_length(ENetPacket *);
ENET_API void enet_packet_set_free_callback(ENetPacket *, void *);
ENET_API ENetPacket * enet_packet_create_offset(const void *, size_t, size_t, enet_uint32);
ENET_API enet_uint32 enet_crc32(const ENetBuffer *, size_t);
ENET_API ENetHost * enet_host_create(const ENetAddress *, size_t, size_t, enet_uint32, enet_uint32);
ENET_API void enet_host_destroy(ENetHost *);
ENET_API ENetPeer * enet_host_connect(ENetHost *, const ENetAddress *, size_t, enet_uint32);
ENET_API int enet_host_check_events(ENetHost *, ENetEvent *);
ENET_API int enet_host_service(ENetHost *, ENetEvent *, enet_uint32);
ENET_API int enet_host_send_raw(ENetHost *, const ENetAddress *, enet_uint8 *, size_t);
ENET_API int enet_host_send_raw_ex(ENetHost *host, const ENetAddress* address, enet_uint8* data, size_t skipBytes, size_t bytesToSend);
ENET_API void enet_host_set_intercept(ENetHost *, const ENetInterceptCallback);
ENET_API void enet_host_flush(ENetHost *);
ENET_API void enet_host_broadcast(ENetHost *, enet_uint8, ENetPacket *);
ENET_API void enet_host_compress(ENetHost *, const ENetCompressor *);
ENET_API void enet_host_channel_limit(ENetHost *, size_t);
ENET_API void enet_host_bandwidth_limit(ENetHost *, enet_uint32, enet_uint32);
extern void enet_host_bandwidth_throttle(ENetHost *);
extern enet_uint64 enet_host_random_seed(void);
ENET_API int enet_peer_send(ENetPeer *, enet_uint8, ENetPacket *);
ENET_API ENetPacket * enet_peer_receive(ENetPeer *, enet_uint8 * channelID);
ENET_API void enet_peer_ping(ENetPeer *);
ENET_API void enet_peer_ping_interval(ENetPeer *, enet_uint32);
ENET_API void enet_peer_timeout(ENetPeer *, enet_uint32, enet_uint32, enet_uint32);
ENET_API void enet_peer_reset(ENetPeer *);
ENET_API void enet_peer_disconnect(ENetPeer *, enet_uint32);
ENET_API void enet_peer_disconnect_now(ENetPeer *, enet_uint32);
ENET_API void enet_peer_disconnect_later(ENetPeer *, enet_uint32);
ENET_API void enet_peer_throttle_configure(ENetPeer *, enet_uint32, enet_uint32, enet_uint32);
extern int enet_peer_throttle(ENetPeer *, enet_uint32);
extern void enet_peer_reset_queues(ENetPeer *);
extern void enet_peer_setup_outgoing_command(ENetPeer *, ENetOutgoingCommand *);
extern ENetOutgoingCommand * enet_peer_queue_outgoing_command(ENetPeer *, const ENetProtocol *, ENetPacket *, enet_uint32, enet_uint16);
extern ENetIncomingCommand * enet_peer_queue_incoming_command(ENetPeer *, const ENetProtocol *, const void *, size_t, enet_uint32, enet_uint32);
extern ENetAcknowledgement * enet_peer_queue_acknowledgement(ENetPeer *, const ENetProtocol *, enet_uint16);
extern void enet_peer_dispatch_incoming_unreliable_commands(ENetPeer *, ENetChannel *);
extern void enet_peer_dispatch_incoming_reliable_commands(ENetPeer *, ENetChannel *);
extern void enet_peer_on_connect(ENetPeer *);
extern void enet_peer_on_disconnect(ENetPeer *);
extern size_t enet_protocol_command_size (enet_uint8);
#ifdef __cplusplus
}
#endif
#if defined(ENET_IMPLEMENTATION) && !defined(ENET_IMPLEMENTATION_DONE)
#define ENET_IMPLEMENTATION_DONE 1
#ifdef __cplusplus
extern "C" {
#endif
// =======================================================================//
// !
// ! Atomics
// !
// =======================================================================//
#if defined(_MSC_VER)
#define ENET_AT_CASSERT_PRED(predicate) sizeof(char[2 * !!(predicate)-1])
#define ENET_IS_SUPPORTED_ATOMIC(size) ENET_AT_CASSERT_PRED(size == 1 || size == 2 || size == 4 || size == 8)
#define ENET_ATOMIC_SIZEOF(variable) (ENET_IS_SUPPORTED_ATOMIC(sizeof(*(variable))), sizeof(*(variable)))
__inline int64_t enet_at_atomic_read(char *ptr, size_t size)
{
switch (size) {
case 1:
return _InterlockedExchangeAdd8((volatile char *)ptr, 0);
case 2:
return _InterlockedExchangeAdd16((volatile SHORT *)ptr, 0);
case 4:
#ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE
return InterlockedExchangeAdd((volatile LONG *)ptr, 0);
#else
return _InterlockedExchangeAdd((volatile LONG *)ptr, 0);
#endif
case 8:
#ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE
return InterlockedExchangeAdd64((volatile LONGLONG *)ptr, 0);
#else
return _InterlockedExchangeAdd64((volatile LONGLONG *)ptr, 0);
#endif
default:
return 0xbad13bad; /* never reached */
}
}
__inline int64_t enet_at_atomic_write(char *ptr, int64_t value, size_t size)
{
switch (size) {
case 1:
return _InterlockedExchange8((volatile char *)ptr, (char)value);
case 2:
return _InterlockedExchange16((volatile SHORT *)ptr, (SHORT)value);
case 4:
#ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE
return InterlockedExchange((volatile LONG *)ptr, (LONG)value);
#else
return _InterlockedExchange((volatile LONG *)ptr, (LONG)value);
#endif
case 8:
#ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE
return InterlockedExchange64((volatile LONGLONG *)ptr, (LONGLONG)value);
#else
return _InterlockedExchange64((volatile LONGLONG *)ptr, (LONGLONG)value);
#endif
default:
return 0xbad13bad; /* never reached */
}
}
__inline int64_t enet_at_atomic_cas(char *ptr, int64_t new_val, int64_t old_val, size_t size)
{
switch (size) {
case 1:
return _InterlockedCompareExchange8((volatile char *)ptr, (char)new_val, (char)old_val);
case 2:
return _InterlockedCompareExchange16((volatile SHORT *)ptr, (SHORT)new_val,
(SHORT)old_val);
case 4:
#ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE
return InterlockedCompareExchange((volatile LONG *)ptr, (LONG)new_val, (LONG)old_val);
#else
return _InterlockedCompareExchange((volatile LONG *)ptr, (LONG)new_val, (LONG)old_val);
#endif
case 8:
#ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE
return InterlockedCompareExchange64((volatile LONGLONG *)ptr, (LONGLONG)new_val,
(LONGLONG)old_val);
#else
return _InterlockedCompareExchange64((volatile LONGLONG *)ptr, (LONGLONG)new_val,
(LONGLONG)old_val);
#endif
default:
return 0xbad13bad; /* never reached */
}
}
__inline int64_t enet_at_atomic_inc(char *ptr, int64_t delta, size_t data_size)
{
switch (data_size) {
case 1:
return _InterlockedExchangeAdd8((volatile char *)ptr, (char)delta);
case 2:
return _InterlockedExchangeAdd16((volatile SHORT *)ptr, (SHORT)delta);
case 4:
#ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE
return InterlockedExchangeAdd((volatile LONG *)ptr, (LONG)delta);
#else
return _InterlockedExchangeAdd((volatile LONG *)ptr, (LONG)delta);
#endif
case 8:
#ifdef NOT_UNDERSCORED_INTERLOCKED_EXCHANGE
return InterlockedExchangeAdd64((volatile LONGLONG *)ptr, (LONGLONG)delta);
#else
return _InterlockedExchangeAdd64((volatile LONGLONG *)ptr, (LONGLONG)delta);
#endif
default:
return 0xbad13bad; /* never reached */
}
}
#define ENET_ATOMIC_READ(variable) enet_at_atomic_read((char *)(variable), ENET_ATOMIC_SIZEOF(variable))
#define ENET_ATOMIC_WRITE(variable, new_val) \
enet_at_atomic_write((char *)(variable), (int64_t)(new_val), ENET_ATOMIC_SIZEOF(variable))
#define ENET_ATOMIC_CAS(variable, old_value, new_val) \
enet_at_atomic_cas((char *)(variable), (int64_t)(new_val), (int64_t)(old_value), \
ENET_ATOMIC_SIZEOF(variable))
#define ENET_ATOMIC_INC(variable) enet_at_atomic_inc((char *)(variable), 1, ENET_ATOMIC_SIZEOF(variable))
#define ENET_ATOMIC_DEC(variable) enet_at_atomic_inc((char *)(variable), -1, ENET_ATOMIC_SIZEOF(variable))
#define ENET_ATOMIC_INC_BY(variable, delta) \
enet_at_atomic_inc((char *)(variable), (delta), ENET_ATOMIC_SIZEOF(variable))
#define ENET_ATOMIC_DEC_BY(variable, delta) \
enet_at_atomic_inc((char *)(variable), -(delta), ENET_ATOMIC_SIZEOF(variable))
#elif defined(__GNUC__) || defined(__clang__)
#if defined(__clang__) || (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))
#define AT_HAVE_ATOMICS
#endif
/* We want to use __atomic built-ins if possible because the __sync primitives are
deprecated, because the __atomic build-ins allow us to use ENET_ATOMIC_WRITE on
uninitialized memory without running into undefined behavior, and because the
__atomic versions generate more efficient code since we don't need to rely on
CAS when we don't actually want it.
Note that we use acquire-release memory order (like mutexes do). We could use
sequentially consistent memory order but that has lower performance and is
almost always unneeded. */
#ifdef AT_HAVE_ATOMICS
#define ENET_ATOMIC_READ(ptr) __atomic_load_n((ptr), __ATOMIC_ACQUIRE)
#define ENET_ATOMIC_WRITE(ptr, value) __atomic_store_n((ptr), (value), __ATOMIC_RELEASE)
#ifndef typeof
#define typeof __typeof__
#endif
/* clang_analyzer doesn't know that CAS writes to memory so it complains about
potentially lost data. Replace the code with the equivalent non-sync code. */
#ifdef __clang_analyzer__
#define ENET_ATOMIC_CAS(ptr, old_value, new_value) \
({ \
typeof(*(ptr)) ENET_ATOMIC_CAS_old_actual_ = (*(ptr)); \
if (ATOMIC_CAS_old_actual_ == (old_value)) { \
*(ptr) = new_value; \
} \
ENET_ATOMIC_CAS_old_actual_; \
})
#else
/* Could use __auto_type instead of typeof but that shouldn't work in C++.
The ({ }) syntax is a GCC extension called statement expression. It lets
us return a value out of the macro.
TODO We should return bool here instead of the old value to avoid the ABA
problem. */
#define ENET_ATOMIC_CAS(ptr, old_value, new_value) \
({ \
typeof(*(ptr)) ENET_ATOMIC_CAS_expected_ = (old_value); \
__atomic_compare_exchange_n((ptr), &ENET_ATOMIC_CAS_expected_, (new_value), false, \
__ATOMIC_ACQ_REL, __ATOMIC_ACQUIRE); \
ENET_ATOMIC_CAS_expected_; \
})
#endif /* __clang_analyzer__ */
#define ENET_ATOMIC_INC(ptr) __atomic_fetch_add((ptr), 1, __ATOMIC_ACQ_REL)
#define ENET_ATOMIC_DEC(ptr) __atomic_fetch_sub((ptr), 1, __ATOMIC_ACQ_REL)
#define ENET_ATOMIC_INC_BY(ptr, delta) __atomic_fetch_add((ptr), (delta), __ATOMIC_ACQ_REL)
#define ENET_ATOMIC_DEC_BY(ptr, delta) __atomic_fetch_sub((ptr), (delta), __ATOMIC_ACQ_REL)
#else
#define ENET_ATOMIC_READ(variable) __sync_fetch_and_add(variable, 0)
#define ENET_ATOMIC_WRITE(variable, new_val) \
(void) __sync_val_compare_and_swap((variable), *(variable), (new_val))
#define ENET_ATOMIC_CAS(variable, old_value, new_val) \
__sync_val_compare_and_swap((variable), (old_value), (new_val))
#define ENET_ATOMIC_INC(variable) __sync_fetch_and_add((variable), 1)
#define ENET_ATOMIC_DEC(variable) __sync_fetch_and_sub((variable), 1)
#define ENET_ATOMIC_INC_BY(variable, delta) __sync_fetch_and_add((variable), (delta), 1)
#define ENET_ATOMIC_DEC_BY(variable, delta) __sync_fetch_and_sub((variable), (delta), 1)
#endif /* AT_HAVE_ATOMICS */
#undef AT_HAVE_ATOMICS
#else //< @r-lyeh: add __TINYC__ stubs. not going to work.
#define ENET_ATOMIC_READ(variable) (*(int64_t *)(variable))
#define ENET_ATOMIC_WRITE(variable, new_val) (*(int64_t *)(variable) = (int64_t)(new_val))
#define ENET_ATOMIC_CAS(variable, old_value, new_val) (*(int64_t *)(variable) = (int64_t)(new_val))
#define ENET_ATOMIC_INC(variable) ENET_ATOMIC_INC_BY(variable, 1)
#define ENET_ATOMIC_DEC(variable) ENET_ATOMIC_DEC_BY(variable, 1)
#define ENET_ATOMIC_INC_BY(variable, delta) ( *(int64_t*)(variable) = (int64_t*)(variable) + (delta))
#define ENET_ATOMIC_DEC_BY(variable, delta) ( *(int64_t*)(variable) = (int64_t*)(variable) - (delta))
#endif /* defined(_MSC_VER) */
// =======================================================================//
// !
// ! Callbacks
// !
// =======================================================================//
ENetCallbacks callbacks = { malloc, free, abort, enet_packet_create, enet_packet_destroy };
int enet_initialize_with_callbacks(ENetVersion version, const ENetCallbacks *inits) {
if (version < ENET_VERSION_CREATE(1, 3, 0)) {
return -1;
}
if (inits->malloc != NULL || inits->free != NULL) {
if (inits->malloc == NULL || inits->free == NULL) {
return -1;
}
callbacks.malloc = inits->malloc;
callbacks.free = inits->free;
}
if (inits->no_memory != NULL) {
callbacks.no_memory = inits->no_memory;
}
if (inits->packet_create != NULL || inits->packet_destroy != NULL) {
if (inits->packet_create == NULL || inits->packet_destroy == NULL) {
return -1;
}
callbacks.packet_create = inits->packet_create;
callbacks.packet_destroy = inits->packet_destroy;
}
return enet_initialize();
}
ENetVersion enet_linked_version(void) {
return ENET_VERSION;
}
void * enet_malloc(size_t size) {
void *memory = callbacks.malloc(size);
if (memory == NULL) {
callbacks.no_memory();
}
return memory;
}
void enet_free(void *memory) {
callbacks.free(memory);
}
// =======================================================================//
// !
// ! List
// !
// =======================================================================//
void enet_list_clear(ENetList *list) {
list->sentinel.next = &list->sentinel;
list->sentinel.previous = &list->sentinel;
}
ENetListIterator enet_list_insert(ENetListIterator position, void *data) {
ENetListIterator result = (ENetListIterator)data;
result->previous = position->previous;
result->next = position;
result->previous->next = result;
position->previous = result;
return result;
}
void *enet_list_remove(ENetListIterator position) {
position->previous->next = position->next;
position->next->previous = position->previous;
return position;
}
ENetListIterator enet_list_move(ENetListIterator position, void *dataFirst, void *dataLast) {
ENetListIterator first = (ENetListIterator)dataFirst;
ENetListIterator last = (ENetListIterator)dataLast;
first->previous->next = last->next;
last->next->previous = first->previous;
first->previous = position->previous;
last->next = position;
first->previous->next = first;
position->previous = last;
return first;
}
size_t enet_list_size(ENetList *list) {
size_t size = 0;
ENetListIterator position;
for (position = enet_list_begin(list); position != enet_list_end(list); position = enet_list_next(position)) {
++size;
}
return size;
}
// =======================================================================//
// !
// ! Packet
// !
// =======================================================================//
/**
* Creates a packet that may be sent to a peer.
* @param data initial contents of the packet's data; the packet's data will remain uninitialized if data is NULL.
* @param dataLength size of the data allocated for this packet
* @param flags flags for this packet as described for the ENetPacket structure.
* @returns the packet on success, NULL on failure
*/
ENetPacket *enet_packet_create(const void *data, size_t dataLength, enet_uint32 flags) {
ENetPacket *packet;
if (flags & ENET_PACKET_FLAG_NO_ALLOCATE) {
packet = (ENetPacket *)enet_malloc(sizeof (ENetPacket));
if (packet == NULL) {
return NULL;
}
packet->data = (enet_uint8 *)data;
}
else {
packet = (ENetPacket *)enet_malloc(sizeof (ENetPacket) + dataLength);
if (packet == NULL) {
return NULL;
}
packet->data = (enet_uint8 *)packet + sizeof(ENetPacket);
if (data != NULL) {
memcpy(packet->data, data, dataLength);
}
}
packet->referenceCount = 0;
packet->flags = flags;
packet->dataLength = dataLength;
packet->freeCallback = NULL;
packet->userData = NULL;
return packet;
}
ENetPacket *enet_packet_create_offset(const void *data, size_t dataLength, size_t dataOffset, enet_uint32 flags) {
ENetPacket *packet;
if (flags & ENET_PACKET_FLAG_NO_ALLOCATE) {
packet = (ENetPacket *)enet_malloc(sizeof (ENetPacket));
if (packet == NULL) {
return NULL;
}
packet->data = (enet_uint8 *)data;
}
else {
packet = (ENetPacket *)enet_malloc(sizeof (ENetPacket) + dataLength + dataOffset);
if (packet == NULL) {
return NULL;
}
packet->data = (enet_uint8 *)packet + sizeof(ENetPacket);
if (data != NULL) {
memcpy(packet->data + dataOffset, data, dataLength);
}
}
packet->referenceCount = 0;
packet->flags = flags;
packet->dataLength = dataLength + dataOffset;
packet->freeCallback = NULL;
packet->userData = NULL;
return packet;
}
ENetPacket *enet_packet_copy(ENetPacket *packet) {
return enet_packet_create(packet->data, packet->dataLength, packet->flags);
}
/**
* Destroys the packet and deallocates its data.
* @param packet packet to be destroyed
*/
void enet_packet_destroy(ENetPacket *packet) {
if (packet == NULL) {
return;
}
if (packet->freeCallback != NULL) {
(*packet->freeCallback)((void *)packet);
}
enet_free(packet);
}
static int initializedCRC32 = 0;
static enet_uint32 crcTable[256];
static enet_uint32 reflect_crc(int val, int bits) {
int result = 0, bit;
for (bit = 0; bit < bits; bit++) {
if (val & 1) { result |= 1 << (bits - 1 - bit); }
val >>= 1;
}
return result;
}
static void initialize_crc32(void) {
int byte;
for (byte = 0; byte < 256; ++byte) {
enet_uint32 crc = reflect_crc(byte, 8) << 24;
int offset;
for (offset = 0; offset < 8; ++offset) {
if (crc & 0x80000000) {
crc = (crc << 1) ^ 0x04c11db7;
} else {
crc <<= 1;
}
}
crcTable[byte] = reflect_crc(crc, 32);
}
initializedCRC32 = 1;
}
enet_uint32 enet_crc32(const ENetBuffer *buffers, size_t bufferCount) {
enet_uint32 crc = 0xFFFFFFFF;
if (!initializedCRC32) { initialize_crc32(); }
while (bufferCount-- > 0) {
const enet_uint8 *data = (const enet_uint8 *)buffers->data;
const enet_uint8 *dataEnd = &data[buffers->dataLength];
while (data < dataEnd) {
crc = (crc >> 8) ^ crcTable[(crc & 0xFF) ^ *data++];
}
++buffers;
}
return ENET_HOST_TO_NET_32(~crc);
}
// =======================================================================//
// !
// ! Protocol
// !
// =======================================================================//
static size_t commandSizes[ENET_PROTOCOL_COMMAND_COUNT] = {
0,
sizeof(ENetProtocolAcknowledge),
sizeof(ENetProtocolConnect),
sizeof(ENetProtocolVerifyConnect),
sizeof(ENetProtocolDisconnect),
sizeof(ENetProtocolPing),
sizeof(ENetProtocolSendReliable),
sizeof(ENetProtocolSendUnreliable),
sizeof(ENetProtocolSendFragment),
sizeof(ENetProtocolSendUnsequenced),
sizeof(ENetProtocolBandwidthLimit),
sizeof(ENetProtocolThrottleConfigure),
sizeof(ENetProtocolSendFragment)
};
size_t enet_protocol_command_size(enet_uint8 commandNumber) {
return commandSizes[commandNumber & ENET_PROTOCOL_COMMAND_MASK];
}
static void enet_protocol_change_state(ENetHost *host, ENetPeer *peer, ENetPeerState state) {
ENET_UNUSED(host)
if (state == ENET_PEER_STATE_CONNECTED || state == ENET_PEER_STATE_DISCONNECT_LATER) {
enet_peer_on_connect(peer);
} else {
enet_peer_on_disconnect(peer);
}
peer->state = state;
}
static void enet_protocol_dispatch_state(ENetHost *host, ENetPeer *peer, ENetPeerState state) {
enet_protocol_change_state(host, peer, state);
if (!peer->needsDispatch) {
enet_list_insert(enet_list_end(&host->dispatchQueue), &peer->dispatchList);
peer->needsDispatch = 1;
}
}
static int enet_protocol_dispatch_incoming_commands(ENetHost *host, ENetEvent *event) {
while (!enet_list_empty(&host->dispatchQueue)) {
ENetPeer *peer = (ENetPeer *) enet_list_remove(enet_list_begin(&host->dispatchQueue));
peer->needsDispatch = 0;
switch (peer->state) {
case ENET_PEER_STATE_CONNECTION_PENDING:
case ENET_PEER_STATE_CONNECTION_SUCCEEDED:
enet_protocol_change_state(host, peer, ENET_PEER_STATE_CONNECTED);
event->type = ENET_EVENT_TYPE_CONNECT;
event->peer = peer;
event->data = peer->eventData;
return 1;
case ENET_PEER_STATE_ZOMBIE:
host->recalculateBandwidthLimits = 1;
event->type = ENET_EVENT_TYPE_DISCONNECT;
event->peer = peer;
event->data = peer->eventData;
enet_peer_reset(peer);
return 1;
case ENET_PEER_STATE_CONNECTED:
if (enet_list_empty(&peer->dispatchedCommands)) {
continue;
}
event->packet = enet_peer_receive(peer, &event->channelID);
if (event->packet == NULL) {
continue;
}
event->type = ENET_EVENT_TYPE_RECEIVE;
event->peer = peer;
if (!enet_list_empty(&peer->dispatchedCommands)) {
peer->needsDispatch = 1;
enet_list_insert(enet_list_end(&host->dispatchQueue), &peer->dispatchList);
}
return 1;
default:
break;
}
}
return 0;
} /* enet_protocol_dispatch_incoming_commands */
static void enet_protocol_notify_connect(ENetHost *host, ENetPeer *peer, ENetEvent *event) {
host->recalculateBandwidthLimits = 1;
if (event != NULL) {
enet_protocol_change_state(host, peer, ENET_PEER_STATE_CONNECTED);
peer->totalDataSent = 0;
peer->totalDataReceived = 0;
peer->totalPacketsSent = 0;
peer->totalPacketsLost = 0;
event->type = ENET_EVENT_TYPE_CONNECT;
event->peer = peer;
event->data = peer->eventData;
} else {
enet_protocol_dispatch_state(host, peer, peer->state == ENET_PEER_STATE_CONNECTING ? ENET_PEER_STATE_CONNECTION_SUCCEEDED : ENET_PEER_STATE_CONNECTION_PENDING);
}
}
static void enet_protocol_notify_disconnect(ENetHost *host, ENetPeer *peer, ENetEvent *event) {
if (peer->state >= ENET_PEER_STATE_CONNECTION_PENDING) {
host->recalculateBandwidthLimits = 1;
}
if (peer->state != ENET_PEER_STATE_CONNECTING && peer->state < ENET_PEER_STATE_CONNECTION_SUCCEEDED) {
enet_peer_reset(peer);
} else if (event != NULL) {
event->type = ENET_EVENT_TYPE_DISCONNECT;
event->peer = peer;
event->data = 0;
enet_peer_reset(peer);
} else {
peer->eventData = 0;
enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE);
}
}
static void enet_protocol_notify_disconnect_timeout (ENetHost * host, ENetPeer * peer, ENetEvent * event) {
if (peer->state >= ENET_PEER_STATE_CONNECTION_PENDING) {
host->recalculateBandwidthLimits = 1;
}
if (peer->state != ENET_PEER_STATE_CONNECTING && peer->state < ENET_PEER_STATE_CONNECTION_SUCCEEDED) {
enet_peer_reset (peer);
}
else if (event != NULL) {
event->type = ENET_EVENT_TYPE_DISCONNECT_TIMEOUT;
event->peer = peer;
event->data = 0;
enet_peer_reset(peer);
}
else {
peer->eventData = 0;
enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE);
}
}
static void enet_protocol_remove_sent_unreliable_commands(ENetPeer *peer) {
ENetOutgoingCommand *outgoingCommand;
while (!enet_list_empty(&peer->sentUnreliableCommands)) {
outgoingCommand = (ENetOutgoingCommand *) enet_list_front(&peer->sentUnreliableCommands);
enet_list_remove(&outgoingCommand->outgoingCommandList);
if (outgoingCommand->packet != NULL) {
--outgoingCommand->packet->referenceCount;
if (outgoingCommand->packet->referenceCount == 0) {
outgoingCommand->packet->flags |= ENET_PACKET_FLAG_SENT;
callbacks.packet_destroy(outgoingCommand->packet);
}
}
enet_free(outgoingCommand);
}
}
static ENetProtocolCommand enet_protocol_remove_sent_reliable_command(ENetPeer *peer, enet_uint16 reliableSequenceNumber, enet_uint8 channelID) {
ENetOutgoingCommand *outgoingCommand = NULL;
ENetListIterator currentCommand;
ENetProtocolCommand commandNumber;
int wasSent = 1;
for (currentCommand = enet_list_begin(&peer->sentReliableCommands);
currentCommand != enet_list_end(&peer->sentReliableCommands);
currentCommand = enet_list_next(currentCommand)
) {
outgoingCommand = (ENetOutgoingCommand *) currentCommand;
if (outgoingCommand->reliableSequenceNumber == reliableSequenceNumber && outgoingCommand->command.header.channelID == channelID) {
break;
}
}
if (currentCommand == enet_list_end(&peer->sentReliableCommands)) {
for (currentCommand = enet_list_begin(&peer->outgoingReliableCommands);
currentCommand != enet_list_end(&peer->outgoingReliableCommands);
currentCommand = enet_list_next(currentCommand)
) {
outgoingCommand = (ENetOutgoingCommand *) currentCommand;
if (outgoingCommand->sendAttempts < 1) { return ENET_PROTOCOL_COMMAND_NONE; }
if (outgoingCommand->reliableSequenceNumber == reliableSequenceNumber && outgoingCommand->command.header.channelID == channelID) {
break;
}
}
if (currentCommand == enet_list_end(&peer->outgoingReliableCommands)) {
return ENET_PROTOCOL_COMMAND_NONE;
}
wasSent = 0;
}
if (outgoingCommand == NULL) {
return ENET_PROTOCOL_COMMAND_NONE;
}
if (channelID < peer->channelCount) {
ENetChannel *channel = &peer->channels[channelID];
enet_uint16 reliableWindow = reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
if (channel->reliableWindows[reliableWindow] > 0) {
--channel->reliableWindows[reliableWindow];
if (!channel->reliableWindows[reliableWindow]) {
channel->usedReliableWindows &= ~(1 << reliableWindow);
}
}
}
commandNumber = (ENetProtocolCommand) (outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK);
enet_list_remove(&outgoingCommand->outgoingCommandList);
if (outgoingCommand->packet != NULL) {
if (wasSent) {
peer->reliableDataInTransit -= outgoingCommand->fragmentLength;
}
--outgoingCommand->packet->referenceCount;
if (outgoingCommand->packet->referenceCount == 0) {
outgoingCommand->packet->flags |= ENET_PACKET_FLAG_SENT;
callbacks.packet_destroy(outgoingCommand->packet);
}
}
enet_free(outgoingCommand);
if (enet_list_empty(&peer->sentReliableCommands)) {
return commandNumber;
}
outgoingCommand = (ENetOutgoingCommand *) enet_list_front(&peer->sentReliableCommands);
peer->nextTimeout = outgoingCommand->sentTime + outgoingCommand->roundTripTimeout;
return commandNumber;
} /* enet_protocol_remove_sent_reliable_command */
static ENetPeer * enet_protocol_handle_connect(ENetHost *host, ENetProtocolHeader *header, ENetProtocol *command) {
ENET_UNUSED(header)
enet_uint8 incomingSessionID, outgoingSessionID;
enet_uint32 mtu, windowSize;
ENetChannel *channel;
size_t channelCount, duplicatePeers = 0;
ENetPeer *currentPeer, *peer = NULL;
ENetProtocol verifyCommand;
channelCount = ENET_NET_TO_HOST_32(command->connect.channelCount);
if (channelCount < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT || channelCount > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT) {
return NULL;
}
for (currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) {
if (currentPeer->state == ENET_PEER_STATE_DISCONNECTED) {
if (peer == NULL) {
peer = currentPeer;
}
} else if (currentPeer->state != ENET_PEER_STATE_CONNECTING && in6_equal(currentPeer->address.host, host->receivedAddress.host)) {
if (currentPeer->address.port == host->receivedAddress.port && currentPeer->connectID == command->connect.connectID) {
return NULL;
}
++duplicatePeers;
}
}
if (peer == NULL || duplicatePeers >= host->duplicatePeers) {
return NULL;
}
if (channelCount > host->channelLimit) {
channelCount = host->channelLimit;
}
peer->channels = (ENetChannel *) enet_malloc(channelCount * sizeof(ENetChannel));
if (peer->channels == NULL) {
return NULL;
}
peer->channelCount = channelCount;
peer->state = ENET_PEER_STATE_ACKNOWLEDGING_CONNECT;
peer->connectID = command->connect.connectID;
peer->address = host->receivedAddress;
peer->outgoingPeerID = ENET_NET_TO_HOST_16(command->connect.outgoingPeerID);
peer->incomingBandwidth = ENET_NET_TO_HOST_32(command->connect.incomingBandwidth);
peer->outgoingBandwidth = ENET_NET_TO_HOST_32(command->connect.outgoingBandwidth);
peer->packetThrottleInterval = ENET_NET_TO_HOST_32(command->connect.packetThrottleInterval);
peer->packetThrottleAcceleration = ENET_NET_TO_HOST_32(command->connect.packetThrottleAcceleration);
peer->packetThrottleDeceleration = ENET_NET_TO_HOST_32(command->connect.packetThrottleDeceleration);
peer->eventData = ENET_NET_TO_HOST_32(command->connect.data);
incomingSessionID = command->connect.incomingSessionID == 0xFF ? peer->outgoingSessionID : command->connect.incomingSessionID;
incomingSessionID = (incomingSessionID + 1) & (ENET_PROTOCOL_HEADER_SESSION_MASK >> ENET_PROTOCOL_HEADER_SESSION_SHIFT);
if (incomingSessionID == peer->outgoingSessionID) {
incomingSessionID = (incomingSessionID + 1)
& (ENET_PROTOCOL_HEADER_SESSION_MASK >> ENET_PROTOCOL_HEADER_SESSION_SHIFT);
}
peer->outgoingSessionID = incomingSessionID;
outgoingSessionID = command->connect.outgoingSessionID == 0xFF ? peer->incomingSessionID : command->connect.outgoingSessionID;
outgoingSessionID = (outgoingSessionID + 1) & (ENET_PROTOCOL_HEADER_SESSION_MASK >> ENET_PROTOCOL_HEADER_SESSION_SHIFT);
if (outgoingSessionID == peer->incomingSessionID) {
outgoingSessionID = (outgoingSessionID + 1)
& (ENET_PROTOCOL_HEADER_SESSION_MASK >> ENET_PROTOCOL_HEADER_SESSION_SHIFT);
}
peer->incomingSessionID = outgoingSessionID;
for (channel = peer->channels; channel < &peer->channels[channelCount]; ++channel) {
channel->outgoingReliableSequenceNumber = 0;
channel->outgoingUnreliableSequenceNumber = 0;
channel->incomingReliableSequenceNumber = 0;
channel->incomingUnreliableSequenceNumber = 0;
enet_list_clear(&channel->incomingReliableCommands);
enet_list_clear(&channel->incomingUnreliableCommands);
channel->usedReliableWindows = 0;
memset(channel->reliableWindows, 0, sizeof(channel->reliableWindows));
}
mtu = ENET_NET_TO_HOST_32(command->connect.mtu);
if (mtu < ENET_PROTOCOL_MINIMUM_MTU) {
mtu = ENET_PROTOCOL_MINIMUM_MTU;
} else if (mtu > ENET_PROTOCOL_MAXIMUM_MTU) {
mtu = ENET_PROTOCOL_MAXIMUM_MTU;
}
peer->mtu = mtu;
if (host->outgoingBandwidth == 0 && peer->incomingBandwidth == 0) {
peer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
} else if (host->outgoingBandwidth == 0 || peer->incomingBandwidth == 0) {
peer->windowSize = (ENET_MAX(host->outgoingBandwidth, peer->incomingBandwidth) / ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
} else {
peer->windowSize = (ENET_MIN(host->outgoingBandwidth, peer->incomingBandwidth) / ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
}
if (peer->windowSize < ENET_PROTOCOL_MINIMUM_WINDOW_SIZE) {
peer->windowSize = ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
} else if (peer->windowSize > ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE) {
peer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
}
if (host->incomingBandwidth == 0) {
windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
} else {
windowSize = (host->incomingBandwidth / ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
}
if (windowSize > ENET_NET_TO_HOST_32(command->connect.windowSize)) {
windowSize = ENET_NET_TO_HOST_32(command->connect.windowSize);
}
if (windowSize < ENET_PROTOCOL_MINIMUM_WINDOW_SIZE) {
windowSize = ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
} else if (windowSize > ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE) {
windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
}
verifyCommand.header.command = ENET_PROTOCOL_COMMAND_VERIFY_CONNECT | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE;
verifyCommand.header.channelID = 0xFF;
verifyCommand.verifyConnect.outgoingPeerID = ENET_HOST_TO_NET_16(peer->incomingPeerID);
verifyCommand.verifyConnect.incomingSessionID = incomingSessionID;
verifyCommand.verifyConnect.outgoingSessionID = outgoingSessionID;
verifyCommand.verifyConnect.mtu = ENET_HOST_TO_NET_32(peer->mtu);
verifyCommand.verifyConnect.windowSize = ENET_HOST_TO_NET_32(windowSize);
verifyCommand.verifyConnect.channelCount = ENET_HOST_TO_NET_32(channelCount);
verifyCommand.verifyConnect.incomingBandwidth = ENET_HOST_TO_NET_32(host->incomingBandwidth);
verifyCommand.verifyConnect.outgoingBandwidth = ENET_HOST_TO_NET_32(host->outgoingBandwidth);
verifyCommand.verifyConnect.packetThrottleInterval = ENET_HOST_TO_NET_32(peer->packetThrottleInterval);
verifyCommand.verifyConnect.packetThrottleAcceleration = ENET_HOST_TO_NET_32(peer->packetThrottleAcceleration);
verifyCommand.verifyConnect.packetThrottleDeceleration = ENET_HOST_TO_NET_32(peer->packetThrottleDeceleration);
verifyCommand.verifyConnect.connectID = peer->connectID;
enet_peer_queue_outgoing_command(peer, &verifyCommand, NULL, 0, 0);
return peer;
} /* enet_protocol_handle_connect */
static int enet_protocol_handle_send_reliable(ENetHost *host, ENetPeer *peer, const ENetProtocol *command, enet_uint8 **currentData) {
size_t dataLength;
if (command->header.channelID >= peer->channelCount || (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER)) {
return -1;
}
dataLength = ENET_NET_TO_HOST_16(command->sendReliable.dataLength);
*currentData += dataLength;
if (dataLength > host->maximumPacketSize || *currentData < host->receivedData || *currentData > &host->receivedData[host->receivedDataLength]) {
return -1;
}
if (enet_peer_queue_incoming_command(peer, command, (const enet_uint8 *) command + sizeof(ENetProtocolSendReliable), dataLength, ENET_PACKET_FLAG_RELIABLE, 0) == NULL) {
return -1;
}
return 0;
}
static int enet_protocol_handle_send_unsequenced(ENetHost *host, ENetPeer *peer, const ENetProtocol *command, enet_uint8 **currentData) {
enet_uint32 unsequencedGroup, index;
size_t dataLength;
if (command->header.channelID >= peer->channelCount || (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER)) {
return -1;
}
dataLength = ENET_NET_TO_HOST_16(command->sendUnsequenced.dataLength);
*currentData += dataLength;
if (dataLength > host->maximumPacketSize || *currentData < host->receivedData || *currentData > &host->receivedData[host->receivedDataLength]) {
return -1;
}
unsequencedGroup = ENET_NET_TO_HOST_16(command->sendUnsequenced.unsequencedGroup);
index = unsequencedGroup % ENET_PEER_UNSEQUENCED_WINDOW_SIZE;
if (unsequencedGroup < peer->incomingUnsequencedGroup) {
unsequencedGroup += 0x10000;
}
if (unsequencedGroup >= (enet_uint32) peer->incomingUnsequencedGroup + ENET_PEER_FREE_UNSEQUENCED_WINDOWS * ENET_PEER_UNSEQUENCED_WINDOW_SIZE) {
return 0;
}
unsequencedGroup &= 0xFFFF;
if (unsequencedGroup - index != peer->incomingUnsequencedGroup) {
peer->incomingUnsequencedGroup = unsequencedGroup - index;
memset(peer->unsequencedWindow, 0, sizeof(peer->unsequencedWindow));
} else if (peer->unsequencedWindow[index / 32] & (1 << (index % 32))) {
return 0;
}
if (enet_peer_queue_incoming_command(peer, command, (const enet_uint8 *) command + sizeof(ENetProtocolSendUnsequenced), dataLength, ENET_PACKET_FLAG_UNSEQUENCED,0) == NULL) {
return -1;
}
peer->unsequencedWindow[index / 32] |= 1 << (index % 32);
return 0;
} /* enet_protocol_handle_send_unsequenced */
static int enet_protocol_handle_send_unreliable(ENetHost *host, ENetPeer *peer, const ENetProtocol *command,
enet_uint8 **currentData) {
size_t dataLength;
if (command->header.channelID >= peer->channelCount ||
(peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER))
{
return -1;
}
dataLength = ENET_NET_TO_HOST_16(command->sendUnreliable.dataLength);
*currentData += dataLength;
if (dataLength > host->maximumPacketSize || *currentData < host->receivedData || *currentData > &host->receivedData[host->receivedDataLength]) {
return -1;
}
if (enet_peer_queue_incoming_command(peer, command, (const enet_uint8 *) command + sizeof(ENetProtocolSendUnreliable), dataLength, 0, 0) == NULL) {
return -1;
}
return 0;
}
static int enet_protocol_handle_send_fragment(ENetHost *host, ENetPeer *peer, const ENetProtocol *command, enet_uint8 **currentData) {
enet_uint32 fragmentNumber, fragmentCount, fragmentOffset, fragmentLength, startSequenceNumber, totalLength;
ENetChannel *channel;
enet_uint16 startWindow, currentWindow;
ENetListIterator currentCommand;
ENetIncomingCommand *startCommand = NULL;
if (command->header.channelID >= peer->channelCount || (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER)) {
return -1;
}
fragmentLength = ENET_NET_TO_HOST_16(command->sendFragment.dataLength);
*currentData += fragmentLength;
if (fragmentLength > host->maximumPacketSize || *currentData < host->receivedData || *currentData > &host->receivedData[host->receivedDataLength]) {
return -1;
}
channel = &peer->channels[command->header.channelID];
startSequenceNumber = ENET_NET_TO_HOST_16(command->sendFragment.startSequenceNumber);
startWindow = startSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
currentWindow = channel->incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
if (startSequenceNumber < channel->incomingReliableSequenceNumber) {
startWindow += ENET_PEER_RELIABLE_WINDOWS;
}
if (startWindow < currentWindow || startWindow >= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1) {
return 0;
}
fragmentNumber = ENET_NET_TO_HOST_32(command->sendFragment.fragmentNumber);
fragmentCount = ENET_NET_TO_HOST_32(command->sendFragment.fragmentCount);
fragmentOffset = ENET_NET_TO_HOST_32(command->sendFragment.fragmentOffset);
totalLength = ENET_NET_TO_HOST_32(command->sendFragment.totalLength);
if (fragmentCount > ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT ||
fragmentNumber >= fragmentCount ||
totalLength > host->maximumPacketSize ||
fragmentOffset >= totalLength ||
fragmentLength > totalLength - fragmentOffset
) {
return -1;
}
for (currentCommand = enet_list_previous(enet_list_end(&channel->incomingReliableCommands));
currentCommand != enet_list_end(&channel->incomingReliableCommands);
currentCommand = enet_list_previous(currentCommand)
) {
ENetIncomingCommand *incomingCommand = (ENetIncomingCommand *) currentCommand;
if (startSequenceNumber >= channel->incomingReliableSequenceNumber) {
if (incomingCommand->reliableSequenceNumber < channel->incomingReliableSequenceNumber) {
continue;
}
} else if (incomingCommand->reliableSequenceNumber >= channel->incomingReliableSequenceNumber) {
break;
}
if (incomingCommand->reliableSequenceNumber <= startSequenceNumber) {
if (incomingCommand->reliableSequenceNumber < startSequenceNumber) {
break;
}
if ((incomingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK) !=
ENET_PROTOCOL_COMMAND_SEND_FRAGMENT ||
totalLength != incomingCommand->packet->dataLength ||
fragmentCount != incomingCommand->fragmentCount
) {
return -1;
}
startCommand = incomingCommand;
break;
}
}
if (startCommand == NULL) {
ENetProtocol hostCommand = *command;
hostCommand.header.reliableSequenceNumber = startSequenceNumber;
startCommand = enet_peer_queue_incoming_command(peer, &hostCommand, NULL, totalLength, ENET_PACKET_FLAG_RELIABLE, fragmentCount);
if (startCommand == NULL) {
return -1;
}
}
if ((startCommand->fragments[fragmentNumber / 32] & (1 << (fragmentNumber % 32))) == 0) {
--startCommand->fragmentsRemaining;
startCommand->fragments[fragmentNumber / 32] |= (1 << (fragmentNumber % 32));
if (fragmentOffset + fragmentLength > startCommand->packet->dataLength) {
fragmentLength = startCommand->packet->dataLength - fragmentOffset;
}
memcpy(startCommand->packet->data + fragmentOffset, (enet_uint8 *) command + sizeof(ENetProtocolSendFragment), fragmentLength);
if (startCommand->fragmentsRemaining <= 0) {
enet_peer_dispatch_incoming_reliable_commands(peer, channel);
}
}
return 0;
} /* enet_protocol_handle_send_fragment */
static int enet_protocol_handle_send_unreliable_fragment(ENetHost *host, ENetPeer *peer, const ENetProtocol *command, enet_uint8 **currentData) {
enet_uint32 fragmentNumber, fragmentCount, fragmentOffset, fragmentLength, reliableSequenceNumber, startSequenceNumber, totalLength;
enet_uint16 reliableWindow, currentWindow;
ENetChannel *channel;
ENetListIterator currentCommand;
ENetIncomingCommand *startCommand = NULL;
if (command->header.channelID >= peer->channelCount || (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER)) {
return -1;
}
fragmentLength = ENET_NET_TO_HOST_16(command->sendFragment.dataLength);
*currentData += fragmentLength;
if (fragmentLength > host->maximumPacketSize || *currentData < host->receivedData || *currentData > &host->receivedData[host->receivedDataLength]) {
return -1;
}
channel = &peer->channels[command->header.channelID];
reliableSequenceNumber = command->header.reliableSequenceNumber;
startSequenceNumber = ENET_NET_TO_HOST_16(command->sendFragment.startSequenceNumber);
reliableWindow = reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
currentWindow = channel->incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
if (reliableSequenceNumber < channel->incomingReliableSequenceNumber) {
reliableWindow += ENET_PEER_RELIABLE_WINDOWS;
}
if (reliableWindow < currentWindow || reliableWindow >= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1) {
return 0;
}
if (reliableSequenceNumber == channel->incomingReliableSequenceNumber && startSequenceNumber <= channel->incomingUnreliableSequenceNumber) {
return 0;
}
fragmentNumber = ENET_NET_TO_HOST_32(command->sendFragment.fragmentNumber);
fragmentCount = ENET_NET_TO_HOST_32(command->sendFragment.fragmentCount);
fragmentOffset = ENET_NET_TO_HOST_32(command->sendFragment.fragmentOffset);
totalLength = ENET_NET_TO_HOST_32(command->sendFragment.totalLength);
if (fragmentCount > ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT ||
fragmentNumber >= fragmentCount ||
totalLength > host->maximumPacketSize ||
fragmentOffset >= totalLength ||
fragmentLength > totalLength - fragmentOffset
) {
return -1;
}
for (currentCommand = enet_list_previous(enet_list_end(&channel->incomingUnreliableCommands));
currentCommand != enet_list_end(&channel->incomingUnreliableCommands);
currentCommand = enet_list_previous(currentCommand)
) {
ENetIncomingCommand *incomingCommand = (ENetIncomingCommand *) currentCommand;
if (reliableSequenceNumber >= channel->incomingReliableSequenceNumber) {
if (incomingCommand->reliableSequenceNumber < channel->incomingReliableSequenceNumber) {
continue;
}
} else if (incomingCommand->reliableSequenceNumber >= channel->incomingReliableSequenceNumber) {
break;
}
if (incomingCommand->reliableSequenceNumber < reliableSequenceNumber) {
break;
}
if (incomingCommand->reliableSequenceNumber > reliableSequenceNumber) {
continue;
}
if (incomingCommand->unreliableSequenceNumber <= startSequenceNumber) {
if (incomingCommand->unreliableSequenceNumber < startSequenceNumber) {
break;
}
if ((incomingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK) !=
ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT ||
totalLength != incomingCommand->packet->dataLength ||
fragmentCount != incomingCommand->fragmentCount
) {
return -1;
}
startCommand = incomingCommand;
break;
}
}
if (startCommand == NULL) {
startCommand = enet_peer_queue_incoming_command(peer, command, NULL, totalLength,
ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT, fragmentCount);
if (startCommand == NULL) {
return -1;
}
}
if ((startCommand->fragments[fragmentNumber / 32] & (1 << (fragmentNumber % 32))) == 0) {
--startCommand->fragmentsRemaining;
startCommand->fragments[fragmentNumber / 32] |= (1 << (fragmentNumber % 32));
if (fragmentOffset + fragmentLength > startCommand->packet->dataLength) {
fragmentLength = startCommand->packet->dataLength - fragmentOffset;
}
memcpy(startCommand->packet->data + fragmentOffset, (enet_uint8 *) command + sizeof(ENetProtocolSendFragment), fragmentLength);
if (startCommand->fragmentsRemaining <= 0) {
enet_peer_dispatch_incoming_unreliable_commands(peer, channel);
}
}
return 0;
} /* enet_protocol_handle_send_unreliable_fragment */
static int enet_protocol_handle_ping(ENetHost *host, ENetPeer *peer, const ENetProtocol *command) {
ENET_UNUSED(host)
ENET_UNUSED(command)
if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) {
return -1;
}
return 0;
}
static int enet_protocol_handle_bandwidth_limit(ENetHost *host, ENetPeer *peer, const ENetProtocol *command) {
if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) {
return -1;
}
if (peer->incomingBandwidth != 0) {
--host->bandwidthLimitedPeers;
}
peer->incomingBandwidth = ENET_NET_TO_HOST_32(command->bandwidthLimit.incomingBandwidth);
peer->outgoingBandwidth = ENET_NET_TO_HOST_32(command->bandwidthLimit.outgoingBandwidth);
if (peer->incomingBandwidth != 0) {
++host->bandwidthLimitedPeers;
}
if (peer->incomingBandwidth == 0 && host->outgoingBandwidth == 0) {
peer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
} else if (peer->incomingBandwidth == 0 || host->outgoingBandwidth == 0) {
peer->windowSize = (ENET_MAX(peer->incomingBandwidth, host->outgoingBandwidth)
/ ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
} else {
peer->windowSize = (ENET_MIN(peer->incomingBandwidth, host->outgoingBandwidth)
/ ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
}
if (peer->windowSize < ENET_PROTOCOL_MINIMUM_WINDOW_SIZE) {
peer->windowSize = ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
} else if (peer->windowSize > ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE) {
peer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
}
return 0;
} /* enet_protocol_handle_bandwidth_limit */
static int enet_protocol_handle_throttle_configure(ENetHost *host, ENetPeer *peer, const ENetProtocol *command) {
ENET_UNUSED(host)
if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) {
return -1;
}
peer->packetThrottleInterval = ENET_NET_TO_HOST_32(command->throttleConfigure.packetThrottleInterval);
peer->packetThrottleAcceleration = ENET_NET_TO_HOST_32(command->throttleConfigure.packetThrottleAcceleration);
peer->packetThrottleDeceleration = ENET_NET_TO_HOST_32(command->throttleConfigure.packetThrottleDeceleration);
return 0;
}
static int enet_protocol_handle_disconnect(ENetHost *host, ENetPeer *peer, const ENetProtocol *command) {
if (peer->state == ENET_PEER_STATE_DISCONNECTED || peer->state == ENET_PEER_STATE_ZOMBIE ||
peer->state == ENET_PEER_STATE_ACKNOWLEDGING_DISCONNECT
) {
return 0;
}
enet_peer_reset_queues(peer);
if (peer->state == ENET_PEER_STATE_CONNECTION_SUCCEEDED || peer->state == ENET_PEER_STATE_DISCONNECTING || peer->state == ENET_PEER_STATE_CONNECTING) {
enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE);
}
else if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) {
if (peer->state == ENET_PEER_STATE_CONNECTION_PENDING) { host->recalculateBandwidthLimits = 1; }
enet_peer_reset(peer);
}
else if (command->header.command & ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE) {
enet_protocol_change_state(host, peer, ENET_PEER_STATE_ACKNOWLEDGING_DISCONNECT);
}
else {
enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE);
}
if (peer->state != ENET_PEER_STATE_DISCONNECTED) {
peer->eventData = ENET_NET_TO_HOST_32(command->disconnect.data);
}
return 0;
}
static int enet_protocol_handle_acknowledge(ENetHost *host, ENetEvent *event, ENetPeer *peer, const ENetProtocol *command) {
enet_uint32 roundTripTime, receivedSentTime, receivedReliableSequenceNumber;
ENetProtocolCommand commandNumber;
if (peer->state == ENET_PEER_STATE_DISCONNECTED || peer->state == ENET_PEER_STATE_ZOMBIE) {
return 0;
}
receivedSentTime = ENET_NET_TO_HOST_16(command->acknowledge.receivedSentTime);
receivedSentTime |= host->serviceTime & 0xFFFF0000;
if ((receivedSentTime & 0x8000) > (host->serviceTime & 0x8000)) {
receivedSentTime -= 0x10000;
}
if (ENET_TIME_LESS(host->serviceTime, receivedSentTime)) {
return 0;
}
peer->lastReceiveTime = host->serviceTime;
peer->earliestTimeout = 0;
roundTripTime = ENET_TIME_DIFFERENCE(host->serviceTime, receivedSentTime);
enet_peer_throttle(peer, roundTripTime);
peer->roundTripTimeVariance -= peer->roundTripTimeVariance / 4;
if (roundTripTime >= peer->roundTripTime) {
peer->roundTripTime += (roundTripTime - peer->roundTripTime) / 8;
peer->roundTripTimeVariance += (roundTripTime - peer->roundTripTime) / 4;
} else {
peer->roundTripTime -= (peer->roundTripTime - roundTripTime) / 8;
peer->roundTripTimeVariance += (peer->roundTripTime - roundTripTime) / 4;
}
if (peer->roundTripTime < peer->lowestRoundTripTime) {
peer->lowestRoundTripTime = peer->roundTripTime;
}
if (peer->roundTripTimeVariance > peer->highestRoundTripTimeVariance) {
peer->highestRoundTripTimeVariance = peer->roundTripTimeVariance;
}
if (peer->packetThrottleEpoch == 0 ||
ENET_TIME_DIFFERENCE(host->serviceTime, peer->packetThrottleEpoch) >= peer->packetThrottleInterval
) {
peer->lastRoundTripTime = peer->lowestRoundTripTime;
peer->lastRoundTripTimeVariance = peer->highestRoundTripTimeVariance;
peer->lowestRoundTripTime = peer->roundTripTime;
peer->highestRoundTripTimeVariance = peer->roundTripTimeVariance;
peer->packetThrottleEpoch = host->serviceTime;
}
receivedReliableSequenceNumber = ENET_NET_TO_HOST_16(command->acknowledge.receivedReliableSequenceNumber);
commandNumber = enet_protocol_remove_sent_reliable_command(peer, receivedReliableSequenceNumber, command->header.channelID);
switch (peer->state) {
case ENET_PEER_STATE_ACKNOWLEDGING_CONNECT:
if (commandNumber != ENET_PROTOCOL_COMMAND_VERIFY_CONNECT) {
return -1;
}
enet_protocol_notify_connect(host, peer, event);
break;
case ENET_PEER_STATE_DISCONNECTING:
if (commandNumber != ENET_PROTOCOL_COMMAND_DISCONNECT) {
return -1;
}
enet_protocol_notify_disconnect(host, peer, event);
break;
case ENET_PEER_STATE_DISCONNECT_LATER:
if (enet_list_empty(&peer->outgoingReliableCommands) &&
enet_list_empty(&peer->outgoingUnreliableCommands) &&
enet_list_empty(&peer->sentReliableCommands))
{
enet_peer_disconnect(peer, peer->eventData);
}
break;
default:
break;
}
return 0;
} /* enet_protocol_handle_acknowledge */
static int enet_protocol_handle_verify_connect(ENetHost *host, ENetEvent *event, ENetPeer *peer, const ENetProtocol *command) {
enet_uint32 mtu, windowSize;
size_t channelCount;
if (peer->state != ENET_PEER_STATE_CONNECTING) {
return 0;
}
channelCount = ENET_NET_TO_HOST_32(command->verifyConnect.channelCount);
if (channelCount < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT || channelCount > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT ||
ENET_NET_TO_HOST_32(command->verifyConnect.packetThrottleInterval) != peer->packetThrottleInterval ||
ENET_NET_TO_HOST_32(command->verifyConnect.packetThrottleAcceleration) != peer->packetThrottleAcceleration ||
ENET_NET_TO_HOST_32(command->verifyConnect.packetThrottleDeceleration) != peer->packetThrottleDeceleration ||
command->verifyConnect.connectID != peer->connectID
) {
peer->eventData = 0;
enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE);
return -1;
}
enet_protocol_remove_sent_reliable_command(peer, 1, 0xFF);
if (channelCount < peer->channelCount) {
peer->channelCount = channelCount;
}
peer->outgoingPeerID = ENET_NET_TO_HOST_16(command->verifyConnect.outgoingPeerID);
peer->incomingSessionID = command->verifyConnect.incomingSessionID;
peer->outgoingSessionID = command->verifyConnect.outgoingSessionID;
mtu = ENET_NET_TO_HOST_32(command->verifyConnect.mtu);
if (mtu < ENET_PROTOCOL_MINIMUM_MTU) {
mtu = ENET_PROTOCOL_MINIMUM_MTU;
} else if (mtu > ENET_PROTOCOL_MAXIMUM_MTU) {
mtu = ENET_PROTOCOL_MAXIMUM_MTU;
}
if (mtu < peer->mtu) {
peer->mtu = mtu;
}
windowSize = ENET_NET_TO_HOST_32(command->verifyConnect.windowSize);
if (windowSize < ENET_PROTOCOL_MINIMUM_WINDOW_SIZE) {
windowSize = ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
}
if (windowSize > ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE) {
windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
}
if (windowSize < peer->windowSize) {
peer->windowSize = windowSize;
}
peer->incomingBandwidth = ENET_NET_TO_HOST_32(command->verifyConnect.incomingBandwidth);
peer->outgoingBandwidth = ENET_NET_TO_HOST_32(command->verifyConnect.outgoingBandwidth);
enet_protocol_notify_connect(host, peer, event);
return 0;
} /* enet_protocol_handle_verify_connect */
static int enet_protocol_handle_incoming_commands(ENetHost *host, ENetEvent *event) {
ENetProtocolHeader *header;
ENetProtocol *command;
ENetPeer *peer;
enet_uint8 *currentData;
size_t headerSize;
enet_uint16 peerID, flags;
enet_uint8 sessionID;
if (host->receivedDataLength < (size_t) &((ENetProtocolHeader *) 0)->sentTime) {
return 0;
}
header = (ENetProtocolHeader *) host->receivedData;
peerID = ENET_NET_TO_HOST_16(header->peerID);
sessionID = (peerID & ENET_PROTOCOL_HEADER_SESSION_MASK) >> ENET_PROTOCOL_HEADER_SESSION_SHIFT;
flags = peerID & ENET_PROTOCOL_HEADER_FLAG_MASK;
peerID &= ~(ENET_PROTOCOL_HEADER_FLAG_MASK | ENET_PROTOCOL_HEADER_SESSION_MASK);
headerSize = (flags & ENET_PROTOCOL_HEADER_FLAG_SENT_TIME ? sizeof(ENetProtocolHeader) : (size_t) &((ENetProtocolHeader *) 0)->sentTime);
if (host->checksum != NULL) {
headerSize += sizeof(enet_uint32);
}
if (peerID == ENET_PROTOCOL_MAXIMUM_PEER_ID) {
peer = NULL;
} else if (peerID >= host->peerCount) {
return 0;
} else {
peer = &host->peers[peerID];
if (peer->state == ENET_PEER_STATE_DISCONNECTED ||
peer->state == ENET_PEER_STATE_ZOMBIE ||
((!in6_equal(host->receivedAddress.host , peer->address.host) ||
host->receivedAddress.port != peer->address.port) &&
1 /* no broadcast in ipv6 !in6_equal(peer->address.host , ENET_HOST_BROADCAST)*/) ||
(peer->outgoingPeerID < ENET_PROTOCOL_MAXIMUM_PEER_ID &&
sessionID != peer->incomingSessionID)
) {
return 0;
}
}
if (flags & ENET_PROTOCOL_HEADER_FLAG_COMPRESSED) {
size_t originalSize;
if (host->compressor.context == NULL || host->compressor.decompress == NULL) {
return 0;
}
originalSize = host->compressor.decompress(host->compressor.context,
host->receivedData + headerSize,
host->receivedDataLength - headerSize,
host->packetData[1] + headerSize,
sizeof(host->packetData[1]) - headerSize
);
if (originalSize <= 0 || originalSize > sizeof(host->packetData[1]) - headerSize) {
return 0;
}
memcpy(host->packetData[1], header, headerSize);
host->receivedData = host->packetData[1];
host->receivedDataLength = headerSize + originalSize;
}
if (host->checksum != NULL) {
enet_uint32 *checksum = (enet_uint32 *) &host->receivedData[headerSize - sizeof(enet_uint32)];
enet_uint32 desiredChecksum = *checksum;
ENetBuffer buffer;
*checksum = peer != NULL ? peer->connectID : 0;
buffer.data = host->receivedData;
buffer.dataLength = host->receivedDataLength;
if (host->checksum(&buffer, 1) != desiredChecksum) {
return 0;
}
}
if (peer != NULL) {
peer->address.host = host->receivedAddress.host;
peer->address.port = host->receivedAddress.port;
peer->incomingDataTotal += host->receivedDataLength;
peer->totalDataReceived += host->receivedDataLength;
}
currentData = host->receivedData + headerSize;
while (currentData < &host->receivedData[host->receivedDataLength]) {
enet_uint8 commandNumber;
size_t commandSize;
command = (ENetProtocol *) currentData;
if (currentData + sizeof(ENetProtocolCommandHeader) > &host->receivedData[host->receivedDataLength]) {
break;
}
commandNumber = command->header.command & ENET_PROTOCOL_COMMAND_MASK;
if (commandNumber >= ENET_PROTOCOL_COMMAND_COUNT) {
break;
}
commandSize = commandSizes[commandNumber];
if (commandSize == 0 || currentData + commandSize > &host->receivedData[host->receivedDataLength]) {
break;
}
currentData += commandSize;
if (peer == NULL && (commandNumber != ENET_PROTOCOL_COMMAND_CONNECT || currentData < &host->receivedData[host->receivedDataLength])) {
break;
}
command->header.reliableSequenceNumber = ENET_NET_TO_HOST_16(command->header.reliableSequenceNumber);
switch (commandNumber) {
case ENET_PROTOCOL_COMMAND_ACKNOWLEDGE:
if (enet_protocol_handle_acknowledge(host, event, peer, command)) {
goto commandError;
}
break;
case ENET_PROTOCOL_COMMAND_CONNECT:
if (peer != NULL) {
goto commandError;
}
peer = enet_protocol_handle_connect(host, header, command);
if (peer == NULL) {
goto commandError;
}
break;
case ENET_PROTOCOL_COMMAND_VERIFY_CONNECT:
if (enet_protocol_handle_verify_connect(host, event, peer, command)) {
goto commandError;
}
break;
case ENET_PROTOCOL_COMMAND_DISCONNECT:
if (enet_protocol_handle_disconnect(host, peer, command)) {
goto commandError;
}
break;
case ENET_PROTOCOL_COMMAND_PING:
if (enet_protocol_handle_ping(host, peer, command)) {
goto commandError;
}
break;
case ENET_PROTOCOL_COMMAND_SEND_RELIABLE:
if (enet_protocol_handle_send_reliable(host, peer, command, &currentData)) {
goto commandError;
}
break;
case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE:
if (enet_protocol_handle_send_unreliable(host, peer, command, &currentData)) {
goto commandError;
}
break;
case ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED:
if (enet_protocol_handle_send_unsequenced(host, peer, command, &currentData)) {
goto commandError;
}
break;
case ENET_PROTOCOL_COMMAND_SEND_FRAGMENT:
if (enet_protocol_handle_send_fragment(host, peer, command, &currentData)) {
goto commandError;
}
break;
case ENET_PROTOCOL_COMMAND_BANDWIDTH_LIMIT:
if (enet_protocol_handle_bandwidth_limit(host, peer, command)) {
goto commandError;
}
break;
case ENET_PROTOCOL_COMMAND_THROTTLE_CONFIGURE:
if (enet_protocol_handle_throttle_configure(host, peer, command)) {
goto commandError;
}
break;
case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT:
if (enet_protocol_handle_send_unreliable_fragment(host, peer, command, &currentData)) {
goto commandError;
}
break;
default:
goto commandError;
}
if (peer != NULL && (command->header.command & ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE) != 0) {
enet_uint16 sentTime;
if (!(flags & ENET_PROTOCOL_HEADER_FLAG_SENT_TIME)) {
break;
}
sentTime = ENET_NET_TO_HOST_16(header->sentTime);
switch (peer->state) {
case ENET_PEER_STATE_DISCONNECTING:
case ENET_PEER_STATE_ACKNOWLEDGING_CONNECT:
case ENET_PEER_STATE_DISCONNECTED:
case ENET_PEER_STATE_ZOMBIE:
break;
case ENET_PEER_STATE_ACKNOWLEDGING_DISCONNECT:
if ((command->header.command & ENET_PROTOCOL_COMMAND_MASK) == ENET_PROTOCOL_COMMAND_DISCONNECT) {
enet_peer_queue_acknowledgement(peer, command, sentTime);
}
break;
default:
enet_peer_queue_acknowledgement(peer, command, sentTime);
break;
}
}
}
commandError:
if (event != NULL && event->type != ENET_EVENT_TYPE_NONE) {
return 1;
}
return 0;
} /* enet_protocol_handle_incoming_commands */
static int enet_protocol_receive_incoming_commands(ENetHost *host, ENetEvent *event) {
int packets;
for (packets = 0; packets < 256; ++packets) {
int receivedLength;
ENetBuffer buffer;
buffer.data = host->packetData[0];
// buffer.dataLength = sizeof (host->packetData[0]);
buffer.dataLength = host->mtu;
receivedLength = enet_socket_receive(host->socket, &host->receivedAddress, &buffer, 1);
if (receivedLength == -2)
continue;
if (receivedLength < 0) {
return -1;
}
if (receivedLength == 0) {
return 0;
}
host->receivedData = host->packetData[0];
host->receivedDataLength = receivedLength;
host->totalReceivedData += receivedLength;
host->totalReceivedPackets++;
if (host->intercept != NULL) {
switch (host->intercept(host, (void *)event)) {
case 1:
if (event != NULL && event->type != ENET_EVENT_TYPE_NONE) {
return 1;
}
continue;
case -1:
return -1;
default:
break;
}
}
switch (enet_protocol_handle_incoming_commands(host, event)) {
case 1:
return 1;
case -1:
return -1;
default:
break;
}
}
return -1;
} /* enet_protocol_receive_incoming_commands */
static void enet_protocol_send_acknowledgements(ENetHost *host, ENetPeer *peer) {
ENetProtocol *command = &host->commands[host->commandCount];
ENetBuffer *buffer = &host->buffers[host->bufferCount];
ENetAcknowledgement *acknowledgement;
ENetListIterator currentAcknowledgement;
enet_uint16 reliableSequenceNumber;
currentAcknowledgement = enet_list_begin(&peer->acknowledgements);
while (currentAcknowledgement != enet_list_end(&peer->acknowledgements)) {
if (command >= &host->commands[sizeof(host->commands) / sizeof(ENetProtocol)] ||
buffer >= &host->buffers[sizeof(host->buffers) / sizeof(ENetBuffer)] ||
peer->mtu - host->packetSize < sizeof(ENetProtocolAcknowledge)
) {
host->continueSending = 1;
break;
}
acknowledgement = (ENetAcknowledgement *) currentAcknowledgement;
currentAcknowledgement = enet_list_next(currentAcknowledgement);
buffer->data = command;
buffer->dataLength = sizeof(ENetProtocolAcknowledge);
host->packetSize += buffer->dataLength;
reliableSequenceNumber = ENET_HOST_TO_NET_16(acknowledgement->command.header.reliableSequenceNumber);
command->header.command = ENET_PROTOCOL_COMMAND_ACKNOWLEDGE;
command->header.channelID = acknowledgement->command.header.channelID;
command->header.reliableSequenceNumber = reliableSequenceNumber;
command->acknowledge.receivedReliableSequenceNumber = reliableSequenceNumber;
command->acknowledge.receivedSentTime = ENET_HOST_TO_NET_16(acknowledgement->sentTime);
if ((acknowledgement->command.header.command & ENET_PROTOCOL_COMMAND_MASK) == ENET_PROTOCOL_COMMAND_DISCONNECT) {
enet_protocol_dispatch_state(host, peer, ENET_PEER_STATE_ZOMBIE);
}
enet_list_remove(&acknowledgement->acknowledgementList);
enet_free(acknowledgement);
++command;
++buffer;
}
host->commandCount = command - host->commands;
host->bufferCount = buffer - host->buffers;
} /* enet_protocol_send_acknowledgements */
static void enet_protocol_send_unreliable_outgoing_commands(ENetHost *host, ENetPeer *peer) {
ENetProtocol *command = &host->commands[host->commandCount];
ENetBuffer *buffer = &host->buffers[host->bufferCount];
ENetOutgoingCommand *outgoingCommand;
ENetListIterator currentCommand;
currentCommand = enet_list_begin(&peer->outgoingUnreliableCommands);
while (currentCommand != enet_list_end(&peer->outgoingUnreliableCommands)) {
size_t commandSize;
outgoingCommand = (ENetOutgoingCommand *) currentCommand;
commandSize = commandSizes[outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK];
if (command >= &host->commands[sizeof(host->commands) / sizeof(ENetProtocol)] ||
buffer + 1 >= &host->buffers[sizeof(host->buffers) / sizeof(ENetBuffer)] ||
peer->mtu - host->packetSize < commandSize ||
(outgoingCommand->packet != NULL &&
peer->mtu - host->packetSize < commandSize + outgoingCommand->fragmentLength)
) {
host->continueSending = 1;
break;
}
currentCommand = enet_list_next(currentCommand);
if (outgoingCommand->packet != NULL && outgoingCommand->fragmentOffset == 0) {
peer->packetThrottleCounter += ENET_PEER_PACKET_THROTTLE_COUNTER;
peer->packetThrottleCounter %= ENET_PEER_PACKET_THROTTLE_SCALE;
if (peer->packetThrottleCounter > peer->packetThrottle) {
enet_uint16 reliableSequenceNumber = outgoingCommand->reliableSequenceNumber;
enet_uint16 unreliableSequenceNumber = outgoingCommand->unreliableSequenceNumber;
for (;;) {
--outgoingCommand->packet->referenceCount;
if (outgoingCommand->packet->referenceCount == 0) {
callbacks.packet_destroy(outgoingCommand->packet);
}
enet_list_remove(&outgoingCommand->outgoingCommandList);
enet_free(outgoingCommand);
if (currentCommand == enet_list_end(&peer->outgoingUnreliableCommands)) {
break;
}
outgoingCommand = (ENetOutgoingCommand *) currentCommand;
if (outgoingCommand->reliableSequenceNumber != reliableSequenceNumber || outgoingCommand->unreliableSequenceNumber != unreliableSequenceNumber) {
break;
}
currentCommand = enet_list_next(currentCommand);
}
continue;
}
}
buffer->data = command;
buffer->dataLength = commandSize;
host->packetSize += buffer->dataLength;
*command = outgoingCommand->command;
enet_list_remove(&outgoingCommand->outgoingCommandList);
if (outgoingCommand->packet != NULL) {
++buffer;
buffer->data = outgoingCommand->packet->data + outgoingCommand->fragmentOffset;
buffer->dataLength = outgoingCommand->fragmentLength;
host->packetSize += buffer->dataLength;
enet_list_insert(enet_list_end(&peer->sentUnreliableCommands), outgoingCommand);
} else {
enet_free(outgoingCommand);
}
++command;
++buffer;
}
host->commandCount = command - host->commands;
host->bufferCount = buffer - host->buffers;
if (peer->state == ENET_PEER_STATE_DISCONNECT_LATER &&
enet_list_empty(&peer->outgoingReliableCommands) &&
enet_list_empty(&peer->outgoingUnreliableCommands) &&
enet_list_empty(&peer->sentReliableCommands))
{
enet_peer_disconnect(peer, peer->eventData);
}
} /* enet_protocol_send_unreliable_outgoing_commands */
static int enet_protocol_check_timeouts(ENetHost *host, ENetPeer *peer, ENetEvent *event) {
ENetOutgoingCommand *outgoingCommand;
ENetListIterator currentCommand, insertPosition;
currentCommand = enet_list_begin(&peer->sentReliableCommands);
insertPosition = enet_list_begin(&peer->outgoingReliableCommands);
while (currentCommand != enet_list_end(&peer->sentReliableCommands)) {
outgoingCommand = (ENetOutgoingCommand *) currentCommand;
currentCommand = enet_list_next(currentCommand);
if (ENET_TIME_DIFFERENCE(host->serviceTime, outgoingCommand->sentTime) < outgoingCommand->roundTripTimeout) {
continue;
}
if (peer->earliestTimeout == 0 || ENET_TIME_LESS(outgoingCommand->sentTime, peer->earliestTimeout)) {
peer->earliestTimeout = outgoingCommand->sentTime;
}
if (peer->earliestTimeout != 0 &&
(ENET_TIME_DIFFERENCE(host->serviceTime, peer->earliestTimeout) >= peer->timeoutMaximum ||
(outgoingCommand->roundTripTimeout >= outgoingCommand->roundTripTimeoutLimit &&
ENET_TIME_DIFFERENCE(host->serviceTime, peer->earliestTimeout) >= peer->timeoutMinimum))
) {
enet_protocol_notify_disconnect_timeout(host, peer, event);
return 1;
}
if (outgoingCommand->packet != NULL) {
peer->reliableDataInTransit -= outgoingCommand->fragmentLength;
}
++peer->packetsLost;
++peer->totalPacketsLost;
/* Replaced exponential backoff time with something more linear */
/* Source: http://lists.cubik.org/pipermail/enet-discuss/2014-May/002308.html */
outgoingCommand->roundTripTimeout = peer->roundTripTime + 4 * peer->roundTripTimeVariance;
outgoingCommand->roundTripTimeoutLimit = peer->timeoutLimit * outgoingCommand->roundTripTimeout;
enet_list_insert(insertPosition, enet_list_remove(&outgoingCommand->outgoingCommandList));
if (currentCommand == enet_list_begin(&peer->sentReliableCommands) && !enet_list_empty(&peer->sentReliableCommands)) {
outgoingCommand = (ENetOutgoingCommand *) currentCommand;
peer->nextTimeout = outgoingCommand->sentTime + outgoingCommand->roundTripTimeout;
}
}
return 0;
} /* enet_protocol_check_timeouts */
static int enet_protocol_send_reliable_outgoing_commands(ENetHost *host, ENetPeer *peer) {
ENetProtocol *command = &host->commands[host->commandCount];
ENetBuffer *buffer = &host->buffers[host->bufferCount];
ENetOutgoingCommand *outgoingCommand;
ENetListIterator currentCommand;
ENetChannel *channel;
enet_uint16 reliableWindow;
size_t commandSize;
int windowExceeded = 0, windowWrap = 0, canPing = 1;
currentCommand = enet_list_begin(&peer->outgoingReliableCommands);
while (currentCommand != enet_list_end(&peer->outgoingReliableCommands)) {
outgoingCommand = (ENetOutgoingCommand *) currentCommand;
channel = outgoingCommand->command.header.channelID < peer->channelCount ? &peer->channels[outgoingCommand->command.header.channelID] : NULL;
reliableWindow = outgoingCommand->reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
if (channel != NULL) {
if (!windowWrap &&
outgoingCommand->sendAttempts < 1 &&
!(outgoingCommand->reliableSequenceNumber % ENET_PEER_RELIABLE_WINDOW_SIZE) &&
(channel->reliableWindows[(reliableWindow + ENET_PEER_RELIABLE_WINDOWS - 1)
% ENET_PEER_RELIABLE_WINDOWS] >= ENET_PEER_RELIABLE_WINDOW_SIZE ||
channel->usedReliableWindows & ((((1 << ENET_PEER_FREE_RELIABLE_WINDOWS) - 1) << reliableWindow)
| (((1 << ENET_PEER_FREE_RELIABLE_WINDOWS) - 1) >> (ENET_PEER_RELIABLE_WINDOWS - reliableWindow))))
) {
windowWrap = 1;
}
if (windowWrap) {
currentCommand = enet_list_next(currentCommand);
continue;
}
}
if (outgoingCommand->packet != NULL) {
if (!windowExceeded) {
enet_uint32 windowSize = (peer->packetThrottle * peer->windowSize) / ENET_PEER_PACKET_THROTTLE_SCALE;
if (peer->reliableDataInTransit + outgoingCommand->fragmentLength > ENET_MAX(windowSize, peer->mtu)) {
windowExceeded = 1;
}
}
if (windowExceeded) {
currentCommand = enet_list_next(currentCommand);
continue;
}
}
canPing = 0;
commandSize = commandSizes[outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK];
if (command >= &host->commands[sizeof(host->commands) / sizeof(ENetProtocol)] ||
buffer + 1 >= &host->buffers[sizeof(host->buffers) / sizeof(ENetBuffer)] ||
peer->mtu - host->packetSize < commandSize ||
(outgoingCommand->packet != NULL &&
(enet_uint16) (peer->mtu - host->packetSize) < (enet_uint16) (commandSize + outgoingCommand->fragmentLength))
) {
host->continueSending = 1;
break;
}
currentCommand = enet_list_next(currentCommand);
if (channel != NULL && outgoingCommand->sendAttempts < 1) {
channel->usedReliableWindows |= 1 << reliableWindow;
++channel->reliableWindows[reliableWindow];
}
++outgoingCommand->sendAttempts;
if (outgoingCommand->roundTripTimeout == 0) {
outgoingCommand->roundTripTimeout = peer->roundTripTime + 4 * peer->roundTripTimeVariance;
outgoingCommand->roundTripTimeoutLimit = peer->timeoutLimit * outgoingCommand->roundTripTimeout;
}
if (enet_list_empty(&peer->sentReliableCommands)) {
peer->nextTimeout = host->serviceTime + outgoingCommand->roundTripTimeout;
}
enet_list_insert(enet_list_end(&peer->sentReliableCommands), enet_list_remove(&outgoingCommand->outgoingCommandList));
outgoingCommand->sentTime = host->serviceTime;
buffer->data = command;
buffer->dataLength = commandSize;
host->packetSize += buffer->dataLength;
host->headerFlags |= ENET_PROTOCOL_HEADER_FLAG_SENT_TIME;
*command = outgoingCommand->command;
if (outgoingCommand->packet != NULL) {
++buffer;
buffer->data = outgoingCommand->packet->data + outgoingCommand->fragmentOffset;
buffer->dataLength = outgoingCommand->fragmentLength;
host->packetSize += outgoingCommand->fragmentLength;
peer->reliableDataInTransit += outgoingCommand->fragmentLength;
}
++peer->packetsSent;
++peer->totalPacketsSent;
++command;
++buffer;
}
host->commandCount = command - host->commands;
host->bufferCount = buffer - host->buffers;
return canPing;
} /* enet_protocol_send_reliable_outgoing_commands */
static int enet_protocol_send_outgoing_commands(ENetHost *host, ENetEvent *event, int checkForTimeouts) {
enet_uint8 headerData[sizeof(ENetProtocolHeader) + sizeof(enet_uint32)];
ENetProtocolHeader *header = (ENetProtocolHeader *) headerData;
ENetPeer *currentPeer;
int sentLength;
size_t shouldCompress = 0;
host->continueSending = 1;
while (host->continueSending)
for (host->continueSending = 0, currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) {
if (currentPeer->state == ENET_PEER_STATE_DISCONNECTED || currentPeer->state == ENET_PEER_STATE_ZOMBIE) {
continue;
}
host->headerFlags = 0;
host->commandCount = 0;
host->bufferCount = 1;
host->packetSize = sizeof(ENetProtocolHeader);
if (!enet_list_empty(&currentPeer->acknowledgements)) {
enet_protocol_send_acknowledgements(host, currentPeer);
}
if (checkForTimeouts != 0 &&
!enet_list_empty(&currentPeer->sentReliableCommands) &&
ENET_TIME_GREATER_EQUAL(host->serviceTime, currentPeer->nextTimeout) &&
enet_protocol_check_timeouts(host, currentPeer, event) == 1
) {
if (event != NULL && event->type != ENET_EVENT_TYPE_NONE) {
return 1;
} else {
continue;
}
}
if ((enet_list_empty(&currentPeer->outgoingReliableCommands) ||
enet_protocol_send_reliable_outgoing_commands(host, currentPeer)) &&
enet_list_empty(&currentPeer->sentReliableCommands) &&
ENET_TIME_DIFFERENCE(host->serviceTime, currentPeer->lastReceiveTime) >= currentPeer->pingInterval &&
currentPeer->mtu - host->packetSize >= sizeof(ENetProtocolPing)
) {
enet_peer_ping(currentPeer);
enet_protocol_send_reliable_outgoing_commands(host, currentPeer);
}
if (!enet_list_empty(&currentPeer->outgoingUnreliableCommands)) {
enet_protocol_send_unreliable_outgoing_commands(host, currentPeer);
}
if (host->commandCount == 0) {
continue;
}
if (currentPeer->packetLossEpoch == 0) {
currentPeer->packetLossEpoch = host->serviceTime;
} else if (ENET_TIME_DIFFERENCE(host->serviceTime, currentPeer->packetLossEpoch) >= ENET_PEER_PACKET_LOSS_INTERVAL && currentPeer->packetsSent > 0) {
enet_uint32 packetLoss = currentPeer->packetsLost * ENET_PEER_PACKET_LOSS_SCALE / currentPeer->packetsSent;
#ifdef ENET_DEBUG
printf(
"peer %u: %f%%+-%f%% packet loss, %u+-%u ms round trip time, %f%% throttle, %u/%u outgoing, %u/%u incoming\n", currentPeer->incomingPeerID,
currentPeer->packetLoss / (float) ENET_PEER_PACKET_LOSS_SCALE,
currentPeer->packetLossVariance / (float) ENET_PEER_PACKET_LOSS_SCALE, currentPeer->roundTripTime, currentPeer->roundTripTimeVariance,
currentPeer->packetThrottle / (float) ENET_PEER_PACKET_THROTTLE_SCALE,
enet_list_size(&currentPeer->outgoingReliableCommands),
enet_list_size(&currentPeer->outgoingUnreliableCommands),
currentPeer->channels != NULL ? enet_list_size( &currentPeer->channels->incomingReliableCommands) : 0,
currentPeer->channels != NULL ? enet_list_size(&currentPeer->channels->incomingUnreliableCommands) : 0
);
#endif
currentPeer->packetLossVariance -= currentPeer->packetLossVariance / 4;
if (packetLoss >= currentPeer->packetLoss) {
currentPeer->packetLoss += (packetLoss - currentPeer->packetLoss) / 8;
currentPeer->packetLossVariance += (packetLoss - currentPeer->packetLoss) / 4;
} else {
currentPeer->packetLoss -= (currentPeer->packetLoss - packetLoss) / 8;
currentPeer->packetLossVariance += (currentPeer->packetLoss - packetLoss) / 4;
}
currentPeer->packetLossEpoch = host->serviceTime;
currentPeer->packetsSent = 0;
currentPeer->packetsLost = 0;
}
host->buffers->data = headerData;
if (host->headerFlags & ENET_PROTOCOL_HEADER_FLAG_SENT_TIME) {
header->sentTime = ENET_HOST_TO_NET_16(host->serviceTime & 0xFFFF);
host->buffers->dataLength = sizeof(ENetProtocolHeader);
} else {
host->buffers->dataLength = (size_t) &((ENetProtocolHeader *) 0)->sentTime;
}
shouldCompress = 0;
if (host->compressor.context != NULL && host->compressor.compress != NULL) {
size_t originalSize = host->packetSize - sizeof(ENetProtocolHeader),
compressedSize = host->compressor.compress(host->compressor.context, &host->buffers[1], host->bufferCount - 1, originalSize, host->packetData[1], originalSize);
if (compressedSize > 0 && compressedSize < originalSize) {
host->headerFlags |= ENET_PROTOCOL_HEADER_FLAG_COMPRESSED;
shouldCompress = compressedSize;
#ifdef ENET_DEBUG_COMPRESS
printf("peer %u: compressed %u->%u (%u%%)\n", currentPeer->incomingPeerID, originalSize, compressedSize, (compressedSize * 100) / originalSize);
#endif
}
}
if (currentPeer->outgoingPeerID < ENET_PROTOCOL_MAXIMUM_PEER_ID) {
host->headerFlags |= currentPeer->outgoingSessionID << ENET_PROTOCOL_HEADER_SESSION_SHIFT;
}
header->peerID = ENET_HOST_TO_NET_16(currentPeer->outgoingPeerID | host->headerFlags);
if (host->checksum != NULL) {
enet_uint32 *checksum = (enet_uint32 *) &headerData[host->buffers->dataLength];
*checksum = currentPeer->outgoingPeerID < ENET_PROTOCOL_MAXIMUM_PEER_ID ? currentPeer->connectID : 0;
host->buffers->dataLength += sizeof(enet_uint32);
*checksum = host->checksum(host->buffers, host->bufferCount);
}
if (shouldCompress > 0) {
host->buffers[1].data = host->packetData[1];
host->buffers[1].dataLength = shouldCompress;
host->bufferCount = 2;
}
currentPeer->lastSendTime = host->serviceTime;
sentLength = enet_socket_send(host->socket, &currentPeer->address, host->buffers, host->bufferCount);
enet_protocol_remove_sent_unreliable_commands(currentPeer);
if (sentLength < 0) {
return -1;
}
host->totalSentData += sentLength;
currentPeer->totalDataSent += sentLength;
host->totalSentPackets++;
}
return 0;
} /* enet_protocol_send_outgoing_commands */
/** Sends any queued packets on the host specified to its designated peers.
*
* @param host host to flush
* @remarks this function need only be used in circumstances where one wishes to send queued packets earlier than in a call to enet_host_service().
* @ingroup host
*/
void enet_host_flush(ENetHost *host) {
host->serviceTime = enet_time_get();
enet_protocol_send_outgoing_commands(host, NULL, 0);
}
/** Checks for any queued events on the host and dispatches one if available.
*
* @param host host to check for events
* @param event an event structure where event details will be placed if available
* @retval > 0 if an event was dispatched
* @retval 0 if no events are available
* @retval < 0 on failure
* @ingroup host
*/
int enet_host_check_events(ENetHost *host, ENetEvent *event) {
if (event == NULL) { return -1; }
event->type = ENET_EVENT_TYPE_NONE;
event->peer = NULL;
event->packet = NULL;
return enet_protocol_dispatch_incoming_commands(host, event);
}
/** Waits for events on the host specified and shuttles packets between
* the host and its peers.
*
* @param host host to service
* @param event an event structure where event details will be placed if one occurs
* if event == NULL then no events will be delivered
* @param timeout number of milliseconds that ENet should wait for events
* @retval > 0 if an event occurred within the specified time limit
* @retval 0 if no event occurred
* @retval < 0 on failure
* @remarks enet_host_service should be called fairly regularly for adequate performance
* @ingroup host
*/
int enet_host_service(ENetHost *host, ENetEvent *event, enet_uint32 timeout) {
enet_uint32 waitCondition;
if (event != NULL) {
event->type = ENET_EVENT_TYPE_NONE;
event->peer = NULL;
event->packet = NULL;
switch (enet_protocol_dispatch_incoming_commands(host, event)) {
case 1:
return 1;
case -1:
#ifdef ENET_DEBUG
perror("Error dispatching incoming packets");
#endif
return -1;
default:
break;
}
}
host->serviceTime = enet_time_get();
timeout += host->serviceTime;
do {
if (ENET_TIME_DIFFERENCE(host->serviceTime, host->bandwidthThrottleEpoch) >= ENET_HOST_BANDWIDTH_THROTTLE_INTERVAL) {
enet_host_bandwidth_throttle(host);
}
switch (enet_protocol_send_outgoing_commands(host, event, 1)) {
case 1:
return 1;
case -1:
#ifdef ENET_DEBUG
perror("Error sending outgoing packets");
#endif
return -1;
default:
break;
}
switch (enet_protocol_receive_incoming_commands(host, event)) {
case 1:
return 1;
case -1:
#ifdef ENET_DEBUG
perror("Error receiving incoming packets");
#endif
return -1;
default:
break;
}
switch (enet_protocol_send_outgoing_commands(host, event, 1)) {
case 1:
return 1;
case -1:
#ifdef ENET_DEBUG
perror("Error sending outgoing packets");
#endif
return -1;
default:
break;
}
if (event != NULL) {
switch (enet_protocol_dispatch_incoming_commands(host, event)) {
case 1:
return 1;
case -1:
#ifdef ENET_DEBUG
perror("Error dispatching incoming packets");
#endif
return -1;
default:
break;
}
}
if (ENET_TIME_GREATER_EQUAL(host->serviceTime, timeout)) {
return 0;
}
do {
host->serviceTime = enet_time_get();
if (ENET_TIME_GREATER_EQUAL(host->serviceTime, timeout)) {
return 0;
}
waitCondition = ENET_SOCKET_WAIT_RECEIVE | ENET_SOCKET_WAIT_INTERRUPT;
if (enet_socket_wait(host->socket, &waitCondition, ENET_TIME_DIFFERENCE(timeout, host->serviceTime)) != 0) {
return -1;
}
} while (waitCondition & ENET_SOCKET_WAIT_INTERRUPT);
host->serviceTime = enet_time_get();
} while (waitCondition & ENET_SOCKET_WAIT_RECEIVE);
return 0;
} /* enet_host_service */
// =======================================================================//
// !
// ! Peer
// !
// =======================================================================//
/** Configures throttle parameter for a peer.
*
* Unreliable packets are dropped by ENet in response to the varying conditions
* of the Internet connection to the peer. The throttle represents a probability
* that an unreliable packet should not be dropped and thus sent by ENet to the peer.
* The lowest mean round trip time from the sending of a reliable packet to the
* receipt of its acknowledgement is measured over an amount of time specified by
* the interval parameter in milliseconds. If a measured round trip time happens to
* be significantly less than the mean round trip time measured over the interval,
* then the throttle probability is increased to allow more traffic by an amount
* specified in the acceleration parameter, which is a ratio to the ENET_PEER_PACKET_THROTTLE_SCALE
* constant. If a measured round trip time happens to be significantly greater than
* the mean round trip time measured over the interval, then the throttle probability
* is decreased to limit traffic by an amount specified in the deceleration parameter, which
* is a ratio to the ENET_PEER_PACKET_THROTTLE_SCALE constant. When the throttle has
* a value of ENET_PEER_PACKET_THROTTLE_SCALE, no unreliable packets are dropped by
* ENet, and so 100% of all unreliable packets will be sent. When the throttle has a
* value of 0, all unreliable packets are dropped by ENet, and so 0% of all unreliable
* packets will be sent. Intermediate values for the throttle represent intermediate
* probabilities between 0% and 100% of unreliable packets being sent. The bandwidth
* limits of the local and foreign hosts are taken into account to determine a
* sensible limit for the throttle probability above which it should not raise even in
* the best of conditions.
*
* @param peer peer to configure
* @param interval interval, in milliseconds, over which to measure lowest mean RTT; the default value is ENET_PEER_PACKET_THROTTLE_INTERVAL.
* @param acceleration rate at which to increase the throttle probability as mean RTT declines
* @param deceleration rate at which to decrease the throttle probability as mean RTT increases
*/
void enet_peer_throttle_configure(ENetPeer *peer, enet_uint32 interval, enet_uint32 acceleration, enet_uint32 deceleration) {
ENetProtocol command;
peer->packetThrottleInterval = interval;
peer->packetThrottleAcceleration = acceleration;
peer->packetThrottleDeceleration = deceleration;
command.header.command = ENET_PROTOCOL_COMMAND_THROTTLE_CONFIGURE | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE;
command.header.channelID = 0xFF;
command.throttleConfigure.packetThrottleInterval = ENET_HOST_TO_NET_32(interval);
command.throttleConfigure.packetThrottleAcceleration = ENET_HOST_TO_NET_32(acceleration);
command.throttleConfigure.packetThrottleDeceleration = ENET_HOST_TO_NET_32(deceleration);
enet_peer_queue_outgoing_command(peer, &command, NULL, 0, 0);
}
int enet_peer_throttle(ENetPeer *peer, enet_uint32 rtt) {
if (peer->lastRoundTripTime <= peer->lastRoundTripTimeVariance) {
peer->packetThrottle = peer->packetThrottleLimit;
}
else if (rtt < peer->lastRoundTripTime) {
peer->packetThrottle += peer->packetThrottleAcceleration;
if (peer->packetThrottle > peer->packetThrottleLimit) {
peer->packetThrottle = peer->packetThrottleLimit;
}
return 1;
}
else if (rtt > peer->lastRoundTripTime + 2 * peer->lastRoundTripTimeVariance) {
if (peer->packetThrottle > peer->packetThrottleDeceleration) {
peer->packetThrottle -= peer->packetThrottleDeceleration;
} else {
peer->packetThrottle = 0;
}
return -1;
}
return 0;
}
/* Extended functionality for easier binding in other programming languages */
enet_uint32 enet_host_get_peers_count(ENetHost *host) {
return host->connectedPeers;
}
enet_uint32 enet_host_get_packets_sent(ENetHost *host) {
return host->totalSentPackets;
}
enet_uint32 enet_host_get_packets_received(ENetHost *host) {
return host->totalReceivedPackets;
}
enet_uint32 enet_host_get_bytes_sent(ENetHost *host) {
return host->totalSentData;
}
enet_uint32 enet_host_get_bytes_received(ENetHost *host) {
return host->totalReceivedData;
}
/** Gets received data buffer. Returns buffer length.
* @param host host to access recevie buffer
* @param data ouput parameter for recevied data
* @retval buffer length
*/
enet_uint32 enet_host_get_received_data(ENetHost *host, /*out*/ enet_uint8** data) {
*data = host->receivedData;
return host->receivedDataLength;
}
enet_uint32 enet_host_get_mtu(ENetHost *host) {
return host->mtu;
}
enet_uint32 enet_peer_get_id(ENetPeer *peer) {
return peer->connectID;
}
enet_uint32 enet_peer_get_ip(ENetPeer *peer, char *ip, size_t ipLength) {
return enet_address_get_host_ip(&peer->address, ip, ipLength);
}
enet_uint16 enet_peer_get_port(ENetPeer *peer) {
return peer->address.port;
}
ENetPeerState enet_peer_get_state(ENetPeer *peer) {
return peer->state;
}
enet_uint32 enet_peer_get_rtt(ENetPeer *peer) {
return peer->roundTripTime;
}
enet_uint64 enet_peer_get_packets_sent(ENetPeer *peer) {
return peer->totalPacketsSent;
}
enet_uint32 enet_peer_get_packets_lost(ENetPeer *peer) {
return peer->totalPacketsLost;
}
enet_uint64 enet_peer_get_bytes_sent(ENetPeer *peer) {
return peer->totalDataSent;
}
enet_uint64 enet_peer_get_bytes_received(ENetPeer *peer) {
return peer->totalDataReceived;
}
void * enet_peer_get_data(ENetPeer *peer) {
return (void *) peer->data;
}
void enet_peer_set_data(ENetPeer *peer, const void *data) {
peer->data = (enet_uint32 *) data;
}
void * enet_packet_get_data(ENetPacket *packet) {
return (void *) packet->data;
}
enet_uint32 enet_packet_get_length(ENetPacket *packet) {
return packet->dataLength;
}
void enet_packet_set_free_callback(ENetPacket *packet, void *callback) {
packet->freeCallback = (ENetPacketFreeCallback)callback;
}
/** Queues a packet to be sent.
* @param peer destination for the packet
* @param channelID channel on which to send
* @param packet packet to send
* @retval 0 on success
* @retval < 0 on failure
*/
int enet_peer_send(ENetPeer *peer, enet_uint8 channelID, ENetPacket *packet) {
ENetChannel *channel = &peer->channels[channelID];
ENetProtocol command;
size_t fragmentLength;
if (peer->state != ENET_PEER_STATE_CONNECTED || channelID >= peer->channelCount || packet->dataLength > peer->host->maximumPacketSize) {
return -1;
}
fragmentLength = peer->mtu - sizeof(ENetProtocolHeader) - sizeof(ENetProtocolSendFragment);
if (peer->host->checksum != NULL) {
fragmentLength -= sizeof(enet_uint32);
}
if (packet->dataLength > fragmentLength) {
enet_uint32 fragmentCount = (packet->dataLength + fragmentLength - 1) / fragmentLength, fragmentNumber, fragmentOffset;
enet_uint8 commandNumber;
enet_uint16 startSequenceNumber;
ENetList fragments;
ENetOutgoingCommand *fragment;
if (fragmentCount > ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT) {
return -1;
}
if ((packet->flags & (ENET_PACKET_FLAG_RELIABLE | ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT)) ==
ENET_PACKET_FLAG_UNRELIABLE_FRAGMENT &&
channel->outgoingUnreliableSequenceNumber < 0xFFFF)
{
commandNumber = ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT;
startSequenceNumber = ENET_HOST_TO_NET_16(channel->outgoingUnreliableSequenceNumber + 1);
} else {
commandNumber = ENET_PROTOCOL_COMMAND_SEND_FRAGMENT | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE;
startSequenceNumber = ENET_HOST_TO_NET_16(channel->outgoingReliableSequenceNumber + 1);
}
enet_list_clear(&fragments);
for (fragmentNumber = 0, fragmentOffset = 0; fragmentOffset < packet->dataLength; ++fragmentNumber, fragmentOffset += fragmentLength) {
if (packet->dataLength - fragmentOffset < fragmentLength) {
fragmentLength = packet->dataLength - fragmentOffset;
}
fragment = (ENetOutgoingCommand *) enet_malloc(sizeof(ENetOutgoingCommand));
if (fragment == NULL) {
while (!enet_list_empty(&fragments)) {
fragment = (ENetOutgoingCommand *) enet_list_remove(enet_list_begin(&fragments));
enet_free(fragment);
}
return -1;
}
fragment->fragmentOffset = fragmentOffset;
fragment->fragmentLength = fragmentLength;
fragment->packet = packet;
fragment->command.header.command = commandNumber;
fragment->command.header.channelID = channelID;
fragment->command.sendFragment.startSequenceNumber = startSequenceNumber;
fragment->command.sendFragment.dataLength = ENET_HOST_TO_NET_16(fragmentLength);
fragment->command.sendFragment.fragmentCount = ENET_HOST_TO_NET_32(fragmentCount);
fragment->command.sendFragment.fragmentNumber = ENET_HOST_TO_NET_32(fragmentNumber);
fragment->command.sendFragment.totalLength = ENET_HOST_TO_NET_32(packet->dataLength);
fragment->command.sendFragment.fragmentOffset = ENET_NET_TO_HOST_32(fragmentOffset);
enet_list_insert(enet_list_end(&fragments), fragment);
}
packet->referenceCount += fragmentNumber;
while (!enet_list_empty(&fragments)) {
fragment = (ENetOutgoingCommand *) enet_list_remove(enet_list_begin(&fragments));
enet_peer_setup_outgoing_command(peer, fragment);
}
return 0;
}
command.header.channelID = channelID;
if ((packet->flags & (ENET_PACKET_FLAG_RELIABLE | ENET_PACKET_FLAG_UNSEQUENCED)) == ENET_PACKET_FLAG_UNSEQUENCED) {
command.header.command = ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED | ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED;
command.sendUnsequenced.dataLength = ENET_HOST_TO_NET_16(packet->dataLength);
}
else if (packet->flags & ENET_PACKET_FLAG_RELIABLE || channel->outgoingUnreliableSequenceNumber >= 0xFFFF) {
command.header.command = ENET_PROTOCOL_COMMAND_SEND_RELIABLE | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE;
command.sendReliable.dataLength = ENET_HOST_TO_NET_16(packet->dataLength);
}
else {
command.header.command = ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE;
command.sendUnreliable.dataLength = ENET_HOST_TO_NET_16(packet->dataLength);
}
if (enet_peer_queue_outgoing_command(peer, &command, packet, 0, packet->dataLength) == NULL) {
return -1;
}
return 0;
} // enet_peer_send
/** Attempts to dequeue any incoming queued packet.
* @param peer peer to dequeue packets from
* @param channelID holds the channel ID of the channel the packet was received on success
* @returns a pointer to the packet, or NULL if there are no available incoming queued packets
*/
ENetPacket * enet_peer_receive(ENetPeer *peer, enet_uint8 *channelID) {
ENetIncomingCommand *incomingCommand;
ENetPacket *packet;
if (enet_list_empty(&peer->dispatchedCommands)) {
return NULL;
}
incomingCommand = (ENetIncomingCommand *) enet_list_remove(enet_list_begin(&peer->dispatchedCommands));
if (channelID != NULL) {
*channelID = incomingCommand->command.header.channelID;
}
packet = incomingCommand->packet;
--packet->referenceCount;
if (incomingCommand->fragments != NULL) {
enet_free(incomingCommand->fragments);
}
enet_free(incomingCommand);
peer->totalWaitingData -= packet->dataLength;
return packet;
}
static void enet_peer_reset_outgoing_commands(ENetList *queue) {
ENetOutgoingCommand *outgoingCommand;
while (!enet_list_empty(queue)) {
outgoingCommand = (ENetOutgoingCommand *) enet_list_remove(enet_list_begin(queue));
if (outgoingCommand->packet != NULL) {
--outgoingCommand->packet->referenceCount;
if (outgoingCommand->packet->referenceCount == 0) {
callbacks.packet_destroy(outgoingCommand->packet);
}
}
enet_free(outgoingCommand);
}
}
static void enet_peer_remove_incoming_commands(ENetList *queue, ENetListIterator startCommand, ENetListIterator endCommand) {
ENET_UNUSED(queue)
ENetListIterator currentCommand;
for (currentCommand = startCommand; currentCommand != endCommand;) {
ENetIncomingCommand *incomingCommand = (ENetIncomingCommand *) currentCommand;
currentCommand = enet_list_next(currentCommand);
enet_list_remove(&incomingCommand->incomingCommandList);
if (incomingCommand->packet != NULL) {
--incomingCommand->packet->referenceCount;
if (incomingCommand->packet->referenceCount == 0) {
callbacks.packet_destroy(incomingCommand->packet);
}
}
if (incomingCommand->fragments != NULL) {
enet_free(incomingCommand->fragments);
}
enet_free(incomingCommand);
}
}
static void enet_peer_reset_incoming_commands(ENetList *queue) {
enet_peer_remove_incoming_commands(queue, enet_list_begin(queue), enet_list_end(queue));
}
void enet_peer_reset_queues(ENetPeer *peer) {
ENetChannel *channel;
if (peer->needsDispatch) {
enet_list_remove(&peer->dispatchList);
peer->needsDispatch = 0;
}
while (!enet_list_empty(&peer->acknowledgements)) {
enet_free(enet_list_remove(enet_list_begin(&peer->acknowledgements)));
}
enet_peer_reset_outgoing_commands(&peer->sentReliableCommands);
enet_peer_reset_outgoing_commands(&peer->sentUnreliableCommands);
enet_peer_reset_outgoing_commands(&peer->outgoingReliableCommands);
enet_peer_reset_outgoing_commands(&peer->outgoingUnreliableCommands);
enet_peer_reset_incoming_commands(&peer->dispatchedCommands);
if (peer->channels != NULL && peer->channelCount > 0) {
for (channel = peer->channels; channel < &peer->channels[peer->channelCount]; ++channel) {
enet_peer_reset_incoming_commands(&channel->incomingReliableCommands);
enet_peer_reset_incoming_commands(&channel->incomingUnreliableCommands);
}
enet_free(peer->channels);
}
peer->channels = NULL;
peer->channelCount = 0;
}
void enet_peer_on_connect(ENetPeer *peer) {
if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) {
if (peer->incomingBandwidth != 0) {
++peer->host->bandwidthLimitedPeers;
}
++peer->host->connectedPeers;
}
}
void enet_peer_on_disconnect(ENetPeer *peer) {
if (peer->state == ENET_PEER_STATE_CONNECTED || peer->state == ENET_PEER_STATE_DISCONNECT_LATER) {
if (peer->incomingBandwidth != 0) {
--peer->host->bandwidthLimitedPeers;
}
--peer->host->connectedPeers;
}
}
/** Forcefully disconnects a peer.
* @param peer peer to forcefully disconnect
* @remarks The foreign host represented by the peer is not notified of the disconnection and will timeout
* on its connection to the local host.
*/
void enet_peer_reset(ENetPeer *peer) {
enet_peer_on_disconnect(peer);
// We don't want to reset connectID here, otherwise, we can't get it in the Disconnect event
// peer->connectID = 0;
peer->outgoingPeerID = ENET_PROTOCOL_MAXIMUM_PEER_ID;
peer->state = ENET_PEER_STATE_DISCONNECTED;
peer->incomingBandwidth = 0;
peer->outgoingBandwidth = 0;
peer->incomingBandwidthThrottleEpoch = 0;
peer->outgoingBandwidthThrottleEpoch = 0;
peer->incomingDataTotal = 0;
peer->totalDataReceived = 0;
peer->outgoingDataTotal = 0;
peer->totalDataSent = 0;
peer->lastSendTime = 0;
peer->lastReceiveTime = 0;
peer->nextTimeout = 0;
peer->earliestTimeout = 0;
peer->packetLossEpoch = 0;
peer->packetsSent = 0;
peer->totalPacketsSent = 0;
peer->packetsLost = 0;
peer->totalPacketsLost = 0;
peer->packetLoss = 0;
peer->packetLossVariance = 0;
peer->packetThrottle = ENET_PEER_DEFAULT_PACKET_THROTTLE;
peer->packetThrottleLimit = ENET_PEER_PACKET_THROTTLE_SCALE;
peer->packetThrottleCounter = 0;
peer->packetThrottleEpoch = 0;
peer->packetThrottleAcceleration = ENET_PEER_PACKET_THROTTLE_ACCELERATION;
peer->packetThrottleDeceleration = ENET_PEER_PACKET_THROTTLE_DECELERATION;
peer->packetThrottleInterval = ENET_PEER_PACKET_THROTTLE_INTERVAL;
peer->pingInterval = ENET_PEER_PING_INTERVAL;
peer->timeoutLimit = ENET_PEER_TIMEOUT_LIMIT;
peer->timeoutMinimum = ENET_PEER_TIMEOUT_MINIMUM;
peer->timeoutMaximum = ENET_PEER_TIMEOUT_MAXIMUM;
peer->lastRoundTripTime = ENET_PEER_DEFAULT_ROUND_TRIP_TIME;
peer->lowestRoundTripTime = ENET_PEER_DEFAULT_ROUND_TRIP_TIME;
peer->lastRoundTripTimeVariance = 0;
peer->highestRoundTripTimeVariance = 0;
peer->roundTripTime = ENET_PEER_DEFAULT_ROUND_TRIP_TIME;
peer->roundTripTimeVariance = 0;
peer->mtu = peer->host->mtu;
peer->reliableDataInTransit = 0;
peer->outgoingReliableSequenceNumber = 0;
peer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
peer->incomingUnsequencedGroup = 0;
peer->outgoingUnsequencedGroup = 0;
peer->eventData = 0;
peer->totalWaitingData = 0;
memset(peer->unsequencedWindow, 0, sizeof(peer->unsequencedWindow));
enet_peer_reset_queues(peer);
}
/** Sends a ping request to a peer.
* @param peer destination for the ping request
* @remarks ping requests factor into the mean round trip time as designated by the
* roundTripTime field in the ENetPeer structure. ENet automatically pings all connected
* peers at regular intervals, however, this function may be called to ensure more
* frequent ping requests.
*/
void enet_peer_ping(ENetPeer *peer) {
ENetProtocol command;
if (peer->state != ENET_PEER_STATE_CONNECTED) {
return;
}
command.header.command = ENET_PROTOCOL_COMMAND_PING | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE;
command.header.channelID = 0xFF;
enet_peer_queue_outgoing_command(peer, &command, NULL, 0, 0);
}
/** Sets the interval at which pings will be sent to a peer.
*
* Pings are used both to monitor the liveness of the connection and also to dynamically
* adjust the throttle during periods of low traffic so that the throttle has reasonable
* responsiveness during traffic spikes.
*
* @param peer the peer to adjust
* @param pingInterval the interval at which to send pings; defaults to ENET_PEER_PING_INTERVAL if 0
*/
void enet_peer_ping_interval(ENetPeer *peer, enet_uint32 pingInterval) {
peer->pingInterval = pingInterval ? pingInterval : ENET_PEER_PING_INTERVAL;
}
/** Sets the timeout parameters for a peer.
*
* The timeout parameter control how and when a peer will timeout from a failure to acknowledge
* reliable traffic. Timeout values use an exponential backoff mechanism, where if a reliable
* packet is not acknowledge within some multiple of the average RTT plus a variance tolerance,
* the timeout will be doubled until it reaches a set limit. If the timeout is thus at this
* limit and reliable packets have been sent but not acknowledged within a certain minimum time
* period, the peer will be disconnected. Alternatively, if reliable packets have been sent
* but not acknowledged for a certain maximum time period, the peer will be disconnected regardless
* of the current timeout limit value.
*
* @param peer the peer to adjust
* @param timeoutLimit the timeout limit; defaults to ENET_PEER_TIMEOUT_LIMIT if 0
* @param timeoutMinimum the timeout minimum; defaults to ENET_PEER_TIMEOUT_MINIMUM if 0
* @param timeoutMaximum the timeout maximum; defaults to ENET_PEER_TIMEOUT_MAXIMUM if 0
*/
void enet_peer_timeout(ENetPeer *peer, enet_uint32 timeoutLimit, enet_uint32 timeoutMinimum, enet_uint32 timeoutMaximum) {
peer->timeoutLimit = timeoutLimit ? timeoutLimit : ENET_PEER_TIMEOUT_LIMIT;
peer->timeoutMinimum = timeoutMinimum ? timeoutMinimum : ENET_PEER_TIMEOUT_MINIMUM;
peer->timeoutMaximum = timeoutMaximum ? timeoutMaximum : ENET_PEER_TIMEOUT_MAXIMUM;
}
/** Force an immediate disconnection from a peer.
* @param peer peer to disconnect
* @param data data describing the disconnection
* @remarks No ENET_EVENT_DISCONNECT event will be generated. The foreign peer is not
* guaranteed to receive the disconnect notification, and is reset immediately upon
* return from this function.
*/
void enet_peer_disconnect_now(ENetPeer *peer, enet_uint32 data) {
ENetProtocol command;
if (peer->state == ENET_PEER_STATE_DISCONNECTED) {
return;
}
if (peer->state != ENET_PEER_STATE_ZOMBIE && peer->state != ENET_PEER_STATE_DISCONNECTING) {
enet_peer_reset_queues(peer);
command.header.command = ENET_PROTOCOL_COMMAND_DISCONNECT | ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED;
command.header.channelID = 0xFF;
command.disconnect.data = ENET_HOST_TO_NET_32(data);
enet_peer_queue_outgoing_command(peer, &command, NULL, 0, 0);
enet_host_flush(peer->host);
}
enet_peer_reset(peer);
}
/** Request a disconnection from a peer.
* @param peer peer to request a disconnection
* @param data data describing the disconnection
* @remarks An ENET_EVENT_DISCONNECT event will be generated by enet_host_service()
* once the disconnection is complete.
*/
void enet_peer_disconnect(ENetPeer *peer, enet_uint32 data) {
ENetProtocol command;
if (peer->state == ENET_PEER_STATE_DISCONNECTING ||
peer->state == ENET_PEER_STATE_DISCONNECTED ||
peer->state == ENET_PEER_STATE_ACKNOWLEDGING_DISCONNECT ||
peer->state == ENET_PEER_STATE_ZOMBIE
) {
return;
}
enet_peer_reset_queues(peer);
command.header.command = ENET_PROTOCOL_COMMAND_DISCONNECT;
command.header.channelID = 0xFF;
command.disconnect.data = ENET_HOST_TO_NET_32(data);
if (peer->state == ENET_PEER_STATE_CONNECTED || peer->state == ENET_PEER_STATE_DISCONNECT_LATER) {
command.header.command |= ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE;
} else {
command.header.command |= ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED;
}
enet_peer_queue_outgoing_command(peer, &command, NULL, 0, 0);
if (peer->state == ENET_PEER_STATE_CONNECTED || peer->state == ENET_PEER_STATE_DISCONNECT_LATER) {
enet_peer_on_disconnect(peer);
peer->state = ENET_PEER_STATE_DISCONNECTING;
} else {
enet_host_flush(peer->host);
enet_peer_reset(peer);
}
}
/** Request a disconnection from a peer, but only after all queued outgoing packets are sent.
* @param peer peer to request a disconnection
* @param data data describing the disconnection
* @remarks An ENET_EVENT_DISCONNECT event will be generated by enet_host_service()
* once the disconnection is complete.
*/
void enet_peer_disconnect_later(ENetPeer *peer, enet_uint32 data) {
if ((peer->state == ENET_PEER_STATE_CONNECTED || peer->state == ENET_PEER_STATE_DISCONNECT_LATER) &&
!(enet_list_empty(&peer->outgoingReliableCommands) &&
enet_list_empty(&peer->outgoingUnreliableCommands) &&
enet_list_empty(&peer->sentReliableCommands))
) {
peer->state = ENET_PEER_STATE_DISCONNECT_LATER;
peer->eventData = data;
} else {
enet_peer_disconnect(peer, data);
}
}
ENetAcknowledgement *enet_peer_queue_acknowledgement(ENetPeer *peer, const ENetProtocol *command, enet_uint16 sentTime) {
ENetAcknowledgement *acknowledgement;
if (command->header.channelID < peer->channelCount) {
ENetChannel *channel = &peer->channels[command->header.channelID];
enet_uint16 reliableWindow = command->header.reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
enet_uint16 currentWindow = channel->incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
if (command->header.reliableSequenceNumber < channel->incomingReliableSequenceNumber) {
reliableWindow += ENET_PEER_RELIABLE_WINDOWS;
}
if (reliableWindow >= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1 && reliableWindow <= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS) {
return NULL;
}
}
acknowledgement = (ENetAcknowledgement *) enet_malloc(sizeof(ENetAcknowledgement));
if (acknowledgement == NULL) {
return NULL;
}
peer->outgoingDataTotal += sizeof(ENetProtocolAcknowledge);
acknowledgement->sentTime = sentTime;
acknowledgement->command = *command;
enet_list_insert(enet_list_end(&peer->acknowledgements), acknowledgement);
return acknowledgement;
}
void enet_peer_setup_outgoing_command(ENetPeer *peer, ENetOutgoingCommand *outgoingCommand) {
ENetChannel *channel = &peer->channels[outgoingCommand->command.header.channelID];
peer->outgoingDataTotal += enet_protocol_command_size(outgoingCommand->command.header.command) + outgoingCommand->fragmentLength;
if (outgoingCommand->command.header.channelID == 0xFF) {
++peer->outgoingReliableSequenceNumber;
outgoingCommand->reliableSequenceNumber = peer->outgoingReliableSequenceNumber;
outgoingCommand->unreliableSequenceNumber = 0;
}
else if (outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE) {
++channel->outgoingReliableSequenceNumber;
channel->outgoingUnreliableSequenceNumber = 0;
outgoingCommand->reliableSequenceNumber = channel->outgoingReliableSequenceNumber;
outgoingCommand->unreliableSequenceNumber = 0;
}
else if (outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_FLAG_UNSEQUENCED) {
++peer->outgoingUnsequencedGroup;
outgoingCommand->reliableSequenceNumber = 0;
outgoingCommand->unreliableSequenceNumber = 0;
}
else {
if (outgoingCommand->fragmentOffset == 0) {
++channel->outgoingUnreliableSequenceNumber;
}
outgoingCommand->reliableSequenceNumber = channel->outgoingReliableSequenceNumber;
outgoingCommand->unreliableSequenceNumber = channel->outgoingUnreliableSequenceNumber;
}
outgoingCommand->sendAttempts = 0;
outgoingCommand->sentTime = 0;
outgoingCommand->roundTripTimeout = 0;
outgoingCommand->roundTripTimeoutLimit = 0;
outgoingCommand->command.header.reliableSequenceNumber = ENET_HOST_TO_NET_16(outgoingCommand->reliableSequenceNumber);
switch (outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK) {
case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE:
outgoingCommand->command.sendUnreliable.unreliableSequenceNumber = ENET_HOST_TO_NET_16(outgoingCommand->unreliableSequenceNumber);
break;
case ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED:
outgoingCommand->command.sendUnsequenced.unsequencedGroup = ENET_HOST_TO_NET_16(peer->outgoingUnsequencedGroup);
break;
default:
break;
}
if (outgoingCommand->command.header.command & ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE) {
enet_list_insert(enet_list_end(&peer->outgoingReliableCommands), outgoingCommand);
} else {
enet_list_insert(enet_list_end(&peer->outgoingUnreliableCommands), outgoingCommand);
}
}
ENetOutgoingCommand * enet_peer_queue_outgoing_command(ENetPeer *peer, const ENetProtocol *command, ENetPacket *packet, enet_uint32 offset, enet_uint16 length) {
ENetOutgoingCommand *outgoingCommand = (ENetOutgoingCommand *) enet_malloc(sizeof(ENetOutgoingCommand));
if (outgoingCommand == NULL) {
return NULL;
}
outgoingCommand->command = *command;
outgoingCommand->fragmentOffset = offset;
outgoingCommand->fragmentLength = length;
outgoingCommand->packet = packet;
if (packet != NULL) {
++packet->referenceCount;
}
enet_peer_setup_outgoing_command(peer, outgoingCommand);
return outgoingCommand;
}
void enet_peer_dispatch_incoming_unreliable_commands(ENetPeer *peer, ENetChannel *channel) {
ENetListIterator droppedCommand, startCommand, currentCommand;
for (droppedCommand = startCommand = currentCommand = enet_list_begin(&channel->incomingUnreliableCommands);
currentCommand != enet_list_end(&channel->incomingUnreliableCommands);
currentCommand = enet_list_next(currentCommand)
) {
ENetIncomingCommand *incomingCommand = (ENetIncomingCommand *) currentCommand;
if ((incomingCommand->command.header.command & ENET_PROTOCOL_COMMAND_MASK) == ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED) {
continue;
}
if (incomingCommand->reliableSequenceNumber == channel->incomingReliableSequenceNumber) {
if (incomingCommand->fragmentsRemaining <= 0) {
channel->incomingUnreliableSequenceNumber = incomingCommand->unreliableSequenceNumber;
continue;
}
if (startCommand != currentCommand) {
enet_list_move(enet_list_end(&peer->dispatchedCommands), startCommand, enet_list_previous(currentCommand));
if (!peer->needsDispatch) {
enet_list_insert(enet_list_end(&peer->host->dispatchQueue), &peer->dispatchList);
peer->needsDispatch = 1;
}
droppedCommand = currentCommand;
} else if (droppedCommand != currentCommand) {
droppedCommand = enet_list_previous(currentCommand);
}
} else {
enet_uint16 reliableWindow = incomingCommand->reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
enet_uint16 currentWindow = channel->incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
if (incomingCommand->reliableSequenceNumber < channel->incomingReliableSequenceNumber) {
reliableWindow += ENET_PEER_RELIABLE_WINDOWS;
}
if (reliableWindow >= currentWindow && reliableWindow < currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1) {
break;
}
droppedCommand = enet_list_next(currentCommand);
if (startCommand != currentCommand) {
enet_list_move(enet_list_end(&peer->dispatchedCommands), startCommand, enet_list_previous(currentCommand));
if (!peer->needsDispatch) {
enet_list_insert(enet_list_end(&peer->host->dispatchQueue), &peer->dispatchList);
peer->needsDispatch = 1;
}
}
}
startCommand = enet_list_next(currentCommand);
}
if (startCommand != currentCommand) {
enet_list_move(enet_list_end(&peer->dispatchedCommands), startCommand, enet_list_previous(currentCommand));
if (!peer->needsDispatch) {
enet_list_insert(enet_list_end(&peer->host->dispatchQueue), &peer->dispatchList);
peer->needsDispatch = 1;
}
droppedCommand = currentCommand;
}
enet_peer_remove_incoming_commands(&channel->incomingUnreliableCommands,enet_list_begin(&channel->incomingUnreliableCommands), droppedCommand);
}
void enet_peer_dispatch_incoming_reliable_commands(ENetPeer *peer, ENetChannel *channel) {
ENetListIterator currentCommand;
for (currentCommand = enet_list_begin(&channel->incomingReliableCommands);
currentCommand != enet_list_end(&channel->incomingReliableCommands);
currentCommand = enet_list_next(currentCommand)
) {
ENetIncomingCommand *incomingCommand = (ENetIncomingCommand *) currentCommand;
if (incomingCommand->fragmentsRemaining > 0 || incomingCommand->reliableSequenceNumber != (enet_uint16) (channel->incomingReliableSequenceNumber + 1)) {
break;
}
channel->incomingReliableSequenceNumber = incomingCommand->reliableSequenceNumber;
if (incomingCommand->fragmentCount > 0) {
channel->incomingReliableSequenceNumber += incomingCommand->fragmentCount - 1;
}
}
if (currentCommand == enet_list_begin(&channel->incomingReliableCommands)) {
return;
}
channel->incomingUnreliableSequenceNumber = 0;
enet_list_move(enet_list_end(&peer->dispatchedCommands), enet_list_begin(&channel->incomingReliableCommands), enet_list_previous(currentCommand));
if (!peer->needsDispatch) {
enet_list_insert(enet_list_end(&peer->host->dispatchQueue), &peer->dispatchList);
peer->needsDispatch = 1;
}
if (!enet_list_empty(&channel->incomingUnreliableCommands)) {
enet_peer_dispatch_incoming_unreliable_commands(peer, channel);
}
}
ENetIncomingCommand * enet_peer_queue_incoming_command(ENetPeer *peer, const ENetProtocol *command, const void *data, size_t dataLength, enet_uint32 flags, enet_uint32 fragmentCount) {
static ENetIncomingCommand dummyCommand;
ENetChannel *channel = &peer->channels[command->header.channelID];
enet_uint32 unreliableSequenceNumber = 0, reliableSequenceNumber = 0;
enet_uint16 reliableWindow, currentWindow;
ENetIncomingCommand *incomingCommand;
ENetListIterator currentCommand;
ENetPacket *packet = NULL;
if (peer->state == ENET_PEER_STATE_DISCONNECT_LATER) {
goto discardCommand;
}
if ((command->header.command & ENET_PROTOCOL_COMMAND_MASK) != ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED) {
reliableSequenceNumber = command->header.reliableSequenceNumber;
reliableWindow = reliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
currentWindow = channel->incomingReliableSequenceNumber / ENET_PEER_RELIABLE_WINDOW_SIZE;
if (reliableSequenceNumber < channel->incomingReliableSequenceNumber) {
reliableWindow += ENET_PEER_RELIABLE_WINDOWS;
}
if (reliableWindow < currentWindow || reliableWindow >= currentWindow + ENET_PEER_FREE_RELIABLE_WINDOWS - 1) {
goto discardCommand;
}
}
switch (command->header.command & ENET_PROTOCOL_COMMAND_MASK) {
case ENET_PROTOCOL_COMMAND_SEND_FRAGMENT:
case ENET_PROTOCOL_COMMAND_SEND_RELIABLE:
if (reliableSequenceNumber == channel->incomingReliableSequenceNumber) {
goto discardCommand;
}
for (currentCommand = enet_list_previous(enet_list_end(&channel->incomingReliableCommands));
currentCommand != enet_list_end(&channel->incomingReliableCommands);
currentCommand = enet_list_previous(currentCommand)
) {
incomingCommand = (ENetIncomingCommand *) currentCommand;
if (reliableSequenceNumber >= channel->incomingReliableSequenceNumber) {
if (incomingCommand->reliableSequenceNumber < channel->incomingReliableSequenceNumber) {
continue;
}
} else if (incomingCommand->reliableSequenceNumber >= channel->incomingReliableSequenceNumber) {
break;
}
if (incomingCommand->reliableSequenceNumber <= reliableSequenceNumber) {
if (incomingCommand->reliableSequenceNumber < reliableSequenceNumber) {
break;
}
goto discardCommand;
}
}
break;
case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE:
case ENET_PROTOCOL_COMMAND_SEND_UNRELIABLE_FRAGMENT:
unreliableSequenceNumber = ENET_NET_TO_HOST_16(command->sendUnreliable.unreliableSequenceNumber);
if (reliableSequenceNumber == channel->incomingReliableSequenceNumber && unreliableSequenceNumber <= channel->incomingUnreliableSequenceNumber) {
goto discardCommand;
}
for (currentCommand = enet_list_previous(enet_list_end(&channel->incomingUnreliableCommands));
currentCommand != enet_list_end(&channel->incomingUnreliableCommands);
currentCommand = enet_list_previous(currentCommand)
) {
incomingCommand = (ENetIncomingCommand *) currentCommand;
if ((command->header.command & ENET_PROTOCOL_COMMAND_MASK) == ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED) {
continue;
}
if (reliableSequenceNumber >= channel->incomingReliableSequenceNumber) {
if (incomingCommand->reliableSequenceNumber < channel->incomingReliableSequenceNumber) {
continue;
}
} else if (incomingCommand->reliableSequenceNumber >= channel->incomingReliableSequenceNumber) {
break;
}
if (incomingCommand->reliableSequenceNumber < reliableSequenceNumber) {
break;
}
if (incomingCommand->reliableSequenceNumber > reliableSequenceNumber) {
continue;
}
if (incomingCommand->unreliableSequenceNumber <= unreliableSequenceNumber) {
if (incomingCommand->unreliableSequenceNumber < unreliableSequenceNumber) {
break;
}
goto discardCommand;
}
}
break;
case ENET_PROTOCOL_COMMAND_SEND_UNSEQUENCED:
currentCommand = enet_list_end(&channel->incomingUnreliableCommands);
break;
default:
goto discardCommand;
}
if (peer->totalWaitingData >= peer->host->maximumWaitingData) {
goto notifyError;
}
packet = callbacks.packet_create(data, dataLength, flags);
if (packet == NULL) {
goto notifyError;
}
incomingCommand = (ENetIncomingCommand *) enet_malloc(sizeof(ENetIncomingCommand));
if (incomingCommand == NULL) {
goto notifyError;
}
incomingCommand->reliableSequenceNumber = command->header.reliableSequenceNumber;
incomingCommand->unreliableSequenceNumber = unreliableSequenceNumber & 0xFFFF;
incomingCommand->command = *command;
incomingCommand->fragmentCount = fragmentCount;
incomingCommand->fragmentsRemaining = fragmentCount;
incomingCommand->packet = packet;
incomingCommand->fragments = NULL;
if (fragmentCount > 0) {
if (fragmentCount <= ENET_PROTOCOL_MAXIMUM_FRAGMENT_COUNT) {
incomingCommand->fragments = (enet_uint32 *) enet_malloc((fragmentCount + 31) / 32 * sizeof(enet_uint32));
}
if (incomingCommand->fragments == NULL) {
enet_free(incomingCommand);
goto notifyError;
}
memset(incomingCommand->fragments, 0, (fragmentCount + 31) / 32 * sizeof(enet_uint32));
}
if (packet != NULL) {
++packet->referenceCount;
peer->totalWaitingData += packet->dataLength;
}
enet_list_insert(enet_list_next(currentCommand), incomingCommand);
switch (command->header.command & ENET_PROTOCOL_COMMAND_MASK) {
case ENET_PROTOCOL_COMMAND_SEND_FRAGMENT:
case ENET_PROTOCOL_COMMAND_SEND_RELIABLE:
enet_peer_dispatch_incoming_reliable_commands(peer, channel);
break;
default:
enet_peer_dispatch_incoming_unreliable_commands(peer, channel);
break;
}
return incomingCommand;
discardCommand:
if (fragmentCount > 0) {
goto notifyError;
}
if (packet != NULL && packet->referenceCount == 0) {
callbacks.packet_destroy(packet);
}
return &dummyCommand;
notifyError:
if (packet != NULL && packet->referenceCount == 0) {
callbacks.packet_destroy(packet);
}
return NULL;
} /* enet_peer_queue_incoming_command */
// =======================================================================//
// !
// ! Host
// !
// =======================================================================//
/** Creates a host for communicating to peers.
*
* @param address the address at which other peers may connect to this host. If NULL, then no peers may connect to the host.
* @param peerCount the maximum number of peers that should be allocated for the host.
* @param channelLimit the maximum number of channels allowed; if 0, then this is equivalent to ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT
* @param incomingBandwidth downstream bandwidth of the host in bytes/second; if 0, ENet will assume unlimited bandwidth.
* @param outgoingBandwidth upstream bandwidth of the host in bytes/second; if 0, ENet will assume unlimited bandwidth.
*
* @returns the host on success and NULL on failure
*
* @remarks ENet will strategically drop packets on specific sides of a connection between hosts
* to ensure the host's bandwidth is not overwhelmed. The bandwidth parameters also determine
* the window size of a connection which limits the amount of reliable packets that may be in transit
* at any given time.
*/
ENetHost * enet_host_create(const ENetAddress *address, size_t peerCount, size_t channelLimit, enet_uint32 incomingBandwidth, enet_uint32 outgoingBandwidth) {
ENetHost *host;
ENetPeer *currentPeer;
if (peerCount > ENET_PROTOCOL_MAXIMUM_PEER_ID) {
return NULL;
}
host = (ENetHost *) enet_malloc(sizeof(ENetHost));
if (host == NULL) { return NULL; }
memset(host, 0, sizeof(ENetHost));
host->peers = (ENetPeer *) enet_malloc(peerCount * sizeof(ENetPeer));
if (host->peers == NULL) {
enet_free(host);
return NULL;
}
memset(host->peers, 0, peerCount * sizeof(ENetPeer));
host->socket = enet_socket_create(ENET_SOCKET_TYPE_DATAGRAM);
if (host->socket != ENET_SOCKET_NULL) {
enet_socket_set_option (host->socket, ENET_SOCKOPT_IPV6_V6ONLY, 0);
}
if (host->socket == ENET_SOCKET_NULL || (address != NULL && enet_socket_bind(host->socket, address) < 0)) {
if (host->socket != ENET_SOCKET_NULL) {
enet_socket_destroy(host->socket);
}
enet_free(host->peers);
enet_free(host);
return NULL;
}
enet_socket_set_option(host->socket, ENET_SOCKOPT_NONBLOCK, 1);
enet_socket_set_option(host->socket, ENET_SOCKOPT_BROADCAST, 1);
enet_socket_set_option(host->socket, ENET_SOCKOPT_RCVBUF, ENET_HOST_RECEIVE_BUFFER_SIZE);
enet_socket_set_option(host->socket, ENET_SOCKOPT_SNDBUF, ENET_HOST_SEND_BUFFER_SIZE);
enet_socket_set_option(host->socket, ENET_SOCKOPT_IPV6_V6ONLY, 0);
if (address != NULL && enet_socket_get_address(host->socket, &host->address) < 0) {
host->address = *address;
}
if (!channelLimit || channelLimit > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT) {
channelLimit = ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT;
} else if (channelLimit < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT) {
channelLimit = ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT;
}
host->randomSeed = (enet_uint32) (size_t) host;
host->randomSeed += enet_host_random_seed();
host->randomSeed = (host->randomSeed << 16) | (host->randomSeed >> 16);
host->channelLimit = channelLimit;
host->incomingBandwidth = incomingBandwidth;
host->outgoingBandwidth = outgoingBandwidth;
host->bandwidthThrottleEpoch = 0;
host->recalculateBandwidthLimits = 0;
host->mtu = ENET_HOST_DEFAULT_MTU;
host->peerCount = peerCount;
host->commandCount = 0;
host->bufferCount = 0;
host->checksum = NULL;
host->receivedAddress.host = ENET_HOST_ANY;
host->receivedAddress.port = 0;
host->receivedData = NULL;
host->receivedDataLength = 0;
host->totalSentData = 0;
host->totalSentPackets = 0;
host->totalReceivedData = 0;
host->totalReceivedPackets = 0;
host->connectedPeers = 0;
host->bandwidthLimitedPeers = 0;
host->duplicatePeers = ENET_PROTOCOL_MAXIMUM_PEER_ID;
host->maximumPacketSize = ENET_HOST_DEFAULT_MAXIMUM_PACKET_SIZE;
host->maximumWaitingData = ENET_HOST_DEFAULT_MAXIMUM_WAITING_DATA;
host->compressor.context = NULL;
host->compressor.compress = NULL;
host->compressor.decompress = NULL;
host->compressor.destroy = NULL;
host->intercept = NULL;
enet_list_clear(&host->dispatchQueue);
for (currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) {
currentPeer->host = host;
currentPeer->incomingPeerID = currentPeer - host->peers;
currentPeer->outgoingSessionID = currentPeer->incomingSessionID = 0xFF;
currentPeer->data = NULL;
enet_list_clear(&currentPeer->acknowledgements);
enet_list_clear(&currentPeer->sentReliableCommands);
enet_list_clear(&currentPeer->sentUnreliableCommands);
enet_list_clear(&currentPeer->outgoingReliableCommands);
enet_list_clear(&currentPeer->outgoingUnreliableCommands);
enet_list_clear(&currentPeer->dispatchedCommands);
enet_peer_reset(currentPeer);
}
return host;
} /* enet_host_create */
/** Destroys the host and all resources associated with it.
* @param host pointer to the host to destroy
*/
void enet_host_destroy(ENetHost *host) {
ENetPeer *currentPeer;
if (host == NULL) {
return;
}
enet_socket_destroy(host->socket);
for (currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) {
enet_peer_reset(currentPeer);
}
if (host->compressor.context != NULL && host->compressor.destroy) {
(*host->compressor.destroy)(host->compressor.context);
}
enet_free(host->peers);
enet_free(host);
}
/** Initiates a connection to a foreign host.
* @param host host seeking the connection
* @param address destination for the connection
* @param channelCount number of channels to allocate
* @param data user data supplied to the receiving host
* @returns a peer representing the foreign host on success, NULL on failure
* @remarks The peer returned will have not completed the connection until enet_host_service()
* notifies of an ENET_EVENT_TYPE_CONNECT event for the peer.
*/
ENetPeer * enet_host_connect(ENetHost *host, const ENetAddress *address, size_t channelCount, enet_uint32 data) {
ENetPeer *currentPeer;
ENetChannel *channel;
ENetProtocol command;
if (channelCount < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT) {
channelCount = ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT;
} else if (channelCount > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT) {
channelCount = ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT;
}
for (currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) {
if (currentPeer->state == ENET_PEER_STATE_DISCONNECTED) {
break;
}
}
if (currentPeer >= &host->peers[host->peerCount]) {
return NULL;
}
currentPeer->channels = (ENetChannel *) enet_malloc(channelCount * sizeof(ENetChannel));
if (currentPeer->channels == NULL) {
return NULL;
}
currentPeer->channelCount = channelCount;
currentPeer->state = ENET_PEER_STATE_CONNECTING;
currentPeer->address = *address;
currentPeer->connectID = ++host->randomSeed;
if (host->outgoingBandwidth == 0) {
currentPeer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
} else {
currentPeer->windowSize = (host->outgoingBandwidth / ENET_PEER_WINDOW_SIZE_SCALE) * ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
}
if (currentPeer->windowSize < ENET_PROTOCOL_MINIMUM_WINDOW_SIZE) {
currentPeer->windowSize = ENET_PROTOCOL_MINIMUM_WINDOW_SIZE;
} else if (currentPeer->windowSize > ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE) {
currentPeer->windowSize = ENET_PROTOCOL_MAXIMUM_WINDOW_SIZE;
}
for (channel = currentPeer->channels; channel < &currentPeer->channels[channelCount]; ++channel) {
channel->outgoingReliableSequenceNumber = 0;
channel->outgoingUnreliableSequenceNumber = 0;
channel->incomingReliableSequenceNumber = 0;
channel->incomingUnreliableSequenceNumber = 0;
enet_list_clear(&channel->incomingReliableCommands);
enet_list_clear(&channel->incomingUnreliableCommands);
channel->usedReliableWindows = 0;
memset(channel->reliableWindows, 0, sizeof(channel->reliableWindows));
}
command.header.command = ENET_PROTOCOL_COMMAND_CONNECT | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE;
command.header.channelID = 0xFF;
command.connect.outgoingPeerID = ENET_HOST_TO_NET_16(currentPeer->incomingPeerID);
command.connect.incomingSessionID = currentPeer->incomingSessionID;
command.connect.outgoingSessionID = currentPeer->outgoingSessionID;
command.connect.mtu = ENET_HOST_TO_NET_32(currentPeer->mtu);
command.connect.windowSize = ENET_HOST_TO_NET_32(currentPeer->windowSize);
command.connect.channelCount = ENET_HOST_TO_NET_32(channelCount);
command.connect.incomingBandwidth = ENET_HOST_TO_NET_32(host->incomingBandwidth);
command.connect.outgoingBandwidth = ENET_HOST_TO_NET_32(host->outgoingBandwidth);
command.connect.packetThrottleInterval = ENET_HOST_TO_NET_32(currentPeer->packetThrottleInterval);
command.connect.packetThrottleAcceleration = ENET_HOST_TO_NET_32(currentPeer->packetThrottleAcceleration);
command.connect.packetThrottleDeceleration = ENET_HOST_TO_NET_32(currentPeer->packetThrottleDeceleration);
command.connect.connectID = currentPeer->connectID;
command.connect.data = ENET_HOST_TO_NET_32(data);
enet_peer_queue_outgoing_command(currentPeer, &command, NULL, 0, 0);
return currentPeer;
} /* enet_host_connect */
/** Queues a packet to be sent to all peers associated with the host.
* @param host host on which to broadcast the packet
* @param channelID channel on which to broadcast
* @param packet packet to broadcast
*/
void enet_host_broadcast(ENetHost *host, enet_uint8 channelID, ENetPacket *packet) {
ENetPeer *currentPeer;
for (currentPeer = host->peers; currentPeer < &host->peers[host->peerCount]; ++currentPeer) {
if (currentPeer->state != ENET_PEER_STATE_CONNECTED) {
continue;
}
enet_peer_send(currentPeer, channelID, packet);
}
if (packet->referenceCount == 0) {
callbacks.packet_destroy(packet);
}
}
/** Sends raw data to specified address. Useful when you want to send unconnected data using host's socket.
* @param host host sending data
* @param address destination address
* @param data data pointer
* @param dataLength length of data to send
* @retval >=0 bytes sent
* @retval <0 error
* @sa enet_socket_send
*/
int enet_host_send_raw(ENetHost *host, const ENetAddress* address, enet_uint8* data, size_t dataLength) {
ENetBuffer buffer;
buffer.data = data;
buffer.dataLength = dataLength;
return enet_socket_send(host->socket, address, &buffer, 1);
}
/** Sends raw data to specified address with extended arguments. Allows to send only part of data, handy for other programming languages.
* I.e. if you have data =- { 0, 1, 2, 3 } and call function as enet_host_send_raw_ex(data, 1, 2) then it will skip 1 byte and send 2 bytes { 1, 2 }.
* @param host host sending data
* @param address destination address
* @param data data pointer
* @param skipBytes number of bytes to skip from start of data
* @param bytesToSend number of bytes to send
* @retval >=0 bytes sent
* @retval <0 error
* @sa enet_socket_send
*/
int enet_host_send_raw_ex(ENetHost *host, const ENetAddress* address, enet_uint8* data, size_t skipBytes, size_t bytesToSend) {
ENetBuffer buffer;
buffer.data = data + skipBytes;
buffer.dataLength = bytesToSend;
return enet_socket_send(host->socket, address, &buffer, 1);
}
/** Sets intercept callback for the host.
* @param host host to set a callback
* @param callback intercept callback
*/
void enet_host_set_intercept(ENetHost *host, const ENetInterceptCallback callback) {
host->intercept = callback;
}
/** Sets the packet compressor the host should use to compress and decompress packets.
* @param host host to enable or disable compression for
* @param compressor callbacks for for the packet compressor; if NULL, then compression is disabled
*/
void enet_host_compress(ENetHost *host, const ENetCompressor *compressor) {
if (host->compressor.context != NULL && host->compressor.destroy) {
(*host->compressor.destroy)(host->compressor.context);
}
if (compressor) {
host->compressor = *compressor;
} else {
host->compressor.context = NULL;
}
}
/** Limits the maximum allowed channels of future incoming connections.
* @param host host to limit
* @param channelLimit the maximum number of channels allowed; if 0, then this is equivalent to ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT
*/
void enet_host_channel_limit(ENetHost *host, size_t channelLimit) {
if (!channelLimit || channelLimit > ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT) {
channelLimit = ENET_PROTOCOL_MAXIMUM_CHANNEL_COUNT;
} else if (channelLimit < ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT) {
channelLimit = ENET_PROTOCOL_MINIMUM_CHANNEL_COUNT;
}
host->channelLimit = channelLimit;
}
/** Adjusts the bandwidth limits of a host.
* @param host host to adjust
* @param incomingBandwidth new incoming bandwidth
* @param outgoingBandwidth new outgoing bandwidth
* @remarks the incoming and outgoing bandwidth parameters are identical in function to those
* specified in enet_host_create().
*/
void enet_host_bandwidth_limit(ENetHost *host, enet_uint32 incomingBandwidth, enet_uint32 outgoingBandwidth) {
host->incomingBandwidth = incomingBandwidth;
host->outgoingBandwidth = outgoingBandwidth;
host->recalculateBandwidthLimits = 1;
}
void enet_host_bandwidth_throttle(ENetHost *host) {
enet_uint32 timeCurrent = enet_time_get();
enet_uint32 elapsedTime = timeCurrent - host->bandwidthThrottleEpoch;
enet_uint32 peersRemaining = (enet_uint32) host->connectedPeers;
enet_uint32 dataTotal = ~0;
enet_uint32 bandwidth = ~0;
enet_uint32 throttle = 0;
enet_uint32 bandwidthLimit = 0;
int needsAdjustment = host->bandwidthLimitedPeers > 0 ? 1 : 0;
ENetPeer *peer;
ENetProtocol command;
if (elapsedTime < ENET_HOST_BANDWIDTH_THROTTLE_INTERVAL) {
return;
}
if (host->outgoingBandwidth == 0 && host->incomingBandwidth == 0) {
return;
}
host->bandwidthThrottleEpoch = timeCurrent;
if (peersRemaining == 0) {
return;
}
if (host->outgoingBandwidth != 0) {
dataTotal = 0;
bandwidth = (host->outgoingBandwidth * elapsedTime) / 1000;
for (peer = host->peers; peer < &host->peers[host->peerCount]; ++peer) {
if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) {
continue;
}
dataTotal += peer->outgoingDataTotal;
}
}
while (peersRemaining > 0 && needsAdjustment != 0) {
needsAdjustment = 0;
if (dataTotal <= bandwidth) {
throttle = ENET_PEER_PACKET_THROTTLE_SCALE;
} else {
throttle = (bandwidth * ENET_PEER_PACKET_THROTTLE_SCALE) / dataTotal;
}
for (peer = host->peers; peer < &host->peers[host->peerCount]; ++peer) {
enet_uint32 peerBandwidth;
if ((peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) ||
peer->incomingBandwidth == 0 ||
peer->outgoingBandwidthThrottleEpoch == timeCurrent
) {
continue;
}
peerBandwidth = (peer->incomingBandwidth * elapsedTime) / 1000;
if ((throttle * peer->outgoingDataTotal) / ENET_PEER_PACKET_THROTTLE_SCALE <= peerBandwidth) {
continue;
}
peer->packetThrottleLimit = (peerBandwidth * ENET_PEER_PACKET_THROTTLE_SCALE) / peer->outgoingDataTotal;
if (peer->packetThrottleLimit == 0) {
peer->packetThrottleLimit = 1;
}
if (peer->packetThrottle > peer->packetThrottleLimit) {
peer->packetThrottle = peer->packetThrottleLimit;
}
peer->outgoingBandwidthThrottleEpoch = timeCurrent;
peer->incomingDataTotal = 0;
peer->outgoingDataTotal = 0;
needsAdjustment = 1;
--peersRemaining;
bandwidth -= peerBandwidth;
dataTotal -= peerBandwidth;
}
}
if (peersRemaining > 0) {
if (dataTotal <= bandwidth) {
throttle = ENET_PEER_PACKET_THROTTLE_SCALE;
} else {
throttle = (bandwidth * ENET_PEER_PACKET_THROTTLE_SCALE) / dataTotal;
}
for (peer = host->peers;
peer < &host->peers[host->peerCount];
++peer)
{
if ((peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) || peer->outgoingBandwidthThrottleEpoch == timeCurrent) {
continue;
}
peer->packetThrottleLimit = throttle;
if (peer->packetThrottle > peer->packetThrottleLimit) {
peer->packetThrottle = peer->packetThrottleLimit;
}
peer->incomingDataTotal = 0;
peer->outgoingDataTotal = 0;
}
}
if (host->recalculateBandwidthLimits) {
host->recalculateBandwidthLimits = 0;
peersRemaining = (enet_uint32) host->connectedPeers;
bandwidth = host->incomingBandwidth;
needsAdjustment = 1;
if (bandwidth == 0) {
bandwidthLimit = 0;
} else {
while (peersRemaining > 0 && needsAdjustment != 0) {
needsAdjustment = 0;
bandwidthLimit = bandwidth / peersRemaining;
for (peer = host->peers; peer < &host->peers[host->peerCount]; ++peer) {
if ((peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) ||
peer->incomingBandwidthThrottleEpoch == timeCurrent
) {
continue;
}
if (peer->outgoingBandwidth > 0 && peer->outgoingBandwidth >= bandwidthLimit) {
continue;
}
peer->incomingBandwidthThrottleEpoch = timeCurrent;
needsAdjustment = 1;
--peersRemaining;
bandwidth -= peer->outgoingBandwidth;
}
}
}
for (peer = host->peers; peer < &host->peers[host->peerCount]; ++peer) {
if (peer->state != ENET_PEER_STATE_CONNECTED && peer->state != ENET_PEER_STATE_DISCONNECT_LATER) {
continue;
}
command.header.command = ENET_PROTOCOL_COMMAND_BANDWIDTH_LIMIT | ENET_PROTOCOL_COMMAND_FLAG_ACKNOWLEDGE;
command.header.channelID = 0xFF;
command.bandwidthLimit.outgoingBandwidth = ENET_HOST_TO_NET_32(host->outgoingBandwidth);
if (peer->incomingBandwidthThrottleEpoch == timeCurrent) {
command.bandwidthLimit.incomingBandwidth = ENET_HOST_TO_NET_32(peer->outgoingBandwidth);
} else {
command.bandwidthLimit.incomingBandwidth = ENET_HOST_TO_NET_32(bandwidthLimit);
}
enet_peer_queue_outgoing_command(peer, &command, NULL, 0, 0);
}
}
} /* enet_host_bandwidth_throttle */
// =======================================================================//
// !
// ! Compat
// !
// =======================================================================//
#if (defined _MSC_VER && defined _WIN32 && !defined _WIN64) || \
2023-10-01 06:49:08 +00:00
(defined __MINGW32__ || defined __MINGW64__) // (!defined _WIN32 && defined __MINGW32__ && defined ENET_MINGW_COMPAT) //< @r-lyeh
#define MUST_DEFINE_NTOP_PTON 1
#else
#define MUST_DEFINE_NTOP_PTON 0
#endif
#if MUST_DEFINE_NTOP_PTON //< @r-lyeh
// #if defined(__MINGW32__) && defined(ENET_MINGW_COMPAT) //< @r-lyeh
// inet_ntop/inet_pton for MinGW from http://mingw-users.1079350.n2.nabble.com/IPv6-getaddrinfo-amp-inet-ntop-td5891996.html
const char *inet_ntop(int af, const void *src, char *dst, socklen_t cnt) {
if (af == AF_INET) {
struct sockaddr_in in;
memset(&in, 0, sizeof(in));
in.sin_family = AF_INET;
memcpy(&in.sin_addr, src, sizeof(struct in_addr));
getnameinfo((struct sockaddr *)&in, sizeof(struct sockaddr_in), dst, cnt, NULL, 0, NI_NUMERICHOST);
return dst;
}
else if (af == AF_INET6) {
struct sockaddr_in6 in;
memset(&in, 0, sizeof(in));
in.sin6_family = AF_INET6;
memcpy(&in.sin6_addr, src, sizeof(struct in_addr6));
getnameinfo((struct sockaddr *)&in, sizeof(struct sockaddr_in6), dst, cnt, NULL, 0, NI_NUMERICHOST);
return dst;
}
return NULL;
}
#define NS_INADDRSZ 4
#define NS_IN6ADDRSZ 16
#define NS_INT16SZ 2
int inet_pton4(const char *src, char *dst) {
uint8_t tmp[NS_INADDRSZ], *tp;
int saw_digit = 0;
int octets = 0;
*(tp = tmp) = 0;
int ch;
while ((ch = *src++) != '\0')
{
if (ch >= '0' && ch <= '9')
{
uint32_t n = *tp * 10 + (ch - '0');
if (saw_digit && *tp == 0)
return 0;
if (n > 255)
return 0;
*tp = n;
if (!saw_digit)
{
if (++octets > 4)
return 0;
saw_digit = 1;
}
}
else if (ch == '.' && saw_digit)
{
if (octets == 4)
return 0;
*++tp = 0;
saw_digit = 0;
}
else
return 0;
}
if (octets < 4)
return 0;
memcpy(dst, tmp, NS_INADDRSZ);
return 1;
}
int inet_pton6(const char *src, char *dst) {
static const char xdigits[] = "0123456789abcdef";
uint8_t tmp[NS_IN6ADDRSZ];
uint8_t *tp = (uint8_t*) memset(tmp, '\0', NS_IN6ADDRSZ);
uint8_t *endp = tp + NS_IN6ADDRSZ;
uint8_t *colonp = NULL;
/* Leading :: requires some special handling. */
if (*src == ':')
{
if (*++src != ':')
return 0;
}
const char *curtok = src;
int saw_xdigit = 0;
uint32_t val = 0;
int ch;
while ((ch = tolower(*src++)) != '\0')
{
const char *pch = strchr(xdigits, ch);
if (pch != NULL)
{
val <<= 4;
val |= (pch - xdigits);
if (val > 0xffff)
return 0;
saw_xdigit = 1;
continue;
}
if (ch == ':')
{
curtok = src;
if (!saw_xdigit)
{
if (colonp)
return 0;
colonp = tp;
continue;
}
else if (*src == '\0')
{
return 0;
}
if (tp + NS_INT16SZ > endp)
return 0;
*tp++ = (uint8_t) (val >> 8) & 0xff;
*tp++ = (uint8_t) val & 0xff;
saw_xdigit = 0;
val = 0;
continue;
}
if (ch == '.' && ((tp + NS_INADDRSZ) <= endp) &&
inet_pton4(curtok, (char*) tp) > 0)
{
tp += NS_INADDRSZ;
saw_xdigit = 0;
break; /* '\0' was seen by inet_pton4(). */
}
return 0;
}
if (saw_xdigit)
{
if (tp + NS_INT16SZ > endp)
return 0;
*tp++ = (uint8_t) (val >> 8) & 0xff;
*tp++ = (uint8_t) val & 0xff;
}
if (colonp != NULL)
{
/*
* Since some memmove()'s erroneously fail to handle
* overlapping regions, we'll do the shift by hand.
*/
const int n = tp - colonp;
if (tp == endp)
return 0;
for (int i = 1; i <= n; i++)
{
endp[-i] = colonp[n - i];
colonp[n - i] = 0;
}
tp = endp;
}
if (tp != endp)
return 0;
memcpy(dst, tmp, NS_IN6ADDRSZ);
return 1;
}
int inet_pton(int af, const char *src, struct in6_addr *dst) {
switch (af)
{
case AF_INET:
return inet_pton4(src, (char *)dst);
case AF_INET6:
return inet_pton6(src, (char *)dst);
default:
return -1;
}
}
#endif // MUST_DEFINE_NTOP_PTON //< @r-lyeh
// =======================================================================//
// !
// ! Time
// !
// =======================================================================//
#ifdef _WIN32
static LARGE_INTEGER getFILETIMEoffset() {
SYSTEMTIME s;
FILETIME f;
LARGE_INTEGER t;
s.wYear = 1970;
s.wMonth = 1;
s.wDay = 1;
s.wHour = 0;
s.wMinute = 0;
s.wSecond = 0;
s.wMilliseconds = 0;
SystemTimeToFileTime(&s, &f);
t.QuadPart = f.dwHighDateTime;
t.QuadPart <<= 32;
t.QuadPart |= f.dwLowDateTime;
return (t);
}
#ifdef __MINGW32__
#define clock_gettime clock_gettime2 // symbol defined in pthread_time.h instead. workaround to avoid user linking against -lpthread.
#endif
// #ifndef CLOCK_MONOTONIC_RAW
// #define CLOCK_MONOTONIC_RAW 0 // for zig-cc
// #endif
int clock_gettime(int X, struct timespec *tv) {
LARGE_INTEGER t;
FILETIME f;
double microseconds;
static LARGE_INTEGER offset;
static double frequencyToMicroseconds;
static int initialized = 0;
static BOOL usePerformanceCounter = 0;
if (!initialized) {
LARGE_INTEGER performanceFrequency;
initialized = 1;
usePerformanceCounter = QueryPerformanceFrequency(&performanceFrequency);
if (usePerformanceCounter) {
QueryPerformanceCounter(&offset);
frequencyToMicroseconds = (double)performanceFrequency.QuadPart / 1000000.;
} else {
offset = getFILETIMEoffset();
frequencyToMicroseconds = 10.;
}
}
if (usePerformanceCounter) {
QueryPerformanceCounter(&t);
} else {
GetSystemTimeAsFileTime(&f);
t.QuadPart = f.dwHighDateTime;
t.QuadPart <<= 32;
t.QuadPart |= f.dwLowDateTime;
}
t.QuadPart -= offset.QuadPart;
microseconds = (double)t.QuadPart / frequencyToMicroseconds;
t.QuadPart = (LONGLONG)microseconds;
tv->tv_sec = (long)(t.QuadPart / 1000000);
tv->tv_nsec = t.QuadPart % 1000000 * 1000;
return (0);
}
#elif __APPLE__ && __MAC_OS_X_VERSION_MIN_REQUIRED < 101200
#define CLOCK_MONOTONIC 0
int clock_gettime(int X, struct timespec *ts) {
clock_serv_t cclock;
mach_timespec_t mts;
host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &cclock);
clock_get_time(cclock, &mts);
mach_port_deallocate(mach_task_self(), cclock);
ts->tv_sec = mts.tv_sec;
ts->tv_nsec = mts.tv_nsec;
return 0;
}
#endif
enet_uint32 enet_time_get() {
// TODO enet uses 32 bit timestamps. We should modify it to use
// 64 bit timestamps, but this is not trivial since we'd end up
// changing half the structs in enet. For now, retain 32 bits, but
// use an offset so we don't run out of bits. Basically, the first
// call of enet_time_get() will always return 1, and follow-up calls
// indicate elapsed time since the first call.
//
// Note that we don't want to return 0 from the first call, in case
// some part of enet uses 0 as a special value (meaning time not set
// for example).
static uint64_t start_time_ns = 0;
struct timespec ts;
#if defined(CLOCK_MONOTONIC_RAW)
clock_gettime(CLOCK_MONOTONIC_RAW, &ts);
#else
clock_gettime(CLOCK_MONOTONIC, &ts);
#endif
static const uint64_t ns_in_s = 1000 * 1000 * 1000;
static const uint64_t ns_in_ms = 1000 * 1000;
uint64_t current_time_ns = ts.tv_nsec + (uint64_t)ts.tv_sec * ns_in_s;
// Most of the time we just want to atomically read the start time. We
// could just use a single CAS instruction instead of this if, but it
// would be slower in the average case.
//
// Note that statics are auto-initialized to zero, and starting a thread
// implies a memory barrier. So we know that whatever thread calls this,
// it correctly sees the start_time_ns as 0 initially.
uint64_t offset_ns = ENET_ATOMIC_READ(&start_time_ns);
if (offset_ns == 0) {
// We still need to CAS, since two different threads can get here
// at the same time.
//
// We assume that current_time_ns is > 1ms.
//
// Set the value of the start_time_ns, such that the first timestamp
// is at 1ms. This ensures 0 remains a special value.
uint64_t want_value = current_time_ns - 1 * ns_in_ms;
uint64_t old_value = ENET_ATOMIC_CAS(&start_time_ns, 0, want_value);
offset_ns = old_value == 0 ? want_value : old_value;
}
uint64_t result_in_ns = current_time_ns - offset_ns;
return (enet_uint32)(result_in_ns / ns_in_ms);
}
void enet_inaddr_map4to6(struct in_addr in, struct in6_addr *out)
{
if (in.s_addr == 0x00000000) { /* 0.0.0.0 */
*out = enet_v6_anyaddr;
} else if (in.s_addr == 0xFFFFFFFF) { /* 255.255.255.255 */
*out = enet_v6_noaddr;
} else {
*out = enet_v4_anyaddr;
out->s6_addr[10] = 0xFF;
out->s6_addr[11] = 0xFF;
out->s6_addr[12] = ((uint8_t *)&in.s_addr)[0];
out->s6_addr[13] = ((uint8_t *)&in.s_addr)[1];
out->s6_addr[14] = ((uint8_t *)&in.s_addr)[2];
out->s6_addr[15] = ((uint8_t *)&in.s_addr)[3];
}
}
void enet_inaddr_map6to4(const struct in6_addr *in, struct in_addr *out)
{
memset(out, 0, sizeof(struct in_addr));
((uint8_t *)&out->s_addr)[0] = in->s6_addr[12];
((uint8_t *)&out->s_addr)[1] = in->s6_addr[13];
((uint8_t *)&out->s_addr)[2] = in->s6_addr[14];
((uint8_t *)&out->s_addr)[3] = in->s6_addr[15];
}
int enet_in6addr_lookup_host(const char *name, bool nodns, struct in6_addr *out) {
struct addrinfo hints, *resultList = NULL, *result = NULL;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
if (nodns)
{
hints.ai_flags = AI_NUMERICHOST; /* prevent actual DNS lookups! */
}
if (getaddrinfo(name, NULL, &hints, &resultList) != 0) {
if (resultList != NULL) {
freeaddrinfo(resultList);
}
return -1;
}
for (result = resultList; result != NULL; result = result->ai_next) {
if (result->ai_addr != NULL) {
if (result->ai_family == AF_INET || (result->ai_family == AF_UNSPEC && result->ai_addrlen == sizeof(struct sockaddr_in))) {
enet_inaddr_map4to6(((struct sockaddr_in*)result->ai_addr)->sin_addr, out);
if (resultList != NULL) {
freeaddrinfo(resultList);
}
return 0;
} else if (result->ai_family == AF_INET6 || (result->ai_family == AF_UNSPEC && result->ai_addrlen == sizeof(struct sockaddr_in6))) {
memcpy(out, &((struct sockaddr_in6*)result->ai_addr)->sin6_addr, sizeof(struct in6_addr));
if (resultList != NULL) {
freeaddrinfo(resultList);
}
return 0;
}
}
}
if (resultList != NULL) {
freeaddrinfo(resultList);
}
return -1;
}
int enet_address_set_host_ip_new(ENetAddress *address, const char *name) {
return enet_in6addr_lookup_host(name, true, &address->host);
}
int enet_address_set_host_new(ENetAddress *address, const char *name) {
return enet_in6addr_lookup_host(name, false, &address->host);
}
int enet_address_get_host_ip_new(const ENetAddress *address, char *name, size_t nameLength) {
if (IN6_IS_ADDR_V4MAPPED(&address->host)) {
struct in_addr buf;
enet_inaddr_map6to4(&address->host, &buf);
if (inet_ntop(AF_INET, &buf, name, nameLength) == NULL) {
return -1;
}
}
else {
if (inet_ntop(AF_INET6, &address->host, name, nameLength) == NULL) {
return -1;
}
}
return 0;
} /* enet_address_get_host_ip_new */
int enet_address_get_host_new(const ENetAddress *address, char *name, size_t nameLength) {
struct sockaddr_in6 sin;
memset(&sin, 0, sizeof(struct sockaddr_in6));
int err;
sin.sin6_family = AF_INET6;
sin.sin6_port = ENET_HOST_TO_NET_16 (address->port);
sin.sin6_addr = address->host;
sin.sin6_scope_id = address->sin6_scope_id;
err = getnameinfo((struct sockaddr *) &sin, sizeof(sin), name, nameLength, NULL, 0, NI_NAMEREQD);
if (!err) {
if (name != NULL && nameLength > 0 && !memchr(name, '\0', nameLength)) {
return -1;
}
return 0;
}
if (err != EAI_NONAME) {
return -1;
}
return enet_address_get_host_ip_new(address, name, nameLength);
} /* enet_address_get_host_new */
// =======================================================================//
// !
// ! Platform Specific (Unix)
// !
// =======================================================================//
#ifndef _WIN32
int enet_initialize(void) {
return 0;
}
void enet_deinitialize(void) {}
enet_uint64 enet_host_random_seed(void) {
return (enet_uint64) time(NULL);
}
int enet_address_set_host_ip_old(ENetAddress *address, const char *name) {
if (!inet_pton(AF_INET6, name, &address->host)) {
return -1;
}
return 0;
}
int enet_address_set_host_old(ENetAddress *address, const char *name) {
struct addrinfo hints, *resultList = NULL, *result = NULL;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
if (getaddrinfo(name, NULL, &hints, &resultList) != 0) {
return -1;
}
for (result = resultList; result != NULL; result = result->ai_next) {
if (result->ai_addr != NULL && result->ai_addrlen >= sizeof(struct sockaddr_in)) {
if (result->ai_family == AF_INET) {
struct sockaddr_in * sin = (struct sockaddr_in *) result->ai_addr;
((uint32_t *)&address->host.s6_addr)[0] = 0;
((uint32_t *)&address->host.s6_addr)[1] = 0;
((uint32_t *)&address->host.s6_addr)[2] = htonl(0xffff);
((uint32_t *)&address->host.s6_addr)[3] = sin->sin_addr.s_addr;
freeaddrinfo(resultList);
return 0;
}
else if(result->ai_family == AF_INET6) {
struct sockaddr_in6 * sin = (struct sockaddr_in6 *)result->ai_addr;
address->host = sin->sin6_addr;
address->sin6_scope_id = sin->sin6_scope_id;
freeaddrinfo(resultList);
return 0;
}
}
}
if (resultList != NULL) {
freeaddrinfo(resultList);
}
return enet_address_set_host_ip(address, name);
} /* enet_address_set_host_old */
int enet_address_get_host_ip_old(const ENetAddress *address, char *name, size_t nameLength) {
if (inet_ntop(AF_INET6, &address->host, name, nameLength) == NULL) {
return -1;
}
return 0;
}
int enet_address_get_host_old(const ENetAddress *address, char *name, size_t nameLength) {
struct sockaddr_in6 sin;
int err;
memset(&sin, 0, sizeof(struct sockaddr_in6));
sin.sin6_family = AF_INET6;
sin.sin6_port = ENET_HOST_TO_NET_16 (address->port);
sin.sin6_addr = address->host;
sin.sin6_scope_id = address->sin6_scope_id;
err = getnameinfo((struct sockaddr *) &sin, sizeof(sin), name, nameLength, NULL, 0, NI_NAMEREQD);
if (!err) {
if (name != NULL && nameLength > 0 && !memchr(name, '\0', nameLength)) {
return -1;
}
return 0;
}
if (err != EAI_NONAME) {
return -1;
}
return enet_address_get_host_ip(address, name, nameLength);
} /* enet_address_get_host_old */
int enet_socket_bind(ENetSocket socket, const ENetAddress *address) {
struct sockaddr_in6 sin;
memset(&sin, 0, sizeof(struct sockaddr_in6));
sin.sin6_family = AF_INET6;
if (address != NULL) {
sin.sin6_port = ENET_HOST_TO_NET_16(address->port);
sin.sin6_addr = address->host;
sin.sin6_scope_id = address->sin6_scope_id;
} else {
sin.sin6_port = 0;
sin.sin6_addr = ENET_HOST_ANY;
sin.sin6_scope_id = 0;
}
return bind(socket, (struct sockaddr *)&sin, sizeof(struct sockaddr_in6));
}
int enet_socket_get_address(ENetSocket socket, ENetAddress *address) {
struct sockaddr_in6 sin;
socklen_t sinLength = sizeof(struct sockaddr_in6);
if (getsockname(socket, (struct sockaddr *) &sin, &sinLength) == -1) {
return -1;
}
address->host = sin.sin6_addr;
address->port = ENET_NET_TO_HOST_16(sin.sin6_port);
address->sin6_scope_id = sin.sin6_scope_id;
return 0;
}
int enet_socket_listen(ENetSocket socket, int backlog) {
return listen(socket, backlog < 0 ? SOMAXCONN : backlog);
}
ENetSocket enet_socket_create(ENetSocketType type) {
return socket(PF_INET6, type == ENET_SOCKET_TYPE_DATAGRAM ? SOCK_DGRAM : SOCK_STREAM, 0);
}
int enet_socket_set_option(ENetSocket socket, ENetSocketOption option, int value) {
int result = -1;
switch (option) {
case ENET_SOCKOPT_NONBLOCK:
result = fcntl(socket, F_SETFL, (value ? O_NONBLOCK : 0) | (fcntl(socket, F_GETFL) & ~O_NONBLOCK));
break;
case ENET_SOCKOPT_BROADCAST:
result = setsockopt(socket, SOL_SOCKET, SO_BROADCAST, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_REUSEADDR:
result = setsockopt(socket, SOL_SOCKET, SO_REUSEADDR, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_RCVBUF:
result = setsockopt(socket, SOL_SOCKET, SO_RCVBUF, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_SNDBUF:
result = setsockopt(socket, SOL_SOCKET, SO_SNDBUF, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_RCVTIMEO: {
struct timeval timeVal;
timeVal.tv_sec = value / 1000;
timeVal.tv_usec = (value % 1000) * 1000;
result = setsockopt(socket, SOL_SOCKET, SO_RCVTIMEO, (char *)&timeVal, sizeof(struct timeval));
break;
}
case ENET_SOCKOPT_SNDTIMEO: {
struct timeval timeVal;
timeVal.tv_sec = value / 1000;
timeVal.tv_usec = (value % 1000) * 1000;
result = setsockopt(socket, SOL_SOCKET, SO_SNDTIMEO, (char *)&timeVal, sizeof(struct timeval));
break;
}
case ENET_SOCKOPT_NODELAY:
result = setsockopt(socket, IPPROTO_TCP, TCP_NODELAY, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_IPV6_V6ONLY:
result = setsockopt(socket, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&value, sizeof(int));
break;
default:
break;
}
return result == -1 ? -1 : 0;
} /* enet_socket_set_option */
int enet_socket_get_option(ENetSocket socket, ENetSocketOption option, int *value) {
int result = -1;
socklen_t len;
switch (option) {
case ENET_SOCKOPT_ERROR:
len = sizeof(int);
result = getsockopt(socket, SOL_SOCKET, SO_ERROR, value, &len);
break;
default:
break;
}
return result == -1 ? -1 : 0;
}
int enet_socket_connect(ENetSocket socket, const ENetAddress *address) {
struct sockaddr_in6 sin;
int result;
memset(&sin, 0, sizeof(struct sockaddr_in6));
sin.sin6_family = AF_INET6;
sin.sin6_port = ENET_HOST_TO_NET_16(address->port);
sin.sin6_addr = address->host;
sin.sin6_scope_id = address->sin6_scope_id;
result = connect(socket, (struct sockaddr *)&sin, sizeof(struct sockaddr_in6));
if (result == -1 && errno == EINPROGRESS) {
return 0;
}
return result;
}
ENetSocket enet_socket_accept(ENetSocket socket, ENetAddress *address) {
int result;
struct sockaddr_in6 sin;
socklen_t sinLength = sizeof(struct sockaddr_in6);
result = accept(socket,address != NULL ? (struct sockaddr *) &sin : NULL, address != NULL ? &sinLength : NULL);
if (result == -1) {
return ENET_SOCKET_NULL;
}
if (address != NULL) {
address->host = sin.sin6_addr;
address->port = ENET_NET_TO_HOST_16 (sin.sin6_port);
address->sin6_scope_id = sin.sin6_scope_id;
}
return result;
}
int enet_socket_shutdown(ENetSocket socket, ENetSocketShutdown how) {
return shutdown(socket, (int) how);
}
void enet_socket_destroy(ENetSocket socket) {
if (socket != -1) {
close(socket);
}
}
int enet_socket_send(ENetSocket socket, const ENetAddress *address, const ENetBuffer *buffers, size_t bufferCount) {
struct msghdr msgHdr;
struct sockaddr_in6 sin;
int sentLength;
memset(&msgHdr, 0, sizeof(struct msghdr));
if (address != NULL) {
memset(&sin, 0, sizeof(struct sockaddr_in6));
sin.sin6_family = AF_INET6;
sin.sin6_port = ENET_HOST_TO_NET_16(address->port);
sin.sin6_addr = address->host;
sin.sin6_scope_id = address->sin6_scope_id;
msgHdr.msg_name = &sin;
msgHdr.msg_namelen = sizeof(struct sockaddr_in6);
}
msgHdr.msg_iov = (struct iovec *) buffers;
msgHdr.msg_iovlen = bufferCount;
sentLength = sendmsg(socket, &msgHdr, MSG_NOSIGNAL);
if (sentLength == -1) {
if (errno == EWOULDBLOCK) {
return 0;
}
return -1;
}
return sentLength;
} /* enet_socket_send */
int enet_socket_receive(ENetSocket socket, ENetAddress *address, ENetBuffer *buffers, size_t bufferCount) {
struct msghdr msgHdr;
struct sockaddr_in6 sin;
int recvLength;
memset(&msgHdr, 0, sizeof(struct msghdr));
if (address != NULL) {
msgHdr.msg_name = &sin;
msgHdr.msg_namelen = sizeof(struct sockaddr_in6);
}
msgHdr.msg_iov = (struct iovec *) buffers;
msgHdr.msg_iovlen = bufferCount;
recvLength = recvmsg(socket, &msgHdr, MSG_NOSIGNAL);
if (recvLength == -1) {
if (errno == EWOULDBLOCK) {
return 0;
}
return -1;
}
if (msgHdr.msg_flags & MSG_TRUNC) {
return -1;
}
if (address != NULL) {
address->host = sin.sin6_addr;
address->port = ENET_NET_TO_HOST_16(sin.sin6_port);
address->sin6_scope_id = sin.sin6_scope_id;
}
return recvLength;
} /* enet_socket_receive */
int enet_socketset_select(ENetSocket maxSocket, ENetSocketSet *readSet, ENetSocketSet *writeSet, enet_uint32 timeout) {
struct timeval timeVal;
timeVal.tv_sec = timeout / 1000;
timeVal.tv_usec = (timeout % 1000) * 1000;
return select(maxSocket + 1, readSet, writeSet, NULL, &timeVal);
}
int enet_socket_wait(ENetSocket socket, enet_uint32 *condition, enet_uint64 timeout) {
struct pollfd pollSocket;
int pollCount;
pollSocket.fd = socket;
pollSocket.events = 0;
if (*condition & ENET_SOCKET_WAIT_SEND) {
pollSocket.events |= POLLOUT;
}
if (*condition & ENET_SOCKET_WAIT_RECEIVE) {
pollSocket.events |= POLLIN;
}
pollCount = poll(&pollSocket, 1, timeout);
if (pollCount < 0) {
if (errno == EINTR && *condition & ENET_SOCKET_WAIT_INTERRUPT) {
*condition = ENET_SOCKET_WAIT_INTERRUPT;
return 0;
}
return -1;
}
*condition = ENET_SOCKET_WAIT_NONE;
if (pollCount == 0) {
return 0;
}
if (pollSocket.revents & POLLOUT) {
*condition |= ENET_SOCKET_WAIT_SEND;
}
if (pollSocket.revents & POLLIN) {
*condition |= ENET_SOCKET_WAIT_RECEIVE;
}
return 0;
} /* enet_socket_wait */
#endif // !_WIN32
// =======================================================================//
// !
// ! Platform Specific (Win)
// !
// =======================================================================//
#ifdef _WIN32
int enet_initialize(void) {
WORD versionRequested = MAKEWORD(1, 1);
WSADATA wsaData;
if (WSAStartup(versionRequested, &wsaData)) {
return -1;
}
if (LOBYTE(wsaData.wVersion) != 1 || HIBYTE(wsaData.wVersion) != 1) {
WSACleanup();
return -1;
}
timeBeginPeriod(1);
return 0;
}
void enet_deinitialize(void) {
timeEndPeriod(1);
WSACleanup();
}
enet_uint64 enet_host_random_seed(void) {
return (enet_uint64) timeGetTime();
}
int enet_address_set_host_ip_old(ENetAddress *address, const char *name) {
enet_uint8 vals[4] = { 0, 0, 0, 0 };
int i;
for (i = 0; i < 4; ++i) {
const char *next = name + 1;
if (*name != '0') {
long val = strtol(name, (char **) &next, 10);
if (val < 0 || val > 255 || next == name || next - name > 3) {
return -1;
}
vals[i] = (enet_uint8) val;
}
if (*next != (i < 3 ? '.' : '\0')) {
return -1;
}
name = next + 1;
}
memcpy(&address->host, vals, sizeof(enet_uint32));
return 0;
}
int enet_address_set_host_old(ENetAddress *address, const char *name) {
struct hostent *hostEntry = NULL;
hostEntry = gethostbyname(name);
if (hostEntry == NULL || hostEntry->h_addrtype != AF_INET) {
if (!inet_pton(AF_INET6, name, &address->host)) {
return -1;
}
return 0;
}
((enet_uint32 *)&address->host.s6_addr)[0] = 0;
((enet_uint32 *)&address->host.s6_addr)[1] = 0;
((enet_uint32 *)&address->host.s6_addr)[2] = htonl(0xffff);
((enet_uint32 *)&address->host.s6_addr)[3] = *(enet_uint32 *)hostEntry->h_addr_list[0];
return 0;
}
int enet_address_get_host_ip_old(const ENetAddress *address, char *name, size_t nameLength) {
if (inet_ntop(AF_INET6, (PVOID)&address->host, name, nameLength) == NULL) {
return -1;
}
return 0;
}
int enet_address_get_host_old(const ENetAddress *address, char *name, size_t nameLength) {
struct in6_addr in;
struct hostent *hostEntry = NULL;
in = address->host;
hostEntry = gethostbyaddr((char *)&in, sizeof(struct in6_addr), AF_INET6);
if (hostEntry == NULL) {
return enet_address_get_host_ip(address, name, nameLength);
} else {
size_t hostLen = strlen(hostEntry->h_name);
if (hostLen >= nameLength) {
return -1;
}
memcpy(name, hostEntry->h_name, hostLen + 1);
}
return 0;
}
int enet_socket_bind(ENetSocket socket, const ENetAddress *address) {
struct sockaddr_in6 sin;
memset(&sin, 0, sizeof(struct sockaddr_in6));
sin.sin6_family = AF_INET6;
if (address != NULL) {
sin.sin6_port = ENET_HOST_TO_NET_16 (address->port);
sin.sin6_addr = address->host;
sin.sin6_scope_id = address->sin6_scope_id;
} else {
sin.sin6_port = 0;
sin.sin6_addr = in6addr_any;
sin.sin6_scope_id = 0;
}
return bind(socket, (struct sockaddr *) &sin, sizeof(struct sockaddr_in6)) == SOCKET_ERROR ? -1 : 0;
}
int enet_socket_get_address(ENetSocket socket, ENetAddress *address) {
struct sockaddr_in6 sin;
int sinLength = sizeof(struct sockaddr_in6);
if (getsockname(socket, (struct sockaddr *) &sin, &sinLength) == -1) {
return -1;
}
address->host = sin.sin6_addr;
address->port = ENET_NET_TO_HOST_16(sin.sin6_port);
address->sin6_scope_id = sin.sin6_scope_id;
return 0;
}
int enet_socket_listen(ENetSocket socket, int backlog) {
return listen(socket, backlog < 0 ? SOMAXCONN : backlog) == SOCKET_ERROR ? -1 : 0;
}
ENetSocket enet_socket_create(ENetSocketType type) {
return socket(PF_INET6, type == ENET_SOCKET_TYPE_DATAGRAM ? SOCK_DGRAM : SOCK_STREAM, 0);
}
int enet_socket_set_option(ENetSocket socket, ENetSocketOption option, int value) {
int result = SOCKET_ERROR;
switch (option) {
case ENET_SOCKOPT_NONBLOCK: {
u_long nonBlocking = (u_long) value;
result = ioctlsocket(socket, FIONBIO, &nonBlocking);
break;
}
case ENET_SOCKOPT_BROADCAST:
result = setsockopt(socket, SOL_SOCKET, SO_BROADCAST, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_REUSEADDR:
result = setsockopt(socket, SOL_SOCKET, SO_REUSEADDR, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_RCVBUF:
result = setsockopt(socket, SOL_SOCKET, SO_RCVBUF, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_SNDBUF:
result = setsockopt(socket, SOL_SOCKET, SO_SNDBUF, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_RCVTIMEO:
result = setsockopt(socket, SOL_SOCKET, SO_RCVTIMEO, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_SNDTIMEO:
result = setsockopt(socket, SOL_SOCKET, SO_SNDTIMEO, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_NODELAY:
result = setsockopt(socket, IPPROTO_TCP, TCP_NODELAY, (char *)&value, sizeof(int));
break;
case ENET_SOCKOPT_IPV6_V6ONLY:
result = setsockopt(socket, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&value, sizeof(int));
break;
default:
break;
}
return result == SOCKET_ERROR ? -1 : 0;
} /* enet_socket_set_option */
int enet_socket_get_option(ENetSocket socket, ENetSocketOption option, int *value) {
int result = SOCKET_ERROR, len;
switch (option) {
case ENET_SOCKOPT_ERROR:
len = sizeof(int);
result = getsockopt(socket, SOL_SOCKET, SO_ERROR, (char *)value, &len);
break;
default:
break;
}
return result == SOCKET_ERROR ? -1 : 0;
}
int enet_socket_connect(ENetSocket socket, const ENetAddress *address) {
struct sockaddr_in6 sin;
int result;
memset(&sin, 0, sizeof(struct sockaddr_in6));
sin.sin6_family = AF_INET6;
sin.sin6_port = ENET_HOST_TO_NET_16(address->port);
sin.sin6_addr = address->host;
sin.sin6_scope_id = address->sin6_scope_id;
result = connect(socket, (struct sockaddr *) &sin, sizeof(struct sockaddr_in6));
if (result == SOCKET_ERROR && WSAGetLastError() != WSAEWOULDBLOCK) {
return -1;
}
return 0;
}
ENetSocket enet_socket_accept(ENetSocket socket, ENetAddress *address) {
SOCKET result;
struct sockaddr_in6 sin;
int sinLength = sizeof(struct sockaddr_in6);
result = accept(socket, address != NULL ? (struct sockaddr *)&sin : NULL, address != NULL ? &sinLength : NULL);
if (result == INVALID_SOCKET) {
return ENET_SOCKET_NULL;
}
if (address != NULL) {
address->host = sin.sin6_addr;
address->port = ENET_NET_TO_HOST_16(sin.sin6_port);
address->sin6_scope_id = sin.sin6_scope_id;
}
return result;
}
int enet_socket_shutdown(ENetSocket socket, ENetSocketShutdown how) {
return shutdown(socket, (int) how) == SOCKET_ERROR ? -1 : 0;
}
void enet_socket_destroy(ENetSocket socket) {
if (socket != INVALID_SOCKET) {
closesocket(socket);
}
}
int enet_socket_send(ENetSocket socket, const ENetAddress *address, const ENetBuffer *buffers, size_t bufferCount) {
struct sockaddr_in6 sin;
DWORD sentLength;
if (address != NULL) {
memset(&sin, 0, sizeof(struct sockaddr_in6));
sin.sin6_family = AF_INET6;
sin.sin6_port = ENET_HOST_TO_NET_16(address->port);
sin.sin6_addr = address->host;
sin.sin6_scope_id = address->sin6_scope_id;
}
if (WSASendTo(socket,
(LPWSABUF) buffers,
(DWORD) bufferCount,
&sentLength,
0,
address != NULL ? (struct sockaddr *) &sin : NULL,
address != NULL ? sizeof(struct sockaddr_in6) : 0,
NULL,
NULL) == SOCKET_ERROR
) {
return (WSAGetLastError() == WSAEWOULDBLOCK) ? 0 : -1;
}
return (int) sentLength;
}
int enet_socket_receive(ENetSocket socket, ENetAddress *address, ENetBuffer *buffers, size_t bufferCount) {
INT sinLength = sizeof(struct sockaddr_in6);
DWORD flags = 0, recvLength;
struct sockaddr_in6 sin;
if (WSARecvFrom(socket,
(LPWSABUF) buffers,
(DWORD) bufferCount,
&recvLength,
&flags,
address != NULL ? (struct sockaddr *) &sin : NULL,
address != NULL ? &sinLength : NULL,
NULL,
NULL) == SOCKET_ERROR
) {
switch (WSAGetLastError()) {
case WSAEWOULDBLOCK:
case WSAECONNRESET:
return 0;
}
return -1;
}
if (flags & MSG_PARTIAL) {
return -1;
}
if (address != NULL) {
address->host = sin.sin6_addr;
address->port = ENET_NET_TO_HOST_16(sin.sin6_port);
address->sin6_scope_id = sin.sin6_scope_id;
}
return (int) recvLength;
} /* enet_socket_receive */
int enet_socketset_select(ENetSocket maxSocket, ENetSocketSet *readSet, ENetSocketSet *writeSet, enet_uint32 timeout) {
struct timeval timeVal;
timeVal.tv_sec = timeout / 1000;
timeVal.tv_usec = (timeout % 1000) * 1000;
return select(maxSocket + 1, readSet, writeSet, NULL, &timeVal);
}
int enet_socket_wait(ENetSocket socket, enet_uint32 *condition, enet_uint64 timeout) {
fd_set readSet, writeSet;
struct timeval timeVal;
int selectCount;
timeVal.tv_sec = timeout / 1000;
timeVal.tv_usec = (timeout % 1000) * 1000;
FD_ZERO(&readSet);
FD_ZERO(&writeSet);
if (*condition & ENET_SOCKET_WAIT_SEND) {
FD_SET(socket, &writeSet);
}
if (*condition & ENET_SOCKET_WAIT_RECEIVE) {
FD_SET(socket, &readSet);
}
selectCount = select(socket + 1, &readSet, &writeSet, NULL, &timeVal);
if (selectCount < 0) {
return -1;
}
*condition = ENET_SOCKET_WAIT_NONE;
if (selectCount == 0) {
return 0;
}
if (FD_ISSET(socket, &writeSet)) {
*condition |= ENET_SOCKET_WAIT_SEND;
}
if (FD_ISSET(socket, &readSet)) {
*condition |= ENET_SOCKET_WAIT_RECEIVE;
}
return 0;
} /* enet_socket_wait */
#endif // _WIN32
#ifdef __cplusplus
}
#endif
#endif // ENET_IMPLEMENTATION
#endif // ENET_INCLUDE_H