v4k-git-backup/engine/shaders/fs_3_4_skybox_rayleigh.glsl

138 lines
4.8 KiB
Plaintext
Raw Normal View History

2023-08-10 22:46:04 +00:00
uniform vec3 uSunPos = vec3( 0, 0.1, -1 ); // = [0, Math.cos(theta) * 0.3 + 0.2, -1];
2023-08-10 21:53:51 +00:00
in vec3 v_direction;
out vec4 fragcolor;
vec3 atmosphere(vec3 r, vec3 r0, vec3 pSun, float iSun, float rPlanet, float rAtmos, vec3 kRlh, float kMie, float shRlh, float shMie, float g);
void main() {
vec3 color = atmosphere(
2023-08-10 22:46:04 +00:00
normalize(v_direction), // normalized ray direction
vec3(0,6372e3,0), // ray origin
uSunPos, // position of the sun
22.0, // intensity of the sun
6371e3, // radius of the planet in meters
6471e3, // radius of the atmosphere in meters
vec3(5.5e-6, 13.0e-6, 22.4e-6), // Rayleigh scattering coefficient
21e-6, // Mie scattering coefficient
8e3, // Rayleigh scale height
1.2e3, // Mie scale height
0.758 // Mie preferred scattering direction
2023-08-10 21:53:51 +00:00
);
2023-08-10 22:46:04 +00:00
// Apply exposure.
2023-08-10 21:53:51 +00:00
color = 1.0 - exp(-1.0 * color);
fragcolor = vec4(color, 1);
}
2023-08-10 22:46:04 +00:00
// [src] https://github.com/wwwtyro/glsl-atmosphere by wwwtyro (Unlicensed)
// For more information, please refer to <http://unlicense.org>
2023-08-10 21:53:51 +00:00
#define PI 3.141592
#define iSteps 16
#define jSteps 8
vec2 rsi(vec3 r0, vec3 rd, float sr) {
2023-08-10 22:46:04 +00:00
// ray-sphere intersection that assumes
// the sphere is centered at the origin.
// No intersection when result.x > result.y
2023-08-10 21:53:51 +00:00
float a = dot(rd, rd);
float b = 2.0 * dot(rd, r0);
float c = dot(r0, r0) - (sr * sr);
float d = (b*b) - 4.0*a*c;
if (d < 0.0) return vec2(1e5,-1e5);
return vec2(
(-b - sqrt(d))/(2.0*a),
(-b + sqrt(d))/(2.0*a)
);
}
vec3 atmosphere(vec3 r, vec3 r0, vec3 pSun, float iSun, float rPlanet, float rAtmos, vec3 kRlh, float kMie, float shRlh, float shMie, float g) {
2023-08-10 22:46:04 +00:00
// Normalize the sun and view directions.
2023-08-10 21:53:51 +00:00
pSun = normalize(pSun);
r = normalize(r);
2023-08-10 22:46:04 +00:00
// Calculate the step size of the primary ray.
2023-08-10 21:53:51 +00:00
vec2 p = rsi(r0, r, rAtmos);
if (p.x > p.y) return vec3(0,0,0);
p.y = min(p.y, rsi(r0, r, rPlanet).x);
float iStepSize = (p.y - p.x) / float(iSteps);
2023-08-10 22:46:04 +00:00
// Initialize the primary ray time.
2023-08-10 21:53:51 +00:00
float iTime = 0.0;
2023-08-10 22:46:04 +00:00
// Initialize accumulators for Rayleigh and Mie scattering.
2023-08-10 21:53:51 +00:00
vec3 totalRlh = vec3(0,0,0);
vec3 totalMie = vec3(0,0,0);
2023-08-10 22:46:04 +00:00
// Initialize optical depth accumulators for the primary ray.
2023-08-10 21:53:51 +00:00
float iOdRlh = 0.0;
float iOdMie = 0.0;
2023-08-10 22:46:04 +00:00
// Calculate the Rayleigh and Mie phases.
2023-08-10 21:53:51 +00:00
float mu = dot(r, pSun);
float mumu = mu * mu;
float gg = g * g;
float pRlh = 3.0 / (16.0 * PI) * (1.0 + mumu);
float pMie = 3.0 / (8.0 * PI) * ((1.0 - gg) * (mumu + 1.0)) / (pow(1.0 + gg - 2.0 * mu * g, 1.5) * (2.0 + gg));
2023-08-10 22:46:04 +00:00
// Sample the primary ray.
2023-08-10 21:53:51 +00:00
for (int i = 0; i < iSteps; i++) {
2023-08-10 22:46:04 +00:00
// Calculate the primary ray sample position.
2023-08-10 21:53:51 +00:00
vec3 iPos = r0 + r * (iTime + iStepSize * 0.5);
2023-08-10 22:46:04 +00:00
// Calculate the height of the sample.
2023-08-10 21:53:51 +00:00
float iHeight = length(iPos) - rPlanet;
2023-08-10 22:46:04 +00:00
// Calculate the optical depth of the Rayleigh and Mie scattering for this step.
2023-08-10 21:53:51 +00:00
float odStepRlh = exp(-iHeight / shRlh) * iStepSize;
float odStepMie = exp(-iHeight / shMie) * iStepSize;
2023-08-10 22:46:04 +00:00
// Accumulate optical depth.
2023-08-10 21:53:51 +00:00
iOdRlh += odStepRlh;
iOdMie += odStepMie;
2023-08-10 22:46:04 +00:00
// Calculate the step size of the secondary ray.
2023-08-10 21:53:51 +00:00
float jStepSize = rsi(iPos, pSun, rAtmos).y / float(jSteps);
2023-08-10 22:46:04 +00:00
// Initialize the secondary ray time.
2023-08-10 21:53:51 +00:00
float jTime = 0.0;
2023-08-10 22:46:04 +00:00
// Initialize optical depth accumulators for the secondary ray.
2023-08-10 21:53:51 +00:00
float jOdRlh = 0.0;
float jOdMie = 0.0;
2023-08-10 22:46:04 +00:00
// Sample the secondary ray.
2023-08-10 21:53:51 +00:00
for (int j = 0; j < jSteps; j++) {
2023-08-10 22:46:04 +00:00
// Calculate the secondary ray sample position.
2023-08-10 21:53:51 +00:00
vec3 jPos = iPos + pSun * (jTime + jStepSize * 0.5);
2023-08-10 22:46:04 +00:00
// Calculate the height of the sample.
2023-08-10 21:53:51 +00:00
float jHeight = length(jPos) - rPlanet;
2023-08-10 22:46:04 +00:00
// Accumulate the optical depth.
2023-08-10 21:53:51 +00:00
jOdRlh += exp(-jHeight / shRlh) * jStepSize;
jOdMie += exp(-jHeight / shMie) * jStepSize;
2023-08-10 22:46:04 +00:00
// Increment the secondary ray time.
2023-08-10 21:53:51 +00:00
jTime += jStepSize;
}
2023-08-10 22:46:04 +00:00
// Calculate attenuation.
2023-08-10 21:53:51 +00:00
vec3 attn = exp(-(kMie * (iOdMie + jOdMie) + kRlh * (iOdRlh + jOdRlh)));
2023-08-10 22:46:04 +00:00
// Accumulate scattering.
2023-08-10 21:53:51 +00:00
totalRlh += odStepRlh * attn;
totalMie += odStepMie * attn;
2023-08-10 22:46:04 +00:00
// Increment the primary ray time.
2023-08-10 21:53:51 +00:00
iTime += iStepSize;
}
2023-08-10 22:46:04 +00:00
// Calculate and return the final color.
2023-08-10 21:53:51 +00:00
return iSun * (pRlh * kRlh * totalRlh + pMie * kMie * totalMie);
}