eco2d/code/vendors/flecs/flecs.h

18261 lines
546 KiB
C++

#define flecs_STATIC
/**
* @file flecs.h
* @brief Flecs public API.
*
* This file contains the public API for Flecs.
*/
#ifndef FLECS_H
#define FLECS_H
/* FLECS_LEGACY should be defined when building for C89 */
// #define FLECS_LEGACY
/* FLECS_NO_DEPRECATED_WARNINGS disables deprecated warnings */
#define FLECS_NO_DEPRECATED_WARNINGS
/* FLECS_NO_CPP should be defined when building for C++ without the C++ API */
// #define FLECS_NO_CPP
/* FLECS_CUSTOM_BUILD should be defined when manually selecting features */
// #define FLECS_CUSTOM_BUILD
/* FLECS_SANITIZE enables expensive checks that can detect issues early */
#ifndef NDEBUG
#define FLECS_SANITIZE
#endif
/* If this is a regular, non-custom build, build all modules and addons. */
#ifndef FLECS_CUSTOM_BUILD
/* Modules */
#define FLECS_SYSTEM
#define FLECS_PIPELINE
#define FLECS_TIMER
/* Addons */
#define FLECS_BULK
#define FLECS_MODULE
#define FLECS_PARSER
#define FLECS_PLECS
#define FLECS_QUEUE
#define FLECS_SNAPSHOT
#define FLECS_DIRECT_ACCESS
#define FLECS_STATS
#endif // ifndef FLECS_CUSTOM_BUILD
/* Unconditionally include deprecated definitions until the rest of the codebase
* has caught up */
#define FLECS_DEPRECATED
/* Set to double or int to increase accuracy of time keeping. Note that when
* using an integer type, an application has to provide the delta_time values
* to the progress() function, as the code that measures time requires a
* floating point type. */
#ifndef FLECS_FLOAT
#define FLECS_FLOAT float
#endif // FLECS_FLOAT
/**
* @file api_defines.h
* @brief Supporting defines for the public API.
*
* This file contains constants / macro's that are typically not used by an
* application but support the public API, and therefore must be exposed. This
* header should not be included by itself.
*/
#ifndef FLECS_API_DEFINES_H
#define FLECS_API_DEFINES_H
/* Standard library dependencies */
#include <time.h>
#include <stdlib.h>
#include <assert.h>
#include <stdarg.h>
#include <string.h>
#include <stdio.h>
#include <limits.h>
#include <string.h>
/* Non-standard but required. If not provided by platform, add manually. */
#include <stdint.h>
/* Contains macro's for importing / exporting symbols */
/*
)
(.)
.|.
| |
_.--| |--._
.-'; ;`-'& ; `&.
\ & ; & &_/
|"""---...---"""|
\ | | | | | | | /
`---.|.|.|.---'
* This file is generated by bake.lang.c for your convenience. Headers of
* dependencies will automatically show up in this file. Include bake_config.h
* in your main project file. Do not edit! */
#ifndef FLECS_BAKE_CONFIG_H
#define FLECS_BAKE_CONFIG_H
/* Headers of public dependencies */
/* No dependencies */
/* Convenience macro for exporting symbols */
#ifndef flecs_STATIC
#if flecs_EXPORTS && (defined(_MSC_VER) || defined(__MINGW32__))
#define FLECS_API __declspec(dllexport)
#elif flecs_EXPORTS
#define FLECS_API __attribute__((__visibility__("default")))
#elif defined _MSC_VER
#define FLECS_API __declspec(dllimport)
#else
#define FLECS_API
#endif
#else
#define FLECS_API
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __BAKE_LEGACY__
#define FLECS_LEGACY
#endif
/* Some symbols are only exported when building in debug build, to enable
* whitebox testing of internal datastructures */
#ifndef NDEBUG
#define FLECS_DBG_API FLECS_API
#else
#define FLECS_DBG_API
#endif
////////////////////////////////////////////////////////////////////////////////
//// Language support defines
////////////////////////////////////////////////////////////////////////////////
#ifndef FLECS_LEGACY
#include <stdbool.h>
#endif
/* The API uses the native bool type in C++, or a custom one in C */
#if !defined(__cplusplus) && !defined(__bool_true_false_are_defined)
#undef bool
#undef true
#undef false
typedef char bool;
#define false 0
#define true !false
#endif
typedef uint32_t ecs_flags32_t;
typedef uint64_t ecs_flags64_t;
/* Keep unsigned integers out of the codebase as they do more harm than good */
typedef int32_t ecs_size_t;
#define ECS_SIZEOF(T) ECS_CAST(ecs_size_t, sizeof(T))
/* Use alignof in C++, or a trick in C. */
#ifdef __cplusplus
#define ECS_ALIGNOF(T) static_cast<int64_t>(alignof(T))
#elif defined(_MSC_VER)
#define ECS_ALIGNOF(T) (int64_t)__alignof(T)
#elif defined(__GNUC__)
#define ECS_ALIGNOF(T) (int64_t)__alignof__(T)
#else
#define ECS_ALIGNOF(T) ((int64_t)&((struct { char c; T d; } *)0)->d)
#endif
#if defined(__GNUC__)
#define ECS_UNUSED __attribute__((unused))
#else
#define ECS_UNUSED
#endif
#ifndef FLECS_NO_DEPRECATED_WARNINGS
#if defined(__GNUC__)
#define ECS_DEPRECATED(msg) __attribute__((deprecated(msg)))
#elif defined(_MSC_VER)
#define ECS_DEPRECATED(msg) __declspec(deprecated(msg))
#else
#define ECS_DEPRECATED(msg)
#endif
#else
#define ECS_DEPRECATED(msg)
#endif
#define ECS_ALIGN(size, alignment) (ecs_size_t)((((((size_t)size) - 1) / ((size_t)alignment)) + 1) * ((size_t)alignment))
/* Simple utility for determining the max of two values */
#define ECS_MAX(a, b) ((a > b) ? a : b)
/* Abstraction on top of C-style casts so that C functions can be used in C++
* code without producing warnings */
#ifndef __cplusplus
#define ECS_CAST(T, V) ((T)(V))
#else
#define ECS_CAST(T, V) (static_cast<T>(V))
#endif
////////////////////////////////////////////////////////////////////////////////
//// Reserved component ids
////////////////////////////////////////////////////////////////////////////////
/** Builtin component ids */
#define FLECS__EEcsComponent (1)
#define FLECS__EEcsComponentLifecycle (2)
#define FLECS__EEcsType (3)
#define FLECS__EEcsIdentifier (4)
#define FLECS__EEcsTrigger (6)
#define FLECS__EEcsQuery (7)
#define FLECS__EEcsObserver (8)
// #define FLECS__EEcsIterable (9)
/* System module component ids */
#define FLECS__EEcsSystem (10)
#define FLECS__EEcsTickSource (11)
/** Pipeline module component ids */
#define FLECS__EEcsPipelineQuery (12)
/** Timer module component ids */
#define FLECS__EEcsTimer (13)
#define FLECS__EEcsRateFilter (14)
////////////////////////////////////////////////////////////////////////////////
//// Entity id macro's
////////////////////////////////////////////////////////////////////////////////
#define ECS_ROLE_MASK (0xFFull << 56)
#define ECS_ENTITY_MASK (0xFFFFFFFFull)
#define ECS_GENERATION_MASK (0xFFFFull << 32)
#define ECS_GENERATION(e) ((e & ECS_GENERATION_MASK) >> 32)
#define ECS_GENERATION_INC(e) ((e & ~ECS_GENERATION_MASK) | ((0xFFFF & (ECS_GENERATION(e) + 1)) << 32))
#define ECS_COMPONENT_MASK (~ECS_ROLE_MASK)
#define ECS_HAS_ROLE(e, role) ((e & ECS_ROLE_MASK) == ECS_##role)
#define ECS_PAIR_RELATION(e) (ecs_entity_t_hi(e & ECS_COMPONENT_MASK))
#define ECS_PAIR_OBJECT(e) (ecs_entity_t_lo(e))
#define ECS_HAS_RELATION(e, rel) (ECS_HAS_ROLE(e, PAIR) && (ECS_PAIR_RELATION(e) == rel))
#define ECS_HAS_PAIR_OBJECT(e, rel, obj)\
(ECS_HAS_RELATION(e, rel) && ECS_PAIR_OBJECT(e) == obj)
#define ECS_HAS(id, has_id)(\
(id == has_id) ||\
(ECS_HAS_PAIR_OBJECT(id, ECS_PAIR_RELATION(has_id), ECS_PAIR_OBJECT(has_id))))
////////////////////////////////////////////////////////////////////////////////
//// Convert between C typenames and variables
////////////////////////////////////////////////////////////////////////////////
/** Translate C type to ecs_type_t variable. */
#define ecs_type(T) FLECS__T##T
/** Translate C type to id. */
#define ecs_id(T) FLECS__E##T
/** Translate C type to module struct. */
#define ecs_module(T) FLECS__M##T
/** Translate C type to module struct. */
#define ecs_module_ptr(T) FLECS__M##T##_ptr
/** Translate C type to module struct. */
#define ecs_iter_action(T) FLECS__F##T
////////////////////////////////////////////////////////////////////////////////
//// Utilities for working with pair identifiers
////////////////////////////////////////////////////////////////////////////////
#define ecs_entity_t_lo(value) ECS_CAST(uint32_t, value)
#define ecs_entity_t_hi(value) ECS_CAST(uint32_t, (value) >> 32)
#define ecs_entity_t_comb(lo, hi) ((ECS_CAST(uint64_t, hi) << 32) + ECS_CAST(uint32_t, lo))
#define ecs_pair(pred, obj) (ECS_PAIR | ecs_entity_t_comb(obj, pred))
/* Get object from pair with the correct (current) generation count */
#define ecs_pair_relation(world, pair) ecs_get_alive(world, ECS_PAIR_RELATION(pair))
#define ecs_pair_object(world, pair) ecs_get_alive(world, ECS_PAIR_OBJECT(pair))
////////////////////////////////////////////////////////////////////////////////
//// Convenience macro's for ctor, dtor, move and copy
////////////////////////////////////////////////////////////////////////////////
#ifndef FLECS_LEGACY
/* Constructor / destructor convenience macro */
#define ECS_XTOR_IMPL(type, postfix, var, ...)\
void type##_##postfix(\
ecs_world_t *world,\
ecs_entity_t component,\
const ecs_entity_t *entity_ptr,\
void *_ptr,\
size_t _size,\
int32_t _count,\
void *ctx)\
{\
(void)world;\
(void)component;\
(void)entity_ptr;\
(void)_ptr;\
(void)_size;\
(void)_count;\
(void)ctx;\
for (int32_t i = 0; i < _count; i ++) {\
ecs_entity_t entity = entity_ptr[i];\
type *var = &((type*)_ptr)[i];\
(void)entity;\
(void)var;\
__VA_ARGS__\
}\
}
/* Copy convenience macro */
#define ECS_COPY_IMPL(type, dst_var, src_var, ...)\
void type##_##copy(\
ecs_world_t *world,\
ecs_entity_t component,\
const ecs_entity_t *dst_entities,\
const ecs_entity_t *src_entities,\
void *_dst_ptr,\
const void *_src_ptr,\
size_t _size,\
int32_t _count,\
void *ctx)\
{\
(void)world;\
(void)component;\
(void)dst_entities;\
(void)src_entities;\
(void)_dst_ptr;\
(void)_src_ptr;\
(void)_size;\
(void)_count;\
(void)ctx;\
for (int32_t i = 0; i < _count; i ++) {\
ecs_entity_t dst_entity = dst_entities[i];\
ecs_entity_t src_entity = src_entities[i];\
type *dst_var = &((type*)_dst_ptr)[i];\
type *src_var = &((type*)_src_ptr)[i];\
(void)dst_entity;\
(void)src_entity;\
(void)dst_var;\
(void)src_var;\
__VA_ARGS__\
}\
}
/* Move convenience macro */
#define ECS_MOVE_IMPL(type, dst_var, src_var, ...)\
void type##_##move(\
ecs_world_t *world,\
ecs_entity_t component,\
const ecs_entity_t *dst_entities,\
const ecs_entity_t *src_entities,\
void *_dst_ptr,\
void *_src_ptr,\
size_t _size,\
int32_t _count,\
void *ctx)\
{\
(void)world;\
(void)component;\
(void)dst_entities;\
(void)src_entities;\
(void)_dst_ptr;\
(void)_src_ptr;\
(void)_size;\
(void)_count;\
(void)ctx;\
for (int32_t i = 0; i < _count; i ++) {\
ecs_entity_t dst_entity = dst_entities[i];\
ecs_entity_t src_entity = src_entities[i];\
type *dst_var = &((type*)_dst_ptr)[i];\
type *src_var = &((type*)_src_ptr)[i];\
(void)dst_entity;\
(void)src_entity;\
(void)dst_var;\
(void)src_var;\
__VA_ARGS__\
}\
}
/* Constructor / destructor convenience macro */
#define ECS_ON_SET_IMPL(type, var, ...)\
void type##_##on_set(\
ecs_world_t *world,\
ecs_entity_t component,\
const ecs_entity_t *entity_ptr,\
void *_ptr,\
size_t _size,\
int32_t _count,\
void *ctx)\
{\
(void)world;\
(void)component;\
(void)entity_ptr;\
(void)_ptr;\
(void)_size;\
(void)_count;\
(void)ctx;\
for (int32_t i = 0; i < _count; i ++) {\
ecs_entity_t entity = entity_ptr[i];\
type *var = &((type*)_ptr)[i];\
(void)entity;\
(void)var;\
__VA_ARGS__\
}\
}
#endif
////////////////////////////////////////////////////////////////////////////////
//// Error codes
////////////////////////////////////////////////////////////////////////////////
#define ECS_INVALID_OPERATION (1)
#define ECS_INVALID_PARAMETER (2)
#define ECS_INVALID_DELETE (3)
#define ECS_OUT_OF_MEMORY (4)
#define ECS_OUT_OF_RANGE (5)
#define ECS_UNSUPPORTED (6)
#define ECS_INTERNAL_ERROR (7)
#define ECS_ALREADY_DEFINED (8)
#define ECS_MISSING_OS_API (9)
#define ECS_THREAD_ERROR (10)
#define ECS_CYCLE_DETECTED (11)
#define ECS_INCONSISTENT_NAME (20)
#define ECS_NAME_IN_USE (21)
#define ECS_NOT_A_COMPONENT (22)
#define ECS_INVALID_COMPONENT_SIZE (23)
#define ECS_INVALID_COMPONENT_ALIGNMENT (24)
#define ECS_COMPONENT_NOT_REGISTERED (25)
#define ECS_INCONSISTENT_COMPONENT_ID (26)
#define ECS_INCONSISTENT_COMPONENT_ACTION (27)
#define ECS_MODULE_UNDEFINED (28)
#define ECS_COLUMN_ACCESS_VIOLATION (40)
#define ECS_COLUMN_INDEX_OUT_OF_RANGE (41)
#define ECS_COLUMN_IS_NOT_SHARED (42)
#define ECS_COLUMN_IS_SHARED (43)
#define ECS_COLUMN_HAS_NO_DATA (44)
#define ECS_COLUMN_TYPE_MISMATCH (45)
#define ECS_NO_OUT_COLUMNS (46)
#define ECS_TYPE_NOT_AN_ENTITY (60)
#define ECS_TYPE_CONSTRAINT_VIOLATION (61)
#define ECS_TYPE_INVALID_CASE (62)
#define ECS_INVALID_WHILE_ITERATING (70)
#define ECS_LOCKED_STORAGE (71)
#define ECS_INVALID_FROM_WORKER (72)
#define ECS_DESERIALIZE_FORMAT_ERROR (80)
////////////////////////////////////////////////////////////////////////////////
//// Deprecated constants
////////////////////////////////////////////////////////////////////////////////
/* These constants should no longer be used, but are required by the core to
* guarantee backwards compatibility */
#define ECS_AND (ECS_ROLE | (0x79ull << 56))
#define ECS_OR (ECS_ROLE | (0x78ull << 56))
#define ECS_XOR (ECS_ROLE | (0x77ull << 56))
#define ECS_NOT (ECS_ROLE | (0x76ull << 56))
#ifdef __cplusplus
}
#endif
#endif
/**
* @file log.h
* @brief Internal logging API.
*
* Internal utility functions for tracing, warnings and errors.
*/
#ifndef FLECS_LOG_H
#define FLECS_LOG_H
#ifdef __cplusplus
extern "C" {
#endif
////////////////////////////////////////////////////////////////////////////////
//// Color macro's
////////////////////////////////////////////////////////////////////////////////
#define ECS_BLACK "\033[1;30m"
#define ECS_RED "\033[0;31m"
#define ECS_GREEN "\033[0;32m"
#define ECS_YELLOW "\033[0;33m"
#define ECS_BLUE "\033[0;34m"
#define ECS_MAGENTA "\033[0;35m"
#define ECS_CYAN "\033[0;36m"
#define ECS_WHITE "\033[1;37m"
#define ECS_GREY "\033[0;37m"
#define ECS_NORMAL "\033[0;49m"
#define ECS_BOLD "\033[1;49m"
////////////////////////////////////////////////////////////////////////////////
//// Tracing
////////////////////////////////////////////////////////////////////////////////
FLECS_API
void _ecs_trace(
int level,
const char *file,
int32_t line,
const char *fmt,
...);
FLECS_API
void _ecs_warn(
const char *file,
int32_t line,
const char *fmt,
...);
FLECS_API
void _ecs_err(
const char *file,
int32_t line,
const char *fmt,
...);
FLECS_API
void _ecs_fatal(
const char *file,
int32_t line,
const char *fmt,
...);
FLECS_API
void _ecs_deprecated(
const char *file,
int32_t line,
const char *msg);
FLECS_API
void ecs_log_push(void);
FLECS_API
void ecs_log_pop(void);
#ifndef FLECS_LEGACY
#define ecs_trace(lvl, ...)\
_ecs_trace(lvl, __FILE__, __LINE__, __VA_ARGS__)
#define ecs_warn(...)\
_ecs_warn(__FILE__, __LINE__, __VA_ARGS__)
#define ecs_err(...)\
_ecs_err(__FILE__, __LINE__, __VA_ARGS__)
#define ecs_fatal(...)\
_ecs_fatal(__FILE__, __LINE__, __VA_ARGS__)
#ifndef FLECS_NO_DEPRECATED_WARNINGS
#define ecs_deprecated(...)\
_ecs_deprecated(__FILE__, __LINE__, __VA_ARGS__)
#else
#define ecs_deprecated(...)
#endif
/* If in debug mode and no tracing verbosity is defined, compile all tracing */
#if !defined(NDEBUG) && !(defined(ECS_TRACE_0) || defined(ECS_TRACE_1) || defined(ECS_TRACE_2) || defined(ECS_TRACE_3))
#define ECS_TRACE_3
#endif
#ifndef NDEBUG
#if defined(ECS_TRACE_3)
#define ecs_trace_1(...) ecs_trace(1, __VA_ARGS__);
#define ecs_trace_2(...) ecs_trace(2, __VA_ARGS__);
#define ecs_trace_3(...) ecs_trace(3, __VA_ARGS__);
#elif defined(ECS_TRACE_2)
#define ecs_trace_1(...) ecs_trace(1, __VA_ARGS__);
#define ecs_trace_2(...) ecs_trace(2, __VA_ARGS__);
#define ecs_trace_3(...)
#elif defined(ECS_TRACE_1)
#define ecs_trace_1(...) ecs_trace(1, __VA_ARGS__);
#define ecs_trace_2(...)
#define ecs_trace_3(...)
#endif
#else
#define ecs_trace_1(...)
#define ecs_trace_2(...)
#define ecs_trace_3(...)
#endif
#endif
////////////////////////////////////////////////////////////////////////////////
//// Exceptions
////////////////////////////////////////////////////////////////////////////////
/** Get description for error code */
FLECS_API
const char* ecs_strerror(
int32_t error_code);
/** Abort */
FLECS_API
void _ecs_abort(
int32_t error_code,
const char *file,
int32_t line,
const char *fmt,
...);
#define ecs_abort(error_code, ...)\
_ecs_abort(error_code, __FILE__, __LINE__, __VA_ARGS__); abort()
/** Assert */
FLECS_API
void _ecs_assert(
bool condition,
int32_t error_code,
const char *condition_str,
const char *file,
int32_t line,
const char *fmt,
...);
#ifdef NDEBUG
#define ecs_assert(condition, error_code, ...)
#else
#define ecs_assert(condition, error_code, ...)\
_ecs_assert(condition, error_code, #condition, __FILE__, __LINE__, __VA_ARGS__);\
assert(condition)
#endif
FLECS_API
void _ecs_parser_error(
const char *name,
const char *expr,
int64_t column,
const char *fmt,
...);
#ifndef FLECS_LEGACY
#define ecs_parser_error(name, expr, column, ...)\
_ecs_parser_error(name, expr, column, __VA_ARGS__);\
abort()
#endif
#ifdef __cplusplus
}
#endif
#endif
/**
* @file vector.h
* @brief Vector datastructure.
*
* This is an implementation of a simple vector type. The vector is allocated in
* a single block of memory, with the element count, and allocated number of
* elements encoded in the block. As this vector is used for user-types it has
* been designed to support alignments higher than 8 bytes. This makes the size
* of the vector header variable in size. To reduce the overhead associated with
* retrieving or computing this size, the functions are wrapped in macro calls
* that compute the header size at compile time.
*
* The API provides a number of _t macro's, which accept a size and alignment.
* These macro's are used when no compile-time type is available.
*
* The vector guarantees contiguous access to its elements. When an element is
* removed from the vector, the last element is copied to the removed element.
*
* The API requires passing in the type of the vector. This type is used to test
* whether the size of the provided type equals the size of the type with which
* the vector was created. In release mode this check is not performed.
*
* When elements are added to the vector, it will automatically resize to the
* next power of two. This can change the pointer of the vector, which is why
* operations that can increase the vector size, accept a double pointer to the
* vector.
*/
#ifndef FLECS_VECTOR_H
#define FLECS_VECTOR_H
#ifdef __cplusplus
extern "C" {
#endif
/* Public, so we can do compile-time header size calculation */
struct ecs_vector_t {
int32_t count;
int32_t size;
#ifndef NDEBUG
int64_t elem_size;
#endif
};
/* Compute the header size of the vector from size & alignment */
#define ECS_VECTOR_U(size, alignment) size, ECS_CAST(int16_t, ECS_MAX(ECS_SIZEOF(ecs_vector_t), alignment))
/* Compute the header size of the vector from a provided compile-time type */
#define ECS_VECTOR_T(T) ECS_VECTOR_U(ECS_SIZEOF(T), ECS_ALIGNOF(T))
/* Utility macro's for creating vector on stack */
#ifndef NDEBUG
#define ECS_VECTOR_VALUE(T, elem_count)\
{\
.elem_size = (int32_t)(ECS_SIZEOF(T)),\
.count = elem_count,\
.size = elem_count\
}
#else
#define ECS_VECTOR_VALUE(T, elem_count)\
{\
.count = elem_count,\
.size = elem_count\
}
#endif
#define ECS_VECTOR_DECL(name, T, elem_count)\
struct {\
union {\
ecs_vector_t vector;\
uint64_t align;\
} header;\
T array[elem_count];\
} __##name##_value = {\
.header.vector = ECS_VECTOR_VALUE(T, elem_count)\
};\
const ecs_vector_t *name = (ecs_vector_t*)&__##name##_value
#define ECS_VECTOR_IMPL(name, T, elems, elem_count)\
ecs_os_memcpy(__##name##_value.array, elems, sizeof(T) * elem_count)
#define ECS_VECTOR_STACK(name, T, elems, elem_count)\
ECS_VECTOR_DECL(name, T, elem_count);\
ECS_VECTOR_IMPL(name, T, elems, elem_count)
typedef struct ecs_vector_t ecs_vector_t;
typedef int (*ecs_comparator_t)(
const void* p1,
const void *p2);
/** Create new vector. */
FLECS_API
ecs_vector_t* _ecs_vector_new(
ecs_size_t elem_size,
int16_t offset,
int32_t elem_count);
#define ecs_vector_new(T, elem_count) \
_ecs_vector_new(ECS_VECTOR_T(T), elem_count)
#define ecs_vector_new_t(size, alignment, elem_count) \
_ecs_vector_new(ECS_VECTOR_U(size, alignment), elem_count)
/* Create new vector, initialize it with provided array */
FLECS_API
ecs_vector_t* _ecs_vector_from_array(
ecs_size_t elem_size,
int16_t offset,
int32_t elem_count,
void *array);
#define ecs_vector_from_array(T, elem_count, array)\
_ecs_vector_from_array(ECS_VECTOR_T(T), elem_count, array)
/* Initialize vector with zero's */
FLECS_API
void _ecs_vector_zero(
ecs_vector_t *vector,
ecs_size_t elem_size,
int16_t offset);
#define ecs_vector_zero(vector, T) \
_ecs_vector_zero(vector, ECS_VECTOR_T(T))
/** Free vector */
FLECS_API
void ecs_vector_free(
ecs_vector_t *vector);
/** Clear values in vector */
FLECS_API
void ecs_vector_clear(
ecs_vector_t *vector);
/** Assert when the provided size does not match the vector type. */
FLECS_API
void ecs_vector_assert_size(
ecs_vector_t* vector_inout,
ecs_size_t elem_size);
/** Assert when the provided alignment does not match the vector type. */
FLECS_API
void ecs_vector_assert_alignment(
ecs_vector_t* vector,
ecs_size_t elem_alignment);
/** Add element to vector. */
FLECS_API
void* _ecs_vector_add(
ecs_vector_t **array_inout,
ecs_size_t elem_size,
int16_t offset);
#define ecs_vector_add(vector, T) \
((T*)_ecs_vector_add(vector, ECS_VECTOR_T(T)))
#define ecs_vector_add_t(vector, size, alignment) \
_ecs_vector_add(vector, ECS_VECTOR_U(size, alignment))
/** Add n elements to the vector. */
FLECS_API
void* _ecs_vector_addn(
ecs_vector_t **array_inout,
ecs_size_t elem_size,
int16_t offset,
int32_t elem_count);
#define ecs_vector_addn(vector, T, elem_count) \
((T*)_ecs_vector_addn(vector, ECS_VECTOR_T(T), elem_count))
#define ecs_vector_addn_t(vector, size, alignment, elem_count) \
_ecs_vector_addn(vector, ECS_VECTOR_U(size, alignment), elem_count)
/** Get element from vector. */
FLECS_API
void* _ecs_vector_get(
const ecs_vector_t *vector,
ecs_size_t elem_size,
int16_t offset,
int32_t index);
#define ecs_vector_get(vector, T, index) \
((T*)_ecs_vector_get(vector, ECS_VECTOR_T(T), index))
#define ecs_vector_get_t(vector, size, alignment, index) \
_ecs_vector_get(vector, ECS_VECTOR_U(size, alignment), index)
/** Get last element from vector. */
FLECS_API
void* _ecs_vector_last(
const ecs_vector_t *vector,
ecs_size_t elem_size,
int16_t offset);
#define ecs_vector_last(vector, T) \
(T*)_ecs_vector_last(vector, ECS_VECTOR_T(T))
#define ecs_vector_last_t(vector, size, alignment) \
_ecs_vector_last(vector, ECS_VECTOR_U(size, alignment))
/** Set minimum size for vector. If the current size of the vector is larger,
* the function will have no side effects. */
FLECS_API
int32_t _ecs_vector_set_min_size(
ecs_vector_t **array_inout,
ecs_size_t elem_size,
int16_t offset,
int32_t elem_count);
#define ecs_vector_set_min_size(vector, T, size) \
_ecs_vector_set_min_size(vector, ECS_VECTOR_T(T), size)
/** Set minimum count for vector. If the current count of the vector is larger,
* the function will have no side effects. */
FLECS_API
int32_t _ecs_vector_set_min_count(
ecs_vector_t **vector_inout,
ecs_size_t elem_size,
int16_t offset,
int32_t elem_count);
#define ecs_vector_set_min_count(vector, T, size) \
_ecs_vector_set_min_count(vector, ECS_VECTOR_T(T), size)
/** Remove last element. This operation requires no swapping of values. */
FLECS_API
void ecs_vector_remove_last(
ecs_vector_t *vector);
/** Remove last value, store last element in provided value. */
FLECS_API
bool _ecs_vector_pop(
ecs_vector_t *vector,
ecs_size_t elem_size,
int16_t offset,
void *value);
#define ecs_vector_pop(vector, T, value) \
_ecs_vector_pop(vector, ECS_VECTOR_T(T), value)
/** Append element at specified index to another vector. */
FLECS_API
int32_t _ecs_vector_move_index(
ecs_vector_t **dst,
ecs_vector_t *src,
ecs_size_t elem_size,
int16_t offset,
int32_t index);
#define ecs_vector_move_index(dst, src, T, index) \
_ecs_vector_move_index(dst, src, ECS_VECTOR_T(T), index)
/** Remove element at specified index. Moves the last value to the index. */
FLECS_API
int32_t _ecs_vector_remove(
ecs_vector_t *vector,
ecs_size_t elem_size,
int16_t offset,
int32_t index);
#define ecs_vector_remove(vector, T, index) \
_ecs_vector_remove(vector, ECS_VECTOR_T(T), index)
#define ecs_vector_remove_t(vector, size, alignment, index) \
_ecs_vector_remove(vector, ECS_VECTOR_U(size, alignment), index)
/** Shrink vector to make the size match the count. */
FLECS_API
void _ecs_vector_reclaim(
ecs_vector_t **vector,
ecs_size_t elem_size,
int16_t offset);
#define ecs_vector_reclaim(vector, T)\
_ecs_vector_reclaim(vector, ECS_VECTOR_T(T))
/** Grow size of vector with provided number of elements. */
FLECS_API
int32_t _ecs_vector_grow(
ecs_vector_t **vector,
ecs_size_t elem_size,
int16_t offset,
int32_t elem_count);
#define ecs_vector_grow(vector, T, size) \
_ecs_vector_grow(vector, ECS_VECTOR_T(T), size)
/** Set allocation size of vector. */
FLECS_API
int32_t _ecs_vector_set_size(
ecs_vector_t **vector,
ecs_size_t elem_size,
int16_t offset,
int32_t elem_count);
#define ecs_vector_set_size(vector, T, elem_count) \
_ecs_vector_set_size(vector, ECS_VECTOR_T(T), elem_count)
#define ecs_vector_set_size_t(vector, size, alignment, elem_count) \
_ecs_vector_set_size(vector, ECS_VECTOR_U(size, alignment), elem_count)
/** Set count of vector. If the size of the vector is smaller than the provided
* count, the vector is resized. */
FLECS_API
int32_t _ecs_vector_set_count(
ecs_vector_t **vector,
ecs_size_t elem_size,
int16_t offset,
int32_t elem_count);
#define ecs_vector_set_count(vector, T, elem_count) \
_ecs_vector_set_count(vector, ECS_VECTOR_T(T), elem_count)
#define ecs_vector_set_count_t(vector, size, alignment, elem_count) \
_ecs_vector_set_count(vector, ECS_VECTOR_U(size, alignment), elem_count)
/** Return number of elements in vector. */
FLECS_API
int32_t ecs_vector_count(
const ecs_vector_t *vector);
/** Return size of vector. */
FLECS_API
int32_t ecs_vector_size(
const ecs_vector_t *vector);
/** Return first element of vector. */
FLECS_API
void* _ecs_vector_first(
const ecs_vector_t *vector,
ecs_size_t elem_size,
int16_t offset);
#define ecs_vector_first(vector, T) \
((T*)_ecs_vector_first(vector, ECS_VECTOR_T(T)))
#define ecs_vector_first_t(vector, size, alignment) \
_ecs_vector_first(vector, ECS_VECTOR_U(size, alignment))
/** Sort elements in vector. */
FLECS_API
void _ecs_vector_sort(
ecs_vector_t *vector,
ecs_size_t elem_size,
int16_t offset,
ecs_comparator_t compare_action);
#define ecs_vector_sort(vector, T, compare_action) \
_ecs_vector_sort(vector, ECS_VECTOR_T(T), compare_action)
/** Return memory occupied by vector. */
FLECS_API
void _ecs_vector_memory(
const ecs_vector_t *vector,
ecs_size_t elem_size,
int16_t offset,
int32_t *allocd,
int32_t *used);
#define ecs_vector_memory(vector, T, allocd, used) \
_ecs_vector_memory(vector, ECS_VECTOR_T(T), allocd, used)
#define ecs_vector_memory_t(vector, size, alignment, allocd, used) \
_ecs_vector_memory(vector, ECS_VECTOR_U(size, alignment), allocd, used)
/** Copy vectors */
FLECS_API
ecs_vector_t* _ecs_vector_copy(
const ecs_vector_t *src,
ecs_size_t elem_size,
int16_t offset);
#define ecs_vector_copy(src, T) \
_ecs_vector_copy(src, ECS_VECTOR_T(T))
#define ecs_vector_copy_t(src, size, alignment) \
_ecs_vector_copy(src, ECS_VECTOR_U(size, alignment))
#ifndef FLECS_LEGACY
#define ecs_vector_each(vector, T, var, ...)\
{\
int var##_i, var##_count = ecs_vector_count(vector);\
T* var##_array = ecs_vector_first(vector, T);\
for (var##_i = 0; var##_i < var##_count; var##_i ++) {\
T* var = &var##_array[var##_i];\
__VA_ARGS__\
}\
}
#endif
#ifdef __cplusplus
}
#endif
/** C++ wrapper for vector class. */
#ifdef __cplusplus
#ifndef FLECS_NO_CPP
#include <initializer_list>
namespace flecs {
template <typename T>
class vector_iterator
{
public:
explicit vector_iterator(T* value, int index) {
m_value = value;
m_index = index;
}
bool operator!=(vector_iterator const& other) const
{
return m_index != other.m_index;
}
T const& operator*() const
{
return m_value[m_index];
}
vector_iterator& operator++()
{
++m_index;
return *this;
}
private:
T* m_value;
int m_index;
};
/* C++ class mainly used as wrapper around internal ecs_vector_t. Do not use
* this class as a replacement for STL datastructures! */
template <typename T>
class vector {
public:
explicit vector(ecs_vector_t *v) : m_vector( v ) { }
vector(size_t count = 0) : m_vector( nullptr ) {
if (count) {
init(count);
}
}
vector(std::initializer_list<T> elems) : m_vector( nullptr) {
init(elems.size());
*this = elems;
}
void operator=(std::initializer_list<T> elems) {
for (auto elem : elems) {
this->add(elem);
}
}
T& operator[](size_t index) {
return *static_cast<T*>(_ecs_vector_get(m_vector, ECS_VECTOR_T(T), index));
}
vector_iterator<T> begin() {
return vector_iterator<T>(
static_cast<T*>(_ecs_vector_first(m_vector, ECS_VECTOR_T(T))), 0);
}
vector_iterator<T> end() {
return vector_iterator<T>(
static_cast<T*>(_ecs_vector_last(m_vector, ECS_VECTOR_T(T))),
ecs_vector_count(m_vector));
}
void clear() {
ecs_vector_clear(m_vector);
}
void destruct() {
ecs_vector_free(m_vector);
}
void add(T& value) {
T* elem = static_cast<T*>(_ecs_vector_add(&m_vector, ECS_VECTOR_T(T)));
*elem = value;
}
void add(T&& value) {
T* elem = static_cast<T*>(_ecs_vector_add(&m_vector, ECS_VECTOR_T(T)))
*elem = value;
}
T& get(int32_t index) {
ecs_assert(index < ecs_vector_count(m_vector), ECS_OUT_OF_RANGE, NULL);
return *static_cast<T*>(_ecs_vector_get(m_vector, ECS_VECTOR_T(T), index));
}
T& first() {
return *static_cast<T*>(_ecs_vector_first(m_vector, ECS_VECTOR_T(T)));
}
T& last() {
return *static_cast<T*>(_ecs_vector_last(m_vector, ECS_VECTOR_T(T)));
}
int32_t count() {
return ecs_vector_count(m_vector);
}
int32_t size() {
return ecs_vector_size(m_vector);
}
ecs_vector_t *ptr() {
return m_vector;
}
void ptr(ecs_vector_t *ptr) {
m_vector = ptr;
}
private:
void init(size_t count) {
m_vector = ecs_vector_new(T, static_cast<ecs_size_t>(count));
}
ecs_vector_t *m_vector;
};
}
#endif
#endif
#endif
/**
* @file map.h
* @brief Map datastructure.
*
* Key-value datastructure. The map allows for fast retrieval of a payload for
* a 64-bit key. While it is not as fast as the sparse set, it is better at
* handling randomly distributed values.
*
* Payload is stored in bucket arrays. A bucket is computed from an id by
* using the (bucket_count - 1) as an AND-mask. The number of buckets is always
* a power of 2. Multiple keys will be stored in the same bucket. As a result
* the worst case retrieval performance of the map is O(n), though this is rare.
* On average lookup performance should equal O(1).
*
* The datastructure will automatically grow the number of buckets when the
* ratio between elements and buckets exceeds a certain threshold (LOAD_FACTOR).
*
* Note that while the implementation is a hashmap, it can only compute hashes
* for the provided 64 bit keys. This means that the provided keys must always
* be unique. If the provided keys are hashes themselves, it is the
* responsibility of the user to ensure that collisions are handled.
*
* In debug mode the map verifies that the type provided to the map functions
* matches the one used at creation time.
*/
#ifndef FLECS_MAP_H
#define FLECS_MAP_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct ecs_map_t ecs_map_t;
typedef uint64_t ecs_map_key_t;
typedef struct ecs_map_iter_t {
const ecs_map_t *map;
struct ecs_bucket_t *bucket;
int32_t bucket_index;
int32_t element_index;
void *payload;
} ecs_map_iter_t;
/** Create new map. */
FLECS_API
ecs_map_t * _ecs_map_new(
ecs_size_t elem_size,
ecs_size_t alignment,
int32_t elem_count);
#define ecs_map_new(T, elem_count)\
_ecs_map_new(sizeof(T), ECS_ALIGNOF(T), elem_count)
/** Get element for key, returns NULL if they key doesn't exist. */
FLECS_API
void * _ecs_map_get(
const ecs_map_t *map,
ecs_size_t elem_size,
ecs_map_key_t key);
#define ecs_map_get(map, T, key)\
(T*)_ecs_map_get(map, sizeof(T), (ecs_map_key_t)key)
/** Get pointer element. This dereferences the map element as a pointer. This
* operation returns NULL when either the element does not exist or whether the
* pointer is NULL, and should therefore only be used when the application knows
* for sure that a pointer should never be NULL. */
FLECS_API
void * _ecs_map_get_ptr(
const ecs_map_t *map,
ecs_map_key_t key);
#define ecs_map_get_ptr(map, T, key)\
(T)_ecs_map_get_ptr(map, key)
/** Test if map has key */
FLECS_API
bool ecs_map_has(
const ecs_map_t *map,
ecs_map_key_t key);
/** Get or create element for key. */
FLECS_API
void * _ecs_map_ensure(
ecs_map_t *map,
ecs_size_t elem_size,
ecs_map_key_t key);
#define ecs_map_ensure(map, T, key)\
(T*)_ecs_map_ensure(map, sizeof(T), (ecs_map_key_t)key)
/** Set element. */
FLECS_API
void* _ecs_map_set(
ecs_map_t *map,
ecs_size_t elem_size,
ecs_map_key_t key,
const void *payload);
#define ecs_map_set(map, key, payload)\
_ecs_map_set(map, sizeof(*payload), (ecs_map_key_t)key, payload);
/** Free map. */
FLECS_API
void ecs_map_free(
ecs_map_t *map);
/** Remove key from map. */
FLECS_API
void ecs_map_remove(
ecs_map_t *map,
ecs_map_key_t key);
/** Remove all elements from map. */
FLECS_API
void ecs_map_clear(
ecs_map_t *map);
/** Return number of elements in map. */
FLECS_API
int32_t ecs_map_count(
const ecs_map_t *map);
/** Return number of buckets in map. */
FLECS_API
int32_t ecs_map_bucket_count(
const ecs_map_t *map);
/** Return iterator to map contents. */
FLECS_API
ecs_map_iter_t ecs_map_iter(
const ecs_map_t *map);
/** Obtain next element in map from iterator. */
FLECS_API
void* _ecs_map_next(
ecs_map_iter_t* iter,
ecs_size_t elem_size,
ecs_map_key_t *key);
#define ecs_map_next(iter, T, key) \
(T*)_ecs_map_next(iter, sizeof(T), key)
/** Obtain next pointer element from iterator. See ecs_map_get_ptr. */
FLECS_API
void* _ecs_map_next_ptr(
ecs_map_iter_t* iter,
ecs_map_key_t *key);
#define ecs_map_next_ptr(iter, T, key) \
(T)_ecs_map_next_ptr(iter, key)
/** Grow number of buckets in the map for specified number of elements. */
FLECS_API
void ecs_map_grow(
ecs_map_t *map,
int32_t elem_count);
/** Set number of buckets in the map for specified number of elements. */
FLECS_API
void ecs_map_set_size(
ecs_map_t *map,
int32_t elem_count);
/** Return memory occupied by map. */
FLECS_API
void ecs_map_memory(
ecs_map_t *map,
int32_t *allocd,
int32_t *used);
#ifndef FLECS_LEGACY
#define ecs_map_each(map, T, key, var, ...)\
{\
ecs_map_iter_t it = ecs_map_iter(map);\
ecs_map_key_t key;\
T* var;\
(void)key;\
(void)var;\
while ((var = ecs_map_next(&it, T, &key))) {\
__VA_ARGS__\
}\
}
#endif
#ifdef __cplusplus
}
#endif
/** C++ wrapper for map. */
#ifdef __cplusplus
#ifndef FLECS_NO_CPP
#include <initializer_list>
#include <utility>
namespace flecs {
/* C++ class mainly used as wrapper around internal ecs_map_t. Do not use
* this class as a replacement for STL datastructures! */
template <typename K, typename T>
class map {
public:
map(size_t count = 0) {
init(count);
}
map(std::initializer_list<std::pair<K, T>> elems) {
init(elems.size());
*this = elems;
}
void operator=(std::initializer_list<std::pair<K, T>> elems) {
for (auto elem : elems) {
this->set(elem.first, elem.second);
}
}
void clear() {
ecs_map_clear(m_map);
}
int32_t count() {
return ecs_map_count(m_map);
}
void set(K& key, T& value) {
_ecs_map_set(m_map, sizeof(T), reinterpret_cast<ecs_map_key_t>(key), &value);
}
T& get(K& key) {
static_cast<T*>(_ecs_map_get(m_map, sizeof(T),
reinterpret_cast<ecs_map_key_t>(key)));
}
void destruct() {
ecs_map_free(m_map);
}
private:
void init(size_t count) {
m_map = ecs_map_new(T, static_cast<ecs_size_t>(count));
}
ecs_map_t *m_map;
};
}
#endif
#endif
#endif
/**
* @file strbuf.h
* @brief Utility for constructing strings.
*
* A buffer builds up a list of elements which individually can be up to N bytes
* large. While appending, data is added to these elements. More elements are
* added on the fly when needed. When an application calls ecs_strbuf_get, all
* elements are combined in one string and the element administration is freed.
*
* This approach prevents reallocs of large blocks of memory, and therefore
* copying large blocks of memory when appending to a large buffer. A buffer
* preallocates some memory for the element overhead so that for small strings
* there is hardly any overhead, while for large strings the overhead is offset
* by the reduced time spent on copying memory.
*/
#ifndef FLECS_STRBUF_H_
#define FLECS_STRBUF_H_
#ifdef __cplusplus
extern "C" {
#endif
#define ECS_STRBUF_INIT (ecs_strbuf_t){0}
#define ECS_STRBUF_ELEMENT_SIZE (511)
#define ECS_STRBUF_MAX_LIST_DEPTH (32)
typedef struct ecs_strbuf_element {
bool buffer_embedded;
int32_t pos;
char *buf;
struct ecs_strbuf_element *next;
} ecs_strbuf_element;
typedef struct ecs_strbuf_element_embedded {
ecs_strbuf_element super;
char buf[ECS_STRBUF_ELEMENT_SIZE + 1];
} ecs_strbuf_element_embedded;
typedef struct ecs_strbuf_element_str {
ecs_strbuf_element super;
char *alloc_str;
} ecs_strbuf_element_str;
typedef struct ecs_strbuf_list_elem {
int32_t count;
const char *separator;
} ecs_strbuf_list_elem;
typedef struct ecs_strbuf_t {
/* When set by an application, append will write to this buffer */
char *buf;
/* The maximum number of characters that may be printed */
int32_t max;
/* Size of elements minus current element */
int32_t size;
/* The number of elements in use */
int32_t elementCount;
/* Always allocate at least one element */
ecs_strbuf_element_embedded firstElement;
/* The current element being appended to */
ecs_strbuf_element *current;
/* Stack that keeps track of number of list elements, used for conditionally
* inserting a separator */
ecs_strbuf_list_elem list_stack[ECS_STRBUF_MAX_LIST_DEPTH];
int32_t list_sp;
} ecs_strbuf_t;
/* Append format string to a buffer.
* Returns false when max is reached, true when there is still space */
FLECS_API
bool ecs_strbuf_append(
ecs_strbuf_t *buffer,
const char *fmt,
...);
/* Append format string with argument list to a buffer.
* Returns false when max is reached, true when there is still space */
FLECS_API
bool ecs_strbuf_vappend(
ecs_strbuf_t *buffer,
const char *fmt,
va_list args);
/* Append string to buffer.
* Returns false when max is reached, true when there is still space */
FLECS_API
bool ecs_strbuf_appendstr(
ecs_strbuf_t *buffer,
const char *str);
/* Append source buffer to destination buffer.
* Returns false when max is reached, true when there is still space */
FLECS_API
bool ecs_strbuf_mergebuff(
ecs_strbuf_t *dst_buffer,
ecs_strbuf_t *src_buffer);
/* Append string to buffer, transfer ownership to buffer.
* Returns false when max is reached, true when there is still space */
FLECS_API
bool ecs_strbuf_appendstr_zerocpy(
ecs_strbuf_t *buffer,
char *str);
/* Append string to buffer, do not free/modify string.
* Returns false when max is reached, true when there is still space */
FLECS_API
bool ecs_strbuf_appendstr_zerocpy_const(
ecs_strbuf_t *buffer,
const char *str);
/* Append n characters to buffer.
* Returns false when max is reached, true when there is still space */
FLECS_API
bool ecs_strbuf_appendstrn(
ecs_strbuf_t *buffer,
const char *str,
int32_t n);
/* Return result string (also resets buffer) */
FLECS_API
char *ecs_strbuf_get(
ecs_strbuf_t *buffer);
/* Reset buffer without returning a string */
FLECS_API
void ecs_strbuf_reset(
ecs_strbuf_t *buffer);
/* Push a list */
FLECS_API
void ecs_strbuf_list_push(
ecs_strbuf_t *buffer,
const char *list_open,
const char *separator);
/* Pop a new list */
FLECS_API
void ecs_strbuf_list_pop(
ecs_strbuf_t *buffer,
const char *list_close);
/* Insert a new element in list */
FLECS_API
void ecs_strbuf_list_next(
ecs_strbuf_t *buffer);
/* Append formatted string as a new element in list */
FLECS_API
bool ecs_strbuf_list_append(
ecs_strbuf_t *buffer,
const char *fmt,
...);
/* Append string as a new element in list */
FLECS_API
bool ecs_strbuf_list_appendstr(
ecs_strbuf_t *buffer,
const char *str);
#ifdef __cplusplus
}
#endif
#endif
/**
* @file os_api.h
* @brief Operationg system abstractions.
*
* This file contains the operating system abstraction API. The flecs core
* library avoids OS/runtime specific API calls as much as possible. Instead it
* provides an interface that can be implemented by applications.
*
* Examples for how to implement this interface can be found in the
* examples/os_api folder.
*/
#ifndef FLECS_OS_API_H
#define FLECS_OS_API_H
#include <stdarg.h>
#include <errno.h>
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h>
#elif defined(__FreeBSD__)
#include <stdlib.h>
#else
#include <alloca.h>
#endif
#if defined(_WIN32)
#define ECS_OS_WINDOWS
#elif defined(__linux__)
#define ECS_OS_LINUX
#elif defined(__APPLE__) && defined(__MACH__)
#define ECS_OS_DARWIN
#else
/* Unknown OS */
#endif
#ifdef __cplusplus
extern "C" {
#endif
typedef struct ecs_time_t {
uint32_t sec;
uint32_t nanosec;
} ecs_time_t;
/* Allocation counters (not thread safe) */
extern int64_t ecs_os_api_malloc_count;
extern int64_t ecs_os_api_realloc_count;
extern int64_t ecs_os_api_calloc_count;
extern int64_t ecs_os_api_free_count;
/* Use handle types that _at least_ can store pointers */
typedef uintptr_t ecs_os_thread_t;
typedef uintptr_t ecs_os_cond_t;
typedef uintptr_t ecs_os_mutex_t;
typedef uintptr_t ecs_os_dl_t;
/* Generic function pointer type */
typedef void (*ecs_os_proc_t)(void);
/* OS API init */
typedef
void (*ecs_os_api_init_t)(void);
/* OS API deinit */
typedef
void (*ecs_os_api_fini_t)(void);
/* Memory management */
typedef
void* (*ecs_os_api_malloc_t)(
ecs_size_t size);
typedef
void (*ecs_os_api_free_t)(
void *ptr);
typedef
void* (*ecs_os_api_realloc_t)(
void *ptr,
ecs_size_t size);
typedef
void* (*ecs_os_api_calloc_t)(
ecs_size_t size);
typedef
char* (*ecs_os_api_strdup_t)(
const char *str);
/* Threads */
typedef
void* (*ecs_os_thread_callback_t)(
void*);
typedef
ecs_os_thread_t (*ecs_os_api_thread_new_t)(
ecs_os_thread_callback_t callback,
void *param);
typedef
void* (*ecs_os_api_thread_join_t)(
ecs_os_thread_t thread);
/* Atomic increment / decrement */
typedef
int (*ecs_os_api_ainc_t)(
int32_t *value);
/* Mutex */
typedef
ecs_os_mutex_t (*ecs_os_api_mutex_new_t)(
void);
typedef
void (*ecs_os_api_mutex_lock_t)(
ecs_os_mutex_t mutex);
typedef
void (*ecs_os_api_mutex_unlock_t)(
ecs_os_mutex_t mutex);
typedef
void (*ecs_os_api_mutex_free_t)(
ecs_os_mutex_t mutex);
/* Condition variable */
typedef
ecs_os_cond_t (*ecs_os_api_cond_new_t)(
void);
typedef
void (*ecs_os_api_cond_free_t)(
ecs_os_cond_t cond);
typedef
void (*ecs_os_api_cond_signal_t)(
ecs_os_cond_t cond);
typedef
void (*ecs_os_api_cond_broadcast_t)(
ecs_os_cond_t cond);
typedef
void (*ecs_os_api_cond_wait_t)(
ecs_os_cond_t cond,
ecs_os_mutex_t mutex);
typedef
void (*ecs_os_api_sleep_t)(
int32_t sec,
int32_t nanosec);
typedef
void (*ecs_os_api_get_time_t)(
ecs_time_t *time_out);
/* Logging */
typedef
void (*ecs_os_api_log_t)(
const char *fmt,
va_list args);
/* Application termination */
typedef
void (*ecs_os_api_abort_t)(
void);
/* Dynamic libraries */
typedef
ecs_os_dl_t (*ecs_os_api_dlopen_t)(
const char *libname);
typedef
ecs_os_proc_t (*ecs_os_api_dlproc_t)(
ecs_os_dl_t lib,
const char *procname);
typedef
void (*ecs_os_api_dlclose_t)(
ecs_os_dl_t lib);
typedef
char* (*ecs_os_api_module_to_path_t)(
const char *module_id);
/* Prefix members of struct with 'ecs_' as some system headers may define
* macro's for functions like "strdup", "log" or "_free" */
typedef struct ecs_os_api_t {
/* API init / deinit */
ecs_os_api_init_t init_;
ecs_os_api_fini_t fini_;
/* Memory management */
ecs_os_api_malloc_t malloc_;
ecs_os_api_realloc_t realloc_;
ecs_os_api_calloc_t calloc_;
ecs_os_api_free_t free_;
/* Strings */
ecs_os_api_strdup_t strdup_;
/* Threads */
ecs_os_api_thread_new_t thread_new_;
ecs_os_api_thread_join_t thread_join_;
/* Atomic incremenet / decrement */
ecs_os_api_ainc_t ainc_;
ecs_os_api_ainc_t adec_;
/* Mutex */
ecs_os_api_mutex_new_t mutex_new_;
ecs_os_api_mutex_free_t mutex_free_;
ecs_os_api_mutex_lock_t mutex_lock_;
ecs_os_api_mutex_lock_t mutex_unlock_;
/* Condition variable */
ecs_os_api_cond_new_t cond_new_;
ecs_os_api_cond_free_t cond_free_;
ecs_os_api_cond_signal_t cond_signal_;
ecs_os_api_cond_broadcast_t cond_broadcast_;
ecs_os_api_cond_wait_t cond_wait_;
/* Time */
ecs_os_api_sleep_t sleep_;
ecs_os_api_get_time_t get_time_;
/* Logging */
ecs_os_api_log_t log_;
ecs_os_api_log_t log_error_;
ecs_os_api_log_t log_debug_;
ecs_os_api_log_t log_warning_;
/* Application termination */
ecs_os_api_abort_t abort_;
/* Dynamic library loading */
ecs_os_api_dlopen_t dlopen_;
ecs_os_api_dlproc_t dlproc_;
ecs_os_api_dlclose_t dlclose_;
/* Overridable function that translates from a logical module id to a
* shared library filename */
ecs_os_api_module_to_path_t module_to_dl_;
/* Overridable function that translates from a logical module id to a
* path that contains module-specif resources or assets */
ecs_os_api_module_to_path_t module_to_etc_;
} ecs_os_api_t;
FLECS_API
extern ecs_os_api_t ecs_os_api;
FLECS_API
void ecs_os_init(void);
FLECS_API
void ecs_os_fini(void);
FLECS_API
void ecs_os_set_api(
ecs_os_api_t *os_api);
FLECS_API
void ecs_os_set_api_defaults(void);
/* Memory management */
#ifndef ecs_os_malloc
#define ecs_os_malloc(size) ecs_os_api.malloc_(size)
#endif
#ifndef ecs_os_free
#define ecs_os_free(ptr) ecs_os_api.free_(ptr)
#endif
#ifndef ecs_os_realloc
#define ecs_os_realloc(ptr, size) ecs_os_api.realloc_(ptr, size)
#endif
#ifndef ecs_os_calloc
#define ecs_os_calloc(size) ecs_os_api.calloc_(size)
#endif
#if defined(_MSC_VER) || defined(__MINGW32__)
#define ecs_os_alloca(size) _alloca((size_t)(size))
#else
#define ecs_os_alloca(size) alloca((size_t)(size))
#endif
#define ecs_os_malloc_t(T) (T*)(ecs_os_malloc(ECS_SIZEOF(T)))
#define ecs_os_malloc_n(T, count) (T*)(ecs_os_malloc(ECS_SIZEOF(T) * count))
#define ecs_os_calloc_t(T) (T*)(ecs_os_calloc(ECS_SIZEOF(T)))
#define ecs_os_calloc_n(T, count) (T*)(ecs_os_calloc(ECS_SIZEOF(T) * count))
#define ecs_os_alloca_t(T) (T*)(ecs_os_alloca(ECS_SIZEOF(T)))
#define ecs_os_alloca_n(T, count) (T*)(ecs_os_alloca(ECS_SIZEOF(T) * count))
/* Strings */
#ifndef ecs_os_strdup
#define ecs_os_strdup(str) ecs_os_api.strdup_(str)
#endif
#define ecs_os_strset(dst, src) ecs_os_free(*dst); *dst = ecs_os_strdup(src)
#ifdef __cplusplus
#define ecs_os_strlen(str) static_cast<ecs_size_t>(strlen(str))
#define ecs_os_strncmp(str1, str2, num) strncmp(str1, str2, static_cast<size_t>(num))
#define ecs_os_memcmp(ptr1, ptr2, num) memcmp(ptr1, ptr2, static_cast<size_t>(num))
#define ecs_os_memcpy(ptr1, ptr2, num) memcpy(ptr1, ptr2, static_cast<size_t>(num))
#define ecs_os_memset(ptr, value, num) memset(ptr, value, static_cast<size_t>(num))
#define ecs_os_memmove(ptr, value, num) memmove(ptr, value, static_cast<size_t>(num))
#else
#define ecs_os_strlen(str) (ecs_size_t)strlen(str)
#define ecs_os_strncmp(str1, str2, num) strncmp(str1, str2, (size_t)(num))
#define ecs_os_memcmp(ptr1, ptr2, num) memcmp(ptr1, ptr2, (size_t)(num))
#define ecs_os_memcpy(ptr1, ptr2, num) memcpy(ptr1, ptr2, (size_t)(num))
#define ecs_os_memset(ptr, value, num) memset(ptr, value, (size_t)(num))
#define ecs_os_memmove(ptr, value, num) memmove(ptr, value, (size_t)(num))
#endif
#define ecs_os_memcpy_t(ptr1, ptr2, T) ecs_os_memcpy(ptr1, ptr2, ECS_SIZEOF(T))
#define ecs_os_memcpy_n(ptr1, ptr2, T, count) ecs_os_memcpy(ptr1, ptr2, ECS_SIZEOF(T) * count)
#define ecs_os_strcmp(str1, str2) strcmp(str1, str2)
#define ecs_os_memset_t(ptr, value, T) ecs_os_memset(ptr, value, ECS_SIZEOF(T))
#define ecs_os_memset_n(ptr, value, T, count) ecs_os_memset(ptr, value, ECS_SIZEOF(T) * count)
#define ecs_os_strcmp(str1, str2) strcmp(str1, str2)
#if defined(_MSC_VER)
#define ecs_os_strcat(str1, str2) strcat_s(str1, INT_MAX, str2)
#define ecs_os_sprintf(ptr, ...) sprintf_s(ptr, INT_MAX, __VA_ARGS__)
#define ecs_os_vsprintf(ptr, fmt, args) vsprintf_s(ptr, INT_MAX, fmt, args)
#define ecs_os_strcpy(str1, str2) strcpy_s(str1, INT_MAX, str2)
#ifdef __cplusplus
#define ecs_os_strncpy(str1, str2, num) strncpy_s(str1, INT_MAX, str2, static_cast<size_t>(num))
#else
#define ecs_os_strncpy(str1, str2, num) strncpy_s(str1, INT_MAX, str2, (size_t)(num))
#endif
#else
#define ecs_os_strcat(str1, str2) strcat(str1, str2)
#define ecs_os_sprintf(ptr, ...) sprintf(ptr, __VA_ARGS__)
#define ecs_os_vsprintf(ptr, fmt, args) vsprintf(ptr, fmt, args)
#define ecs_os_strcpy(str1, str2) strcpy(str1, str2)
#ifdef __cplusplus
#define ecs_os_strncpy(str1, str2, num) strncpy(str1, str2, static_cast<size_t>(num))
#else
#define ecs_os_strncpy(str1, str2, num) strncpy(str1, str2, (size_t)(num))
#endif
#endif
/* Files */
#if defined(_MSC_VER)
#define ecs_os_fopen(result, file, mode) fopen_s(result, file, mode)
#else
#define ecs_os_fopen(result, file, mode) (*(result)) = fopen(file, mode)
#endif
/* Threads */
#define ecs_os_thread_new(callback, param) ecs_os_api.thread_new_(callback, param)
#define ecs_os_thread_join(thread) ecs_os_api.thread_join_(thread)
/* Atomic increment / decrement */
#define ecs_os_ainc(value) ecs_os_api.ainc_(value)
#define ecs_os_adec(value) ecs_os_api.adec_(value)
/* Mutex */
#define ecs_os_mutex_new() ecs_os_api.mutex_new_()
#define ecs_os_mutex_free(mutex) ecs_os_api.mutex_free_(mutex)
#define ecs_os_mutex_lock(mutex) ecs_os_api.mutex_lock_(mutex)
#define ecs_os_mutex_unlock(mutex) ecs_os_api.mutex_unlock_(mutex)
/* Condition variable */
#define ecs_os_cond_new() ecs_os_api.cond_new_()
#define ecs_os_cond_free(cond) ecs_os_api.cond_free_(cond)
#define ecs_os_cond_signal(cond) ecs_os_api.cond_signal_(cond)
#define ecs_os_cond_broadcast(cond) ecs_os_api.cond_broadcast_(cond)
#define ecs_os_cond_wait(cond, mutex) ecs_os_api.cond_wait_(cond, mutex)
/* Time */
#define ecs_os_sleep(sec, nanosec) ecs_os_api.sleep_(sec, nanosec)
#define ecs_os_get_time(time_out) ecs_os_api.get_time_(time_out)
/* Logging (use functions to avoid using variadic macro arguments) */
FLECS_API
void ecs_os_log(const char *fmt, ...);
FLECS_API
void ecs_os_warn(const char *fmt, ...);
FLECS_API
void ecs_os_err(const char *fmt, ...);
FLECS_API
void ecs_os_dbg(const char *fmt, ...);
FLECS_API
const char* ecs_os_strerror(int err);
/* Application termination */
#define ecs_os_abort() ecs_os_api.abort_()
/* Dynamic libraries */
#define ecs_os_dlopen(libname) ecs_os_api.dlopen_(libname)
#define ecs_os_dlproc(lib, procname) ecs_os_api.dlproc_(lib, procname)
#define ecs_os_dlclose(lib) ecs_os_api.dlclose_(lib)
/* Module id translation */
#define ecs_os_module_to_dl(lib) ecs_os_api.module_to_dl_(lib)
#define ecs_os_module_to_etc(lib) ecs_os_api.module_to_etc_(lib)
/* Sleep with floating point time */
FLECS_API
void ecs_sleepf(
double t);
/* Measure time since provided timestamp */
FLECS_API
double ecs_time_measure(
ecs_time_t *start);
/* Calculate difference between two timestamps */
FLECS_API
ecs_time_t ecs_time_sub(
ecs_time_t t1,
ecs_time_t t2);
/* Convert time value to a double */
FLECS_API
double ecs_time_to_double(
ecs_time_t t);
FLECS_API
void* ecs_os_memdup(
const void *src,
ecs_size_t size);
/** Are heap functions available? */
FLECS_API
bool ecs_os_has_heap(void);
/** Are threading functions available? */
FLECS_API
bool ecs_os_has_threading(void);
/** Are time functions available? */
FLECS_API
bool ecs_os_has_time(void);
/** Are logging functions available? */
FLECS_API
bool ecs_os_has_logging(void);
/** Are dynamic library functions available? */
FLECS_API
bool ecs_os_has_dl(void);
/** Are module path functions available? */
FLECS_API
bool ecs_os_has_modules(void);
#ifdef __cplusplus
}
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup api_types Basic API types
* @{
*/
/** Pointer object returned by API. */
typedef void ecs_object_t;
/** An id. Ids are the things that can be added to an entity. An id can be an
* entity or pair, and can have an optional role. */
typedef uint64_t ecs_id_t;
/** An entity identifier. */
typedef ecs_id_t ecs_entity_t;
/** A vector containing component identifiers used to describe a type. */
typedef const ecs_vector_t* ecs_type_t;
/** A world is the container for all ECS data and supporting features. */
typedef struct ecs_world_t ecs_world_t;
/** A query allows for cached iteration over ECS data */
typedef struct ecs_query_t ecs_query_t;
/** A filter allows for uncached, ad hoc iteration over ECS data */
typedef struct ecs_filter_t ecs_filter_t;
/** A trigger reacts to events matching a single filter term */
typedef struct ecs_trigger_t ecs_trigger_t;
/** An observer reacts to events matching multiple filter terms */
typedef struct ecs_observer_t ecs_observer_t;
/* An iterator lets an application iterate entities across tables. */
typedef struct ecs_iter_t ecs_iter_t;
/** Refs cache data that lets them access components faster than ecs_get. */
typedef struct ecs_ref_t ecs_ref_t;
/** @} */
/**
* @defgroup constants API constants
* @{
*/
/* Maximum number of components to add/remove in a single operation */
#define ECS_MAX_ADD_REMOVE (32)
/* Maximum number of terms cached in static arrays */
#define ECS_TERM_CACHE_SIZE (8)
/* Maximum number of events to set in static array of trigger descriptor */
#define ECS_TRIGGER_DESC_EVENT_COUNT_MAX (8)
/** @} */
/**
* @defgroup function_types Function Types
* @{
*/
/** Action callback for systems and triggers */
typedef void (*ecs_iter_action_t)(
ecs_iter_t *it);
typedef bool (*ecs_iter_next_action_t)(
ecs_iter_t *it);
/** Callback used for sorting components */
typedef int (*ecs_order_by_action_t)(
ecs_entity_t e1,
const void *ptr1,
ecs_entity_t e2,
const void *ptr2);
/** Callback used for ranking types */
typedef int32_t (*ecs_group_by_action_t)(
ecs_world_t *world,
ecs_type_t type,
ecs_id_t id,
void *ctx);
/** Initialization action for modules */
typedef void (*ecs_module_action_t)(
ecs_world_t *world);
/** Action callback on world exit */
typedef void (*ecs_fini_action_t)(
ecs_world_t *world,
void *ctx);
/** Function to cleanup context data */
typedef void (*ecs_ctx_free_t)(
void *ctx);
/** Callback used for sorting values */
typedef int (*ecs_compare_action_t)(
const void *ptr1,
const void *ptr2);
/** Callback used for hashing values */
typedef uint64_t (*ecs_hash_value_action_t)(
const void *ptr);
/** @} */
/**
* @defgroup filter_types Types used to describe filters, terms and triggers
* @{
*/
/** Set flags describe if & how a matched entity should be substituted */
#define EcsDefaultSet (0) /* Default set, SuperSet|Self for This subject */
#define EcsSelf (1) /* Select self (inclusive) */
#define EcsSuperSet (2) /* Select superset until predicate match */
#define EcsSubSet (4) /* Select subset until predicate match */
#define EcsCascade (8) /* Use breadth-first ordering of relations */
#define EcsAll (16) /* Walk full super/subset, regardless of match */
#define EcsNothing (32) /* Select from nothing */
/** Specify read/write access for term */
typedef enum ecs_inout_kind_t {
EcsInOutDefault,
EcsInOut,
EcsIn,
EcsOut
} ecs_inout_kind_t;
/** Specifies whether term identifier is a variable or entity */
typedef enum ecs_var_kind_t {
EcsVarDefault, /* Variable if name is all caps, otherwise an entity */
EcsVarIsEntity, /* Term is an entity */
EcsVarIsVariable /* Term is a variable */
} ecs_var_kind_t;
/** Type describing an operator used in an signature of a system signature */
typedef enum ecs_oper_kind_t {
EcsAnd, /* The term must match */
EcsOr, /* One of the terms in an or chain must match */
EcsNot, /* The term must not match */
EcsOptional, /* The term may match */
EcsAndFrom, /* Term must match all components from term id */
EcsOrFrom, /* Term must match at least one component from term id */
EcsNotFrom /* Term must match none of the components from term id */
} ecs_oper_kind_t;
/** Substitution with set parameters.
* These parameters allow for substituting a term id with its super- or subsets
* for a specified relationship. This enables functionality such as selecting
* components from a base (IsA) or a parent (ChildOf) in a single term */
typedef struct ecs_term_set_t {
ecs_entity_t relation; /* Relationship to substitute (default = IsA) */
uint8_t mask; /* Substitute as self, subset, superset */
int32_t min_depth; /* Min depth of subset/superset substitution */
int32_t max_depth; /* Max depth of subset/superset substitution */
} ecs_term_set_t;
/** Type that describes a single identifier in a term */
typedef struct ecs_term_id_t {
ecs_entity_t entity; /* Entity (default = This) */
char *name; /* Name (default = ".") */
ecs_var_kind_t var; /* Is id a variable (default yes if name is
* all caps & entity is 0) */
ecs_term_set_t set; /* Set substitution parameters */
} ecs_term_id_t;
/** Type that describes a single column in the system signature */
typedef struct ecs_term_t {
ecs_id_t id; /* Can be used instead of pred, args and role to
* set component/pair id. If not set, it will be
* computed from predicate, object. If set, the
* subject cannot be set, or be set to This. */
ecs_inout_kind_t inout; /* Access to contents matched with term */
ecs_term_id_t pred; /* Predicate of term */
ecs_term_id_t args[2]; /* Subject (0), object (1) of term */
ecs_oper_kind_t oper; /* Operator of term */
ecs_id_t role; /* Role of term */
char *name; /* Name of term */
int32_t index; /* Computed term index in filter which takes
* into account folded OR terms */
bool move; /* When true, this signals to ecs_term_copy that
* the resources held by this term may be moved
* into the destination term. */
} ecs_term_t;
/* Deprecated -- do not use! */
typedef enum ecs_match_kind_t {
EcsMatchDefault = 0,
EcsMatchAll,
EcsMatchAny,
EcsMatchExact
} ecs_match_kind_t;
/** Filters alllow for ad-hoc quick filtering of entity tables. */
struct ecs_filter_t {
ecs_term_t *terms; /* Array containing terms for filter */
int32_t term_count; /* Number of elements in terms array */
int32_t term_count_actual; /* Processed count, which folds OR terms */
ecs_term_t term_cache[ECS_TERM_CACHE_SIZE]; /* Cache for small filters */
bool match_this; /* Has terms that match EcsThis */
bool match_only_this; /* Has only terms that match EcsThis */
char *name; /* Name of filter (optional) */
char *expr; /* Expression of filter (if provided) */
/* Deprecated fields -- do not use! */
ecs_type_t include;
ecs_type_t exclude;
ecs_match_kind_t include_kind;
ecs_match_kind_t exclude_kind;
};
/** A trigger reacts to events matching a single term */
struct ecs_trigger_t {
ecs_term_t term; /* Term describing the trigger condition id */
/* Trigger events */
ecs_entity_t events[ECS_TRIGGER_DESC_EVENT_COUNT_MAX];
int32_t event_count;
ecs_iter_action_t action; /* Callback */
void *ctx; /* Callback context */
void *binding_ctx; /* Binding context (for language bindings) */
ecs_ctx_free_t ctx_free; /* Callback to free ctx */
ecs_ctx_free_t binding_ctx_free; /* Callback to free binding_ctx */
ecs_entity_t entity; /* Trigger entity */
ecs_entity_t self; /* Entity associated with observer */
uint64_t id; /* Internal id */
};
/* An observer reacts to events matching a filter */
struct ecs_observer_t {
ecs_filter_t filter;
/* Triggers created by observer (array size same as number of terms) */
ecs_entity_t *triggers;
/* Observer events */
ecs_entity_t events[ECS_TRIGGER_DESC_EVENT_COUNT_MAX];
int32_t event_count;
ecs_iter_action_t action; /* Callback */
void *ctx; /* Callback context */
void *binding_ctx; /* Binding context (for language bindings) */
ecs_ctx_free_t ctx_free; /* Callback to free ctx */
ecs_ctx_free_t binding_ctx_free; /* Callback to free binding_ctx */
ecs_entity_t entity; /* Observer entity */
ecs_entity_t self; /* Entity associated with observer */
uint64_t id; /* Internal id */
};
/** @} */
/**
* @file api_types.h
* @brief Supporting types for the public API.
*
* This file contains types that are typically not used by an application but
* support the public API, and therefore must be exposed. This header should not
* be included by itself.
*/
#ifndef FLECS_API_TYPES_H
#define FLECS_API_TYPES_H
#ifdef __cplusplus
extern "C" {
#endif
////////////////////////////////////////////////////////////////////////////////
//// Opaque types
////////////////////////////////////////////////////////////////////////////////
/** A stage enables modification while iterating and from multiple threads */
typedef struct ecs_stage_t ecs_stage_t;
/** A table is where entities and components are stored */
typedef struct ecs_table_t ecs_table_t;
/** A record stores data to map an entity id to a location in a table */
typedef struct ecs_record_t ecs_record_t;
/** Table column */
typedef struct ecs_column_t ecs_column_t;
/** Table data */
typedef struct ecs_data_t ecs_data_t;
/* Sparse set */
typedef struct ecs_sparse_t ecs_sparse_t;
/* Switch list */
typedef struct ecs_switch_t ecs_switch_t;
/* Internal structure to lookup tables for a (component) id */
typedef struct ecs_id_record_t ecs_id_record_t;
////////////////////////////////////////////////////////////////////////////////
//// Non-opaque types
////////////////////////////////////////////////////////////////////////////////
struct ecs_record_t {
ecs_table_t *table; /* Identifies a type (and table) in world */
int32_t row; /* Table row of the entity */
};
/** Cached reference. */
struct ecs_ref_t {
ecs_entity_t entity; /**< Entity of the reference */
ecs_entity_t component; /**< Component of the reference */
void *table; /**< Last known table */
int32_t row; /**< Last known location in table */
int32_t alloc_count; /**< Last known alloc count of table */
ecs_record_t *record; /**< Pointer to record, if in main stage */
const void *ptr; /**< Cached ptr */
};
/** Array of entity ids that, other than a type, can live on the stack */
typedef struct ecs_ids_t {
ecs_entity_t *array; /**< An array with entity ids */
int32_t count; /**< The number of entities in the array */
} ecs_ids_t;
typedef struct ecs_page_cursor_t {
int32_t first;
int32_t count;
} ecs_page_cursor_t;
typedef struct ecs_page_iter_t {
int32_t offset;
int32_t limit;
int32_t remaining;
} ecs_page_iter_t;
/** Table specific data for iterators */
typedef struct ecs_iter_table_t {
int32_t *columns; /**< Mapping from query terms to table columns */
ecs_table_t *table; /**< The current table. */
ecs_data_t *data; /**< Table component data */
ecs_entity_t *components; /**< Components in current table */
ecs_type_t *types; /**< Components in current table */
ecs_ref_t *references; /**< References to entities (from query) */
} ecs_iter_table_t;
/** Scope-iterator specific data */
typedef struct ecs_scope_iter_t {
ecs_filter_t filter;
ecs_map_iter_t tables;
int32_t index;
} ecs_scope_iter_t;
/** Term-iterator specific data */
typedef struct ecs_term_iter_t {
ecs_term_t *term;
ecs_id_record_t *self_index;
ecs_id_record_t *set_index;
ecs_map_iter_t iter;
bool iter_set;
/* Storage */
ecs_id_t id;
int32_t column;
ecs_type_t type;
ecs_entity_t subject;
ecs_size_t size;
void *ptr;
} ecs_term_iter_t;
typedef enum ecs_filter_iter_kind_t {
EcsFilterIterEvalIndex,
EcsFilterIterEvalNone
} ecs_filter_iter_kind_t;
/** Filter-iterator specific data */
typedef struct ecs_filter_iter_t {
ecs_filter_t filter;
ecs_filter_iter_kind_t kind;
/* For EcsFilterIterEvalIndex */
ecs_term_iter_t term_iter;
int32_t min_term_index;
} ecs_filter_iter_t;
/** Query-iterator specific data */
typedef struct ecs_query_iter_t {
ecs_page_iter_t page_iter;
int32_t index;
int32_t sparse_smallest;
int32_t sparse_first;
int32_t bitset_first;
} ecs_query_iter_t;
/** Query-iterator specific data */
typedef struct ecs_snapshot_iter_t {
ecs_filter_t filter;
ecs_vector_t *tables; /* ecs_table_leaf_t */
int32_t index;
} ecs_snapshot_iter_t;
/* Inline arrays for queries with small number of components */
typedef struct ecs_iter_cache_t {
ecs_id_t ids[ECS_TERM_CACHE_SIZE];
ecs_type_t types[ECS_TERM_CACHE_SIZE];
int32_t columns[ECS_TERM_CACHE_SIZE];
ecs_entity_t subjects[ECS_TERM_CACHE_SIZE];
ecs_size_t sizes[ECS_TERM_CACHE_SIZE];
void *ptrs[ECS_TERM_CACHE_SIZE];
bool ids_alloc;
bool types_alloc;
bool columns_alloc;
bool subjects_alloc;
bool sizes_alloc;
bool ptrs_alloc;
} ecs_iter_cache_t;
/** The ecs_iter_t struct allows applications to iterate tables.
* Queries and filters, among others, allow an application to iterate entities
* that match a certain set of components. Because of how data is stored
* internally, entities with a given set of components may be stored in multiple
* consecutive arrays, stored across multiple tables. The ecs_iter_t type
* enables iteration across tables. */
struct ecs_iter_t {
ecs_world_t *world; /**< The world */
ecs_world_t *real_world; /**< Actual world. This differs from world when using threads. */
ecs_entity_t system; /**< The current system (if applicable) */
ecs_entity_t event; /**< The event (if applicable) */
ecs_id_t event_id; /**< The (component) id for the event */
ecs_entity_t self; /**< Self entity (if set) */
ecs_table_t *table; /**< Current table */
ecs_data_t *data;
ecs_id_t *ids;
ecs_type_t *types;
int32_t *columns;
ecs_entity_t *subjects;
ecs_size_t *sizes;
void **ptrs;
ecs_ref_t *references;
ecs_query_t *query; /**< Current query being evaluated */
int32_t table_count; /**< Active table count for query */
int32_t inactive_table_count; /**< Inactive table count for query */
int32_t column_count; /**< Number of columns for system */
int32_t term_index; /**< Index of term that triggered an event.
* This field will be set to the 'index' field
* of a trigger/observer term. */
void *table_columns; /**< Table component data */
ecs_entity_t *entities; /**< Entity identifiers */
void *param; /**< Param passed to ecs_run */
void *ctx; /**< System context */
void *binding_ctx; /**< Binding context */
FLECS_FLOAT delta_time; /**< Time elapsed since last frame */
FLECS_FLOAT delta_system_time;/**< Time elapsed since last system invocation */
FLECS_FLOAT world_time; /**< Time elapsed since start of simulation */
int32_t frame_offset; /**< Offset relative to frame */
int32_t offset; /**< Offset relative to current table */
int32_t count; /**< Number of entities to process by system */
int32_t total_count; /**< Total number of entities in table */
bool is_valid; /**< Set to true after first next() */
ecs_ids_t *triggered_by; /**< Component(s) that triggered the system */
ecs_entity_t interrupted_by; /**< When set, system execution is interrupted */
union {
ecs_scope_iter_t parent;
ecs_term_iter_t term;
ecs_filter_iter_t filter;
ecs_query_iter_t query;
ecs_snapshot_iter_t snapshot;
} iter; /**< Iterator specific data */
ecs_iter_cache_t cache; /**< Inline arrays to reduce allocations */
};
typedef enum EcsMatchFailureReason {
EcsMatchOk,
EcsMatchNotASystem,
EcsMatchSystemIsATask,
EcsMatchEntityIsDisabled,
EcsMatchEntityIsPrefab,
EcsMatchFromSelf,
EcsMatchFromOwned,
EcsMatchFromShared,
EcsMatchFromContainer,
EcsMatchFromEntity,
EcsMatchOrFromSelf,
EcsMatchOrFromOwned,
EcsMatchOrFromShared,
EcsMatchOrFromContainer,
EcsMatchNotFromSelf,
EcsMatchNotFromOwned,
EcsMatchNotFromShared,
EcsMatchNotFromContainer,
} EcsMatchFailureReason;
typedef struct ecs_match_failure_t {
EcsMatchFailureReason reason;
int32_t column;
} ecs_match_failure_t;
////////////////////////////////////////////////////////////////////////////////
//// Function types
////////////////////////////////////////////////////////////////////////////////
typedef struct EcsComponentLifecycle EcsComponentLifecycle;
/** Constructor/destructor. Used for initializing / deinitializing components. */
typedef void (*ecs_xtor_t)(
ecs_world_t *world,
ecs_entity_t component,
const ecs_entity_t *entity_ptr,
void *ptr,
size_t size,
int32_t count,
void *ctx);
/** Copy is invoked when a component is copied into another component. */
typedef void (*ecs_copy_t)(
ecs_world_t *world,
ecs_entity_t component,
const ecs_entity_t *dst_entity,
const ecs_entity_t *src_entity,
void *dst_ptr,
const void *src_ptr,
size_t size,
int32_t count,
void *ctx);
/** Move is invoked when a component is moved to another component. */
typedef void (*ecs_move_t)(
ecs_world_t *world,
ecs_entity_t component,
const ecs_entity_t *dst_entity,
const ecs_entity_t *src_entity,
void *dst_ptr,
void *src_ptr,
size_t size,
int32_t count,
void *ctx);
/** Copy ctor */
typedef void (*ecs_copy_ctor_t)(
ecs_world_t *world,
ecs_entity_t component,
const EcsComponentLifecycle *callbacks,
const ecs_entity_t *dst_entity,
const ecs_entity_t *src_entity,
void *dst_ptr,
const void *src_ptr,
size_t size,
int32_t count,
void *ctx);
/** Move ctor */
typedef void (*ecs_move_ctor_t)(
ecs_world_t *world,
ecs_entity_t component,
const EcsComponentLifecycle *callbacks,
const ecs_entity_t *dst_entity,
const ecs_entity_t *src_entity,
void *dst_ptr,
void *src_ptr,
size_t size,
int32_t count,
void *ctx);
/** Invoked when setting a component */
typedef void (*ecs_on_set_t)(
ecs_world_t *world,
ecs_entity_t component,
const ecs_entity_t *entity_ptr,
void *ptr,
size_t size,
int32_t count,
void *ctx);
#ifdef __cplusplus
}
#endif
#endif
/**
* @file api_support.h
* @brief Support functions and constants.
*
* Supporting types and functions that need to be exposed either in support of
* the public API or for unit tests, but that may change between minor / patch
* releases.
*/
#ifndef FLECS_API_SUPPORT_H
#define FLECS_API_SUPPORT_H
#ifdef __cplusplus
extern "C" {
#endif
/** This reserves entity ids for components. Regular entity ids will start after
* this constant. This affects performance of table traversal, as edges with ids
* lower than this constant are looked up in an array, whereas constants higher
* than this id are looked up in a map. Increasing this value can improve
* performance at the cost of (significantly) higher memory usage. */
#define ECS_HI_COMPONENT_ID (256) /* Maximum number of components */
/** The maximum number of nested function calls before the core will throw a
* cycle detected error */
#define ECS_MAX_RECURSION (512)
////////////////////////////////////////////////////////////////////////////////
//// Global type handles
////////////////////////////////////////////////////////////////////////////////
/** Type handles to builtin components */
FLECS_API
extern ecs_type_t
ecs_type(EcsComponent),
ecs_type(EcsComponentLifecycle),
ecs_type(EcsType),
ecs_type(EcsIdentifier);
/** This allows passing 0 as type to functions that accept types */
#define FLECS__TNULL 0
#define FLECS__T0 0
#define FLECS__E0 0
////////////////////////////////////////////////////////////////////////////////
//// Functions used in declarative (macro) API
////////////////////////////////////////////////////////////////////////////////
FLECS_API
char* ecs_module_path_from_c(
const char *c_name);
FLECS_API
bool ecs_component_has_actions(
const ecs_world_t *world,
ecs_entity_t component);
FLECS_API
void ecs_add_module_tag(
ecs_world_t *world,
ecs_entity_t module);
////////////////////////////////////////////////////////////////////////////////
//// Signature API
////////////////////////////////////////////////////////////////////////////////
bool ecs_identifier_is_0(
const char *id);
bool ecs_identifier_is_var(
const char *id);
/** Calculate offset from address */
#ifdef __cplusplus
#define ECS_OFFSET(o, offset) reinterpret_cast<void*>((reinterpret_cast<uintptr_t>(o)) + (static_cast<uintptr_t>(offset)))
#else
#define ECS_OFFSET(o, offset) (void*)(((uintptr_t)(o)) + ((uintptr_t)(offset)))
#endif
#ifdef __cplusplus
}
#endif
#endif
/**
* @file type.h
* @brief Type API.
*
* This API contains utilities for working with types. Types are vectors of
* component ids, and are used most prominently in the API to construct filters.
*/
#ifndef FLECS_TYPE_H
#define FLECS_TYPE_H
#ifdef __cplusplus
extern "C" {
#endif
FLECS_API
ecs_type_t ecs_type_from_id(
ecs_world_t *world,
ecs_entity_t entity);
FLECS_API
ecs_entity_t ecs_type_to_id(
const ecs_world_t *world,
ecs_type_t type);
FLECS_API
char* ecs_type_str(
const ecs_world_t *world,
ecs_type_t type);
FLECS_API
ecs_type_t ecs_type_from_str(
ecs_world_t *world,
const char *expr);
FLECS_API
ecs_type_t ecs_type_merge(
ecs_world_t *world,
ecs_type_t type,
ecs_type_t type_add,
ecs_type_t type_remove);
FLECS_API
ecs_type_t ecs_type_add(
ecs_world_t *world,
ecs_type_t type,
ecs_id_t id);
FLECS_API
ecs_type_t ecs_type_remove(
ecs_world_t *world,
ecs_type_t type,
ecs_id_t id);
FLECS_API
int32_t ecs_type_index_of(
ecs_type_t type,
int32_t offset,
ecs_id_t id);
FLECS_API
bool ecs_type_has_id(
const ecs_world_t *world,
ecs_type_t type,
ecs_id_t id,
bool owned);
FLECS_API
int32_t ecs_type_match(
const ecs_world_t *world,
const ecs_table_t *table,
ecs_type_t type,
int32_t offset,
ecs_id_t id,
ecs_entity_t rel,
int32_t min_depth,
int32_t max_depth,
ecs_entity_t *out);
FLECS_API
bool ecs_type_has_type(
const ecs_world_t *world,
ecs_type_t type,
ecs_type_t has);
FLECS_API
bool ecs_type_owns_type(
const ecs_world_t *world,
ecs_type_t type,
ecs_type_t has,
bool owned);
FLECS_API
ecs_entity_t ecs_type_get_entity_for_xor(
ecs_world_t *world,
ecs_type_t type,
ecs_entity_t xor_tag);
#ifdef __cplusplus
}
#endif
#endif
/**
* @defgroup desc_types Types used for creating API constructs
* @{
*/
/** Used with ecs_entity_init */
typedef struct ecs_entity_desc_t {
ecs_entity_t entity; /* Optional existing entity handle. */
const char *name; /* Name of the entity. If no entity is provided, an
* entity with this name will be looked up first. When
* an entity is provided, the name will be verified
* with the existing entity. */
const char *sep; /* Optional custom separator for hierarchical names */
const char *root_sep; /* Optional, used for identifiers relative to root */
const char *symbol; /* Optional entity symbol. A symbol is an unscoped
* identifier that can be used to lookup an entity. The
* primary use case for this is to associate the entity
* with a language identifier, such as a type or
* function name, where these identifiers differ from
* the name they are registered with in flecs. For
* example, C type "EcsPosition" might be registered
* as "flecs.components.transform.Position", with the
* symbol set to "EcsPosition". */
bool use_low_id; /* When set to true, a low id (typically reserved for
* components) will be used to create the entity, if
* no id is specified. */
/* Array of ids to add to the new or existing entity. */
ecs_id_t add[ECS_MAX_ADD_REMOVE];
/* Array of ids to remove from the existing entity. */
ecs_id_t remove[ECS_MAX_ADD_REMOVE];
/* String expression with components to add */
const char *add_expr;
/* String expression with components to remove */
const char *remove_expr;
} ecs_entity_desc_t;
/** Used with ecs_component_init. */
typedef struct ecs_component_desc_t {
ecs_entity_desc_t entity; /* Parameters for component entity */
size_t size; /* Component size */
size_t alignment; /* Component alignment */
} ecs_component_desc_t;
/** Used with ecs_type_init. */
typedef struct ecs_type_desc_t {
ecs_entity_desc_t entity; /* Parameters for type entity */
ecs_id_t ids[ECS_MAX_ADD_REMOVE]; /* Ids to include in type */
const char *ids_expr; /* Id expression to include in type */
} ecs_type_desc_t;
/** Used with ecs_filter_init. */
typedef struct ecs_filter_desc_t {
/* Terms of the filter. If a filter has more terms than
* ECS_TERM_CACHE_SIZE use terms_buffer */
ecs_term_t terms[ECS_TERM_CACHE_SIZE];
/* For filters with lots of terms an outside array can be provided. */
ecs_term_t *terms_buffer;
int32_t terms_buffer_count;
/* Substitute IsA relationships by default. If true, any term with 'set'
* assigned to DefaultSet will be modified to Self|SuperSet(IsA). */
bool substitute_default;
/* Filter expression. Should not be set at the same time as terms array */
const char *expr;
/* Optional name of filter, used for debugging. If a filter is created for
* a system, the provided name should match the system name. */
const char *name;
} ecs_filter_desc_t;
/** Used with ecs_query_init. */
typedef struct ecs_query_desc_t {
/* Filter for the query */
ecs_filter_desc_t filter;
/* Component to be used by order_by */
ecs_entity_t order_by_component;
/* Callback used for ordering query results. If order_by_id is 0, the
* pointer provided to the callback will be NULL. If the callback is not
* set, results will not be ordered. */
ecs_order_by_action_t order_by;
/* Id to be used by group_by. This id is passed to the group_by function and
* can be used identify the part of an entity type that should be used for
* grouping. */
ecs_id_t group_by_id;
/* Callback used for grouping results. If the callback is not set, results
* will not be grouped. When set, this callback will be used to calculate a
* "rank" for each entity (table) based on its components. This rank is then
* used to sort entities (tables), so that entities (tables) of the same
* rank are "grouped" together when iterated. */
ecs_group_by_action_t group_by;
/* Context to pass to group_by */
void *group_by_ctx;
/* Function to free group_by_ctx */
ecs_ctx_free_t group_by_ctx_free;
/* If set, the query will be created as a subquery. A subquery matches at
* most a subset of its parent query. Subqueries do not directly receive
* (table) notifications from the world. Instead parent queries forward
* results to subqueries. This can improve matching performance, as fewer
* queries need to be matched with new tables.
* Subqueries can be nested. */
ecs_query_t *parent;
/* INTERNAL PROPERTY - system to be associated with query. Do not set, as
* this will change in future versions. */
ecs_entity_t system;
} ecs_query_desc_t;
/** Used with ecs_trigger_init. */
typedef struct ecs_trigger_desc_t {
/* Entity to associate with trigger */
ecs_entity_desc_t entity;
/* Term specifying the id to subscribe for */
ecs_term_t term;
/* Filter expression. May only contain a single term. If this field is set,
* the term field is ignored. */
const char *expr;
/* Events to trigger on (OnAdd, OnRemove, OnSet, UnSet) */
ecs_entity_t events[ECS_TRIGGER_DESC_EVENT_COUNT_MAX];
/* Callback to invoke on an event */
ecs_iter_action_t callback;
/* Associate with entity */
ecs_entity_t self;
/* User context to pass to callback */
void *ctx;
/* Context to be used for language bindings */
void *binding_ctx;
/* Callback to free ctx */
ecs_ctx_free_t ctx_free;
/* Callback to free binding_ctx */
ecs_ctx_free_t binding_ctx_free;
} ecs_trigger_desc_t;
/** Used with ecs_observer_init. */
typedef struct ecs_observer_desc_t {
/* Entity to associate with observer */
ecs_entity_desc_t entity;
/* Filter for observer */
ecs_filter_desc_t filter;
/* Events to observe (OnAdd, OnRemove, OnSet, UnSet) */
ecs_entity_t events[ECS_TRIGGER_DESC_EVENT_COUNT_MAX];
/* Callback to invoke on an event */
ecs_iter_action_t callback;
/* Associate with entity */
ecs_entity_t self;
/* User context to pass to callback */
void *ctx;
/* Context to be used for language bindings */
void *binding_ctx;
/* Callback to free ctx */
ecs_ctx_free_t ctx_free;
/* Callback to free binding_ctx */
ecs_ctx_free_t binding_ctx_free;
} ecs_observer_desc_t;
/** @} */
/**
* @defgroup builtin_components Builtin components
* @{
*/
/** A (string) identifier. */
typedef struct EcsIdentifier {
char *value;
ecs_size_t length;
uint64_t hash;
} EcsIdentifier;
/** Component information. */
typedef struct EcsComponent {
ecs_size_t size; /* Component size */
ecs_size_t alignment; /* Component alignment */
} EcsComponent;
/** Component that stores an ecs_type_t.
* This component allows for the creation of entities that represent a type, and
* therefore the creation of named types. This component is typically
* instantiated by ECS_TYPE. */
typedef struct EcsType {
ecs_type_t type; /* Preserved nested types */
ecs_type_t normalized; /* Union of type and nested AND types */
} EcsType;
/** Component that contains lifecycle callbacks for a component. */
struct EcsComponentLifecycle {
ecs_xtor_t ctor; /* ctor */
ecs_xtor_t dtor; /* dtor */
ecs_copy_t copy; /* copy assignment */
ecs_move_t move; /* move assignment */
void *ctx; /* User defined context */
/* Ctor + copy */
ecs_copy_ctor_t copy_ctor;
/* Ctor + move */
ecs_move_ctor_t move_ctor;
/* Ctor + move + dtor (or move_ctor + dtor).
* This combination is typically used when a component is moved from one
* location to a new location, like when it is moved to a new table. If
* not set explicitly it will be derived from other callbacks. */
ecs_move_ctor_t ctor_move_dtor;
/* Move + dtor.
* This combination is typically used when a component is moved from one
* location to an existing location, like what happens during a remove. If
* not set explicitly it will be derived from other callbacks. */
ecs_move_ctor_t move_dtor;
/* Callback that is invoked when an instance of the component is set. This
* callback is invoked before triggers are invoked, and enable the component
* to respond to changes on itself before others can. */
ecs_on_set_t on_set;
};
/** Component that stores reference to trigger */
typedef struct EcsTrigger {
const ecs_trigger_t *trigger;
} EcsTrigger;
/** Component that stores reference to observer */
typedef struct EcsObserver {
const ecs_observer_t *observer;
} EcsObserver;
/** Component for storing a query */
typedef struct EcsQuery {
ecs_query_t *query;
} EcsQuery;
/** @} */
/**
* @defgroup misc_types Miscalleneous types
* @{
*/
/** Type that contains information about the world. */
typedef struct ecs_world_info_t {
ecs_entity_t last_component_id; /* Last issued component entity id */
ecs_entity_t last_id; /* Last issued entity id */
ecs_entity_t min_id; /* First allowed entity id */
ecs_entity_t max_id; /* Last allowed entity id */
FLECS_FLOAT delta_time_raw; /* Raw delta time (no time scaling) */
FLECS_FLOAT delta_time; /* Time passed to or computed by ecs_progress */
FLECS_FLOAT time_scale; /* Time scale applied to delta_time */
FLECS_FLOAT target_fps; /* Target fps */
FLECS_FLOAT frame_time_total; /* Total time spent processing a frame */
FLECS_FLOAT system_time_total; /* Total time spent in systems */
FLECS_FLOAT merge_time_total; /* Total time spent in merges */
FLECS_FLOAT world_time_total; /* Time elapsed in simulation */
FLECS_FLOAT world_time_total_raw; /* Time elapsed in simulation (no scaling) */
int32_t frame_count_total; /* Total number of frames */
int32_t merge_count_total; /* Total number of merges */
int32_t pipeline_build_count_total; /* Total number of pipeline builds */
int32_t systems_ran_frame; /* Total number of systems ran in last frame */
} ecs_world_info_t;
/** @} */
/* Only include deprecated definitions if deprecated addon is required */
#ifdef FLECS_DEPRECATED
/**
* @file deprecated.h
* @brief The deprecated addon contains deprecated operations.
*/
#ifdef FLECS_DEPRECATED
#ifndef FLECS_DEPRECATED_H
#define FLECS_DEPRECATED_H
#ifdef __cplusplus
extern "C" {
#endif
#define ecs_typeid(T) FLECS__E##T
#define ecs_entity(T) ecs_typeid(T)
#define ecs_add_trait(world, entity, component, trait)\
ecs_add_entity(world, entity, ecs_trait(component, trait))
#define ecs_remove_trait(world, entity, component, trait)\
ecs_remove_entity(world, entity, ecs_trait(component, trait))
#define ecs_has_trait(world, entity, component, trait)\
ecs_has_entity(world, entity, ecs_trait(component, trait))
#ifndef FLECS_LEGACY
#define ecs_set_trait(world, entity, component, trait, ...)\
ecs_set_ptr_w_entity(world, entity, ecs_trait(ecs_typeid(component), ecs_typeid(trait)), sizeof(trait), &(trait)__VA_ARGS__)
#define ecs_set_trait_tag(world, entity, trait, component, ...)\
ecs_set_ptr_w_entity(world, entity, ecs_trait(ecs_typeid(component), trait), sizeof(component), &(component)__VA_ARGS__)
#endif
#define ecs_get_trait(world, entity, component, trait)\
((trait*)ecs_get_id(world, entity, ecs_trait(ecs_typeid(component), ecs_typeid(trait))))
#define ecs_get_trait_tag(world, entity, trait, component)\
((component*)ecs_get_id(world, entity, ecs_trait(ecs_typeid(component), trait)))
#define ECS_PREFAB(world, id, ...) \
ecs_entity_t id = ecs_entity_init(world, &(ecs_entity_desc_t){\
.name = #id,\
.add_expr = #__VA_ARGS__,\
.add = {EcsPrefab}\
});\
(void)id
#define ECS_ENTITY_EXTERN(id)\
extern ecs_entity_t id
#define ECS_ENTITY_DECLARE(id)\
ecs_entity_t id
#define ECS_ENTITY_DEFINE(world, id, ...)\
id = ecs_entity_init(world, &(ecs_entity_desc_t){\
.name = #id,\
.add_expr = #__VA_ARGS__\
});\
#define ECS_ENTITY(world, id, ...)\
ecs_entity_t id = ecs_entity_init(world, &(ecs_entity_desc_t){\
.name = #id,\
.add_expr = #__VA_ARGS__\
});\
(void)id
#define ECS_COMPONENT(world, id) \
ecs_id_t ecs_id(id) = ecs_component_init(world, &(ecs_component_desc_t){\
.entity = {\
.name = #id,\
.symbol = #id\
},\
.size = sizeof(id),\
.alignment = ECS_ALIGNOF(id)\
});\
ECS_VECTOR_STACK(FLECS__T##id, ecs_entity_t, &FLECS__E##id, 1);\
(void)ecs_id(id);\
(void)ecs_type(id)
#define ECS_COMPONENT_EXTERN(id)\
extern ecs_id_t ecs_id(id);\
extern ecs_type_t ecs_type(id)
#define ECS_COMPONENT_DECLARE(id)\
ecs_id_t ecs_id(id);\
ecs_type_t ecs_type(id)
#define ECS_COMPONENT_DEFINE(world, id)\
ecs_id(id) = ecs_component_init(world, &(ecs_component_desc_t){\
.entity = {\
.entity = ecs_id(id),\
.name = #id,\
.symbol = #id\
},\
.size = sizeof(id),\
.alignment = ECS_ALIGNOF(id)\
});\
ecs_type(id) = ecs_type_from_entity(world, ecs_id(id))
#define ECS_TAG(world, id)\
ecs_entity_t id = ecs_entity_init(world, &(ecs_entity_desc_t){\
.name = #id,\
.symbol = #id\
});\
ECS_VECTOR_STACK(FLECS__T##id, ecs_entity_t, &id, 1);\
(void)ecs_type(id)
#define ECS_TAG_EXTERN(id)\
extern ecs_entity_t id;\
extern ecs_type_t ecs_type(id)
#define ECS_TAG_DECLARE(id)\
ecs_entity_t id;\
ecs_type_t ecs_type(id)
#define ECS_TAG_DEFINE(world, id)\
id = ecs_entity_init(world, &(ecs_entity_desc_t){\
.name = #id,\
.symbol = #id\
});\
ecs_type(id) = ecs_type_from_entity(world, id)
#define ECS_TYPE(world, id, ...) \
ecs_entity_t id = ecs_type_init(world, &(ecs_type_desc_t){\
.entity.name = #id,\
.ids_expr = #__VA_ARGS__\
});\
ecs_type_t ecs_type(id) = ecs_type_from_entity(world, id);\
(void)id;\
(void)ecs_type(id)
#define ECS_TYPE_EXTERN(id)\
extern ecs_entity_t id;\
extern ecs_type_t ecs_type(id)
#define ECS_TYPE_DECLARE(id)\
ecs_entity_t id;\
ecs_type_t ecs_type(id)
#define ECS_TYPE_DEFINE(world, id, ...)\
id = ecs_type_init(world, &(ecs_type_desc_t){\
.entity.name = #id,\
.ids_expr = #__VA_ARGS__\
});\
ecs_type(id) = ecs_type_from_entity(world, id);\
#define ECS_COLUMN(it, type, id, column)\
ecs_id_t ecs_id(type) = ecs_column_entity(it, column);\
ecs_type_t ecs_type(type) = ecs_column_type(it, column);\
type *id = ecs_column(it, type, column);\
(void)ecs_id(type);\
(void)ecs_type(type);\
(void)id
#define ECS_COLUMN_COMPONENT(it, id, column)\
ecs_id_t ecs_id(id) = ecs_column_entity(it, column);\
ecs_type_t ecs_type(id) = ecs_column_type(it, column);\
(void)ecs_id(id);\
(void)ecs_type(id)
#define ECS_COLUMN_ENTITY(it, id, column)\
ecs_entity_t id = ecs_column_entity(it, column);\
ecs_type_t ecs_type(id) = ecs_column_type(it, column);\
(void)id;\
(void)ecs_type(id)
#define ECS_IMPORT_COLUMN(it, module, column) \
module *ecs_module_ptr(module) = ecs_column(it, module, column);\
ecs_assert(ecs_module_ptr(module) != NULL, ECS_MODULE_UNDEFINED, #module);\
ecs_assert(!ecs_is_owned(it, column), ECS_COLUMN_IS_NOT_SHARED, NULL);\
module ecs_module(module) = *ecs_module_ptr(module);\
module##ImportHandles(ecs_module(module))
#define ecs_new(world, type) ecs_new_w_type(world, ecs_type(type))
#define ecs_bulk_new(world, component, count)\
ecs_bulk_new_w_type(world, ecs_type(component), count)
#define ecs_add(world, entity, component)\
ecs_add_type(world, entity, ecs_type(component))
#define ecs_remove(world, entity, type)\
ecs_remove_type(world, entity, ecs_type(type))
#define ecs_add_remove(world, entity, to_add, to_remove)\
ecs_add_remove_type(world, entity, ecs_type(to_add), ecs_type(to_remove))
#define ecs_has(world, entity, type)\
ecs_has_type(world, entity, ecs_type(type))
#define ecs_owns(world, entity, type, owned)\
ecs_type_owns_type(world, ecs_get_type(world, entity), ecs_type(type), owned)
#define ecs_set_ptr_w_id(world, entity, size, ptr)\
ecs_set_id(world, entity, size, ptr)
#define ecs_owns_entity(world, entity, id, owned)\
ecs_type_has_id(world, ecs_get_type(world, entity), id, owned)
typedef ecs_ids_t ecs_entities_t;
ECS_DEPRECATED("deprecated functionality")
FLECS_API
void ecs_dim_type(
ecs_world_t *world,
ecs_type_t type,
int32_t entity_count);
ECS_DEPRECATED("use ecs_new_w_id")
FLECS_API
ecs_entity_t ecs_new_w_type(
ecs_world_t *world,
ecs_type_t type);
ECS_DEPRECATED("use ecs_bulk_new_w_id")
FLECS_API
const ecs_entity_t* ecs_bulk_new_w_type(
ecs_world_t *world,
ecs_type_t type,
int32_t count);
ECS_DEPRECATED("use ecs_add_id")
FLECS_API
void ecs_add_type(
ecs_world_t *world,
ecs_entity_t entity,
ecs_type_t type);
ECS_DEPRECATED("use ecs_remove_id")
FLECS_API
void ecs_remove_type(
ecs_world_t *world,
ecs_entity_t entity,
ecs_type_t type);
ECS_DEPRECATED("use ecs_add_remove_id")
FLECS_API
void ecs_add_remove_type(
ecs_world_t *world,
ecs_entity_t entity,
ecs_type_t to_add,
ecs_type_t to_remove);
ECS_DEPRECATED("use ecs_has_id")
FLECS_API
bool ecs_has_type(
const ecs_world_t *world,
ecs_entity_t entity,
ecs_type_t type);
ECS_DEPRECATED("use ecs_count_filter")
FLECS_API
int32_t ecs_count_type(
const ecs_world_t *world,
ecs_type_t type);
ECS_DEPRECATED("use ecs_count_id")
FLECS_API
int32_t ecs_count_entity(
const ecs_world_t *world,
ecs_id_t entity);
ECS_DEPRECATED("use ecs_count_filter")
FLECS_API
int32_t ecs_count_w_filter(
const ecs_world_t *world,
const ecs_filter_t *filter);
ECS_DEPRECATED("use ecs_set_component_actions_w_entity")
FLECS_API
void ecs_set_component_actions_w_entity(
ecs_world_t *world,
ecs_id_t id,
EcsComponentLifecycle *actions);
ECS_DEPRECATED("use ecs_new_w_id")
FLECS_API
ecs_entity_t ecs_new_w_entity(
ecs_world_t *world,
ecs_id_t id);
ECS_DEPRECATED("use ecs_bulk_new_w_id")
FLECS_API
const ecs_entity_t* ecs_bulk_new_w_entity(
ecs_world_t *world,
ecs_id_t id,
int32_t count);
ECS_DEPRECATED("use ecs_enable_component_w_id")
FLECS_API
void ecs_enable_component_w_entity(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id,
bool enable);
ECS_DEPRECATED("use ecs_is_component_enabled_w_id")
FLECS_API
bool ecs_is_component_enabled_w_entity(
const ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
ECS_DEPRECATED("use ecs_get_id")
FLECS_API
const void* ecs_get_w_id(
const ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
ECS_DEPRECATED("use ecs_get_id")
FLECS_API
const void* ecs_get_w_entity(
const ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
ECS_DEPRECATED("use ecs_get_ref_w_id")
FLECS_API
const void* ecs_get_ref_w_entity(
const ecs_world_t *world,
ecs_ref_t *ref,
ecs_entity_t entity,
ecs_id_t id);
ECS_DEPRECATED("use ecs_get_mut_id")
FLECS_API
void* ecs_get_mut_w_entity(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id,
bool *is_added);
ECS_DEPRECATED("use ecs_get_mut_id")
FLECS_API
void* ecs_get_mut_w_id(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id,
bool *is_added);
ECS_DEPRECATED("use ecs_modified_id")
FLECS_API
void ecs_modified_w_entity(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
ECS_DEPRECATED("use ecs_modified_id")
void ecs_modified_w_id(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
ECS_DEPRECATED("use ecs_set_id")
FLECS_API
ecs_entity_t ecs_set_ptr_w_entity(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id,
size_t size,
const void *ptr);
ECS_DEPRECATED("use ecs_has_id")
FLECS_API
bool ecs_has_entity(
const ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
ECS_DEPRECATED("use ecs_id_str")
FLECS_API
size_t ecs_entity_str(
const ecs_world_t *world,
ecs_id_t entity,
char *buffer,
size_t buffer_len);
ECS_DEPRECATED("use ecs_get_object_w_id(world, entity, EcsChildOf, id)")
FLECS_API
ecs_entity_t ecs_get_parent_w_entity(
const ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
#define ecs_get_parent(world, entity, component)\
ecs_get_parent_w_entity(world, entity, ecs_typeid(component))
ECS_DEPRECATED("use ecs_get_stage_id")
FLECS_API
int32_t ecs_get_thread_index(
const ecs_world_t *world);
ECS_DEPRECATED("use ecs_add_id")
FLECS_API
void ecs_add_entity(
ecs_world_t *world,
ecs_entity_t entity,
ecs_entity_t entity_add);
ECS_DEPRECATED("use ecs_remove_id")
FLECS_API
void ecs_remove_entity(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
ECS_DEPRECATED("use ecs_add_id / ecs_remove_id")
FLECS_API
void ecs_add_remove_entity(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id_add,
ecs_id_t id_remove);
ECS_DEPRECATED("use ecs_type_from_id")
FLECS_API
ecs_type_t ecs_type_from_entity(
ecs_world_t *world,
ecs_entity_t entity);
ECS_DEPRECATED("use ecs_type_to_id")
FLECS_API
ecs_entity_t ecs_type_to_entity(
const ecs_world_t *world,
ecs_type_t type);
ECS_DEPRECATED("use ecs_type_has_id")
FLECS_API
bool ecs_type_has_entity(
const ecs_world_t *world,
ecs_type_t type,
ecs_entity_t entity);
ECS_DEPRECATED("use ecs_type_has_id")
FLECS_API
bool ecs_type_owns_entity(
const ecs_world_t *world,
ecs_type_t type,
ecs_entity_t entity,
bool owned);
ECS_DEPRECATED("use ecs_term/ecs_term_w_size")
FLECS_API
void* ecs_column_w_size(
const ecs_iter_t *it,
size_t size,
int32_t column);
#define ecs_column(it, T, column)\
ecs_column_w_size(it, sizeof(T), column)
ECS_DEPRECATED("no replacement")
FLECS_API
int32_t ecs_column_index_from_name(
const ecs_iter_t *it,
const char *name);
ECS_DEPRECATED("use ecs_term_source")
FLECS_API
ecs_entity_t ecs_column_source(
const ecs_iter_t *it,
int32_t column);
ECS_DEPRECATED("use ecs_term_id")
FLECS_API
ecs_entity_t ecs_column_entity(
const ecs_iter_t *it,
int32_t column);
ECS_DEPRECATED("no replacement")
FLECS_API
ecs_type_t ecs_column_type(
const ecs_iter_t *it,
int32_t column);
ECS_DEPRECATED("use ecs_term_size")
FLECS_API
size_t ecs_column_size(
const ecs_iter_t *it,
int32_t column);
ECS_DEPRECATED("use ecs_term_is_readonly")
FLECS_API
bool ecs_is_readonly(
const ecs_iter_t *it,
int32_t column);
ECS_DEPRECATED("use ecs_term_is_owned")
FLECS_API
bool ecs_is_owned(
const ecs_iter_t *it,
int32_t column);
ECS_DEPRECATED("use ecs_iter_column")
FLECS_API
void* ecs_table_column(
const ecs_iter_t *it,
int32_t column);
ECS_DEPRECATED("use ecs_iter_column_size")
FLECS_API
size_t ecs_table_column_size(
const ecs_iter_t *it,
int32_t column);
ECS_DEPRECATED("use ecs_iter_column_index")
FLECS_API
int32_t ecs_table_component_index(
const ecs_iter_t *it,
ecs_entity_t component);
ECS_DEPRECATED("use ecs_set_rate")
FLECS_API
ecs_entity_t ecs_set_rate_filter(
ecs_world_t *world,
ecs_entity_t filter,
int32_t rate,
ecs_entity_t source);
ECS_DEPRECATED("use ecs_query_init")
FLECS_API
ecs_query_t* ecs_query_new(
ecs_world_t *world,
const char *sig);
ECS_DEPRECATED("use ecs_query_init")
FLECS_API
ecs_query_t* ecs_subquery_new(
ecs_world_t *world,
ecs_query_t *parent,
const char *sig);
ECS_DEPRECATED("use ecs_query_deinit")
FLECS_API
void ecs_query_free(
ecs_query_t *query);
ECS_DEPRECATED("use ecs_query_init")
FLECS_API
void ecs_query_order_by(
ecs_world_t *world,
ecs_query_t *query,
ecs_entity_t component,
ecs_order_by_action_t compare);
ECS_DEPRECATED("use ecs_query_init")
FLECS_API
void ecs_query_group_by(
ecs_world_t *world,
ecs_query_t *query,
ecs_entity_t component,
ecs_group_by_action_t rank_action);
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
/**
* @defgroup type_roles Type Roles
* @{
*/
/* Type roles are used to indicate the role of an entity in a type. If no flag
* is specified, the entity is interpreted as a regular component or tag. Flags
* are added to an entity by using a bitwise OR (|). An example:
*
* ecs_entity_t parent = ecs_new(world, 0);
* ecs_entity_t child = ecs_add_pair(world, e, EcsChildOf, parent);
*
* Type flags can also be used in type expressions, without the ECS prefix:
*
* ECS_ENTITY(world, Base, Position);
* ECS_TYPE(world, InstanceOfBase, (IsA, Base));
*/
/** Role bit added to roles to differentiate between roles and generations */
#define ECS_ROLE (1ull << 63)
/** Cases are used to switch between mutually exclusive components */
FLECS_API extern const ecs_id_t ECS_CASE;
/** Switches allow for fast switching between mutually exclusive components */
FLECS_API extern const ecs_id_t ECS_SWITCH;
/** The PAIR role indicates that the entity is a pair identifier. */
FLECS_API extern const ecs_id_t ECS_PAIR;
/** Enforce ownership of a component */
FLECS_API extern const ecs_id_t ECS_OWNED;
/** Track whether component is enabled or not */
FLECS_API extern const ecs_id_t ECS_DISABLED;
/** @} */
/**
* @defgroup builtin_tags Builtin Tags
* @{
*/
/** Root scope for builtin flecs entities */
FLECS_API extern const ecs_entity_t EcsFlecs;
/* Core module scope */
FLECS_API extern const ecs_entity_t EcsFlecsCore;
/* Entity associated with world (used for "attaching" components to world) */
FLECS_API extern const ecs_entity_t EcsWorld;
/* Wildcard entity ("*"), Used in expressions to indicate wildcard matching */
FLECS_API extern const ecs_entity_t EcsWildcard;
/* This entity (".", "This"). Used in expressions to indicate This entity */
FLECS_API extern const ecs_entity_t EcsThis;
/* Can be added to relation to indicate it is transitive. */
FLECS_API extern const ecs_entity_t EcsTransitive;
/* Can be added to component/relation to indicate it is final. Final components/
* relations cannot be derived from using an IsA relationship. Queries will not
* attempt to substitute a component/relationship with IsA subsets if they are
* final. */
FLECS_API extern const ecs_entity_t EcsFinal;
/* Can be added to relation to indicate that it should never hold data, even
* when it or the relation object is a component. */
FLECS_API extern const ecs_entity_t EcsTag;
/* Tag to indicate name identifier */
FLECS_API extern const ecs_entity_t EcsName;
/* Tag to indicate symbol identifier */
FLECS_API extern const ecs_entity_t EcsSymbol;
/* Used to express parent-child relations. */
FLECS_API extern const ecs_entity_t EcsChildOf;
/* Used to express is-a relations. An IsA relation indicates that the subject is
* a subset of the relation object. For example:
* ecs_add_pair(world, Freighter, EcsIsA, SpaceShip);
*
* Here the Freighter is considered a subset of SpaceShip, meaning that every
* entity that has Freighter also implicitly has SpaceShip.
*
* The subject of the relation (Freighter) inherits all components from any IsA
* object (SpaceShip). If SpaceShip has a component "MaxSpeed", this component
* will also appear on Freighter after adding (IsA, SpaceShip) to Freighter.
*
* The IsA relation is transitive. This means that if SpaceShip IsA Machine,
* then Freigther is also a Machine. As a result, Freighter also inherits all
* components from Machine, just as it does from SpaceShip.
*
* Queries/filters may implicitly substitute predicates, subjects and objects
* with their IsA super/subsets. This behavior can be controlled by the "set"
* member of a query term.
*/
FLECS_API extern const ecs_entity_t EcsIsA;
/* Tag added to module entities */
FLECS_API extern const ecs_entity_t EcsModule;
/* Tag added to prefab entities. Any entity with this tag is automatically
* ignored by filters/queries, unless EcsPrefab is explicitly added. */
FLECS_API extern const ecs_entity_t EcsPrefab;
/* When this tag is added to an entity it is skipped by all queries/filters */
FLECS_API extern const ecs_entity_t EcsDisabled;
/* Tag added to builtin/framework entites. This tag can be used to automatically
* hide components/systems that are part of infrastructure code vs. application
* code. The tag has no functional implications. */
FLECS_API extern const ecs_entity_t EcsHidden;
/* Event. Triggers when an id (component, tag, pair) is added to an entity */
FLECS_API extern const ecs_entity_t EcsOnAdd;
/* Event. Triggers when an id (component, tag, pair) is removed from an entity */
FLECS_API extern const ecs_entity_t EcsOnRemove;
/* Event. Triggers when a component is set for an entity */
FLECS_API extern const ecs_entity_t EcsOnSet;
/* Event. Triggers when a component is unset for an entity */
FLECS_API extern const ecs_entity_t EcsUnSet;
/* Event. Triggers when an entity is deleted.
* Also used as relation for defining cleanup behavior, see:
* https://github.com/SanderMertens/flecs/blob/master/docs/Relations.md#relation-cleanup-properties
*/
FLECS_API extern const ecs_entity_t EcsOnDelete;
/* Event. Triggers when a table is created. */
// FLECS_API extern const ecs_entity_t EcsOnCreateTable;
/* Event. Triggers when a table is deleted. */
// FLECS_API extern const ecs_entity_t EcsOnDeleteTable;
/* Event. Triggers when a table becomes empty (doesn't trigger on creation). */
// FLECS_API extern const ecs_entity_t EcsOnTableEmpty;
/* Event. Triggers when a table becomes non-empty. */
// FLECS_API extern const ecs_entity_t EcsOnTableNonEmpty;
/* Event. Triggers when a trigger is created. */
// FLECS_API extern const ecs_entity_t EcsOnCreateTrigger;
/* Event. Triggers when a trigger is deleted. */
// FLECS_API extern const ecs_entity_t EcsOnDeleteTrigger;
/* Event. Triggers when observable is deleted. */
// FLECS_API extern const ecs_entity_t EcsOnDeleteObservable;
/* Event. Triggers when lifecycle methods for a component are registered */
// FLECS_API extern const ecs_entity_t EcsOnComponentLifecycle;
/* Relationship used to define what should happen when an entity is deleted that
* is added to other entities. For details see:
* https://github.com/SanderMertens/flecs/blob/master/docs/Relations.md#relation-cleanup-properties
*/
FLECS_API extern const ecs_entity_t EcsOnDeleteObject;
/* Specifies that a component/relation/object of relation should be removed when
* it is deleted. Must be combined with EcsOnDelete or EcsOnDeleteObject. */
FLECS_API extern const ecs_entity_t EcsRemove;
/* Specifies that entities with a component/relation/object of relation should
* be deleted when the component/relation/object of relation is deleted. Must be
* combined with EcsOnDelete or EcsOnDeleteObject. */
FLECS_API extern const ecs_entity_t EcsDelete;
/* Specifies that whenever a component/relation/object of relation is deleted an
* error should be thrown. Must be combined with EcsOnDelete or
* EcsOnDeleteObject. */
FLECS_API extern const ecs_entity_t EcsThrow;
/* System module tags */
FLECS_API extern const ecs_entity_t EcsOnDemand;
FLECS_API extern const ecs_entity_t EcsMonitor;
FLECS_API extern const ecs_entity_t EcsDisabledIntern;
FLECS_API extern const ecs_entity_t EcsInactive;
/* Pipeline module tags */
FLECS_API extern const ecs_entity_t EcsPipeline;
FLECS_API extern const ecs_entity_t EcsPreFrame;
FLECS_API extern const ecs_entity_t EcsOnLoad;
FLECS_API extern const ecs_entity_t EcsPostLoad;
FLECS_API extern const ecs_entity_t EcsPreUpdate;
FLECS_API extern const ecs_entity_t EcsOnUpdate;
FLECS_API extern const ecs_entity_t EcsOnValidate;
FLECS_API extern const ecs_entity_t EcsPostUpdate;
FLECS_API extern const ecs_entity_t EcsPreStore;
FLECS_API extern const ecs_entity_t EcsOnStore;
FLECS_API extern const ecs_entity_t EcsPostFrame;
/* Value used to quickly check if component is builtin. This is used to quickly
* filter out tables with builtin components (for example for ecs_delete) */
#define EcsLastInternalComponentId (ecs_id(EcsSystem))
/* The first user-defined component starts from this id. Ids up to this number
* are reserved for builtin components */
#define EcsFirstUserComponentId (32)
/* The first user-defined entity starts from this id. Ids up to this number
* are reserved for builtin components */
#define EcsFirstUserEntityId (ECS_HI_COMPONENT_ID + 128)
/** @} */
/**
* @defgroup convenience_macros Convenience Macro's
* @{
*/
/* Macro's rely on variadic arguments which are C99 and above */
#ifndef FLECS_LEGACY
/** Declare a component.
* Example:
* ECS_COMPONENT(world, Position);
*/
#ifndef ECS_COMPONENT
#define ECS_COMPONENT(world, id) \
ecs_id_t ecs_id(id) = ecs_component_init(world, &(ecs_component_desc_t){\
.entity = {\
.name = #id,\
.symbol = #id\
},\
.size = sizeof(id),\
.alignment = ECS_ALIGNOF(id)\
});\
(void)ecs_id(id);
#endif
/** Declare an extern component variable.
* Use this macro in a header when defining a component identifier globally.
* Must be used together with ECS_COMPONENT_DECLARE.
*
* Example:
* ECS_COMPONENT_EXTERN(Position);
*/
#ifndef ECS_COMPONENT_EXTERN
#define ECS_COMPONENT_EXTERN(id)\
extern ecs_id_t ecs_id(id);
#endif
/** Declare a component variable outside the scope of a function.
* Use this macro in a header when defining a component identifier globally.
* Must be used together with ECS_COMPONENT_DEFINE.
*
* Example:
* ECS_COMPONENT_IMPL(Position);
*/
#ifndef ECS_COMPONENT_DECLARE
#define ECS_COMPONENT_DECLARE(id)\
ecs_id_t ecs_id(id);
#endif
/** Define a component, store in variable outside of the current scope.
* Use this macro in a header when defining a component identifier globally.
* Must be used together with ECS_COMPONENT_DECLARE.
*
* Example:
* ECS_COMPONENT_DEFINE(world, Position);
*/
#ifndef ECS_COMPONENT_DEFINE
#define ECS_COMPONENT_DEFINE(world, id)\
ecs_id(id)= ecs_component_init(world, &(ecs_component_desc_t){\
.entity = {\
.entity = ecs_id(id),\
.name = #id,\
.symbol = #id\
},\
.size = sizeof(id),\
.alignment = ECS_ALIGNOF(id)\
});
#endif
/** Declare a tag.
* Example:
* ECS_TAG(world, MyTag);
*/
#ifndef ECS_TAG
#define ECS_TAG(world, id)\
ECS_ENTITY(world, id, 0);
#endif
/** Declare an extern tag variable.
* Use this macro in a header when defining a tag identifier globally.
* Must be used together with ECS_TAG_DECLARE.
*
* Example:
* ECS_TAG_EXTERN(Enemy);
*/
#ifndef ECS_TAG_EXTERN
#define ECS_TAG_EXTERN(id)\
extern ecs_entity_t id;
#endif
/** Declare a tag variable outside the scope of a function.
* Use this macro in a header when defining a tag identifier globally.
* Must be used together with ECS_TAG_DEFINE.
*
* Example:
* ECS_TAG_DECLARE(Enemy);
*/
#ifndef ECS_TAG_DECLARE
#define ECS_TAG_DECLARE(id)\
ecs_entity_t id;
#endif
/** Define a tag, store in variable outside of the current scope.
* Use this macro in a header when defining a tag identifier globally.
* Must be used together with ECS_TAG_DECLARE.
*
* Example:
* ECS_TAG_DEFINE(world, Enemy);
*/
#ifndef ECS_TAG_DEFINE
#define ECS_TAG_DEFINE(world, id)\
id = ecs_entity_init(world, &(ecs_entity_desc_t){\
.name = #id\
});
#endif
/** Declare a constructor.
* Example:
* ECS_CTOR(MyType, ptr, { ptr->value = NULL; });
*/
#define ECS_CTOR(type, var, ...)\
ECS_XTOR_IMPL(type, ctor, var, __VA_ARGS__)
/** Declare a destructor.
* Example:
* ECS_DTOR(MyType, ptr, { free(ptr->value); });
*/
#define ECS_DTOR(type, var, ...)\
ECS_XTOR_IMPL(type, dtor, var, __VA_ARGS__)
/** Declare a copy action.
* Example:
* ECS_COPY(MyType, dst, src, { dst->value = strdup(src->value); });
*/
#define ECS_COPY(type, dst_var, src_var, ...)\
ECS_COPY_IMPL(type, dst_var, src_var, __VA_ARGS__)
/** Declare a move action.
* Example:
* ECS_MOVE(MyType, dst, src, { dst->value = src->value; src->value = 0; });
*/
#define ECS_MOVE(type, dst_var, src_var, ...)\
ECS_MOVE_IMPL(type, dst_var, src_var, __VA_ARGS__)
/** Declare an on_set action.
* Example:
* ECS_ON_SET(MyType, ptr, { printf("%d\n", ptr->value); });
*/
#define ECS_ON_SET(type, ptr, ...)\
ECS_ON_SET_IMPL(type, ptr, __VA_ARGS__)
/* Map from typename to function name of component lifecycle action */
#define ecs_ctor(type) type##_ctor
#define ecs_dtor(type) type##_dtor
#define ecs_copy(type) type##_copy
#define ecs_move(type) type##_move
#define ecs_on_set(type) type##_on_set
#endif /* FLECS_LEGACY */
/** @} */
/**
* @defgroup world_api World API
* @{
*/
/** Create a new world.
* A world manages all the ECS data and supporting infrastructure. Applications
* must have at least one world. Entities, component and system handles are
* local to a world and should not be shared between worlds.
*
* This operation creates a world with all builtin modules loaded.
*
* @return A new world object
*/
FLECS_API
ecs_world_t* ecs_init(void);
/** Same as ecs_init, but with minimal set of modules loaded.
*
* @return A new world object
*/
FLECS_API
ecs_world_t* ecs_mini(void);
/** Create a new world with arguments.
* Same as ecs_init, but allows passing in command line arguments. These can be
* used to dynamically enable flecs features to an application. Currently these
* arguments are not used.
*
* @return A new world object
*/
FLECS_API
ecs_world_t* ecs_init_w_args(
int argc,
char *argv[]);
/** Delete a world.
* This operation deletes the world, and everything it contains.
*
* @param world The world to delete.
* @return Zero if successful, non-zero if failed.
*/
FLECS_API
int ecs_fini(
ecs_world_t *world);
/** Register action to be executed when world is destroyed.
* Fini actions are typically used when a module needs to clean up before a
* world shuts down.
*
* @param world The world.
* @param action The function to execute.
* @param ctx Userdata to pass to the function */
FLECS_API
void ecs_atfini(
ecs_world_t *world,
ecs_fini_action_t action,
void *ctx);
/** Register action to be executed once after frame.
* Post frame actions are typically used for calling operations that cannot be
* invoked during iteration, such as changing the number of threads.
*
* @param world The world.
* @param action The function to execute.
* @param ctx Userdata to pass to the function */
FLECS_API
void ecs_run_post_frame(
ecs_world_t *world,
ecs_fini_action_t action,
void *ctx);
/** Signal exit
* This operation signals that the application should quit. It will cause
* ecs_progress to return false.
*
* @param world The world to quit.
*/
FLECS_API
void ecs_quit(
ecs_world_t *world);
/** Return whether a quit has been signaled.
*
* @param world The world.
*/
FLECS_API
bool ecs_should_quit(
const ecs_world_t *world);
/** Register ctor, dtor, copy & move actions for component.
*
* @param world The world.
* @param component The component id for which to register the actions
* @param actions Type that contains the component actions.
*/
FLECS_API
void ecs_set_component_actions_w_id(
ecs_world_t *world,
ecs_id_t id,
EcsComponentLifecycle *actions);
#ifndef FLECS_LEGACY
#define ecs_set_component_actions(world, component, ...)\
ecs_set_component_actions_w_id(world, ecs_id(component), &(EcsComponentLifecycle)__VA_ARGS__)
#endif
/** Set a world context.
* This operation allows an application to register custom data with a world
* that can be accessed anywhere where the application has the world object.
*
* @param world The world.
* @param ctx A pointer to a user defined structure.
*/
FLECS_API
void ecs_set_context(
ecs_world_t *world,
void *ctx);
/** Get the world context.
* This operation retrieves a previously set world context.
*
* @param world The world.
* @return The context set with ecs_set_context. If no context was set, the
* function returns NULL.
*/
FLECS_API
void* ecs_get_context(
const ecs_world_t *world);
/** Get world info.
*
* @param world The world.
* @return Pointer to the world info. This pointer will remain valid for as long
* as the world is valid.
*/
FLECS_API
const ecs_world_info_t* ecs_get_world_info(
const ecs_world_t *world);
/** Dimension the world for a specified number of entities.
* This operation will preallocate memory in the world for the specified number
* of entities. Specifying a number lower than the current number of entities in
* the world will have no effect. Note that this function does not allocate
* memory for components (use ecs_dim_type for that).
*
* @param world The world.
* @param entity_count The number of entities to preallocate.
*/
FLECS_API
void ecs_dim(
ecs_world_t *world,
int32_t entity_count);
/** Set a range for issueing new entity ids.
* This function constrains the entity identifiers returned by ecs_new to the
* specified range. This operation can be used to ensure that multiple processes
* can run in the same simulation without requiring a central service that
* coordinates issueing identifiers.
*
* If id_end is set to 0, the range is infinite. If id_end is set to a non-zero
* value, it has to be larger than id_start. If id_end is set and ecs_new is
* invoked after an id is issued that is equal to id_end, the application will
* abort.
*
* @param world The world.
* @param id_start The start of the range.
* @param id_end The end of the range.
*/
FLECS_API
void ecs_set_entity_range(
ecs_world_t *world,
ecs_entity_t id_start,
ecs_entity_t id_end);
/** Enable/disable range limits.
* When an application is both a receiver of range-limited entities and a
* producer of range-limited entities, range checking needs to be temporarily
* disabled when inserting received entities. Range checking is disabled on a
* stage, so setting this value is thread safe.
*
* @param world The world.
* @param enable True if range checking should be enabled, false to disable.
* @return The previous value.
*/
FLECS_API
bool ecs_enable_range_check(
ecs_world_t *world,
bool enable);
/** Enable world locking while in progress.
* When locking is enabled, Flecs will lock the world while in progress. This
* allows applications to interact with the world from other threads without
* running into race conditions.
*
* This is a better alternative to applications putting a lock around calls to
* ecs_progress, since ecs_progress can sleep when FPS control is enabled,
* which is time during which other threads could perform work.
*
* Locking must be enabled before applications can use the ecs_lock and
* ecs_unlock functions. Locking is turned off by default.
*
* @param world The world.
* @param enable True if locking is to be enabled.
* @result The previous value of the setting.
*/
FLECS_API
bool ecs_enable_locking(
ecs_world_t *world,
bool enable);
/** Locks the world.
* See ecs_enable_locking for details.
*
* @param world The world.
*/
FLECS_API
void ecs_lock(
ecs_world_t *world);
/** Unlocks the world.
* See ecs_enable_locking for details.
*
* @param world The world.
*/
FLECS_API
void ecs_unlock(
ecs_world_t *world);
/** Wait until world becomes available.
* When a non-flecs thread needs to interact with the world, it should invoke
* this function to wait until the world becomes available (as in, it is not
* progressing the frame). Invoking this function guarantees that the thread
* will not starve. (as opposed to simply taking the world lock).
*
* An application will have to invoke ecs_end_wait after this function returns.
*
* @param world The world.
*/
FLECS_API
void ecs_begin_wait(
ecs_world_t *world);
/** Release world after calling ecs_begin_wait.
* This operation should be invoked after invoking ecs_begin_wait, and will
* release the world back to the thread running the main loop.
*
* @param world The world.
*/
FLECS_API
void ecs_end_wait(
ecs_world_t *world);
/** Enable or disable tracing.
* This will enable builtin tracing. For tracing to work, it will have to be
* compiled in which requires defining one of the following macro's:
*
* ECS_TRACE_0 - All tracing is disabled
* ECS_TRACE_1 - Enable tracing level 1
* ECS_TRACE_2 - Enable tracing level 2 and below
* ECS_TRACE_3 - Enable tracing level 3 and below
*
* If no tracing level is defined and this is a debug build, ECS_TRACE_3 will
* have been automatically defined.
*
* The provided level corresponds with the tracing level. If -1 is provided as
* value, warnings are disabled. If -2 is provided, errors are disabled as well.
*
* @param level Desired tracing level.
*/
FLECS_API
void ecs_tracing_enable(
int level);
/** Measure frame time.
* Frame time measurements measure the total time passed in a single frame, and
* how much of that time was spent on systems and on merging.
*
* Frame time measurements add a small constant-time overhead to an application.
* When an application sets a target FPS, frame time measurements are enabled by
* default.
*
* @param world The world.
* @param enable Whether to enable or disable frame time measuring.
*/
FLECS_API void ecs_measure_frame_time(
ecs_world_t *world,
bool enable);
/** Measure system time.
* System time measurements measure the time spent in each system.
*
* System time measurements add overhead to every system invocation and
* therefore have a small but measurable impact on application performance.
* System time measurements must be enabled before obtaining system statistics.
*
* @param world The world.
* @param enable Whether to enable or disable system time measuring.
*/
FLECS_API void ecs_measure_system_time(
ecs_world_t *world,
bool enable);
/** Set target frames per second (FPS) for application.
* Setting the target FPS ensures that ecs_progress is not invoked faster than
* the specified FPS. When enabled, ecs_progress tracks the time passed since
* the last invocation, and sleeps the remaining time of the frame (if any).
*
* This feature ensures systems are ran at a consistent interval, as well as
* conserving CPU time by not running systems more often than required.
*
* Note that ecs_progress only sleeps if there is time left in the frame. Both
* time spent in flecs as time spent outside of flecs are taken into
* account.
*
* @param world The world.
* @param fps The target FPS.
*/
FLECS_API
void ecs_set_target_fps(
ecs_world_t *world,
FLECS_FLOAT fps);
/** Get current number of threads. */
FLECS_API
int32_t ecs_get_threads(
ecs_world_t *world);
/** @} */
/**
* @defgroup creating_entities Creating Entities
* @{
*/
/** Create new entity id.
* This operation returns an unused entity id.
*
* @param world The world.
* @return The new entity id.
*/
FLECS_API
ecs_entity_t ecs_new_id(
ecs_world_t *world);
/** Create new component id.
* This operation returns a new component id. Component ids are the same as
* entity ids, but can make use of the [1 .. ECS_HI_COMPONENT_ID] range.
*
* This operation does not recycle ids.
*
* @param world The world.
* @return The new component id.
*/
FLECS_API
ecs_entity_t ecs_new_component_id(
ecs_world_t *world);
/** Create new entity.
* This operation creates a new entity with a single entity in its type. The
* entity may contain type roles. This operation recycles ids.
*
* @param world The world.
* @param entity The entity to initialize the new entity with.
* @return The new entity.
*/
FLECS_API
ecs_entity_t ecs_new_w_id(
ecs_world_t *world,
ecs_id_t id);
/** Create a new entity.
* This operation creates a new entity with a single component in its type. This
* operation accepts variables created with ECS_COMPONENT, ECS_TYPE and ECS_TAG.
* This operation recycles ids.
*
* @param world The world.
* @param component The component.
* @return The new entity.
*/
#ifndef ecs_new
#define ecs_new(world, type) ecs_new_w_id(world, ecs_id(type))
#endif
/** Find or create an entity.
* This operation creates a new entity, or modifies an existing one. When a name
* is set in the ecs_entity_desc_t::name field and ecs_entity_desc_t::entity is
* not set, the operation will first attempt to find an existing entity by that
* name. If no entity with that name can be found, it will be created.
*
* If both a name and entity handle are provided, the operation will check if
* the entity name matches with the provided name. If the names do not match,
* the function will fail and return 0.
*
* If an id to a non-existing entity is provided, that entity id become alive.
*
* See the documentation of ecs_entity_desc_t for more details.
*
* @param world The world.
* @param desc Entity init parameters.
* @return A handle to the new or existing entity, or 0 if failed.
*/
FLECS_API
ecs_entity_t ecs_entity_init(
ecs_world_t *world,
const ecs_entity_desc_t *desc);
/** Find or create a component.
* This operation creates a new component, or finds an existing one. The find or
* create behavior is the same as ecs_entity_init.
*
* When an existing component is found, the size and alignment are verified with
* the provided values. If the values do not match, the operation will fail.
*
* See the documentation of ecs_component_desc_t for more details.
*
* @param world The world.
* @param desc Component init parameters.
* @return A handle to the new or existing component, or 0 if failed.
*/
FLECS_API
ecs_entity_t ecs_component_init(
ecs_world_t *world,
const ecs_component_desc_t *desc);
/** Create a new type entity.
* This operation creates a new type entity, or finds an existing one. The find
* or create behavior is the same as ecs_entity_init.
*
* A type entity is an entity with the EcsType component. This component
* a pointer to an ecs_type_t, which allows for the creation of named types.
* Named types are used in a few places, such as for pipelines and filter terms
* with the EcsAndFrom or EcsOrFrom operators.
*
* When an existing type entity is found, its types are verified with the
* provided values. If the values do not match, the operation will fail.
*
* See the documentation of ecs_type_desc_t for more details.
*
* @param world The world.
* @param desc Type entity init parameters.
* @return A handle to the new or existing type, or 0 if failed.
*/
FLECS_API
ecs_entity_t ecs_type_init(
ecs_world_t *world,
const ecs_type_desc_t *desc);
/** Create N new entities.
* This operation is the same as ecs_new_w_id, but creates N entities
* instead of one and does not recycle ids.
*
* @param world The world.
* @param entity The entity.
* @param count The number of entities to create.
* @return The first entity id of the newly created entities.
*/
FLECS_API
const ecs_entity_t* ecs_bulk_new_w_id(
ecs_world_t *world,
ecs_id_t id,
int32_t count);
/** Create N new entities and initialize components.
* This operation is the same as ecs_bulk_new_w_type, but initializes components
* with the provided component array. Instead of a type the operation accepts an
* array of component identifiers (entities). The component arrays need to be
* provided in the same order as the component identifiers.
*
* @param world The world.
* @param components Array with component identifiers.
* @param count The number of entities to create.
* @param data The data arrays to initialize the components with.
* @return The first entity id of the newly created entities.
*/
FLECS_API
const ecs_entity_t* ecs_bulk_new_w_data(
ecs_world_t *world,
int32_t count,
const ecs_ids_t *component_ids,
void *data);
/** Create N new entities.
* This operation is the same as ecs_new, but creates N entities
* instead of one and does not recycle ids.
*
* @param world The world.
* @param component The component type.
* @param count The number of entities to create.
* @return The first entity id of the newly created entities.
*/
#ifndef ecs_bulk_new
#define ecs_bulk_new(world, component, count)\
ecs_bulk_new_w_id(world, ecs_id(component), count)
#endif
/** Clone an entity
* This operation clones the components of one entity into another entity. If
* no destination entity is provided, a new entity will be created. Component
* values are not copied unless copy_value is true.
*
* @param world The world.
* @param dst The entity to copy the components to.
* @param src The entity to copy the components from.
* @param copy_value If true, the value of components will be copied to dst.
* @return The destination entity.
*/
FLECS_API
ecs_entity_t ecs_clone(
ecs_world_t *world,
ecs_entity_t dst,
ecs_entity_t src,
bool copy_value);
/** @} */
/**
* @defgroup adding_removing Adding & Removing
* @{
*/
/** Add an entity to an entity.
* This operation adds a single entity to the type of an entity. Type roles may
* be used in combination with the added entity. If the entity already has the
* entity, this operation will have no side effects.
*
* @param world The world.
* @param entity The entity.
* @param id The id to add.
*/
FLECS_API
void ecs_add_id(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
/** Add a component, type or tag to an entity.
* This operation adds a type to an entity. The resulting type of the entity
* will be the union of the previous type and the provided type. If the added
* type did not have new components, this operation will have no side effects.
*
* This operation accepts variables declared by ECS_COMPONENT, ECS_TYPE and
* ECS_TAG.
*
* @param world The world.
* @param entity The entity.
* @param component The component, type or tag to add.
*/
#ifndef ecs_add
#define ecs_add(world, entity, component)\
ecs_add_id(world, entity, ecs_id(component))
#endif
/** Remove an entity from an entity.
* This operation removes a single entity from the type of an entity. Type roles
* may be used in combination with the added entity. If the entity does not have
* the entity, this operation will have no side effects.
*
* @param world The world.
* @param entity The entity.
* @param id The id to remove.
*/
FLECS_API
void ecs_remove_id(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
/** Remove a component, type or tag from an entity.
* This operation removes a type to an entity. The resulting type of the entity
* will be the difference of the previous type and the provided type. If the
* type did not overlap with the entity type, this operation has no side effects.
*
* This operation accepts variables declared by ECS_COMPONENT, ECS_TYPE and
* ECS_TAG.
*
* @param world The world.
* @param entity The entity.
* @param component The component, type or tag to remove.
*/
#ifndef ecs_remove
#define ecs_remove(world, entity, type)\
ecs_remove_id(world, entity, ecs_id(type))
#endif
/** @} */
/**
* @defgroup enabling_disabling Enabling & Disabling components.
* @{
*/
/** Enable or disable component.
* Enabling or disabling a component does not add or remove a component from an
* entity, but prevents it from being matched with queries. This operation can
* be useful when a component must be temporarily disabled without destroying
* its value. It is also a more performant operation for when an application
* needs to add/remove components at high frequency, as enabling/disabling is
* cheaper than a regular add or remove.
*
* @param world The world.
* @param entity The entity.
* @param id The component.
* @param enable True to enable the component, false to disable.
*/
FLECS_API
void ecs_enable_component_w_id(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id,
bool enable);
#define ecs_enable_component(world, entity, T, enable)\
ecs_enable_component_w_id(world, entity, ecs_id(T), enable)
/** Test if component is enabled.
* Test whether a component is currently enabled or disabled. This operation
* will return true when the entity has the component and if it has not been
* disabled by ecs_enable_component.
*
* @param world The world.
* @param entity The entity.
* @param id The component.
* @return True if the component is enabled, otherwise false.
*/
FLECS_API
bool ecs_is_component_enabled_w_id(
const ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
#define ecs_is_component_enabled(world, entity, T)\
ecs_is_component_enabled_w_id(world, entity, ecs_id(T))
/** @} */
/**
* @defgroup pairs Pairs
* @{
*/
/** Make a pair identifier.
* This function is equivalent to using the ecs_pair macro, and is added for
* convenience to make it easier for non C/C++ bindings to work with pairs.
*
* @param relation The relation of the pair.
* @param object The object of the pair.
*/
FLECS_API
ecs_id_t ecs_make_pair(
ecs_entity_t relation,
ecs_entity_t object);
/** This operation accepts regular entities. For passing in component identifiers
* use ecs_typeid, like this:
*
* ecs_new_w_pair(world, ecs_id(relation), object)
*
* @param world The world.
* @param relation The relation part of the pair to add.
* @param object The object part of the pair to add.
* @return The new entity.
*/
#define ecs_new_w_pair(world, relation, object)\
ecs_new_w_id(world, ecs_pair(relation, object))
/** Add a pair.
* This operation adds a pair to an entity. A pair is a combination of a
* relation and an object, can can be used to store relationships between
* entities. Example:
*
* subject = Alice, relation = Likes, object = Bob
*
* This operation accepts regular entities. For passing in component identifiers
* use ecs_typeid, like this:
*
* ecs_add_pair(world, subject, ecs_id(relation), object)
*
* @param world The world.
* @param subject The entity to which to add the pair.
* @param relation The relation part of the pair to add.
* @param object The object part of the pair to add.
*/
#define ecs_add_pair(world, subject, relation, object)\
ecs_add_id(world, subject, ecs_pair(relation, object))
/** Remove a pair.
* This operation removes a pair from an entity. A pair is a combination of a
* relation and an object, can can be used to store relationships between
* entities. Example:
*
* subject = Alice, relation = Likes, object = Bob
*
* This operation accepts regular entities. For passing in component identifiers
* use ecs_typeid, like this:
*
* ecs_remove_pair(world, subject, ecs_id(relation), object)
*
* @param world The world.
* @param subject The entity from which to remove the pair.
* @param relation The relation part of the pair to remove.
* @param object The object part of the pair to remove.
*/
#define ecs_remove_pair(world, subject, relation, object)\
ecs_remove_id(world, subject, ecs_pair(relation, object))
/** Test for a pair.
* This operation tests if an entity has a pair. This operation accepts regular
* entities. For passing in component identifiers use ecs_typeid, like this:
*
* ecs_has_pair(world, subject, ecs_id(relation), object)
*
* @param world The world.
* @param subject The entity from which to remove the pair.
* @param relation The relation part of the pair to remove.
* @param object The object part of the pair to remove.
*/
#define ecs_has_pair(world, subject, relation, object)\
ecs_has_id(world, subject, ecs_pair(relation, object))
#ifndef FLECS_LEGACY
/** Set relation of pair.
* This operation sets data for a pair, where the relation determines the type.
* A pair is a combination of a relation and an object, can can be used to store
* relationships between entities.
*
* Pairs can contain data if either the relation or object of the pair are a
* component. If both are a component, the relation takes precedence.
*
* If this operation is used with a pair where the relation is not a component,
* it will fail. The object part of the pair expects a regular entity. To pass
* a component as object, use ecs_typeid like this:
*
* ecs_set_pair(world, subject, relation, ecs_id(object))
*
* @param world The world.
* @param subject The entity on which to set the pair.
* @param relation The relation part of the pair. This must be a component.
* @param object The object part of the pair.
*/
#define ecs_set_pair(world, subject, relation, object, ...)\
ecs_set_id(world, subject,\
ecs_pair(ecs_id(relation), object),\
sizeof(relation), &(relation)__VA_ARGS__)
/** Set object of pair.
* This operation sets data for a pair, where the object determines the type.
* A pair is a combination of a relation and an object, can can be used to store
* relationships between entities.
*
* Pairs can contain data if either the relation or object of the pair are a
* component. If both are a component, the relation takes precedence.
*
* If this operation is used with a pair where the object is not a component,
* it will fail. The relation part of the pair expects a regular entity. To pass
* a component as relation, use ecs_typeid like this:
*
* ecs_set_pair_object(world, subject, ecs_id(relation), object)
*
* @param world The world.
* @param subject The entity.
* @param relation The relation part of the pair.
* @param object The object part of the pair. This must be a component.
*/
#define ecs_set_pair_object(world, subject, relation, object, ...)\
ecs_set_id(world, subject,\
ecs_pair(relation, ecs_id(object)),\
sizeof(object), &(object)__VA_ARGS__)
#define ecs_get_mut_pair(world, subject, relation, object, is_added)\
(ECS_CAST(relation*, ecs_get_mut_id(world, subject,\
ecs_pair(ecs_id(relation), object), is_added)))
#define ecs_get_mut_pair_object(world, subject, relation, object, is_added)\
(ECS_CAST(object*, ecs_get_mut_id(world, subject,\
ecs_pair(relation, ecs_id(object)), is_added)))
#define ecs_modified_pair(world, subject, relation, object)\
ecs_modified_id(world, subject, ecs_pair(relation, object))
#endif
/** Get relation of pair.
* This operation obtains the value of a pair, where the relation determines the
* type. A pair is a combination of a relation and an object, can can be used to
* store relationships between entities.
*
* Pairs can contain data if either the relation or object of the pair are a
* component. If both are a component, the relation takes precedence.
*
* If this operation is used with a pair where the relation is not a component,
* it will fail. The object part of the pair expects a regular entity. To pass
* a component as relation, use ecs_typeid like this:
*
* ecs_get_pair(world, subject, relation, ecs_id(object))
*
* @param world The world.
* @param subject The entity.
* @param relation The relation part of the pair. Must be a component.
* @param object The object part of the pair.
*/
#define ecs_get_pair(world, subject, relation, object)\
(ECS_CAST(relation*, ecs_get_id(world, subject,\
ecs_pair(ecs_id(relation), object))))
/** Get object of pair.
* This operation obtains the value of a pair, where the object determines the
* type. A pair is a combination of a relation and an object, can can be used to
* store relationships between entities.
*
* Pairs can contain data if either the relation or object of the pair are a
* component. If both are a component, the relation takes precedence.
*
* If this operation is used with a pair where the object is not a component,
* it will fail. The relation part of the pair expects a regular entity. To pass
* a component as relation, use ecs_typeid like this:
*
* ecs_get_pair_object(world, subject, ecs_id(relation), object)
*
* @param world The world.
* @param subject The entity.
* @param relation The relation part of the pair. Must be a component.
* @param object The object part of the pair.
*/
#define ecs_get_pair_object(world, subject, relation, object)\
(ECS_CAST(object*, ecs_get_id(world, subject,\
ecs_pair(relation, ecs_id(object)))))
/** @} */
/**
* @defgroup deleting Deleting Entities and components
* @{
*/
/** Clear all components.
* This operation will clear all components from an entity but will not delete
* the entity itself. This effectively prevents the entity id from being
* recycled.
*
* @param world The world.
* @param entity The entity.
*/
FLECS_API
void ecs_clear(
ecs_world_t *world,
ecs_entity_t entity);
/** Delete an entity.
* This operation will delete an entity and all of its components. The entity id
* will be recycled. Repeatedly calling ecs_delete without ecs_new,
* ecs_new_w_id or ecs_new_w_type will cause a memory leak as it will cause
* the list with ids that can be recycled to grow unbounded.
*
* @param world The world.
* @param entity The entity.
*/
FLECS_API
void ecs_delete(
ecs_world_t *world,
ecs_entity_t entity);
/** Delete children of an entity.
* This operation deletes all children of a parent entity. If a parent has no
* children this operation has no effect.
*
* @param world The world.
* @param parent The parent entity.
*/
FLECS_API
void ecs_delete_children(
ecs_world_t *world,
ecs_entity_t parent);
/** @} */
/**
* @defgroup getting Getting Components
* @{
*/
/** Get an immutable pointer to a component.
* This operation obtains a const pointer to the requested component. The
* operation accepts the component entity id.
*
* @param world The world.
* @param entity The entity.
* @param component The entity id of the component to obtain.
* @return The component pointer, NULL if the entity does not have the component.
*/
FLECS_API
const void* ecs_get_id(
const ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
/** Get an immutable pointer to a component.
* Same as ecs_get_id, but accepts the typename of a component.
*
* @param world The world.
* @param entity The entity.
* @param id The component to obtain.
* @return The component pointer, NULL if the entity does not have the component.
*/
#define ecs_get(world, entity, component)\
(ECS_CAST(const component*, ecs_get_id(world, entity, ecs_id(component))))
/* -- Get cached pointer -- */
/** Get an immutable reference to a component.
* This operation is similar to ecs_get_id but it stores temporary
* information in a `ecs_ref_t` value which allows subsequent lookups to be
* faster.
*
* @param world The world.
* @param ref Pointer to a ecs_ref_t value. Must be initialized.
* @param entity The entity.
* @param component The entity id of the component to obtain.
* @return The component pointer, NULL if the entity does not have the component.
*/
FLECS_API
const void* ecs_get_ref_w_id(
const ecs_world_t *world,
ecs_ref_t *ref,
ecs_entity_t entity,
ecs_id_t id);
/** Get an immutable reference to a component.
* Same as ecs_get_ref_w_id, but accepts the typename of a component.
*
* @param world The world.
* @param ref Pointer to a ecs_ref_t value. Must be initialized.
* @param entity The entity.
* @param id The component to obtain.
* @return The component pointer, NULL if the entity does not have the component.
*/
#define ecs_get_ref(world, ref, entity, component)\
(ECS_CAST(const component*, ecs_get_ref_w_id(world, ref, entity, ecs_id(component))))
/** Get case for switch.
* This operation gets the current case for the specified switch. If the current
* switch is not set for the entity, the operation will return 0.
*
* @param world The world.
* @param e The entity.
* @param sw The switch for which to obtain the case.
* @return The current case for the specified switch.
*/
FLECS_API
ecs_entity_t ecs_get_case(
const ecs_world_t *world,
ecs_entity_t e,
ecs_entity_t sw);
/** @} */
/**
* @defgroup setting Setting Components
* @{
*/
/** Get a mutable pointer to a component.
* This operation is similar to ecs_get_id but it returns a mutable
* pointer. If this operation is invoked from inside a system, the entity will
* be staged and a pointer to the staged component will be returned.
*
* If the entity did not yet have the component, the component will be added by
* this operation. In this case the is_added out parameter will be set to true.
*
* @param world The world.
* @param entity The entity.
* @param id The entity id of the component to obtain.
* @param is_added Out parameter that returns true if the component was added.
* @return The component pointer.
*/
FLECS_API
void* ecs_get_mut_id(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id,
bool *is_added);
/** Get a mutable pointer to a component.
* Same as ecs_get_mut_id but accepts a component typename.
*
* @param world The world.
* @param entity The entity.
* @param T The component type to obtain.
* @param is_added Out parameter that returns true if the component was added.
* @return The component pointer.
*/
#define ecs_get_mut(world, entity, T, is_added)\
(ECS_CAST(T*, ecs_get_mut_id(world, entity, ecs_id(T), is_added)))
/** Emplace a component.
* Emplace is similar to get_mut except that the component constructor is not
* invoked for the returned pointer, allowing the component to be "constructed"
* directly in the storage.
*
* Emplace can only be used if the entity does not yet have the component. If
* the entity has the component, the operation will fail.
*
* @param world The world.
* @param entity The entity.
* @param id The component to obtain.
* @return The (uninitialized) component pointer.
*/
FLECS_API
void* ecs_emplace_id(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
/** Emplace a component.
* Same as ecs_emplace_id but accepts a typename.
*
* @param world The world.
* @param entity The entity.
* @param id The component to obtain.
* @return The (uninitialized) component pointer.
*/
#define ecs_emplace(world, entity, T)\
(ECS_CAST(T*, ecs_emplace_id(world, entity, ecs_id(T))))
/** Signal that a component has been modified.
* This operation allows an application to signal to Flecs that a component has
* been modified. As a result, OnSet systems will be invoked.
*
* This operation is commonly used together with ecs_get_mut.
*
* @param world The world.
* @param entity The entity.
* @param component The entity id of the component that was modified.
*/
FLECS_API
void ecs_modified_id(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
/** Signal that a component has been modified.
* Same as ecs_modified_id but accepts a component typename.
*
* @param world The world.
* @param entity The entity.
* @param id The component that was modified.
*/
#define ecs_modified(world, entity, component)\
ecs_modified_id(world, entity, ecs_id(component))
/** Set the value of a component.
* This operation allows an application to set the value of a component. The
* operation is equivalent to calling ecs_get_mut and ecs_modified.
*
* If the provided entity is 0, a new entity will be created.
*
* @param world The world.
* @param entity The entity.
* @param component The entity id of the component to set.
* @param size The size of the pointer to the value.
* @param ptr The pointer to the value.
* @return The entity. A new entity if no entity was provided.
*/
FLECS_API
ecs_entity_t ecs_set_id(
ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id,
size_t size,
const void *ptr);
/** Set the value of a component.
* Same as ecs_set_id, but accepts a component typename and
* automatically determines the type size.
*
* @param world The world.
* @param entity The entity.
* @param component The component to set.
* @param size The size of the pointer to the value.
* @return The entity. A new entity if no entity was provided.
*/
#define ecs_set_ptr(world, entity, component, ptr)\
ecs_set_id(world, entity, ecs_id(component), sizeof(component), ptr)
/* Conditionally skip macro's as compound literals and variadic arguments are
* not supported in C89 */
#ifndef FLECS_LEGACY
/** Set the value of a component.
* Same as ecs_set_ptr, but accepts a value instead of a pointer to a value.
*
* @param world The world.
* @param entity The entity.
* @param component The component to set.
* @param size The size of the pointer to the value.
* @return The entity. A new entity if no entity was provided.
*/
#define ecs_set(world, entity, component, ...)\
ecs_set_id(world, entity, ecs_id(component), sizeof(component), &(component)__VA_ARGS__)
#endif
/** @} */
/**
* @defgroup singleton Singleton components
* @{
*/
#define ecs_singleton_get(world, comp)\
ecs_get(world, ecs_id(comp), comp)
#ifndef FLECS_LEGACY
#define ecs_singleton_set(world, comp, ...)\
ecs_set(world, ecs_id(comp), comp, __VA_ARGS__)
#endif
#define ecs_singleton_get_mut(world, comp)\
ecs_get_mut(world, ecs_id(comp), comp, NULL)
#define ecs_singleton_modified(world, comp)\
ecs_modified(world, ecs_id(comp), comp)
/**
* @defgroup testing Testing Components
* @{
*/
/** Test if an entity has an entity.
* This operation returns true if the entity has the provided entity in its
* type.
*
* @param world The world.
* @param entity The entity.
* @param id The id to test for.
* @return True if the entity has the entity, false if not.
*/
FLECS_API
bool ecs_has_id(
const ecs_world_t *world,
ecs_entity_t entity,
ecs_id_t id);
/** Test if an entity has a component, type or tag.
* This operation returns true if the entity has the provided component, type or
* tag in its type.
*
* @param world The world.
* @param entity The entity.
* @param type The component, type or tag to test for.
* @return True if the entity has the type, false if not.
*/
#ifndef ecs_has
#define ecs_has(world, entity, type)\
ecs_has_id(world, entity, ecs_id(type))
#endif
/** Test if an entity owns an entity.
* This operation is similar to ecs_has, but will return false if the entity
* does not own the entity, which is the case if the entity is defined on
* a base entity with an IsA pair.
*
* @param world The world.
* @param entity The entity.
* @param type The entity to test for.
* @return True if the entity owns the entity, false if not.
*/
#ifndef ecs_owns
#define ecs_owns(world, entity, has, owned)\
ecs_type_has_id(world, ecs_get_type(world, entity), has, owned)
#endif
/** @} */
/**
* @defgroup metadata Entity Metadata
* @{
*/
/** Test whether an entity is valid.
* Entities that are valid can be used with API functions.
*
* An entity is valid if it is not 0 and if it is alive. If the provided id has
* a role or a pair, the contents of the role or the pair will be checked for
* validity.
*
* is_valid will return true for ids that don't exist (alive or not alive). This
* allows for using ids that have never been created by ecs_new or similar. In
* this the function differs from ecs_is_alive, which will return false for
* entities that do not yet exist.
*
* The operation will return false for an id that exists and is not alive, as
* using this id with an API operation would cause it to assert.
*
* @param world The world.
* @param e The entity.
* @return True if the entity is valid, false if the entity is not valid.
*/
FLECS_API
bool ecs_is_valid(
const ecs_world_t *world,
ecs_entity_t e);
/** Test whether an entity is alive.
* An entity is alive when it has been returned by ecs_new (or similar) or if
* it is not empty (componentts have been explicitly added to the id).
*
* @param world The world.
* @param e The entity.
* @return True if the entity is alive, false if the entity is not alive.
*/
FLECS_API
bool ecs_is_alive(
const ecs_world_t *world,
ecs_entity_t e);
/** Get alive identifier.
* In some cases an application may need to work with identifiers from which
* the generation has been stripped. A typical scenario in which this happens is
* when iterating relationships in an entity type.
*
* For example, when obtaining the parent id from a ChildOf relation, the parent
* (object part of the pair) will have been stored in a 32 bit value, which
* cannot store the entity generation. This function can retrieve the identifier
* with the current generation for that id.
*
* If the provided identifier is not alive, the function will return 0.
*
* @param world The world.
* @param e The for which to obtain the current alive entity id.
* @return The alive entity id if there is one, or 0 if the id is not alive.
*/
FLECS_API
ecs_entity_t ecs_get_alive(
const ecs_world_t *world,
ecs_entity_t e);
/** Ensure id is alive.
* This operation ensures that the provided id is alive. This is useful in
* scenarios where an application has an existing id that has not been created
* with ecs_new (such as a global constant or an id from a remote application).
*
* Before this operation the id must either not yet exist, or must exist with
* the same generation as the provided id. If the id has been recycled and the
* provided id does not have the same generation count, the function will fail.
*
* If the provided entity is not alive, and the provided generation count is
* equal to the current generation (which is the future generation when the id
* will be recycled) the id will become alive again.
*
* If the provided id has a non-zero generation count and the id does not exist
* in the world, the id will be created with the specified generation.
*
* This behavior ensures that an application can use ecs_ensure to track the
* lifecycle of an id without explicitly having to create it. It also protects
* against reviving an id with a generation count that was not yet due.
*
* @param world The world.
* @param entity The entity id to make alive.
*/
FLECS_API
void ecs_ensure(
ecs_world_t *world,
ecs_entity_t e);
/** Test whether an entity exists.
* Similar as ecs_is_alive, but ignores entity generation count.
*
* @param world The world.
* @param e The entity.
* @return True if the entity exists, false if the entity does not exist.
*/
FLECS_API
bool ecs_exists(
const ecs_world_t *world,
ecs_entity_t e);
/** Get the type of an entity.
*
* @param world The world.
* @param entity The entity.
* @return The type of the entity, NULL if the entity has no components.
*/
FLECS_API
ecs_type_t ecs_get_type(
const ecs_world_t *world,
ecs_entity_t entity);
/** Get the table of an entity.
*
* @param world The world.
* @param entity The entity.
* @return The table of the entity, NULL if the entity has no components.
*/
FLECS_API
ecs_table_t* ecs_get_table(
const ecs_world_t *world,
ecs_entity_t entity);
/** Get the typeid of an entity.
*
* @param world The world.
* @param entity The entity.
* @return The typeid of the entity.
*/
FLECS_API
ecs_entity_t ecs_get_typeid(
const ecs_world_t *world,
ecs_id_t e);
/** Get the name of an entity.
* This will return the name as specified in the EcsName component.
*
* @param world The world.
* @param entity The entity.
* @return The type of the entity, NULL if the entity has no name.
*/
FLECS_API
const char* ecs_get_name(
const ecs_world_t *world,
ecs_entity_t entity);
/** Get the symbol of an entity.
* This will return the name as specified in the EcsSymbol component.
*
* @param world The world.
* @param entity The entity.
* @return The type of the entity, NULL if the entity has no name.
*/
FLECS_API
const char* ecs_get_symbol(
const ecs_world_t *world,
ecs_entity_t entity);
/** Set the name of an entity.
* This will set or overwrite the name of an entity. If no entity is provided,
* a new entity will be created.
*
* The name will be stored in the EcsName component.
*
* @param world The world.
* @param entity The entity.
* @param name The entity's name.
* @return The provided entity, or a new entity if 0 was provided.
*/
FLECS_API
ecs_entity_t ecs_set_name(
ecs_world_t *world,
ecs_entity_t entity,
const char *name);
/** Set the symbol of an entity.
* This will set or overwrite the symbol of an entity. If no entity is provided,
* a new entity will be created.
*
* The symbol will be stored in the EcsName component.
*
* @param world The world.
* @param entity The entity.
* @param symbol The entity's symbol.
* @return The provided entity, or a new entity if 0 was provided.
*/
FLECS_API
ecs_entity_t ecs_set_symbol(
ecs_world_t *world,
ecs_entity_t entity,
const char *symbol);
/** Convert type role to string.
* This operation converts a type role to a string.
*
* @param world The world.
* @param entity The entity containing the type role.
* @return The type role string, or NULL if no type role is provided.
*/
FLECS_API
const char* ecs_role_str(
ecs_entity_t entity);
/** Convert id to string.
* This operation interprets the structure of an id and converts it to a string.
*
* @param world The world.
* @param id The id to convert to a string.
* @param buffer The buffer in which to store the string.
* @param buffer_len The length of the provided buffer.
* @return The number of characters required to write the string.
*/
FLECS_API
size_t ecs_id_str(
const ecs_world_t *world,
ecs_id_t entity,
char *buffer,
size_t buffer_len);
/** Get the object of a relation.
* This will return a object of the entity for the specified relation. The index
* allows for iterating through the objects, if a single entity has multiple
* objects for the same relation.
*
* If the index is larger than the total number of instances the entity has for
* the relation, the operation will return 0.
*
* @param world The world.
* @param entity The entity.
* @param rel The relation between the entity and the object.
* @param index The index of the relation instance.
* @return The object for the relation at the specified index.
*/
FLECS_API
ecs_entity_t ecs_get_object(
const ecs_world_t *world,
ecs_entity_t entity,
ecs_entity_t rel,
int32_t index);
/** Enable or disable an entity.
* This operation enables or disables an entity by adding or removing the
* EcsDisabled tag. A disabled entity will not be matched with any systems,
* unless the system explicitly specifies the EcsDisabled tag.
*
* @param world The world.
* @param entity The entity to enable or disable.
* @param enabled true to enable the entity, false to disable.
*/
FLECS_API
void ecs_enable(
ecs_world_t *world,
ecs_entity_t entity,
bool enabled);
/** Count entities that have the specified id.
* Returns the number of entities that have the specified id.
*
* @param world The world.
* @param entity The id to search for.
* @return The number of entities that have the id.
*/
FLECS_API
int32_t ecs_count_id(
const ecs_world_t *world,
ecs_id_t entity);
/** Count entities that have a component, type or tag.
* Returns the number of entities that have the specified component, type or tag.
*
* @param world The world.
* @param type The component, type or tag.
* @return The number of entities that have the component, type or tag.
*/
#define ecs_count(world, type)\
ecs_count_type(world, ecs_type(type))
/** Count entities that match a filter.
* Returns the number of entities that match the specified filter.
*
* @param world The world.
* @param type The type.
* @return The number of entities that match the specified filter.
*/
FLECS_API
int32_t ecs_count_filter(
const ecs_world_t *world,
const ecs_filter_t *filter);
/** @} */
/**
* @defgroup lookup Lookups
* @{
*/
/** Lookup an entity by name.
* Returns an entity that matches the specified name. Only looks for entities in
* the current scope (root if no scope is provided).
*
* @param world The world.
* @param name The entity name.
* @return The entity with the specified name, or 0 if no entity was found.
*/
FLECS_API
ecs_entity_t ecs_lookup(
const ecs_world_t *world,
const char *name);
/** Lookup a child entity by name.
* Returns an entity that matches the specified name. Only looks for entities in
* the provided parent. If no parent is provided, look in the current scope (
* root if no scope is provided).
*
* @param world The world.
* @param name The entity name.
* @return The entity with the specified name, or 0 if no entity was found.
*/
FLECS_API
ecs_entity_t ecs_lookup_child(
const ecs_world_t *world,
ecs_entity_t parent,
const char *name);
/** Lookup an entity from a path.
* Lookup an entity from a provided path, relative to the provided parent. The
* operation will use the provided separator to tokenize the path expression. If
* the provided path contains the prefix, the search will start from the root.
*
* If the entity is not found in the provided parent, the operation will
* continue to search in the parent of the parent, until the root is reached. If
* the entity is still not found, the lookup will search in the flecs.core
* scope. If the entity is not found there either, the function returns 0.
*
* @param world The world.
* @param parent The entity from which to resolve the path.
* @param path The path to resolve.
* @param sep The path separator.
* @param prefix The path prefix.
* @param recursive Recursively traverse up the tree until entity is found.
* @return The entity if found, else 0.
*/
FLECS_API
ecs_entity_t ecs_lookup_path_w_sep(
const ecs_world_t *world,
ecs_entity_t parent,
const char *path,
const char *sep,
const char *prefix,
bool recursive);
/** Lookup an entity from a path.
* Same as ecs_lookup_path_w_sep, but with defaults for the separator and
* prefix. These defaults are used when looking up identifiers in a type or
* signature expression.
*
* @param world The world.
* @param parent The entity from which to resolve the path.
* @param path The path to resolve.
* @return The entity if found, else 0.
*/
#define ecs_lookup_path(world, parent, path)\
ecs_lookup_path_w_sep(world, parent, path, ".", NULL, true)
/** Lookup an entity from a full path.
* Same as ecs_lookup_path, but searches from the current scope, or root scope
* if no scope is set.
*
* @param world The world.
* @param path The path to resolve.
* @return The entity if found, else 0.
*/
#define ecs_lookup_fullpath(world, path)\
ecs_lookup_path_w_sep(world, 0, path, ".", NULL, true)
/** Lookup an entity by its symbol name.
* This looks up an entity by the symbol name that was provided in EcsName. The
* operation does not take into account scoping, which means it will search all
* entities that have an EcsName.
*
* This operation can be useful to resolve, for example, a type by its C
* identifier, which does not include the Flecs namespacing.
*/
FLECS_API
ecs_entity_t ecs_lookup_symbol(
const ecs_world_t *world,
const char *symbol,
bool lookup_as_path);
/* Add alias for entity to global scope */
FLECS_API
void ecs_use(
ecs_world_t *world,
ecs_entity_t entity,
const char *name);
/** @} */
/**
* @defgroup paths Paths
* @{
*/
/** Get a path identifier for an entity.
* This operation creates a path that contains the names of the entities from
* the specified parent to the provided entity, separated by the provided
* separator. If no parent is provided the path will be relative to the root. If
* a prefix is provided, the path will be prefixed by the prefix.
*
* If the parent is equal to the provided child, the operation will return an
* empty string. If a nonzero component is provided, the path will be created by
* looking for parents with that component.
*
* The returned path should be freed by the application.
*
* @param world The world.
* @param parent The entity from which to create the path.
* @param child The entity to which to create the path.
* @return The relative entity path.
*/
FLECS_API
char* ecs_get_path_w_sep(
const ecs_world_t *world,
ecs_entity_t parent,
ecs_entity_t child,
const char *sep,
const char *prefix);
/** Get a path identifier for an entity.
* Same as ecs_get_path_w_sep, but with default values for the separator and
* prefix. These defaults are used throughout Flecs whenever identifiers are
* used in type or signature expressions.
*
* @param world The world.
* @param parent The entity from which to create the path.
* @param child The entity to which to create the path.
* @return The relative entity path.
*/
#define ecs_get_path(world, parent, child)\
ecs_get_path_w_sep(world, parent, child, ".", NULL)
/** Get a full path for an entity.
* Same as ecs_get_path, but with default values for the separator and
* prefix, and the path is created from the current scope, or root if no scope
* is provided.
*
* @param world The world.
* @param child The entity to which to create the path.
* @return The entity path.
*/
#define ecs_get_fullpath(world, child)\
ecs_get_path_w_sep(world, 0, child, ".", NULL)
/** Find or create entity from path.
* This operation will find or create an entity from a path, and will create any
* intermediate entities if required. If the entity already exists, no entities
* will be created.
*
* If the path starts with the prefix, then the entity will be created from the
* root scope.
*
* @param world The world.
* @param parent The entity relative to which the entity should be created.
* @param path The path to create the entity for.
* @param sep The separator used in the path.
* @param prefix The prefix used in the path.
* @return The entity.
*/
FLECS_API
ecs_entity_t ecs_new_from_path_w_sep(
ecs_world_t *world,
ecs_entity_t parent,
const char *path,
const char *sep,
const char *prefix);
/** Find or create entity from path.
* Same as ecs_new_from_path_w_sep, but with defaults for sep and prefix.
*
* @param world The world.
* @param parent The entity relative to which the entity should be created.
* @param path The path to create the entity for.
* @return The entity.
*/
#define ecs_new_from_path(world, parent, path)\
ecs_new_from_path_w_sep(world, parent, path, ".", NULL)
/** Find or create entity from full path.
* Same as ecs_new_from_path, but entity will be created from the current scope,
* or root scope if no scope is set.
*
* @param world The world.
* @param path The path to create the entity for.
* @return The entity.
*/
#define ecs_new_from_fullpath(world, path)\
ecs_new_from_path_w_sep(world, 0, path, ".", NULL)
/** Add specified path to entity.
* This operation is similar to ecs_new_from_path, but will instead add the path
* to an existing entity.
*
* If an entity already exists for the path, it will be returned instead.
*
* @param world The world.
* @param entity The entity to which to add the path.
* @param parent The entity relative to which the entity should be created.
* @param path The path to create the entity for.
* @param sep The separator used in the path.
* @param prefix The prefix used in the path.
* @return The entity.
*/
FLECS_API
ecs_entity_t ecs_add_path_w_sep(
ecs_world_t *world,
ecs_entity_t entity,
ecs_entity_t parent,
const char *path,
const char *sep,
const char *prefix);
/** Add specified path to entity.
* Same as ecs_add_from_path_w_sep, but with defaults for sep and prefix.
*
* @param world The world.
* @param entity The entity to which to add the path.
* @param parent The entity relative to which the entity should be created.
* @param path The path to create the entity for.
* @return The entity.
*/
#define ecs_add_path(world, entity, parent, path)\
ecs_add_path_w_sep(world, entity, parent, path, ".", NULL)
/** Add specified path to entity.
* Same as ecs_add_from_path, but entity will be created from the current scope,
* or root scope if no scope is set.
*
* @param world The world.
* @param entity The entity to which to add the path.
* @param path The path to create the entity for.
* @return The entity.
*/
#define ecs_add_fullpath(world, entity, path)\
ecs_add_path_w_sep(world, entity, 0, path, ".", NULL)
/** @} */
/**
* @defgroup scopes Scopes
* @{
*/
/** Does entity have children.
*
* @param world The world
* @param entity The entity
* @return True if the entity has children, false if not.
*/
FLECS_API
int32_t ecs_get_child_count(
const ecs_world_t *world,
ecs_entity_t entity);
/** Return a scope iterator.
* A scope iterator iterates over all the child entities of the specified
* parent.
*
* @param world The world.
* @param parent The parent entity for which to iterate the children.
* @return The iterator.
*/
FLECS_API
ecs_iter_t ecs_scope_iter(
ecs_world_t *world,
ecs_entity_t parent);
/** Return a filtered scope iterator.
* Same as ecs_scope_iter, but results will be filtered.
*
* @param world The world.
* @param parent The parent entity for which to iterate the children.
* @return The iterator.
*/
FLECS_API
ecs_iter_t ecs_scope_iter_w_filter(
ecs_world_t *world,
ecs_entity_t parent,
ecs_filter_t *filter);
/** Progress the scope iterator.
* This operation progresses the scope iterator to the next table. The iterator
* must have been initialized with `ecs_scope_iter`. This operation must be
* invoked at least once before interpreting the contents of the iterator.
*
* @param it The iterator
* @return True if more data is available, false if not.
*/
FLECS_API
bool ecs_scope_next(
ecs_iter_t *it);
/** Set the current scope.
* This operation sets the scope of the current stage to the provided entity.
* As a result new entities will be created in this scope, and lookups will be
* relative to the provided scope.
*
* It is considered good practice to restore the scope to the old value.
*
* @param world The world.
* @param scope The entity to use as scope.
* @return The previous scope.
*/
FLECS_API
ecs_entity_t ecs_set_scope(
ecs_world_t *world,
ecs_entity_t scope);
/** Get the current scope.
* Get the scope set by ecs_set_scope. If no scope is set, this operation will
* return 0.
*
* @param world The world.
* @return The current scope.
*/
FLECS_API
ecs_entity_t ecs_get_scope(
const ecs_world_t *world);
/** Set current with id.
* New entities are automatically created with the specified id.
*
* @param world The world.
* @param id The id.
* @return The previous id.
*/
FLECS_API
ecs_entity_t ecs_set_with(
ecs_world_t *world,
ecs_id_t id);
/** Get current with id.
* Get the id set with ecs_set_with.
*
* @param world The world.
* @param id The id.
* @return The previous id.
*/
FLECS_API
ecs_entity_t ecs_get_with(
const ecs_world_t *world);
/** Set a name prefix for newly created entities.
* This is a utility that lets C modules use prefixed names for C types and
* C functions, while using names for the entity names that do not have the
* prefix. The name prefix is currently only used by ECS_COMPONENT.
*
* @param world The world.
* @param prefix The name prefix to use.
* @return The previous prefix.
*/
FLECS_API
const char* ecs_set_name_prefix(
ecs_world_t *world,
const char *prefix);
/** @} */
/**
* @defgroup terms Terms
* @{
*/
/** Iterator for a single (component) id.
* A term iterator returns all entities (tables) that match a single (component)
* id. The search for the matching set of entities (tables) is performed in
* constant time.
*
* Currently only trivial terms are supported (see ecs_term_is_trivial). Only
* the id field of the term needs to be initialized.
*
* @param world The world.
* @param term The term.
* @return The iterator.
*/
FLECS_API
ecs_iter_t ecs_term_iter(
ecs_world_t *world,
ecs_term_t *term);
/** Progress the term iterator.
* This operation progresses the term iterator to the next table. The
* iterator must have been initialized with `ecs_term_iter`. This operation
* must be invoked at least once before interpreting the contents of the
* iterator.
*
* @param iter The iterator.
* @returns True if more data is available, false if not.
*/
FLECS_API
bool ecs_term_next(
ecs_iter_t *it);
/** Test whether term id is set.
*
* @param id The term id.
* @return True when set, false when not set.
*/
FLECS_API
bool ecs_term_id_is_set(
const ecs_term_id_t *id);
/** Test whether a term is set.
* This operation can be used to test whether a term has been initialized with
* values or whether it is empty.
*
* An application generally does not need to invoke this operation. It is useful
* when initializing a 0-initialized array of terms (like in ecs_term_desc_t) as
* this operation can be used to find the last initialized element.
*
* @param term The term.
* @return True when set, false when not set.
*/
FLECS_API
bool ecs_term_is_initialized(
const ecs_term_t *term);
/** Test whether a term is a trivial term.
* A trivial term is a term that only contains a type id. Trivial terms must not
* have read/write annotations, relation substitutions and subjects other than
* 'This'. Examples of trivial terms are:
* - 'Position'
* - 'Position(This)'
* - '(Likes, IceCream)'
* - 'Likes(This, IceCream)'
*
* Examples of non-trivial terms are:
* - '[in] Position'
* - 'Position(MyEntity)'
* - 'Position(self|superset)'
*
* Trivial terms are useful in expressions that should just represent a list of
* components, such as when parsing the list of components to add to an entity.
*
* The term passed to this operation must be finalized. Terms returned by the
* parser are guaranteed to be finalized.
*
* @param term The term.
* @return True if term is trivial, false if it is not.
*/
FLECS_API
bool ecs_term_is_trivial(
const ecs_term_t *term);
/** Finalize term.
* Ensure that all fields of a term are consistent and filled out. This
* operation should be invoked before using and after assigning members to, or
* parsing a term. When a term contains unresolved identifiers, this operation
* will resolve and assign the identifiers. If the term contains any identifiers
* that cannot be resolved, the operation will fail.
*
* An application generally does not need to invoke this operation as the APIs
* that use terms (such as filters, queries and triggers) will finalize terms
* when they are created.
*
* The name and expr parameters are optional, and only used for giving more
* descriptive error messages.
*
* @param world The world.
* @param name The name of the entity that uses the term (such as a system).
* @param expr The string expression of which the term is a part.
* @param term The term to finalize.
* @return Zero if success, nonzero if an error occurred.
*/
FLECS_API
int ecs_term_finalize(
const ecs_world_t *world,
const char *name,
const char *expr,
ecs_term_t *term);
/** Copy resources of a term to another term.
* This operation copies one term to another term. If the source term contains
* allocated resources (such as identifiers), they will be duplicated so that
* no memory is shared between the terms.
*
* @param dst The term to copy to.
* @param src The term to copy from.
*/
FLECS_API
ecs_term_t ecs_term_copy(
const ecs_term_t *src);
/** Move resources of a term to another term.
* Same as copy, but moves resources from src, if src->move is set to true. If
* src->move is not set to true, this operation will do a copy.
*
* The conditional move reduces redundant allocations in scenarios where a list
* of terms is partially created with allocated resources.
*
* @param dst The term to copy to.
* @param src The term to copy from.
*/
FLECS_API
ecs_term_t ecs_term_move(
ecs_term_t *src);
/** Free resources of term.
* This operation frees all resources (such as identifiers) of a term. The term
* object itself is not freed.
*
* @param term The term to free.
*/
FLECS_API
void ecs_term_fini(
ecs_term_t *term);
/** Utility to match an id with a pattern.
* This operation returns true if the provided pattern matches the provided
* id. The pattern may contain a wildcard (or wildcards, when a pair).
*
* @param id The id.
* @param pattern The pattern to compare with.
*/
FLECS_API
bool ecs_id_match(
ecs_id_t id,
ecs_id_t pattern);
/** Utility to check if id is a pair.
*
* @param id The id.
* @return True if id is a pair.
*/
FLECS_API
bool ecs_id_is_pair(
ecs_id_t id);
/** Utility to check if id is a wildcard.
*
* @param id The id.
* @return True if id is a wildcard or a pair containing a wildcard.
*/
FLECS_API
bool ecs_id_is_wildcard(
ecs_id_t id);
/** @} */
/**
* @defgroup filters Filters
* @{
*/
/** Initialize filter
* A filter is a lightweight object that can be used to query for entities in
* a world. Filters, as opposed to queries, do not cache results. They are
* therefore slower to iterate, but are faster to create.
*
* This operation will at minimum allocate an array to hold the filter terms in
* the returned filter struct. It may allocate additional memory if the provided
* description contains a name, expression, or if the provided array of terms
* contains strings (identifier names or term names).
*
* It is possible to create a filter without allocating any memory, by setting
* the "terms" and "term_count" members directly. When doing so an application
* should not call ecs_filter_init but ecs_filter_finalize. This will ensure
* that all fields are consistent and properly filled out.
*
* @param world The world.
* @param desc Properties for the filter to create.
* @param filter_out The filter.
* @return Zero if successful, non-zero if failed.
*/
FLECS_API
int ecs_filter_init(
const ecs_world_t *world,
ecs_filter_t *filter_out,
const ecs_filter_desc_t *desc);
/** Deinitialize filter.
* Free resources associated with filter.
*
* @param filter The filter to deinitialize.
*/
FLECS_API
void ecs_filter_fini(
ecs_filter_t *filter);
/** Finalize filter.
* When manually assigning an array of terms to the filter struct (so not when
* using ecs_filter_init), this operation should be used to ensure that all
* terms are assigned properly and all (derived) fields have been set.
*
* When ecs_filter_init is used to create the filter, this function should not
* be called. The purpose of this operation is to support creation of filters
* without allocating memory.
*
* @param filter The filter to finalize.
* @return Zero if filter is valid, non-zero if it contains errors.
* @
*/
FLECS_API
int ecs_filter_finalize(
const ecs_world_t *world,
ecs_filter_t *filter);
/** Convert filter to string expression.
* Convert filter terms to a string expression. The resulting expression can be
* parsed to create the same filter.
*/
FLECS_API
char* ecs_filter_str(
const ecs_world_t *world,
const ecs_filter_t *filter);
/** Return a filter iterator.
* A filter iterator lets an application iterate over entities that match the
* specified filter. If NULL is provided for the filter, the iterator will
* iterate all tables in the world.
*
* @param world The world.
* @param filter The filter.
* @return An iterator that can be used with ecs_filter_next.
*/
FLECS_API
ecs_iter_t ecs_filter_iter(
ecs_world_t *world,
const ecs_filter_t *filter);
/** Iterate tables matched by filter.
* This operation progresses the filter iterator to the next table. The
* iterator must have been initialized with `ecs_filter_iter`. This operation
* must be invoked at least once before interpreting the contents of the
* iterator.
*
* @param it The iterator
* @return True if more data is available, false if not.
*/
FLECS_API
bool ecs_filter_next(
ecs_iter_t *iter);
/** Move resources of one filter to another. */
FLECS_API
void ecs_filter_move(
ecs_filter_t *dst,
ecs_filter_t *src);
/** Copy resources of one filter to another. */
FLECS_API
void ecs_filter_copy(
ecs_filter_t *dst,
const ecs_filter_t *src);
/** @} */
/**
* @defgroup queries Queries
* @{
*/
/** Create a query.
* This operation creates a query. Queries are used to iterate over entities
* that match a filter and are the fastest way to find and iterate over entities
* and their components.
*
* Queries should be created once, and reused multiple times. While iterating a
* query is a cheap operation, creating and deleting a query is expensive. The
* reason for this is that queries are "prematched", which means that a query
* stores state about which entities (or rather, tables) match with the query.
* Building up this state happens during query creation.
*
* Once a query is created, matching only happens when new tables are created.
* In most applications this is an infrequent process, since it only occurs when
* a new combination of components is introduced. While matching is expensive,
* it is importent to note that matching does not happen on a per-entity basis,
* but on a per-table basis. This means that the average time spent on matching
* per frame should rapidly approach zero over the lifetime of an application.
*
* A query provides direct access to the component arrays. When an application
* creates/deletes entities or adds/removes components, these arrays can shift
* component values around, or may grow in size. This can cause unexpected or
* undefined behavior to occur if these operations are performed while
* iterating. To prevent this from happening an application should either not
* perform these operations while iterating, or use deferred operations (see
* ecs_defer_begin and ecs_defer_end).
*
* Queries can be created and deleted dynamically. If a query was not deleted
* (using ecs_query_fini) before the world is deleted, it will be deleted
* automatically.
*
* @param world The world.
* @param desc A structure describing the query properties.
* @return The new query.
*/
FLECS_API
ecs_query_t* ecs_query_init(
ecs_world_t *world,
const ecs_query_desc_t *desc);
/** Destroy a query.
* This operation destroys a query and its resources. If the query is used as
* the parent of subqueries, those subqueries will be orphaned and must be
* deinitialized as well.
*
* @param query The query.
*/
FLECS_API
void ecs_query_fini(
ecs_query_t *query);
/** Get filter object of query.
* This operation obtains a pointer to the internally constructed filter object
* of the query and can be used to introspect the query terms.
*
* @param query The query.
*/
FLECS_API
const ecs_filter_t* ecs_query_get_filter(
ecs_query_t *query);
/** Return a query iterator.
* A query iterator lets an application iterate over entities that match the
* specified query. If a sorting function is specified, the query will check
* whether a resort is required upon creating the iterator.
*
* Creating a query iterator is a cheap operation that does not allocate any
* resources. An application does not need to deinitialize or free a query
* iterator before it goes out of scope.
*
* To iterate the iterator, an application should use ecs_query_next to progress
* the iterator and test if it has data.
*
* Query iteration requires an outer and an inner loop. The outer loop uses
* ecs_query_next to test if new tables are available. The inner loop iterates
* the entities in the table, and is usually a for loop that uses iter.count to
* loop through the entities and component arrays.
*
* The two loops are necessary because of how data is stored internally.
* Entities are grouped by the components they have, in tables. A single query
* can (and often does) match with multiple tables. Because each table has its
* own set of arrays, an application has to reobtain pointers to those arrays
* for each matching table.
*
* @param query The query to iterate.
* @return The query iterator.
*/
FLECS_API
ecs_iter_t ecs_query_iter(
ecs_query_t *query);
/** Iterate over a query.
* This operation is similar to ecs_query_iter, but starts iterating from a
* specified offset, and will not iterate more than limit entities.
*
* @param query The query to iterate.
* @param offset The number of entities to skip.
* @param limit The maximum number of entities to iterate.
* @return The query iterator.
*/
FLECS_API
ecs_iter_t ecs_query_iter_page(
ecs_query_t *query,
int32_t offset,
int32_t limit);
/** Progress the query iterator.
* This operation progresses the query iterator to the next table. The
* iterator must have been initialized with `ecs_query_iter`. This operation
* must be invoked at least once before interpreting the contents of the
* iterator.
*
* @param iter The iterator.
* @returns True if more data is available, false if not.
*/
FLECS_API
bool ecs_query_next(
ecs_iter_t *iter);
/** Progress the query iterator with filter.
* This operation is the same as ecs_query_next, but accepts a filter as an
* argument. Entities not matching the filter will be skipped by the iterator.
*
* @param iter The iterator.
* @param filter The filter to apply to the iterator.
* @returns True if more data is available, false if not.
*/
FLECS_API
bool ecs_query_next_w_filter(
ecs_iter_t *iter,
const ecs_filter_t *filter);
/** Progress the query iterator for a worker thread.
* This operation is similar to ecs_query_next, but provides the ability to
* divide entities up across multiple worker threads. The operation accepts a
* current thread id and a total thread id, which is used to determine which
* subset of entities should be assigned to the current thread.
*
* Current should be less than total, and there should be as many as total
* threads. If there are less entities in a table than there are threads, only
* as many threads as there are entities will iterate that table.
*
* @param it The iterator.
* @param stage_current Id of current stage.
* @param stage_count Total number of stages.
* @returns True if more data is available, false if not.
*/
FLECS_API
bool ecs_query_next_worker(
ecs_iter_t *it,
int32_t stage_current,
int32_t stage_count);
/** Returns whether the query data changed since the last iteration.
* This operation must be invoked before obtaining the iterator, as this will
* reset the changed state. The operation will return true after:
* - new entities have been matched with
* - matched entities were deleted
* - matched components were changed
*
* @param query The query.
* @return true if entities changed, otherwise false.
*/
FLECS_API
bool ecs_query_changed(
ecs_query_t *query);
/** Returns whether query is orphaned.
* When the parent query of a subquery is deleted, it is left in an orphaned
* state. The only valid operation on an orphaned query is deleting it. Only
* subqueries can be orphaned.
*
* @param query The query.
* @return true if query is orphaned, otherwise false.
*/
FLECS_API
bool ecs_query_orphaned(
ecs_query_t *query);
/** @} */
/**
* @defgroup trigger Triggers
*/
/** Create trigger.
* Triggers notify the application when certain events happen such as adding or
* removing components.
*
* An application can change the trigger callback or context pointer by calling
* ecs_trigger_init for an existing trigger entity, by setting the
* ecs_trigger_desc_t::entity.entity field in combination with callback and/or
* ctx.
*
* See the documentation for ecs_trigger_desc_t for more details.
*
* @param world The world.
* @param decs The trigger creation parameters.
*/
FLECS_API
ecs_entity_t ecs_trigger_init(
ecs_world_t *world,
const ecs_trigger_desc_t *desc);
/** Get trigger context.
* This operation returns the context pointer set for the trigger. If
* the provided entity is not a trigger, the function will return NULL.
*
* @param world The world.
* @param trigger The trigger from which to obtain the context.
* @return The context.
*/
FLECS_API
void* ecs_get_trigger_ctx(
const ecs_world_t *world,
ecs_entity_t trigger);
/** Same as ecs_get_trigger_ctx, but for binding ctx.
* The binding context is a context typically used to attach any language
* binding specific data that is needed when invoking a callback that is
* implemented in another language.
*
* @param world The world.
* @param trigger The trigger from which to obtain the context.
* @return The context.
*/
FLECS_API
void* ecs_get_trigger_binding_ctx(
const ecs_world_t *world,
ecs_entity_t trigger);
typedef enum ecs_payload_kind_t {
EcsPayloadNone,
EcsPayloadEntity,
EcsPayloadTable
} ecs_payload_kind_t;
typedef struct ecs_event_desc_t {
ecs_entity_t event;
ecs_ids_t *ids; /* When NULL, notify for all ids in entity/table type */
ecs_payload_kind_t payload_kind;
union {
ecs_entity_t entity;
struct {
ecs_table_t *table;
int32_t offset;
int32_t count; /* When 0 notify all entities starting from offset */
} table;
} payload;
void *param; /* Assigned to iter param member */
/* Observable for which to notify the triggers/observers. If NULL, the
* world will be used as observable. */
ecs_object_t *observable;
} ecs_event_desc_t;
/** Send event.
*/
FLECS_API
void ecs_emit(
ecs_world_t *world,
ecs_event_desc_t *desc);
/** @} */
/**
* @defgroup observer Observers
*/
/** Create observer.
* Observers are like triggers, but can subscribe for multiple terms. An
* observer only triggers when the source of the event meets all terms.
*
* See the documentation for ecs_observer_desc_t for more details.
*
* @param world The world.
* @param desc The observer creation parameters.
*/
FLECS_API
ecs_entity_t ecs_observer_init(
ecs_world_t *world,
const ecs_observer_desc_t *desc);
FLECS_API
void* ecs_get_observer_ctx(
const ecs_world_t *world,
ecs_entity_t observer);
FLECS_API
void* ecs_get_observer_binding_ctx(
const ecs_world_t *world,
ecs_entity_t observer);
/** @} */
/**
* @defgroup iterator Iterators
* @{
*/
/** Obtain data for a query term.
* This operation retrieves a pointer to an array of data that belongs to the
* term in the query. The index refers to the location of the term in the query,
* and starts counting from one.
*
* For example, the query "Position, Velocity" will return the Position array
* for index 1, and the Velocity array for index 2.
*
* When the specified term is not owned by the entity this function returns a
* pointer instead of an array. This happens when the source of a term is not
* the entity being iterated, such as a shared component (from a prefab), a
* component from a parent, or another entity. The ecs_term_is_owned operation
* can be used to test dynamically if a term is owned.
*
* The provided size must be either 0 or must match the size of the datatype
* of the returned array. If the size does not match, the operation may assert.
* The size can be dynamically obtained with ecs_term_size.
*
* @param it The iterator.
* @param size The size of the returned array.
* @param index The index of the term in the query.
* @return A pointer to the data associated with the term.
*/
FLECS_API
void* ecs_term_w_size(
const ecs_iter_t *it,
size_t size,
int32_t index);
/** Same as ecs_term_w_size, but accepts a type instead of a size. */
#define ecs_term(it, T, index)\
((T*)ecs_term_w_size(it, sizeof(T), index))
/** Obtain the component/pair id for a term.
* This operation retrieves the id for the specified query term. Typically this
* is the component id, but it can also be a pair id or a role annotated id,
* depending on the term.
*
* @param it The iterator.
* @param index The index of the term in the query.
* @return The id associated with te term.
*/
FLECS_API
ecs_id_t ecs_term_id(
const ecs_iter_t *it,
int32_t index);
/** Obtain the source for a term.
* This operation retrieves the source of the specified term. A source is the
* entity from which the data is retrieved. If the term is owned by the iterated
* over entity/entities, the function will return id 0.
*
* This operation can be useful to retrieve, for example, the id of a parent
* entity when a component from a parent has been requested, or to retrieve the
* id from a prefab, in the case of a shared component.
*
* @param it The iterator.
* @param index The index of the term in the query.
* @return The source associated with te term.
*/
FLECS_API
ecs_entity_t ecs_term_source(
const ecs_iter_t *it,
int32_t index);
/** Obtain the size for a term.
* This operation retrieves the size of the datatype for the term.
*
* @param it The iterator.
* @param index The index of the term in the query.
* @return The size of the datatype associated with te term.
*/
FLECS_API
size_t ecs_term_size(
const ecs_iter_t *it,
int32_t index);
/** Test whether the term is readonly
* This operation returns whether this is a readonly term. Readonly terms are
* annotated with [in], or are added as a const type in the C++ API.
*
* @param it The iterator.
* @param index The index of the term in the query.
* @return Whether the term is readonly.
*/
FLECS_API
bool ecs_term_is_readonly(
const ecs_iter_t *it,
int32_t index);
/** Test whether term is set.
* This function returns false for terms with the Not operator and for terms
* with the Optional operator if the matched entities (table) do not have the
* (component) id of the term.
*
* @param it The iterator.
* @param term The term.
* @return True if term is set, false if it is not set.
*/
FLECS_API
bool ecs_term_is_set(
const ecs_iter_t *it,
int32_t term);
/** Test whether the term is owned
* This operation returns whether the term is owned by the currently iterated
* entity. This function will return false when the term is owned by another
* entity, such as a parent or a prefab.
*
* @param it The iterator.
* @param index The index of the term in the query.
* @return Whether the term is owned by the iterated over entity/entities.
*/
FLECS_API
bool ecs_term_is_owned(
const ecs_iter_t *it,
int32_t index);
/** Get the type of the currently entities.
* This operation returns the type of the current iterated entity/entities. A
* type is a vector that contains all ids of the components that an entity has.
*
* @param it The iterator.
* @return The type of the currently iterated entity/entities.
*/
FLECS_API
ecs_type_t ecs_iter_type(
const ecs_iter_t *it);
/** Get the table for the current entities.
* This operation returns the table of the current iterated entities
*
* @param it The iterator.
* @return The table of the currently iterated entity/entities.
*/
FLECS_API
ecs_table_t* ecs_iter_table(
const ecs_iter_t *it);
/** Find the column index for a given id.
* This operation finds the index of a column in the current type for the
* specified id. For example, if an entity has type Position, Velocity, and the
* application requests the id for the Velocity component, this function will
* return 1.
*
* Note that the column index returned by this function starts from 0, as
* opposed to 1 for the terms. The reason for this is that the returned index
* is equivalent to using the ecs_type_get_index function, with as type the
* value returned by ecs_iter_type.
*
* This operation can be used to request columns that are not requested by a
* query. For example, a query may request Position, Velocity, but an entity
* may also have Mass. With this function the iterator can request the data for
* Mass as well, when used in combination with ecs_iter_column.
*
* @param it The iterator.
* @return The type of the currently iterated entity/entities.
*/
FLECS_API
int32_t ecs_iter_find_column(
const ecs_iter_t *it,
ecs_id_t id);
/** Obtain data for a column index.
* This operation can be used with the id obtained from ecs_iter_find_column to
* request data from the currently iterated over entity/entities that is not
* requested by the query.
*
* The data in the returned pointer can be accessed using the same index as
* the one used to access the arrays returned by the ecs_term function.
*
* The provided size must be either 0 or must match the size of the datatype
* of the returned array. If the size does not match, the operation may assert.
* The size can be dynamically obtained with ecs_iter_column_size.
*
* Note that this function can be used together with ecs_iter_type to
* dynamically iterate all data that the matched entities have. An application
* can use the ecs_vector_count function to obtain the number of elements in a
* type. All indices from 0..ecs_vector_count(type) are valid column indices.
*
* Additionally, note that this provides unprotected access to the column data.
* An iterator cannot know or prevent accessing columns that are not queried for
* and thus applications should only use this when it can be guaranteed that
* there are no other threads reading/writing the same column data.
*
* @param it The iterator.
* @param size The size of the column.
* @param index The index of the column.
* @return The data belonging to the column.
*/
FLECS_API
void* ecs_iter_column_w_size(
const ecs_iter_t *it,
size_t size,
int32_t index);
/** Same as ecs_iter_column_w_size, but accepts a type instead of a size. */
#define ecs_iter_column(it, T, index)\
((T*)ecs_iter_column_w_size(it, sizeof(T), index))
/** Obtain size for a column index.
* This operation obtains the size for a column. The size is equal to the size
* of the datatype associated with the column.
*
* @param it The iterator.
* @param index The index of the column.
* @return The size belonging to the column.
*/
FLECS_API
size_t ecs_iter_column_size(
const ecs_iter_t *it,
int32_t index);
/** @} */
/**
* @defgroup staging Staging
* @{
*/
/** Begin frame.
* When an application does not use ecs_progress to control the main loop, it
* can still use Flecs features such as FPS limiting and time measurements. This
* operation needs to be invoked whenever a new frame is about to get processed.
*
* Calls to ecs_frame_begin must always be followed by ecs_frame_end.
*
* The function accepts a delta_time parameter, which will get passed to
* systems. This value is also used to compute the amount of time the function
* needs to sleep to ensure it does not exceed the target_fps, when it is set.
* When 0 is provided for delta_time, the time will be measured.
*
* This function should only be ran from the main thread.
*
* @param world The world.
* @param delta_time Time elapsed since the last frame.
* @return The provided delta_time, or measured time if 0 was provided.
*/
FLECS_API
FLECS_FLOAT ecs_frame_begin(
ecs_world_t *world,
FLECS_FLOAT delta_time);
/** End frame.
* This operation must be called at the end of the frame, and always after
* ecs_frame_begin.
*
* @param world The world.
*/
FLECS_API
void ecs_frame_end(
ecs_world_t *world);
/** Begin staging.
* When an application does not use ecs_progress to control the main loop, it
* can still use Flecs features such as the defer queue. When an application
* needs to stage changes, it needs to call this function after ecs_frame_begin.
* A call to ecs_staging_begin must be followed by a call to ecs_staging_end.
*
* When staging is enabled, modifications to entities are stored to a stage.
* This ensures that arrays are not modified while iterating. Modifications are
* merged back to the "main stage" when ecs_staging_end is invoked.
*
* While the world is in staging mode, no structural changes (add/remove/...)
* can be made to the world itself. Operations must be executed on a stage
* instead (see ecs_get_stage).
*
* This function should only be ran from the main thread.
*
* @param world The world
* @return Whether world is currently staged.
*/
FLECS_API
bool ecs_staging_begin(
ecs_world_t *world);
/** End staging.
* Leaves staging mode. After this operation the world may be directly mutated
* again. By default this operation also merges data back into the world, unless
* automerging was disabled explicitly.
*
* This function should only be ran from the main thread.
*
* @param world The world
*/
FLECS_API
void ecs_staging_end(
ecs_world_t *world);
/** Merge world or stage.
* When automatic merging is disabled, an application can call this
* operation on either an individual stage, or on the world which will merge
* all stages. This operation may only be called when staging is not enabled
* (either after progress() or after staging_end()).
*
* This operation may be called on an already merged stage or world.
*
* @param world The world.
*/
FLECS_API
void ecs_merge(
ecs_world_t *world);
/** Defer operations until end of frame.
* When this operation is invoked while iterating, operations inbetween the
* defer_begin and defer_end operations are executed at the end of the frame.
*
* This operation is thread safe.
*
* @param world The world.
* @return true if world changed from non-deferred mode to deferred mode.
*/
FLECS_API
bool ecs_defer_begin(
ecs_world_t *world);
/** Test if deferring is enabled for current stage.
*
* @param world The world.
* @return True if deferred, false if not.
*/
FLECS_API
bool ecs_is_deferred(
const ecs_world_t *world);
/** End block of operations to defer.
* See defer_begin.
*
* This operation is thread safe.
*
* @param world The world.
* @return true if world changed from deferred mode to non-deferred mode.
*/
FLECS_API
bool ecs_defer_end(
ecs_world_t *world);
/** Enable/disable automerging for world or stage.
* When automerging is enabled, staged data will automatically be merged with
* the world when staging ends. This happens at the end of progress(), at a
* sync point or when staging_end() is called.
*
* Applications can exercise more control over when data from a stage is merged
* by disabling automerging. This requires an application to explicitly call
* merge() on the stage.
*
* When this function is invoked on the world, it sets all current stages to
* the provided value and sets the default for new stages. When this function is
* invoked on a stage, automerging is only set for that specific stage.
*
* @param world The world.
* @param automerge Whether to enable or disable automerging.
*/
FLECS_API
void ecs_set_automerge(
ecs_world_t *world,
bool automerge);
/** Configure world to have N stages.
* This initializes N stages, which allows applications to defer operations to
* multiple isolated defer queues. This is typically used for applications with
* multiple threads, where each thread gets its own queue, and commands are
* merged when threads are synchronized.
*
* Note that the ecs_set_threads function already creates the appropriate
* number of stages. The set_stages() operation is useful for applications that
* want to manage their own stages and/or threads.
*
* @param world The world.
* @param stages The number of stages.
*/
FLECS_API
void ecs_set_stages(
ecs_world_t *world,
int32_t stages);
/** Get number of configured stages.
* Return number of stages set by ecs_set_stages.
*
* @param world The world.
* @return The number of stages used for threading.
*/
FLECS_API
int32_t ecs_get_stage_count(
const ecs_world_t *world);
/** Get current stage id.
* The stage id can be used by an application to learn about which stage it is
* using, which typically corresponds with the worker thread id.
*
* @param world The world.
* @return The stage id.
*/
FLECS_API
int32_t ecs_get_stage_id(
const ecs_world_t *world);
/** Get stage-specific world pointer.
* Flecs threads can safely invoke the API as long as they have a private
* context to write to, also referred to as the stage. This function returns a
* pointer to a stage, disguised as a world pointer.
*
* Note that this function does not(!) create a new world. It simply wraps the
* existing world in a thread-specific context, which the API knows how to
* unwrap. The reason the stage is returned as an ecs_world_t is so that it
* can be passed transparently to the existing API functions, vs. having to
* create a dediated API for threading.
*
* @param world The world.
* @param stage_id The index of the stage to retrieve.
* @return A thread-specific pointer to the world.
*/
FLECS_API
ecs_world_t* ecs_get_stage(
const ecs_world_t *world,
int32_t stage_id);
/** Get actual world from world.
* @param world A pointer to a stage or the world.
* @return The world.
*/
FLECS_API
const ecs_world_t* ecs_get_world(
const ecs_world_t *world);
/** Test whether the current world object is readonly.
* This function allows the code to test whether the currently used world object
* is readonly or whether it allows for writing.
*
* @param world A pointer to a stage or the world.
* @return True if the world or stage is readonly.
*/
FLECS_API
bool ecs_stage_is_readonly(
const ecs_world_t *stage);
/** Create asynchronous stage.
* An asynchronous stage can be used to asynchronously queue operations for
* later merging with the world. An asynchronous stage is similar to a regular
* stage, except that it does not allow reading from the world.
*
* Asynchronous stages are never merged automatically, and must therefore be
* manually merged with the ecs_merge function. It is not necessary to call
* defer_begin or defer_end before and after enqueuing commands, as an
* asynchronous stage unconditionally defers operations.
*
* The application must ensure that no commands are added to the stage while the
* stage is being merged.
*
* An asynchronous stage must be cleaned up by ecs_async_stage_free.
*
* @param world The world.
* @return The stage.
*/
FLECS_API
ecs_world_t* ecs_async_stage_new(
ecs_world_t *world);
/** Free asynchronous stage.
* The provided stage must be an asynchronous stage. If a non-asynchronous stage
* is provided, the operation will fail.
*
* @param stage The stage to free.
*/
FLECS_API
void ecs_async_stage_free(
ecs_world_t *stage);
/** Test whether provided stage is asynchronous.
*
* @param stage The stage.
* @return True when the stage is asynchronous, false for a regular stage or
* world.
*/
FLECS_API
bool ecs_stage_is_async(
ecs_world_t *stage);
/** @} */
/**
* @defgroup table_functions Public table operations
* @brief Low-level table functions. These functions are intended to enable the
* creation of higher-level operations. It is not recommended to use
* these operations directly in application code as they do not provide
* the same safety guarantees as the other APIs.
* @{
*/
/** Find or create table with specified component string.
* The provided string must be a comma-separated list of fully qualified
* component identifiers. The returned table will have the specified components.
* Two lists that are the same but specify components in a different order will
* return the same table.
*
* @param world The world.
* @param type The components.
* @return The new or existing table, or NULL if the string contains an error.
*/
FLECS_API
ecs_table_t* ecs_table_from_str(
ecs_world_t *world,
const char *type);
/** Find or create table from type.
* Same as ecs_table_from_str, but provides the type directly.
*
* @param world The world.
* @param type The type.
* @return The new or existing table.
*/
FLECS_API
ecs_table_t* ecs_table_from_type(
ecs_world_t *world,
ecs_type_t type);
/** Get type for table.
*
* @param table The table.
* @return The type of the table.
*/
FLECS_API
ecs_type_t ecs_table_get_type(
const ecs_table_t *table);
/** Insert record into table.
* This will create a new record for the table, which inserts a value for each
* component. An optional entity and record can be provided.
*
* If a non-zero entity id is provided, a record must also be provided and vice
* versa. The record must be created by the entity index. If the provided record
* is not created for the specified entity, the behavior will be undefined.
*
* If the provided record is not managed by the entity index, the behavior will
* be undefined.
*
* The returned record contains a reference to the table and the table row. The
* data pointed to by the record is guaranteed not to move unless one or more
* rows are removed from this table. A row can be removed as result of a delete,
* or by adding/removing components from an entity stored in the table.
*
* @param world The world.
* @param table The table.
* @param entity The entity.
* @param record The entity-index record for the specified entity.
* @return A record containing the table and table row.
*/
FLECS_API
ecs_record_t ecs_table_insert(
ecs_world_t *world,
ecs_table_t *table,
ecs_entity_t entity,
ecs_record_t *record);
/** Returns the number of records in the table.
* This operation returns the number of records that have been populated through
* the regular (entity) API as well as the number of records that have been
* inserted using the direct access API.
*
* @param world The world.
* @param table The table.
* @return The number of records in a table.
*/
FLECS_API
int32_t ecs_table_count(
const ecs_table_t *table);
/** Get table that has all components of current table plus the specified id.
* If the provided table already has the provided id, the operation will return
* the provided table.
*
* @param world The world.
* @param table The table.
* @param id The id to add.
* @result The resulting table.
*/
FLECS_API
ecs_table_t* ecs_table_add_id(
ecs_world_t *world,
ecs_table_t *table,
ecs_id_t id);
/** Get table that has all components of current table minus the specified id.
* If the provided table doesn't have the provided id, the operation will return
* the provided table.
*
* @param world The world.
* @param table The table.
* @param id The id to remove.
* @result The resulting table.
*/
FLECS_API
ecs_table_t* ecs_table_remove_id(
ecs_world_t *world,
ecs_table_t *table,
ecs_id_t id);
/** Lock or unlock table.
* When a table is locked, modifications to it will trigger an assert. When the
* table is locked recursively, it will take an equal amount of unlock
* operations to actually unlock the table.
*
* Table locks can be used to build safe iterators where it is guaranteed that
* the contents of a table are not modified while it is being iterated.
*
* The operation only works when called on the world, and has no side effects
* when called on a stage. The assumption is that when called on a stage,
* operations are deferred already.
*
* @param world The world.
* @param table The table to lock.
*/
FLECS_API
void ecs_table_lock(
ecs_world_t *world,
ecs_table_t *table);
/** Unlock a table.
* Must be called after calling ecs_table_lock.
*
* @param world The world.
* @param table The table to unlock.
*/
FLECS_API
void ecs_table_unlock(
ecs_world_t *world,
ecs_table_t *table);
/** Returns whether table is a module or contains module contents
* Returns true for tables that have module contents. Can be used to filter out
* tables that do not contain application data.
*
* @param table The table.
* @return true if table contains module contents, false if not.
*/
FLECS_API
bool ecs_table_has_module(
ecs_table_t *table);
/** Commit (move) entity to a table.
* This operation moves an entity from its current table to the specified
* table. This may trigger the following actions:
* - Ctor for each component in the target table
* - Move for each overlapping component
* - Dtor for each component in the source table.
* - OnAdd triggers for non-overlapping components in the target table
* - OnRemove triggers for non-overlapping components in the source table.
*
* This operation is a faster than adding/removing components individually.
*
* The application must explicitly provide the difference in components between
* tables as the added/removed parameters. This can usually be derived directly
* from the result of ecs_table_add_id and esc_table_remove_id. These arrays are
* required to properly execute OnAdd/OnRemove triggers.
*
* @param world The world.
* @param entity The entity to commit.
* @param record The entity's record (optional, providing it saves a lookup).
* @param table The table to commit the entity to.
* @return True if the entity got moved, false otherwise.
*/
FLECS_API
bool ecs_commit(
ecs_world_t *world,
ecs_entity_t entity,
ecs_record_t *record,
ecs_table_t *table,
ecs_ids_t *added,
ecs_ids_t *removed);
/** @} */
/* Optional modules */
#ifdef FLECS_SYSTEM
/**
* @file system.h
* @brief System module.
*
* The system module allows for creating and running systems. A system is a
* query in combination with a callback function. In addition systems have
* support for time management and can be monitored by the stats addon.
*/
#ifdef FLECS_SYSTEM
#ifndef FLECS_MODULE
#define FLECS_MODULE
#endif
/**
* @file module.h
* @brief Module addon.
*
* The module addon allows for creating and importing modules. Flecs modules
* enable applications to organize components and systems into reusable units of
* code that can easily be across projects.
*/
#ifdef FLECS_MODULE
#ifndef FLECS_MODULE_H
#define FLECS_MODULE_H
#ifdef __cplusplus
extern "C" {
#endif
/** Import a module.
* This operation will load a modules and store the public module handles in the
* handles_out out parameter. The module name will be used to verify if the
* module was already loaded, in which case it won't be reimported. The name
* will be translated from PascalCase to an entity path (pascal.case) before the
* lookup occurs.
*
* Module contents will be stored as children of the module entity. This
* prevents modules from accidentally defining conflicting identifiers. This is
* enforced by setting the scope before and after loading the module to the
* module entity id.
*
* A more convenient way to import a module is by using the ECS_IMPORT macro.
*
* @param world The world.
* @param module The module to load.
* @param module_name The name of the module to load.
* @param flags An integer that will be passed into the module import action.
* @param handles_out A struct with handles to the module components/systems.
* @param handles_size Size of the handles_out parameter.
* @return The module entity.
*/
FLECS_API
ecs_entity_t ecs_import(
ecs_world_t *world,
ecs_module_action_t module,
const char *module_name,
void *handles_out,
size_t handles_size);
/* Import a module from a library.
* Similar to ecs_import, except that this operation will attempt to load the
* module from a dynamic library.
*
* A library may contain multiple modules, which is why both a library name and
* a module name need to be provided. If only a library name is provided, the
* library name will be reused for the module name.
*
* The library will be looked up using a canonical name, which is in the same
* form as a module, like `flecs.components.transform`. To transform this
* identifier to a platform specific library name, the operation relies on the
* module_to_dl callback of the os_api which the application has to override if
* the default does not yield the correct library name.
*
* @param world The world.
* @param library_name The name of the library to load.
* @param module_name The name of the module to load.
*/
FLECS_API
ecs_entity_t ecs_import_from_library(
ecs_world_t *world,
const char *library_name,
const char *module_name);
/** Register a new module.
*/
FLECS_API
ecs_entity_t ecs_module_init(
ecs_world_t *world,
const ecs_component_desc_t *desc);
/** Define module
*/
#define ECS_MODULE(world, id)\
ecs_entity_t ecs_id(id) = ecs_module_init(world, &(ecs_component_desc_t){\
.entity = {\
.name = #id,\
.add = {EcsModule}\
},\
.size = sizeof(id),\
.alignment = ECS_ALIGNOF(id)\
});\
ECS_VECTOR_STACK(FLECS__T##id, ecs_entity_t, &FLECS__E##id, 1);\
id *handles = (id*)ecs_get_mut(world, ecs_id(id), id, NULL);\
ecs_set_scope(world, ecs_id(id));\
(void)ecs_id(id);\
(void)ecs_type(id);\
(void)handles;
/** Wrapper around ecs_import.
* This macro provides a convenient way to load a module with the world. It can
* be used like this:
*
* ECS_IMPORT(world, FlecsSystemsPhysics, 0);
*
* This macro will define entity and type handles for the component associated
* with the module. The module component will be created as a singleton.
*
* The contents of a module component are module specific, although they
* typically contain handles to the content of the module.
*/
#define ECS_IMPORT(world, id) \
id ecs_module(id);\
char *id##__name = ecs_module_path_from_c(#id);\
ecs_id_t ecs_id(id) = ecs_import(\
world, id##Import, id##__name, &ecs_module(id), sizeof(id));\
ecs_os_free(id##__name);\
ECS_VECTOR_STACK(FLECS__T##id, ecs_entity_t, &FLECS__E##id, 1);\
id##ImportHandles(ecs_module(id));\
(void)ecs_id(id);\
(void)ecs_type(id);\
/** Utility macro for declaring a component inside a handles type */
#define ECS_DECLARE_COMPONENT(id)\
ecs_id_t ecs_id(id);\
ecs_type_t ecs_type(id)
/** Utility macro for declaring an entity inside a handles type */
#define ECS_DECLARE_ENTITY(id)\
ecs_entity_t id;\
ecs_type_t ecs_type(id)
/** Utility macro for declaring a type inside a handles type */
#define ECS_DECLARE_TYPE(id)\
ECS_DECLARE_ENTITY(id)
/** Utility macro for setting a component in a module function */
#define ECS_SET_COMPONENT(id)\
if (handles) handles->ecs_id(id) = ecs_id(id);\
if (handles) handles->ecs_type(id) = ecs_type(id)
/** Utility macro for setting an entity in a module function */
#define ECS_SET_ENTITY(id)\
if (handles) handles->id = id;
/** Utility macro for setting a type in a module function */
#define ECS_SET_TYPE(id)\
if (handles) handles->id = id;\
if (handles) handles->ecs_type(id) = ecs_type(id);
#define ECS_EXPORT_COMPONENT(id)\
ECS_SET_COMPONENT(id)
#define ECS_EXPORT_ENTITY(id)\
ECS_SET_ENTITY(id)
#define ECS_EXPORT_TYPE(id)\
ECS_SET_TYPE(id)
/** Utility macro for importing a component */
#define ECS_IMPORT_COMPONENT(handles, id)\
ecs_id_t ecs_id(id) = (handles).ecs_id(id); (void)ecs_id(id);\
ECS_VECTOR_STACK(FLECS__T##id, ecs_entity_t, &FLECS__E##id, 1);\
(void)ecs_id(id);\
(void)ecs_type(id)
/** Utility macro for importing an entity */
#define ECS_IMPORT_ENTITY(handles, id)\
ecs_entity_t id = (handles).id;\
ECS_VECTOR_STACK(FLECS__T##id, ecs_entity_t, &id, 1);\
(void)id;\
(void)ecs_type(id)
/** Utility macro for importing a type */
#define ECS_IMPORT_TYPE(handles, id)\
ecs_entity_t id = (handles).id;\
ecs_type_t ecs_type(id) = (handles).ecs_type(id);\
(void)id;\
(void)ecs_type(id)
#ifdef __cplusplus
}
#endif
#endif
#endif
#ifndef FLECS_SYSTEMS_H
#define FLECS_SYSTEMS_H
#ifdef __cplusplus
extern "C" {
#endif
////////////////////////////////////////////////////////////////////////////////
//// Components
////////////////////////////////////////////////////////////////////////////////
FLECS_API
extern ecs_type_t
ecs_type(EcsSystem),
ecs_type(EcsTickSource);
/* Component used to provide a tick source to systems */
typedef struct EcsTickSource {
bool tick; /* True if providing tick */
FLECS_FLOAT time_elapsed; /* Time elapsed since last tick */
} EcsTickSource;
////////////////////////////////////////////////////////////////////////////////
//// Systems API
////////////////////////////////////////////////////////////////////////////////
/** System status change callback */
typedef enum ecs_system_status_t {
EcsSystemStatusNone = 0,
EcsSystemEnabled,
EcsSystemDisabled,
EcsSystemActivated,
EcsSystemDeactivated
} ecs_system_status_t;
/** System status action.
* The status action is invoked whenever a system is enabled or disabled. Note
* that a system may be enabled but may not actually match any entities. In this
* case the system is enabled but not _active_.
*
* In addition to communicating the enabled / disabled status, the action also
* communicates changes in the activation status of the system. A system becomes
* active when it has one or more matching entities, and becomes inactive when
* it no longer matches any entities.
*
* A system switches between enabled and disabled when an application invokes the
* ecs_enable operation with a state different from the state of the system, for
* example the system is disabled, and ecs_enable is invoked with enabled: true.
*
* Additionally a system may switch between enabled and disabled when it is an
* EcsOnDemand system, and interest is generated or lost for one of its [out]
* columns.
*
* @param world The world.
* @param system The system for which to set the action.
* @param action The action.
* @param ctx Context that will be passed to the action when invoked.
*/
typedef void (*ecs_system_status_action_t)(
ecs_world_t *world,
ecs_entity_t system,
ecs_system_status_t status,
void *ctx);
/* Use with ecs_system_init */
typedef struct ecs_system_desc_t {
/* System entity creation parameters */
ecs_entity_desc_t entity;
/* System query parameters */
ecs_query_desc_t query;
/* System callback, invoked when system is ran */
ecs_iter_action_t callback;
/* System status callback, invoked when system status changes */
ecs_system_status_action_t status_callback;
/* Associate with entity */
ecs_entity_t self;
/* Context to be passed to callback (as ecs_iter_t::param) */
void *ctx;
/* Context to be passed to system status callback */
void *status_ctx;
/* Binding context, for when system is implemented in other language */
void *binding_ctx;
/* Functions that are invoked during system cleanup to free context data.
* When set, functions are called unconditionally, even when the ctx
* pointers are NULL. */
ecs_ctx_free_t ctx_free;
ecs_ctx_free_t status_ctx_free;
ecs_ctx_free_t binding_ctx_free;
/* Interval in seconds at which the system should run */
FLECS_FLOAT interval;
/* Rate at which the system should run */
int32_t rate;
/* External tick soutce that determines when system ticks */
ecs_entity_t tick_source;
} ecs_system_desc_t;
/* Create a system */
FLECS_API
ecs_entity_t ecs_system_init(
ecs_world_t *world,
const ecs_system_desc_t *desc);
#ifndef FLECS_LEGACY
#define ECS_SYSTEM(world, id, kind, ...) \
ecs_iter_action_t ecs_iter_action(id) = id;\
ecs_entity_t id = ecs_system_init(world, &(ecs_system_desc_t){\
.entity = { .name = #id, .add = {kind} },\
.query.filter.expr = #__VA_ARGS__,\
.callback = ecs_iter_action(id)\
});\
ecs_assert(id != 0, ECS_INVALID_PARAMETER, NULL);\
(void)ecs_iter_action(id);\
(void)id;
#endif
/* Deprecated, use ecs_trigger_init */
#define ECS_TRIGGER(world, trigger_name, kind, component) \
ecs_entity_t __F##trigger_name = ecs_trigger_init(world, &(ecs_trigger_desc_t){\
.entity.name = #trigger_name,\
.callback = trigger_name,\
.expr = #component,\
.events = {kind},\
});\
ecs_entity_t trigger_name = __F##trigger_name;\
ecs_assert(trigger_name != 0, ECS_INVALID_PARAMETER, NULL);\
(void)__F##trigger_name;\
(void)trigger_name;
/** Run a specific system manually.
* This operation runs a single system manually. It is an efficient way to
* invoke logic on a set of entities, as manual systems are only matched to
* tables at creation time or after creation time, when a new table is created.
*
* Manual systems are useful to evaluate lists of prematched entities at
* application defined times. Because none of the matching logic is evaluated
* before the system is invoked, manual systems are much more efficient than
* manually obtaining a list of entities and retrieving their components.
*
* An application may pass custom data to a system through the param parameter.
* This data can be accessed by the system through the param member in the
* ecs_iter_t value that is passed to the system callback.
*
* Any system may interrupt execution by setting the interrupted_by member in
* the ecs_iter_t value. This is particularly useful for manual systems, where
* the value of interrupted_by is returned by this operation. This, in
* cominbation with the param argument lets applications use manual systems
* to lookup entities: once the entity has been found its handle is passed to
* interrupted_by, which is then subsequently returned.
*
* @param world The world.
* @param system The system to run.
* @param delta_time: The time passed since the last system invocation.
* @param param A user-defined parameter to pass to the system.
* @return handle to last evaluated entity if system was interrupted.
*/
FLECS_API
ecs_entity_t ecs_run(
ecs_world_t *world,
ecs_entity_t system,
FLECS_FLOAT delta_time,
void *param);
/** Same as ecs_run, but subdivides entities across number of provided stages.
*
* @param world The world.
* @param system The system to run.
* @param stage_current The id of the current stage.
* @param stage_count The total number of stages.
* @param delta_time: The time passed since the last system invocation.
* @param param A user-defined parameter to pass to the system.
* @return handle to last evaluated entity if system was interrupted.
*/
FLECS_API
ecs_entity_t ecs_run_worker(
ecs_world_t *world,
ecs_entity_t system,
int32_t stage_current,
int32_t stage_count,
FLECS_FLOAT delta_time,
void *param);
/** Run system with offset/limit and type filter.
* This operation is the same as ecs_run, but filters the entities that will be
* iterated by the system.
*
* Entities can be filtered in two ways. Offset and limit control the range of
* entities that is iterated over. The range is applied to all entities matched
* with the system, thus may cover multiple archetypes.
*
* The type filter controls which entity types the system will evaluate. Only
* types that contain all components in the type filter will be iterated over. A
* type filter is only evaluated once per table, which makes filtering cheap if
* the number of entities is large and the number of tables is small, but not as
* cheap as filtering in the system signature.
*
* @param world The world.
* @param system The system to invoke.
* @param delta_time: The time passed since the last system invocation.
* @param filter A component or type to filter matched entities.
* @param param A user-defined parameter to pass to the system.
* @return handle to last evaluated entity if system was interrupted.
*/
FLECS_API
ecs_entity_t ecs_run_w_filter(
ecs_world_t *world,
ecs_entity_t system,
FLECS_FLOAT delta_time,
int32_t offset,
int32_t limit,
const ecs_filter_t *filter,
void *param);
/** Get the query object for a system.
* Systems use queries under the hood. This enables an application to get access
* to the underlying query object of a system. This can be useful when, for
* example, an application needs to enable sorting for a system.
*
* @param world The world.
* @param system The system from which to obtain the query.
* @return The query.
*/
FLECS_API
ecs_query_t* ecs_get_system_query(
const ecs_world_t *world,
ecs_entity_t system);
/** Get system context.
* This operation returns the context pointer set for the system. If
* the provided entity is not a system, the function will return NULL.
*
* @param world The world.
* @param system The system from which to obtain the context.
* @return The context.
*/
FLECS_API
void* ecs_get_system_ctx(
const ecs_world_t *world,
ecs_entity_t system);
/** Get system binding context.
* The binding context is a context typically used to attach any language
* binding specific data that is needed when invoking a callback that is
* implemented in another language.
*
* @param world The world.
* @param system The system from which to obtain the context.
* @return The context.
*/
FLECS_API
void* ecs_get_system_binding_ctx(
const ecs_world_t *world,
ecs_entity_t system);
////////////////////////////////////////////////////////////////////////////////
//// Module
////////////////////////////////////////////////////////////////////////////////
/* Pipeline component is empty: components and tags in module are static */
typedef struct FlecsSystem {
int32_t dummy;
} FlecsSystem;
FLECS_API
void FlecsSystemImport(
ecs_world_t *world);
#define FlecsSystemImportHandles(handles)
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
#ifdef FLECS_PIPELINE
/**
* @file pipeline.h
* @brief Pipeline module.
*
* The pipeline module provides support for running systems automatically and
* on multiple threads. A pipeline is a collection of tags that can be added to
* systems. When ran, a pipeline will query for all systems that have the tags
* that belong to a pipeline, and run them.
*
* The module defines a number of builtin tags (EcsPreUpdate, EcsOnUpdate,
* EcsPostUpdate etc.) that are registered with the builtin pipeline. The
* builtin pipeline is ran by default when calling ecs_progress(). An
* application can set a custom pipeline with the ecs_set_pipeline function.
*/
#ifdef FLECS_PIPELINE
#ifndef FLECS_SYSTEM
#define FLECS_SYSTEM
#endif
#ifndef FLECS_PIPELINE_H
#define FLECS_PIPELINE_H
#ifdef __cplusplus
extern "C" {
#endif
#ifndef FLECS_LEGACY
#define ECS_PIPELINE(world, id, ...) \
ecs_entity_t id = ecs_type_init(world, &(ecs_type_desc_t){\
.entity = {\
.name = #id,\
.add = {EcsPipeline}\
},\
.ids_expr = #__VA_ARGS__\
});
#endif
/** Set a custom pipeline.
* This operation sets the pipeline to run when ecs_progress is invoked.
*
* @param world The world.
* @param pipeline The pipeline to set.
*/
FLECS_API
void ecs_set_pipeline(
ecs_world_t *world,
ecs_entity_t pipeline);
/** Get the current pipeline.
* This operation gets the current pipeline.
*
* @param world The world.
* @param pipeline The pipeline to set.
*/
FLECS_API
ecs_entity_t ecs_get_pipeline(
const ecs_world_t *world);
/** Progress a world.
* This operation progresses the world by running all systems that are both
* enabled and periodic on their matching entities.
*
* An application can pass a delta_time into the function, which is the time
* passed since the last frame. This value is passed to systems so they can
* update entity values proportional to the elapsed time since their last
* invocation.
*
* When an application passes 0 to delta_time, ecs_progress will automatically
* measure the time passed since the last frame. If an application does not uses
* time management, it should pass a non-zero value for delta_time (1.0 is
* recommended). That way, no time will be wasted measuring the time.
*
* @param world The world to progress.
* @param delta_time The time passed since the last frame.
* @return false if ecs_quit has been called, true otherwise.
*/
FLECS_API
bool ecs_progress(
ecs_world_t *world,
FLECS_FLOAT delta_time);
/** Set time scale.
* Increase or decrease simulation speed by the provided multiplier.
*
* @param world The world.
* @param scale The scale to apply (default = 1).
*/
FLECS_API
void ecs_set_time_scale(
ecs_world_t *world,
FLECS_FLOAT scale);
/** Reset world clock.
* Reset the clock that keeps track of the total time passed in the simulation.
*
* @param world The world.
*/
FLECS_API
void ecs_reset_clock(
ecs_world_t *world);
/** Run pipeline.
* This will run all systems in the provided pipeline. This operation may be
* invoked from multiple threads, and only when staging is disabled, as the
* pipeline manages staging and, if necessary, synchronization between threads.
*
* If 0 is provided for the pipeline id, the default pipeline will be ran (this
* is either the builtin pipeline or the pipeline set with set_pipeline()).
*
* When using progress() this operation will be invoked automatically for the
* default pipeline (either the builtin pipeline or the pipeline set with
* set_pipeline()). An application may run additional pipelines.
*
* Note: calling this function from an application currently only works in
* single threaded applications with a single stage.
*
* @param world The world.
* @param pipeline The pipeline to run.
*/
FLECS_API
void ecs_pipeline_run(
ecs_world_t *world,
ecs_entity_t pipeline,
FLECS_FLOAT delta_time);
/** Deactivate systems that are not matched with tables.
* By default Flecs deactivates systems that are not matched with any tables.
* However, once a system has been matched with a table it remains activated, to
* prevent systems from continuously becoming active and inactive.
*
* To re-deactivate systems, an application can invoke this function, which will
* deactivate all systems that are not matched with any tables.
*
* @param world The world.
*/
FLECS_API
void ecs_deactivate_systems(
ecs_world_t *world);
////////////////////////////////////////////////////////////////////////////////
//// Threading
////////////////////////////////////////////////////////////////////////////////
/** Set number of worker threads.
* Setting this value to a value higher than 1 will start as many threads and
* will cause systems to evenly distribute matched entities across threads. The
* operation may be called multiple times to reconfigure the number of threads
* used, but never while running a system / pipeline. */
FLECS_API
void ecs_set_threads(
ecs_world_t *world,
int32_t threads);
////////////////////////////////////////////////////////////////////////////////
//// Module
////////////////////////////////////////////////////////////////////////////////
/* Pipeline component is empty: components and tags in module are static */
typedef struct FlecsPipeline {
int32_t dummy;
} FlecsPipeline;
FLECS_API
void FlecsPipelineImport(
ecs_world_t *world);
#define FlecsPipelineImportHandles(handles)
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
#ifdef FLECS_TIMER
/**
* @file timer.h
* @brief Timer module.
*
* Timers can be used to trigger actions at periodic or one-shot intervals. They
* are typically used together with systems and pipelines.
*/
#ifdef FLECS_TIMER
#ifndef FLECS_MODULE
#define FLECS_MODULE
#endif
#ifndef FLECS_PIPELINE
#define FLECS_PIPELINE
#endif
#ifndef FLECS_TIMER_H
#define FLECS_TIMER_H
#ifdef __cplusplus
extern "C" {
#endif
////////////////////////////////////////////////////////////////////////////////
//// Components
////////////////////////////////////////////////////////////////////////////////
FLECS_API
extern ecs_type_t
ecs_type(EcsTimer),
ecs_type(EcsRateFilter);
/** Component used for one shot/interval timer functionality */
typedef struct EcsTimer {
FLECS_FLOAT timeout; /* Timer timeout period */
FLECS_FLOAT time; /* Incrementing time value */
int32_t fired_count; /* Number of times ticked */
bool active; /* Is the timer active or not */
bool single_shot; /* Is this a single shot timer */
} EcsTimer;
/* Apply a rate filter to a tick source */
typedef struct EcsRateFilter {
ecs_entity_t src; /* Source of the rate filter */
int32_t rate; /* Rate of the rate filter */
int32_t tick_count; /* Number of times the rate filter ticked */
FLECS_FLOAT time_elapsed; /* Time elapsed since last tick */
} EcsRateFilter;
////////////////////////////////////////////////////////////////////////////////
//// Timer API
////////////////////////////////////////////////////////////////////////////////
/** Set timer timeout.
* This operation executes any systems associated with the timer after the
* specified timeout value. If the entity contains an existing timer, the
* timeout value will be reset. The timer can be started and stopped with
* ecs_start_timer and ecs_stop_timer.
*
* The timer is synchronous, and is incremented each frame by delta_time.
*
* The tick_source entity will be be a tick source after this operation. Tick
* sources can be read by getting the EcsTickSource component. If the tick
* source ticked this frame, the 'tick' member will be true. When the tick
* source is a system, the system will tick when the timer ticks.
*
* @param world The world.
* @param tick_source The timer for which to set the timeout (0 to create one).
* @param timeout The timeout value.
* @return The timer entity.
*/
FLECS_API
ecs_entity_t ecs_set_timeout(
ecs_world_t *world,
ecs_entity_t tick_source,
FLECS_FLOAT timeout);
/** Get current timeout value for the specified timer.
* This operation returns the value set by ecs_set_timeout. If no timer is
* active for this entity, the operation returns 0.
*
* After the timeout expires the EcsTimer component is removed from the entity.
* This means that if ecs_get_timeout is invoked after the timer is expired, the
* operation will return 0.
*
* The timer is synchronous, and is incremented each frame by delta_time.
*
* The tick_source entity will be be a tick source after this operation. Tick
* sources can be read by getting the EcsTickSource component. If the tick
* source ticked this frame, the 'tick' member will be true. When the tick
* source is a system, the system will tick when the timer ticks.
*
* @param world The world.
* @param tick_source The timer.
* @return The current timeout value, or 0 if no timer is active.
*/
FLECS_API
FLECS_FLOAT ecs_get_timeout(
const ecs_world_t *world,
ecs_entity_t tick_source);
/** Set timer interval.
* This operation will continously invoke systems associated with the timer
* after the interval period expires. If the entity contains an existing timer,
* the interval value will be reset.
*
* The timer is synchronous, and is incremented each frame by delta_time.
*
* The tick_source entity will be be a tick source after this operation. Tick
* sources can be read by getting the EcsTickSource component. If the tick
* source ticked this frame, the 'tick' member will be true. When the tick
* source is a system, the system will tick when the timer ticks.
*
* @param world The world.
* @param tick_source The timer for which to set the interval (0 to create one).
* @param interval The interval value.
* @return The timer entity.
*/
FLECS_API
ecs_entity_t ecs_set_interval(
ecs_world_t *world,
ecs_entity_t tick_source,
FLECS_FLOAT interval);
/** Get current interval value for the specified timer.
* This operation returns the value set by ecs_set_interval. If the entity is
* not a timer, the operation will return 0.
*
* @param world The world.
* @param tick_source The timer for which to set the interval.
* @return The current interval value, or 0 if no timer is active.
*/
FLECS_API
FLECS_FLOAT ecs_get_interval(
const ecs_world_t *world,
ecs_entity_t tick_source);
/** Start timer.
* This operation resets the timer and starts it with the specified timeout. The
* entity must have the EcsTimer component (added by ecs_set_timeout and
* ecs_set_interval). If the entity does not have the EcsTimer component this
* operation will assert.
*
* @param world The world.
* @param tick_source The timer to start.
*/
FLECS_API
void ecs_start_timer(
ecs_world_t *world,
ecs_entity_t tick_source);
/** Stop timer
* This operation stops a timer from triggering. The entity must have the
* EcsTimer component or this operation will assert.
*
* @param world The world.
* @param tick_source The timer to stop.
*/
FLECS_API
void ecs_stop_timer(
ecs_world_t *world,
ecs_entity_t tick_source);
/** Set rate filter.
* This operation initializes a rate filter. Rate filters sample tick sources
* and tick at a configurable multiple. A rate filter is a tick source itself,
* which means that rate filters can be chained.
*
* Rate filters enable deterministic system execution which cannot be achieved
* with interval timers alone. For example, if timer A has interval 2.0 and
* timer B has interval 4.0, it is not guaranteed that B will tick at exactly
* twice the multiple of A. This is partly due to the indeterministic nature of
* timers, and partly due to floating point rounding errors.
*
* Rate filters can be combined with timers (or other rate filters) to ensure
* that a system ticks at an exact multiple of a tick source (which can be
* another system). If a rate filter is created with a rate of 1 it will tick
* at the exact same time as its source.
*
* If no tick source is provided, the rate filter will use the frame tick as
* source, which corresponds with the number of times ecs_progress is called.
*
* The tick_source entity will be be a tick source after this operation. Tick
* sources can be read by getting the EcsTickSource component. If the tick
* source ticked this frame, the 'tick' member will be true. When the tick
* source is a system, the system will tick when the timer ticks.
*
* @param world The world.
* @param tick_source The rate filter entity (0 to create one).
* @param rate The rate to apply.
* @param source The tick source (0 to use frames)
* @return The filter entity.
*/
FLECS_API
ecs_entity_t ecs_set_rate(
ecs_world_t *world,
ecs_entity_t tick_source,
int32_t rate,
ecs_entity_t source);
/** Assign tick source to system.
* Systems can be their own tick source, which can be any of the tick sources
* (one shot timers, interval times and rate filters). However, in some cases it
* is must be guaranteed that different systems tick on the exact same frame.
*
* This cannot be guaranteed by giving two systems the same interval/rate filter
* as it is possible that one system is (for example) disabled, which would
* cause the systems to go out of sync. To provide these guarantees, systems
* must use the same tick source, which is what this operation enables.
*
* When two systems share the same tick source, it is guaranteed that they tick
* in the same frame. The provided tick source can be any entity that is a tick
* source, including another system. If the provided entity is not a tick source
* the system will not be ran.
*
* To disassociate a tick source from a system, use 0 for the tick_source
* parameter.
*
* @param world The world.
* @param system The system to associate with the timer.
* @param timer The timer to associate with the system.
*/
FLECS_API
void ecs_set_tick_source(
ecs_world_t *world,
ecs_entity_t system,
ecs_entity_t tick_source);
////////////////////////////////////////////////////////////////////////////////
//// Module
////////////////////////////////////////////////////////////////////////////////
/* Timers module component */
typedef struct FlecsTimer {
int32_t dummy;
} FlecsTimer;
FLECS_API
void FlecsTimerImport(
ecs_world_t *world);
#define FlecsTimerImportHandles(handles)
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
/* Optional addons */
#ifdef FLECS_BULK
/**
* @file bulk.h
* @brief Bulk operations operate on all entities that match a provided filter.
*/
#ifdef FLECS_BULK
#ifndef FLECS_BULK_H
#define FLECS_BULK_H
#ifdef __cplusplus
extern "C" {
#endif
/** Add an entity to entities matching a filter.
* This operation is the same as ecs_add_id, but is applied to all entities
* that match the provided filter.
*
* @param world The world.
* @param entity_add The entity to add.
* @param filter The filter.
*/
FLECS_API
void ecs_bulk_add_entity(
ecs_world_t *world,
ecs_entity_t entity_add,
const ecs_filter_t *filter);
/** Add a type to entities matching a filter.
* This operation is the same as ecs_add_type but is applied to all entities
* that match the provided filter.
*
* @param world The world.
* @param type The type to add.
* @param filter The filter.
*/
FLECS_API
void ecs_bulk_add_type(
ecs_world_t *world,
ecs_type_t type,
const ecs_filter_t *filter);
/** Add a component / type / tag to entities matching a filter.
* This operation is the same as ecs_add but is applied to all entities
* that match the provided filter.
*
* @param world The world.
* @param type The component, type or tag to add.
* @param filter The filter.
*/
#define ecs_bulk_add(world, type, filter)\
ecs_bulk_add_type(world, ecs_type(type), filter)
/** Removes an entity from entities matching a filter.
* This operation is the same as ecs_remove_id, but is applied to all
* entities that match the provided filter.
*
* @param world The world.
* @param entity_remove The entity to remove.
* @param filter The filter.
*/
FLECS_API
void ecs_bulk_remove_entity(
ecs_world_t *world,
ecs_entity_t entity_remove,
const ecs_filter_t *filter);
/** Remove a type from entities matching a filter.
* This operation is the same as ecs_remove_type but is applied to all entities
* that match the provided filter.
*
* @param world The world.
* @param type The type to remove.
* @param filter The filter.
*/
FLECS_API
void ecs_bulk_remove_type(
ecs_world_t *world,
ecs_type_t type,
const ecs_filter_t *filter);
/** Add a component / type / tag to entities matching a filter.
* This operation is the same as ecs_remove but is applied to all entities
* that match the provided filter.
*
* @param world The world.
* @param type The component, type or tag to remove.
* @param filter The filter.
*/
#define ecs_bulk_remove(world, type, filter)\
ecs_bulk_remove_type(world, ecs_type(type), filter)
/** Add / remove type from entities matching a filter.
* Combination of ecs_bulk_add_type and ecs_bulk_remove_type.
*
* @param world The world.
* @param to_add The type to add.
* @param to_remove The type to remove.
* @param filter The filter.
*/
FLECS_API
void ecs_bulk_add_remove_type(
ecs_world_t *world,
ecs_type_t to_add,
ecs_type_t to_remove,
const ecs_filter_t *filter);
/** Add / remove component, type or tag from entities matching a filter.
* Combination of ecs_bulk_add and ecs_bulk_remove.
*
* @param world The world.
* @param to_add The component, type or tag to add.
* @param to_remove The component, type or tag to remove.
* @param filter The filter.
*/
#define ecs_bulk_add_remove(world, to_add, to_remove, filter)\
ecs_bulk_add_remove_type(world, ecs_type(to_add), ecs_type(to_remove), filter)
/** Delete entities matching a filter.
* This operation is the same as ecs_delete, but applies to all entities that
* match a filter.
*
* @param world The world.
* @param filter The filter.
*/
FLECS_API
void ecs_bulk_delete(
ecs_world_t *world,
const ecs_filter_t *filter);
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
#ifdef FLECS_MODULE
#endif
#ifdef FLECS_PLECS
/**
* @file pecs.h
* @brief Plecs addon.
*
* Plecs is a small data definition language for instantiating entities that
* reuses the existing flecs query parser. The following examples illustrate
* how a plecs snippet translates to regular flecs operations:
*
* Plecs:
* Entity
* C code:
* ecs_entity_t Entity = ecs_set_name(world, 0, "Entity");
*
* Plecs:
* Position(Entity)
* C code:
* ecs_entity_t Position = ecs_set_name(world, 0, "Position");
* ecs_entity_t Entity = ecs_set_name(world, 0, "Entity");
* ecs_add_id(world, Entity, Position);
*
* Plecs:
* Likes(Entity, Apples)
* C code:
* ecs_entity_t Likes = ecs_set_name(world, 0, "Likes");
* ecs_entity_t Apples = ecs_set_name(world, 0, "Apples");
* ecs_entity_t Entity = ecs_set_name(world, 0, "Entity");
* ecs_add_pair(world, Entity, Likes, Apples);
*
* A plecs string may contain multiple statements, separated by a newline:
* Likes(Entity, Apples)
* Likes(Entity, Pears)
* Likes(Entity, Bananas)
*/
#ifdef FLECS_PLECS
#define FLECS_PARSER
#ifndef FLECS_PLECS_H
#define FLECS_PLECS_H
#ifdef __cplusplus
extern "C" {
#endif
/** Parse plecs string.
* This parses a plecs string and instantiates the entities in the world.
*
* @param world The world.
* @param name The script name (typically the file).
* @param str The plecs string.
* @return Zero if success, non-zero otherwise.
*/
FLECS_API
int ecs_plecs_from_str(
ecs_world_t *world,
const char *name,
const char *str);
/** Parse plecs file.
* This parses a plecs file and instantiates the entities in the world. This
* operation is equivalent to loading the file contents and passing it to
* ecs_plecs_from_str.
*
* @param world The world.
* @param file The plecs file name.
* @return Zero if success, non-zero otherwise.
*/
FLECS_API
int ecs_plecs_from_file(
ecs_world_t *world,
const char *filename);
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
#ifdef FLECS_PARSER
/**
* @file parser.h
* @brief Parser addon.
*
* The parser addon parses string expressions into lists of terms, and can be
* used to construct filters, queries and types.
*/
#ifdef FLECS_PARSER
#ifndef FLECS_PARSER_H
#define FLECS_PARSER_H
#ifdef __cplusplus
extern "C" {
#endif
/** Parse term in expression.
* This operation parses a single term in an expression and returns a pointer
* to the next term expression.
*
* If the returned pointer points to the 0-terminator, the expression is fully
* parsed. The function would typically be called in a while loop:
*
* const char *ptr = expr;
* while (ptr[0] && (ptr = ecs_parse_term(world, name, expr, ptr, &term))) { }
*
* The operation does not attempt to find entity ids from the names in the
* expression. Use the ecs_term_resolve_ids function to resolve the identifiers
* in the parsed term.
*
* The returned term will in most cases contain allocated resources, which
* should freed (or used) by the application. To free the resources for a term,
* use the ecs_term_free function.
*
* The parser accepts expressions in the legacy string format.
*
* @param world The world.
* @param name The name of the expression (optional, improves error logs)
* @param expr The expression to parse (optional, improves error logs)
* @param ptr The pointer to the current term (must be in expr).
* @param term_out Out parameter for the term.
* @return pointer to next term if successful, NULL if failed.
*/
FLECS_API
char* ecs_parse_term(
const ecs_world_t *world,
const char *name,
const char *expr,
const char *ptr,
ecs_term_t *term_out);
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // FLECS_PARSER_H
#endif // FLECS_PARSER
#endif
#ifdef FLECS_QUEUE
/**
* @file queue.h
* @brief Queue datastructure.
*
* The queue data structure implements a fixed-size ringbuffer. It is not used
* by the flecs core, but is used by flecs-hub modules.
*/
#ifdef FLECS_QUEUE
#ifndef FLECS_QUEUE_H_
#define FLECS_QUEUE_H_
#ifdef __cplusplus
extern "C" {
#endif
typedef struct ecs_queue_t ecs_queue_t;
FLECS_API
ecs_queue_t* _ecs_queue_new(
ecs_size_t elem_size,
int16_t offset,
int32_t elem_count);
#define ecs_queue_new(T, elem_count)\
_ecs_queue_new(ECS_VECTOR_T(T), elem_count)
FLECS_API
ecs_queue_t* _ecs_queue_from_array(
ecs_size_t elem_size,
int16_t offset,
int32_t elem_count,
void *array);
#define ecs_queue_from_array(T, elem_count, array)\
_ecs_queue_from_array(ECS_VECTOR_T(T), elem_count, array)
FLECS_API
void* _ecs_queue_push(
ecs_queue_t *queue,
ecs_size_t elem_size,
int16_t offset);
#define ecs_queue_push(queue, T)\
(T*)_ecs_queue_push(queue, ECS_VECTOR_T(T))
FLECS_API
void* _ecs_queue_get(
ecs_queue_t *queue,
ecs_size_t elem_size,
int16_t offset,
int32_t index);
#define ecs_queue_get(queue, T, index)\
(T*)_ecs_queue_get(queue, ECS_VECTOR_T(T), index)
#define ecs_queue_get_t(vector, size, alignment, index) \
_ecs_queue_get(vector, ECS_VECTOR_U(size, alignment), index)
FLECS_API
void* _ecs_queue_last(
ecs_queue_t *queue,
ecs_size_t elem_size,
int16_t offset);
#define ecs_queue_last(queue, T)\
(T*)_ecs_queue_last(queue, ECS_VECTOR_T(T))
FLECS_API
int32_t ecs_queue_index(
ecs_queue_t *queue);
FLECS_API
int32_t ecs_queue_count(
ecs_queue_t *queue);
FLECS_API
void ecs_queue_free(
ecs_queue_t *queue);
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
#ifdef FLECS_SNAPSHOT
/**
* @file snapshot.h
* @brief Snapshot addon.
*
* A snapshot records the state of a world in a way so that it can be restored
* later. Snapshots work with POD components and non-POD components, provided
* that the appropriate lifecycle actions are registered for non-POD components.
*
* A snapshot is tightly coupled to a world. It is not possible to restore a
* snapshot from world A into world B.
*/
#ifdef FLECS_SNAPSHOT
#ifndef FLECS_SNAPSHOT_H
#define FLECS_SNAPSHOT_H
#ifdef __cplusplus
extern "C" {
#endif
/** A snapshot stores the state of a world in a particular point in time. */
typedef struct ecs_snapshot_t ecs_snapshot_t;
/** Create a snapshot.
* This operation makes a copy of all component in the world that matches the
* specified filter.
*
* @param world The world to snapshot.
* @param return The snapshot.
*/
FLECS_API
ecs_snapshot_t* ecs_snapshot_take(
ecs_world_t *world);
/** Create a filtered snapshot.
* This operation is the same as ecs_snapshot_take, but accepts an iterator so
* an application can control what is stored by the snapshot.
*
* @param iter An iterator to the data to be stored by the snapshot.
* @param next A function pointer to the next operation for the iterator.
* @param return The snapshot.
*/
FLECS_API
ecs_snapshot_t* ecs_snapshot_take_w_iter(
ecs_iter_t *iter,
ecs_iter_next_action_t action);
/** Restore a snapshot.
* This operation restores the world to the state it was in when the specified
* snapshot was taken. A snapshot can only be used once for restoring, as its
* data replaces the data that is currently in the world.
* This operation also resets the last issued entity handle, so any calls to
* ecs_new may return entity ids that have been issued before restoring the
* snapshot.
*
* The world in which the snapshot is restored must be the same as the world in
* which the snapshot is taken.
*
* @param world The world to restore the snapshot to.
* @param snapshot The snapshot to restore.
*/
FLECS_API
void ecs_snapshot_restore(
ecs_world_t *world,
ecs_snapshot_t *snapshot);
/** Obtain iterator to snapshot data.
*
* @param snapshot The snapshot to iterate over.
* @return Iterator to snapshot data. */
FLECS_API
ecs_iter_t ecs_snapshot_iter(
ecs_snapshot_t *snapshot,
const ecs_filter_t *filter);
/** Progress snapshot iterator.
*
* @param iter The snapshot iterator.
* @return True if more data is available, otherwise false.
*/
FLECS_API
bool ecs_snapshot_next(
ecs_iter_t *iter);
/** Free snapshot resources.
* This frees resources associated with a snapshot without restoring it.
*
* @param world The world.
* @param snapshot The snapshot to free.
*/
FLECS_API
void ecs_snapshot_free(
ecs_snapshot_t *snapshot);
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
#ifdef FLECS_DIRECT_ACCESS
/**
* @file direct_access.h
* @brief Low-level access to underlying data structures for best performance.
*
* This API allows for low-level direct access to tables and their columns. The
* APIs primary intent is to provide fast primitives for new operations. It is
* not recommended to use the API directly in application code, as invoking the
* API in an incorrect way can lead to a corrupted datastore.
*/
#ifdef FLECS_DIRECT_ACCESS
#ifndef FLECS_DIRECT_ACCESS_H_
#define FLECS_DIRECT_ACCESS_H_
#ifdef __cplusplus
extern "C" {
#endif
/** Find the index of a column in a table.
* Table columns are stored in the order of their respective component ids. As
* this is not trivial for an application to deduce, this operation returns the
* index of a column in a table for a given component. This index can be used
* in other table operations to identify a column.
*
* The returned index is determined separately for each table. Indices obtained
* for one table should not be used for another table.
*
* @param table The table.
* @param component The component for which to retrieve the column index.
* @return The column index, or -1 if the table does not have the component.
*/
FLECS_API
int32_t ecs_table_find_column(
const ecs_table_t *table,
ecs_entity_t component);
/** Get table column.
* This operation returns the pointer to a column array. A column contains all
* the data for a component for the provided table in a contiguous array.
*
* The returned pointer is not stable, and may change when a table needs to
* resize its arrays, for example in order to accomodate for more records.
*
* @param table The table.
* @param column The column index.
* @return Vector that contains the column array.
*/
FLECS_API
ecs_vector_t* ecs_table_get_column(
const ecs_table_t *table,
int32_t column);
/** Set table column.
* This operation enables an application to set a component column for a table.
* After the operation the column is owned by the table. Any operations that
* change the column after this operation can cause undefined behavior.
*
* Care must be taken that all columns in a table have the same number of
* elements. If one column has less elements than another, the behavior is
* undefined. The operation will not check if the assigned column is of the same
* size as other columns, as this would prevent an application from assigning
* a set of different columns to a table of a different size.
*
* Setting a column will not delete the previous column. It is the
* responsibility of the application to ensure that the old column is deleted
* properly (using ecs_table_delete_column).
*
* The provided vector must have the same element size and alignment as the
* target column. If the size and/or alignment do not match, the behavior will
* be undefined. In debug mode the operation may assert.
*
* If the provided vector is NULL, the table will ensure that a vector is
* created for the provided column. If a vector exists that is not of the
* same size as the entities vector, it will be resized to match.
*
* @param world The world.
* @param table The table.
* @param column The column index.
* @param vector The column data to assing.
*/
FLECS_API
ecs_vector_t* ecs_table_set_column(
ecs_world_t *world,
ecs_table_t *table,
int32_t column,
ecs_vector_t *vector);
/** Get the vector containing entity ids for the table.
* This operation obtains the vector with entity ids for the current table. Each
* entity id is associated with one record, and ids are stored in the same order
* as the table records. The element type of the vector is ecs_entity_t.
*
* @param table The table.
* @return The vector containing the table's entities.
*/
FLECS_API
ecs_vector_t* ecs_table_get_entities(
const ecs_table_t *table);
/** Get the vector containing pointers to entity records.
* A table stores cached pointers to entity records for fast access. This
* operation provides direct access to the vector. The element type of the
* vector is ecs_record_t*.
*
* @param table The table.
* @return The vector containing the entity records.
*/
FLECS_API
ecs_vector_t* ecs_table_get_records(
const ecs_table_t *table);
/** Clear records.
* This operation clears records for a world so that they no longer point to a
* table. This is useful to ensure that a world is left in a consistent state
* after moving data to destination world.
*
* @param records The vector with record pointers
*/
FLECS_API
void ecs_records_clear(
ecs_vector_t *records);
/** Initialize records.
* This operation ensures entity records are updated to the provided table.
*
* @param world The world.
* @param entities The vector with entity identifiers.
* @param records The vector with record pointers.
* @param table The table in which the entities are stored.
*/
FLECS_API
void ecs_records_update(
ecs_world_t *world,
ecs_vector_t *entities,
ecs_vector_t *records,
ecs_table_t *table);
/** Set the vector containing entity ids for the table.
* This operation sets the vector with entity ids for a table. In addition the
* operation also requires setting a vector with pointers to records. The
* record pointers in the vector need to be managed by the entity index. If they
* are not, this can cause undefined behavior.
*
* The provided vectors must have the same number of elements as the number of
* records in the table. If the element count is not the same, this causes
* undefined behavior.
*
* A table must have an entity and record vector, even if the table does not
* contain entities. For each record that is not an entity, the entity vector
* should contain 0, and the record vector should contain NULL.
*
* @param table The table.
* @param entities The entity vector.
* @param records The record vector.
*/
FLECS_API
void ecs_table_set_entities(
ecs_table_t *table,
ecs_vector_t *entities,
ecs_vector_t *records);
/** Delete a column.
* This operation frees the memory of a table column and will invoke the
* component destructor if registered.
*
* The provided vector does not need to be the same as the vector in the table.
* The reason the table must be provided is so that the operation can retrieve
* the correct destructor for the component. If the component does not have a
* destructor, an application can alternatively delete the vector directly.
*
* If the specified vector is NULL, the column of the table will be removed and
* the table will be updated to no longer point at the column. If an explicit
* column is provided, the table is not modified. If a column is deleted that is
* still being pointed to by a table, behavior is undefined. It is the
* responsibility of the application to ensure that a table no longer points to
* a deleted column, by using ecs_table_set_column.
*
* Simultaneously, if this operation is used to delete a table column, the
* application should make sure that if the table contains other columns, they
* are either also deleted, or that the deleted column is replaced by a column
* of the same size. Note that this also goes for the entity and record vectors,
* they should have the same number of elements as the other columns.
*
* The vector must be of the same component as the specified column. If the
* vector is not of the same component, behavior will be undefined. In debug
* mode the API may assert, though it may not always be able to detect a
* mismatching vector/column.
*
* After this operation the vector should no longer be used by the application.
*
* @param table The table.
* @param column The column index.
* @param vector The column vector to delete.
*/
FLECS_API
void ecs_table_delete_column(
ecs_world_t *world,
ecs_table_t *table,
int32_t column,
ecs_vector_t *vector);
/** Find a record for a given entity.
* This operation finds an existing record in the entity index for a given
* entity. The returned pointer is stable for the lifecycle of the world and can
* be used as argument for the ecs_record_update operation.
*
* The returned record (if found) points to the adminstration that relates an
* entity id to a table. Updating the value of the returned record will cause
* operations like ecs_get and ecs_has to look in the updated table.
*
* Updating this record to a table in which the entity is not stored causes
* undefined behavior.
*
* When the entity has never been created or is not alive this operation will
* return NULL.
*
* @param world The world.
* @param entity The entity.
* @return The record that belongs to the entity, or NULL if not found.
*/
FLECS_API
ecs_record_t* ecs_record_find(
ecs_world_t *world,
ecs_entity_t entity);
/** Same as ecs_record_find, but creates record if it doesn't exist.
* If an entity id has not been created with ecs_new_*, this function can be
* used to ensure that a record exists for an entity id. If the provided id
* already exists in the world, the operation will return the existing record.
*
* @param world The world.
* @param entity The entity for which to retrieve the record.
* @return The (new or existing) record that belongs to the entity.
*/
FLECS_API
ecs_record_t* ecs_record_ensure(
ecs_world_t *world,
ecs_entity_t entity);
/** Get value from record.
* This operation gets a component value from a record. The provided column
* index must match the table of the record.
*
* @param r The record.
* @param column The column index of the component to get.
*/
FLECS_API
void* ecs_record_get_column(
ecs_record_t *r,
int32_t column,
size_t size);
/** Copy value to a component for a record.
* This operation sets the component value of a single component for a record.
* If the component type has a copy action it will be used, otherwise the value
* be memcpyd into the component array.
*
* The provided record does not need to be managed by the entity index but does
* need to point to a valid record in the table. If the provided index is
* outside of the range indicating the number of records in the table, behavior
* is undefined. In debug mode it will cause the operation to assert.
*
* @param world The world.
* @param r The record to set.
* @param column The column index of the component to set.
* @param size The size of the component.
* @param value Pointer to the value to copy.
*/
FLECS_API
void ecs_record_copy_to(
ecs_world_t *world,
ecs_record_t *r,
int32_t column,
size_t size,
const void *value,
int32_t count);
/** Memcpy value to a component for a record.
* Same as ecs_record_copy_to, except that this operation will always use
* memcpy. This operation should only be used for components that can be safely
* memcpyd. If the operation is used for a component that has a copy or move
* action, the behavior is undefined. In debug mode the operation may assert.
*
* @param world The world.
* @param r The record to set.
* @param column The column index of the component to set.
* @param size The size of the component.
* @param value Pointer to the value to move.
*/
FLECS_API
void ecs_record_copy_pod_to(
ecs_world_t *world,
ecs_record_t *r,
int32_t column,
size_t size,
const void *value,
int32_t count);
/** Move value to a component for a record.
* Same as ecs_record_copy_to, except that it uses the move action. If the
* component has no move action the value will be memcpyd into the component
* array. After this operation the application can no longer assume that the
* value passed into the function is valid.
*
* @param world The world.
* @param r The record to set.
* @param column The column index of the component to set.
* @param size The size of the component.
* @param value Pointer to the value to move.
*/
FLECS_API
void ecs_record_move_to(
ecs_world_t *world,
ecs_record_t *r,
int32_t column,
size_t size,
void *value,
int32_t count);
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
#ifdef FLECS_STATS
/**
* @file stats.h
* @brief Statistics addon.
*
* The statistics addon enables an application to obtain detailed metrics about
* the storage, systems and operations of a world.
*/
#ifdef FLECS_STATS
#ifndef FLECS_STATS_H
#define FLECS_STATS_H
#ifdef FLECS_SYSTEM
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define ECS_STAT_WINDOW (60)
/** Simple value that indicates current state */
typedef struct ecs_gauge_t {
float avg[ECS_STAT_WINDOW];
float min[ECS_STAT_WINDOW];
float max[ECS_STAT_WINDOW];
} ecs_gauge_t;
/* Monotonically increasing counter */
typedef struct ecs_counter_t {
ecs_gauge_t rate; /**< Keep track of deltas too */
float value[ECS_STAT_WINDOW];
} ecs_counter_t;
typedef struct ecs_world_stats_t {
/* Allows struct to be initialized with {0} */
int32_t dummy_;
ecs_gauge_t entity_count; /**< Number of entities */
ecs_gauge_t component_count; /**< Number of components */
ecs_gauge_t query_count; /**< Number of queries */
ecs_gauge_t system_count; /**< Number of systems */
ecs_gauge_t table_count; /**< Number of tables */
ecs_gauge_t empty_table_count; /**< Number of empty tables */
ecs_gauge_t singleton_table_count; /**< Number of singleton tables. Singleton tables are tables with just a single entity that contains itself */
ecs_gauge_t matched_entity_count; /**< Number of entities matched by queries */
ecs_gauge_t matched_table_count; /**< Number of tables matched by queries */
/* Deferred operations */
ecs_counter_t new_count;
ecs_counter_t bulk_new_count;
ecs_counter_t delete_count;
ecs_counter_t clear_count;
ecs_counter_t add_count;
ecs_counter_t remove_count;
ecs_counter_t set_count;
ecs_counter_t discard_count;
/* Timing */
ecs_counter_t world_time_total_raw; /**< Actual time passed since simulation start (first time progress() is called) */
ecs_counter_t world_time_total; /**< Simulation time passed since simulation start. Takes into account time scaling */
ecs_counter_t frame_time_total; /**< Time spent processing a frame. Smaller than world_time_total when load is not 100% */
ecs_counter_t system_time_total; /**< Time spent on processing systems. */
ecs_counter_t merge_time_total; /**< Time spent on merging deferred actions. */
ecs_gauge_t fps; /**< Frames per second. */
ecs_gauge_t delta_time; /**< Delta_time. */
/* Frame data */
ecs_counter_t frame_count_total; /**< Number of frames processed. */
ecs_counter_t merge_count_total; /**< Number of merges executed. */
ecs_counter_t pipeline_build_count_total; /**< Number of system pipeline rebuilds (occurs when an inactive system becomes active). */
ecs_counter_t systems_ran_frame; /**< Number of systems ran in the last frame. */
/** Current position in ringbuffer */
int32_t t;
} ecs_world_stats_t;
/* Statistics for a single query (use ecs_get_query_stats) */
typedef struct ecs_query_stats_t {
ecs_gauge_t matched_table_count; /**< Number of matched non-empty tables. This is the number of tables
* iterated over when evaluating a query. */
ecs_gauge_t matched_empty_table_count; /**< Number of matched empty tables. Empty tables are not iterated over when
* evaluating a query. */
ecs_gauge_t matched_entity_count; /**< Number of matched entities across all tables */
/** Current position in ringbuffer */
int32_t t;
} ecs_query_stats_t;
/** Statistics for a single system (use ecs_get_system_stats) */
typedef struct ecs_system_stats_t {
ecs_query_stats_t query_stats;
ecs_counter_t time_spent; /**< Time spent processing a system */
ecs_counter_t invoke_count; /**< Number of times system is invoked */
ecs_gauge_t active; /**< Whether system is active (is matched with >0 entities) */
ecs_gauge_t enabled; /**< Whether system is enabled */
} ecs_system_stats_t;
/** Statistics for all systems in a pipeline. */
typedef struct ecs_pipeline_stats_t {
/** Vector with system ids of all systems in the pipeline. The systems are
* stored in the order they are executed. Merges are represented by a 0. */
ecs_vector_t *systems;
/** Map with system statistics. For each system in the systems vector, an
* entry in the map exists of type ecs_system_stats_t. */
ecs_map_t *system_stats;
} ecs_pipeline_stats_t;
/** Get world statistics.
* Obtain statistics for the provided world. This operation loops several times
* over the tables in the world, and can impact application performance.
*
* @param world The world.
* @param stats Out parameter for statistics.
*/
FLECS_API void ecs_get_world_stats(
const ecs_world_t *world,
ecs_world_stats_t *stats);
/** Print world statistics.
* Print statistics obtained by ecs_get_world_statistics and in the
* ecs_world_info_t struct.
*
* @param world The world.
* @param stats The statistics to print.
*/
FLECS_API void ecs_dump_world_stats(
const ecs_world_t *world,
const ecs_world_stats_t *stats);
/** Get query statistics.
* Obtain statistics for the provided query.
*
* @param world The world.
* @param query The query.
* @param stats Out parameter for statistics.
*/
FLECS_API void ecs_get_query_stats(
const ecs_world_t *world,
const ecs_query_t *query,
ecs_query_stats_t *s);
#ifdef FLECS_SYSTEM
/** Get system statistics.
* Obtain statistics for the provided system.
*
* @param world The world.
* @param system The system.
* @param stats Out parameter for statistics.
* @return true if success, false if not a system.
*/
FLECS_API bool ecs_get_system_stats(
const ecs_world_t *world,
ecs_entity_t system,
ecs_system_stats_t *stats);
#endif
#ifdef FLECS_PIPELINE
/** Get pipeline statistics.
* Obtain statistics for the provided pipeline.
*
* @param world The world.
* @param pipeline The pipeline.
* @param stats Out parameter for statistics.
* @return true if success, false if not a pipeline.
*/
FLECS_API bool ecs_get_pipeline_stats(
const ecs_world_t *world,
ecs_entity_t pipeline,
ecs_pipeline_stats_t *stats);
#endif
FLECS_API void ecs_gauge_reduce(
ecs_gauge_t *dst,
int32_t t_dst,
ecs_gauge_t *src,
int32_t t_src);
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
#ifdef __cplusplus
}
#ifndef FLECS_NO_CPP
#ifndef FLECS_LEGACY
/**
* @file flecs.hpp
* @brief Flecs C++ API.
*
* This is a C++11 wrapper around the Flecs C API.
*/
#pragma once
// The C++ API does not use STL, save for type_traits
#include <type_traits>
// Allows overriding flecs_static_assert, which is useful when testing
#ifndef flecs_static_assert
#define flecs_static_assert(cond, str) static_assert(cond, str)
#endif
namespace flecs {
////////////////////////////////////////////////////////////////////////////////
//// Forward declarations and types
////////////////////////////////////////////////////////////////////////////////
using world_t = ecs_world_t;
using id_t = ecs_id_t;
using entity_t = ecs_entity_t;
using type_t = ecs_type_t;
using snapshot_t = ecs_snapshot_t;
using filter_t = ecs_filter_t;
using query_t = ecs_query_t;
using ref_t = ecs_ref_t;
using iter_t = ecs_iter_t;
using ComponentLifecycle = EcsComponentLifecycle;
enum inout_kind_t {
InOutDefault = EcsInOutDefault,
InOut = EcsInOut,
In = EcsIn,
Out = EcsOut
};
enum oper_kind_t {
And = EcsAnd,
Or = EcsOr,
Not = EcsNot,
Optional = EcsOptional,
AndFrom = EcsAndFrom,
OrFrom = EcsOrFrom,
NotFrom = EcsNotFrom
};
enum var_kind_t {
VarDefault = EcsVarDefault,
VarIsEntity = EcsVarIsEntity,
VarIsVariable = EcsVarIsVariable
};
class world;
class world_async_stage;
class snapshot;
class id;
class entity;
class entity_view;
class type;
class pipeline;
class iter;
class term;
class filter_iterator;
class child_iterator;
class world_filter;
class snapshot_filter;
class query_base;
template<typename ... Components>
class filter;
template<typename ... Components>
class query;
template<typename ... Components>
class system;
template<typename ... Components>
class observer;
template <typename ... Components>
class filter_builder;
template <typename ... Components>
class query_builder;
template <typename ... Components>
class system_builder;
template <typename ... Components>
class observer_builder;
namespace _
{
template <typename T, typename U = int>
class cpp_type;
template <typename Func, typename ... Components>
class each_invoker;
}
////////////////////////////////////////////////////////////////////////////////
//// Builtin components and tags
////////////////////////////////////////////////////////////////////////////////
/* Builtin components */
using Component = EcsComponent;
using Type = EcsType;
using Identifier = EcsIdentifier;
using Timer = EcsTimer;
using RateFilter = EcsRateFilter;
using TickSource = EcsTickSource;
using Query = EcsQuery;
using Trigger = EcsTrigger;
using Observer = EcsObserver;
/* Builtin opaque components */
static const flecs::entity_t System = ecs_id(EcsSystem);
/* Builtin set constants */
static const uint8_t DefaultSet = EcsDefaultSet;
static const uint8_t Self = EcsSelf;
static const uint8_t SuperSet = EcsSuperSet;
static const uint8_t SubSet = EcsSubSet;
static const uint8_t Cascade = EcsCascade;
static const uint8_t All = EcsAll;
static const uint8_t Nothing = EcsNothing;
/* Builtin tag ids */
static const flecs::entity_t Module = EcsModule;
static const flecs::entity_t Prefab = EcsPrefab;
static const flecs::entity_t Hidden = EcsHidden;
static const flecs::entity_t Disabled = EcsDisabled;
static const flecs::entity_t DisabledIntern = EcsDisabledIntern;
static const flecs::entity_t Inactive = EcsInactive;
static const flecs::entity_t OnDemand = EcsOnDemand;
static const flecs::entity_t Monitor = EcsMonitor;
static const flecs::entity_t Pipeline = EcsPipeline;
/* Trigger tags */
static const flecs::entity_t OnAdd = EcsOnAdd;
static const flecs::entity_t OnRemove = EcsOnRemove;
static const flecs::entity_t OnSet = EcsOnSet;
static const flecs::entity_t UnSet = EcsUnSet;
/* Builtin pipeline tags */
static const flecs::entity_t PreFrame = EcsPreFrame;
static const flecs::entity_t OnLoad = EcsOnLoad;
static const flecs::entity_t PostLoad = EcsPostLoad;
static const flecs::entity_t PreUpdate = EcsPreUpdate;
static const flecs::entity_t OnUpdate = EcsOnUpdate;
static const flecs::entity_t OnValidate = EcsOnValidate;
static const flecs::entity_t PostUpdate = EcsPostUpdate;
static const flecs::entity_t PreStore = EcsPreStore;
static const flecs::entity_t OnStore = EcsOnStore;
static const flecs::entity_t PostFrame = EcsPostFrame;
/** Builtin roles */
static const flecs::entity_t Pair = ECS_PAIR;
static const flecs::entity_t Switch = ECS_SWITCH;
static const flecs::entity_t Case = ECS_CASE;
static const flecs::entity_t Owned = ECS_OWNED;
/* Builtin entity ids */
static const flecs::entity_t Flecs = EcsFlecs;
static const flecs::entity_t FlecsCore = EcsFlecsCore;
static const flecs::entity_t World = EcsWorld;
/* Ids used by rule solver */
static const flecs::entity_t Wildcard = EcsWildcard;
static const flecs::entity_t This = EcsThis;
static const flecs::entity_t Transitive = EcsTransitive;
static const flecs::entity_t Final = EcsFinal;
static const flecs::entity_t Tag = EcsTag;
/* Builtin relationships */
static const flecs::entity_t IsA = EcsIsA;
static const flecs::entity_t ChildOf = EcsChildOf;
/* Builtin identifiers */
static const flecs::entity_t Name = EcsName;
static const flecs::entity_t Symbol = EcsSymbol;
/* Cleanup rules */
static const flecs::entity_t OnDelete = EcsOnDelete;
static const flecs::entity_t OnDeleteObject = EcsOnDeleteObject;
static const flecs::entity_t Remove = EcsRemove;
static const flecs::entity_t Delete = EcsDelete;
static const flecs::entity_t Throw = EcsThrow;
}
////////////////////////////////////////////////////////////////////////////////
//// Flecs STL (FTL?)
//// Minimalistic utilities that allow for STL like functionality without having
//// to depend on the actual STL.
////////////////////////////////////////////////////////////////////////////////
// Macros so that C++ new calls can allocate using ecs_os_api memory allocation functions
// Rationale:
// - Using macros here instead of a templated function bc clients might override ecs_os_malloc
// to contain extra debug info like source tracking location. Using a template function
// in that scenario would collapse all source location into said function vs. the
// actual call site
// - FLECS_PLACEMENT_NEW(): exists to remove any naked new calls/make it easy to identify any regressions
// by grepping for new/delete
#define FLECS_PLACEMENT_NEW(_ptr, _type) ::new(flecs::_::placement_new_tag, _ptr) _type
#define FLECS_NEW(_type) FLECS_PLACEMENT_NEW(ecs_os_malloc(sizeof(_type)), _type)
#define FLECS_DELETE(_ptr) \
do { \
if (_ptr) { \
flecs::_::destruct_obj(_ptr); \
ecs_os_free(_ptr); \
} \
} while (false)
namespace flecs
{
namespace _
{
// Dummy Placement new tag to disambiguate from any other operator new overrides
struct placement_new_tag_t{};
constexpr placement_new_tag_t placement_new_tag{};
template<class Ty> inline void destruct_obj(Ty* _ptr) { _ptr->~Ty(); }
template<class Ty> inline void free_obj(Ty* _ptr) {
if (_ptr) {
destruct_obj(_ptr);
ecs_os_free(_ptr);
}
}
} // namespace _
} // namespace flecs
inline void* operator new(size_t, flecs::_::placement_new_tag_t, void* _ptr) noexcept { return _ptr; }
inline void operator delete(void*, flecs::_::placement_new_tag_t, void*) noexcept { }
namespace flecs
{
// C++11/C++14 convenience template replacements
template <bool V, typename T, typename F>
using conditional_t = typename std::conditional<V, T, F>::type;
template <typename T>
using decay_t = typename std::decay<T>::type;
template <bool V, typename T = void>
using enable_if_t = typename std::enable_if<V, T>::type;
template <typename T>
using remove_pointer_t = typename std::remove_pointer<T>::type;
template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;
using std::is_base_of;
using std::is_empty;
using std::is_const;
using std::is_pointer;
using std::is_reference;
using std::is_volatile;
using std::is_same;
// Apply cv modifiers from source type to destination type
// (from: https://stackoverflow.com/questions/52559336/add-const-to-type-if-template-arg-is-const)
template<class Src, class Dst>
using transcribe_const_t = conditional_t<is_const<Src>::value, Dst const, Dst>;
template<class Src, class Dst>
using transcribe_volatile_t = conditional_t<is_volatile<Src>::value, Dst volatile, Dst>;
template<class Src, class Dst>
using transcribe_cv_t = transcribe_const_t< Src, transcribe_volatile_t< Src, Dst> >;
// More convenience templates. The if_*_t templates use int as default type
// instead of void. This enables writing code that's a bit less cluttered when
// the templates are used in a template declaration:
//
// enable_if_t<true>* = nullptr
// vs:
// if_t<true> = 0
template <bool V>
using if_t = enable_if_t<V, int>;
template <bool V>
using if_not_t = enable_if_t<false == V, int>;
// String handling
class string_view;
// This removes dependencies on std::string (and therefore STL) and allows the
// API to return allocated strings without incurring additional allocations when
// wrapping in an std::string.
class string {
public:
explicit string()
: m_str(nullptr)
, m_const_str("")
, m_length(0) { }
explicit string(char *str)
: m_str(str)
, m_const_str(str ? str : "")
, m_length(str ? ecs_os_strlen(str) : 0) { }
~string() {
// If flecs is included in a binary but is not used, it is possible that
// the OS API is not initialized. Calling ecs_os_free in that case could
// crash the application during exit. However, if a string has been set
// flecs has been used, and OS API should have been initialized.
if (m_str) {
ecs_os_free(m_str);
}
}
string(string&& str) {
ecs_os_free(m_str);
m_str = str.m_str;
m_const_str = str.m_const_str;
m_length = str.m_length;
str.m_str = nullptr;
}
operator const char*() const {
return m_const_str;
}
string& operator=(string&& str) {
ecs_os_free(m_str);
m_str = str.m_str;
m_const_str = str.m_const_str;
m_length = str.m_length;
str.m_str = nullptr;
return *this;
}
// Ban implicit copies/allocations
string& operator=(const string& str) = delete;
string(const string& str) = delete;
bool operator==(const flecs::string& str) const {
if (str.m_const_str == m_const_str) {
return true;
}
if (!m_const_str || !str.m_const_str) {
return false;
}
if (str.m_length != m_length) {
return false;
}
return ecs_os_strcmp(str, m_const_str) == 0;
}
bool operator!=(const flecs::string& str) const {
return !(*this == str);
}
bool operator==(const char *str) const {
if (m_const_str == str) {
return true;
}
if (!m_const_str || !str) {
return false;
}
return ecs_os_strcmp(str, m_const_str) == 0;
}
bool operator!=(const char *str) const {
return !(*this == str);
}
const char* c_str() const {
return m_const_str;
}
std::size_t length() {
return static_cast<std::size_t>(m_length);
}
std::size_t size() {
return length();
}
void clear() {
ecs_os_free(m_str);
m_str = nullptr;
m_const_str = nullptr;
}
protected:
// Must be constructed through string_view. This allows for using the string
// class for both owned and non-owned strings, which can reduce allocations
// when code conditionally should store a literal or an owned string.
// Making this constructor private forces the code to explicitly create a
// string_view which emphasizes that the string won't be freed by the class.
string(const char *str)
: m_str(nullptr)
, m_const_str(str ? str : "")
, m_length(str ? ecs_os_strlen(str) : 0) { }
char *m_str = nullptr;
const char *m_const_str;
ecs_size_t m_length;
};
// For consistency, the API returns a string_view where it could have returned
// a const char*, so an application won't have to think about whether to call
// c_str() or not. The string_view is a thin wrapper around a string that forces
// the API to indicate explicitly when a string is owned or not.
class string_view : public string {
public:
explicit string_view(const char *str)
: string(str) { }
};
// Wrapper around ecs_strbuf_t that provides a simple stringstream like API.
class stringstream {
public:
explicit stringstream()
: m_buf({}) { }
~stringstream() {
ecs_strbuf_reset(&m_buf);
}
stringstream(stringstream&& str) {
ecs_strbuf_reset(&m_buf);
m_buf = str.m_buf;
str.m_buf = {};
}
stringstream& operator=(stringstream&& str) {
ecs_strbuf_reset(&m_buf);
m_buf = str.m_buf;
str.m_buf = {};
return *this;
}
// Ban implicit copies/allocations
stringstream& operator=(const stringstream& str) = delete;
stringstream(const stringstream& str) = delete;
stringstream& operator<<(const char* str) {
ecs_strbuf_appendstr(&m_buf, str);
return *this;
}
flecs::string str() {
return flecs::string(ecs_strbuf_get(&m_buf));
}
private:
ecs_strbuf_t m_buf;
};
// Array class. Simple std::array like utility that is mostly there to aid
// template code, where the expanded array size would be 0.
template <typename T>
class array_iterator
{
public:
explicit array_iterator(T* value, int index) {
m_value = value;
m_index = index;
}
bool operator!=(array_iterator const& other) const
{
return m_index != other.m_index;
}
T & operator*() const
{
return m_value[m_index];
}
array_iterator& operator++()
{
++m_index;
return *this;
}
private:
T* m_value;
int m_index;
};
template <typename T, size_t Size, class Enable = void>
class array { };
template <typename T, size_t Size>
class array<T, Size, enable_if_t<Size != 0> > {
public:
array() {};
array(const T (&elems)[Size]) {
int i = 0;
for (auto it = this->begin(); it != this->end(); ++ it) {
*it = elems[i ++];
}
}
T& operator[](size_t index) {
return m_array[index];
}
array_iterator<T> begin() {
return array_iterator<T>(m_array, 0);
}
array_iterator<T> end() {
return array_iterator<T>(m_array, Size);
}
size_t size() {
return Size;
}
T* ptr() {
return m_array;
}
private:
T m_array[Size];
};
// Specialized class for zero-sized array
template <typename T, size_t Size>
class array<T, Size, enable_if_t<Size == 0>> {
public:
array() {};
array(const T* (&elems)) { (void)elems; }
T operator[](size_t index) { abort(); (void)index; return T(); }
array_iterator<T> begin() { return array_iterator<T>(nullptr, 0); }
array_iterator<T> end() { return array_iterator<T>(nullptr, 0); }
size_t size() {
return 0;
}
T* ptr() {
return NULL;
}
};
namespace _
{
// Utility to prevent static assert from immediately triggering
template <class... T>
struct always_false {
static const bool value = false;
};
} // namespace _
} // namespace flecs
namespace flecs {
namespace _ {
struct pair_base { };
} // _
// Type that represents a pair and can encapsulate a temporary value
template <typename R, typename O>
struct pair : _::pair_base {
// Traits used to deconstruct the pair
// The actual type of the pair is determined by which type of the pair is
// empty. If both types are empty or not empty, the pair assumes the type
// of the relation.
using type = conditional_t<!is_empty<R>::value || is_empty<O>::value, R, O>;
using relation = R;
using object = O;
pair(type& v) : ref_(v) { }
// This allows the class to be used as a temporary object
pair(const type& v) : ref_(const_cast<type&>(v)) { }
operator type&() {
return ref_;
}
operator const Type&() const {
return ref_;
}
type* operator->() {
return &ref_;
}
const type* operator->() const {
return &ref_;
}
type& operator*() {
return &ref_;
}
const type& operator*() const {
return ref_;
}
private:
type& ref_;
};
template <typename R, typename O, if_t<is_empty<R>::value> = 0>
using pair_object = pair<R, O>;
// Utilities to test if type is a pair
template <typename T>
struct is_pair {
static constexpr bool value = is_base_of<_::pair_base, remove_reference_t<T> >::value;
};
// Get actual type, relation or object from pair while preserving cv qualifiers.
template <typename P>
using pair_relation_t = transcribe_cv_t<remove_reference_t<P>, typename remove_reference_t<P>::relation>;
template <typename P>
using pair_object_t = transcribe_cv_t<remove_reference_t<P>, typename remove_reference_t<P>::object>;
template <typename P>
using pair_type_t = transcribe_cv_t<remove_reference_t<P>, typename remove_reference_t<P>::type>;
// Get actual type from a regular type or pair
template <typename T, typename U = int>
struct actual_type;
template <typename T>
struct actual_type<T, if_not_t< is_pair<T>::value >> {
using type = T;
};
template <typename T>
struct actual_type<T, if_t< is_pair<T>::value >> {
using type = pair_type_t<T>;
};
template <typename T>
using actual_type_t = typename actual_type<T>::type;
// Get type without const, *, &
template<typename T>
struct base_type {
using type = remove_pointer_t< decay_t< actual_type_t<T> > >;
};
template <typename T>
using base_type_t = typename base_type<T>::type;
// Get type without *, & (retains const which is useful for function args)
template<typename T>
struct base_arg_type {
using type = remove_pointer_t< remove_reference_t< actual_type_t<T> > >;
};
template <typename T>
using base_arg_type_t = typename base_arg_type<T>::type;
// Test if type is the same as its actual type
template <typename T>
struct is_actual {
static constexpr bool value = std::is_same<T, actual_type_t<T> >::value;
};
} // flecs
// Neat utility to inspect arguments & returntype of a function type
// Code from: https://stackoverflow.com/questions/27024238/c-template-mechanism-to-get-the-number-of-function-arguments-which-would-work
namespace flecs {
namespace _ {
template <typename ... Args>
struct arg_list { };
// Base type that contains the traits
template <typename ReturnType, typename... Args>
struct function_traits_defs
{
static constexpr bool is_callable = true;
static constexpr size_t arity = sizeof...(Args);
using return_type = ReturnType;
using args = arg_list<Args ...>;
};
// Primary template for function_traits_impl
template <typename T>
struct function_traits_impl {
static constexpr bool is_callable = false;
};
// Template specializations for the different kinds of function types (whew)
template <typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(Args...)>
: function_traits_defs<ReturnType, Args...> {};
template <typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(*)(Args...)>
: function_traits_defs<ReturnType, Args...> {};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(ClassType::*)(Args...)>
: function_traits_defs<ReturnType, Args...> {};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(ClassType::*)(Args...) const>
: function_traits_defs<ReturnType, Args...> {};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(ClassType::*)(Args...) const&>
: function_traits_defs<ReturnType, Args...> {};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(ClassType::*)(Args...) const&&>
: function_traits_defs<ReturnType, Args...> {};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(ClassType::*)(Args...) volatile>
: function_traits_defs<ReturnType, Args...> {};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(ClassType::*)(Args...) volatile&>
: function_traits_defs<ReturnType, Args...> {};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(ClassType::*)(Args...) volatile&&>
: function_traits_defs<ReturnType, Args...> {};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(ClassType::*)(Args...) const volatile>
: function_traits_defs<ReturnType, Args...> {};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(ClassType::*)(Args...) const volatile&>
: function_traits_defs<ReturnType, Args...> {};
template <typename ClassType, typename ReturnType, typename... Args>
struct function_traits_impl<ReturnType(ClassType::*)(Args...) const volatile&&>
: function_traits_defs<ReturnType, Args...> {};
// Primary template for function_traits_no_cv. If T is not a function, the
// compiler will attempt to instantiate this template and fail, because its base
// is undefined.
template <typename T, typename V = void>
struct function_traits_no_cv
: function_traits_impl<T> {};
// Specialized template for function types
template <typename T>
struct function_traits_no_cv<T, decltype((void)&T::operator())>
: function_traits_impl<decltype(&T::operator())> {};
// Front facing template that decays T before ripping it apart.
template <typename T>
struct function_traits
: function_traits_no_cv< decay_t<T> > {};
} // _
template <typename T>
struct is_callable {
static constexpr bool value = _::function_traits<T>::is_callable;
};
template <typename T>
struct arity {
static constexpr int value = _::function_traits<T>::arity;
};
template <typename T>
using return_type_t = typename _::function_traits<T>::return_type;
template <typename T>
using arg_list_t = typename _::function_traits<T>::args;
template<typename Func, typename ... Args>
struct first_arg_impl;
template<typename Func, typename T, typename ... Args>
struct first_arg_impl<Func, _::arg_list<T, Args ...> > {
using type = T;
};
template<typename Func>
struct first_arg {
using type = typename first_arg_impl<Func, arg_list_t<Func>>::type;
};
template <typename Func>
using first_arg_t = typename first_arg<Func>::type;
} // flecs
namespace flecs
{
namespace _
{
inline void ecs_ctor_illegal(ecs_world_t* w, ecs_entity_t id, const ecs_entity_t*,
void *, size_t, int32_t, void*)
{
char *path = ecs_get_path_w_sep(w, 0, id, "::", "::");
ecs_abort(ECS_INVALID_OPERATION,
"cannnot default construct %s, add %s::%s() or use emplace<T>",
path, path, ecs_get_name(w, id));
ecs_os_free(path);
}
inline void ecs_dtor_illegal(ecs_world_t* w, ecs_entity_t id, const ecs_entity_t*,
void *, size_t, int32_t, void*)
{
char *path = ecs_get_path_w_sep(w, 0, id, "::", "::");
ecs_abort(ECS_INVALID_OPERATION, "cannnot destruct %s, add ~%s::%s()",
path, path, ecs_get_name(w, id));
ecs_os_free(path);
}
inline void ecs_copy_illegal(ecs_world_t* w, ecs_entity_t id, const ecs_entity_t*,
const ecs_entity_t*, void *, const void *, size_t, int32_t, void*)
{
char *path = ecs_get_path_w_sep(w, 0, id, "::", "::");
ecs_abort(ECS_INVALID_OPERATION,
"cannnot copy assign %s, add %s& %s::operator =(const %s&)", path,
ecs_get_name(w, id), path, ecs_get_name(w, id), ecs_get_name(w, id));
ecs_os_free(path);
}
inline void ecs_move_illegal(ecs_world_t* w, ecs_entity_t id, const ecs_entity_t*,
const ecs_entity_t*, void *, void *, size_t, int32_t, void*)
{
char *path = ecs_get_path_w_sep(w, 0, id, "::", "::");
ecs_abort(ECS_INVALID_OPERATION,
"cannnot move assign %s, add %s& %s::operator =(%s&&)", path,
ecs_get_name(w, id), path, ecs_get_name(w, id), ecs_get_name(w, id));
ecs_os_free(path);
}
inline void ecs_copy_ctor_illegal(ecs_world_t* w, ecs_entity_t id,
const EcsComponentLifecycle*, const ecs_entity_t*, const ecs_entity_t*,
void *, const void *, size_t, int32_t, void*)
{
char *path = ecs_get_path_w_sep(w, 0, id, "::", "::");
ecs_abort(ECS_INVALID_OPERATION,
"cannnot copy construct %s, add %s::%s(const %s&)",
path, path, ecs_get_name(w, id), ecs_get_name(w, id));
ecs_os_free(path);
}
inline void ecs_move_ctor_illegal(ecs_world_t* w, ecs_entity_t id,
const EcsComponentLifecycle*, const ecs_entity_t*, const ecs_entity_t*,
void *, void *, size_t, int32_t, void*)
{
char *path = ecs_get_path_w_sep(w, 0, id, "::", "::");
ecs_abort(ECS_INVALID_OPERATION,
"cannnot move construct %s, add %s::%s(%s&&)",
path, path, ecs_get_name(w, id), ecs_get_name(w, id));
ecs_os_free(path);
}
// T()
// Can't coexist with T(flecs::entity) or T(flecs::world, flecs::entity)
template <typename T>
void ctor_impl(
ecs_world_t*, ecs_entity_t, const ecs_entity_t*, void *ptr, size_t size,
int32_t count, void*)
{
(void)size; ecs_assert(size == sizeof(T), ECS_INTERNAL_ERROR, NULL);
T *arr = static_cast<T*>(ptr);
for (int i = 0; i < count; i ++) {
FLECS_PLACEMENT_NEW(&arr[i], T);
}
}
// T(flecs::world, flecs::entity)
template <typename T>
void ctor_world_entity_impl(
ecs_world_t* world, ecs_entity_t, const ecs_entity_t* ids, void *ptr,
size_t size, int32_t count, void*);
// ~T()
template <typename T>
void dtor_impl(
ecs_world_t*, ecs_entity_t, const ecs_entity_t*, void *ptr, size_t size,
int32_t count, void*)
{
(void)size; ecs_assert(size == sizeof(T), ECS_INTERNAL_ERROR, NULL);
T *arr = static_cast<T*>(ptr);
for (int i = 0; i < count; i ++) {
arr[i].~T();
}
}
// T& operator=(const T&)
template <typename T>
void copy_impl(
ecs_world_t*, ecs_entity_t, const ecs_entity_t*, const ecs_entity_t*,
void *dst_ptr, const void *src_ptr, size_t size, int32_t count, void*)
{
(void)size; ecs_assert(size == sizeof(T), ECS_INTERNAL_ERROR, NULL);
T *dst_arr = static_cast<T*>(dst_ptr);
const T *src_arr = static_cast<const T*>(src_ptr);
for (int i = 0; i < count; i ++) {
dst_arr[i] = src_arr[i];
}
}
// T& operator=(T&&)
template <typename T>
void move_impl(
ecs_world_t*, ecs_entity_t, const ecs_entity_t*, const ecs_entity_t*,
void *dst_ptr, void *src_ptr, size_t size, int32_t count, void*)
{
(void)size; ecs_assert(size == sizeof(T), ECS_INTERNAL_ERROR, NULL);
T *dst_arr = static_cast<T*>(dst_ptr);
T *src_arr = static_cast<T*>(src_ptr);
for (int i = 0; i < count; i ++) {
dst_arr[i] = std::move(src_arr[i]);
}
}
// T(T&)
template <typename T>
void copy_ctor_impl(
ecs_world_t*, ecs_entity_t, const EcsComponentLifecycle*,
const ecs_entity_t*, const ecs_entity_t*, void *dst_ptr,
const void *src_ptr, size_t size, int32_t count, void*)
{
(void)size; ecs_assert(size == sizeof(T), ECS_INTERNAL_ERROR, NULL);
T *dst_arr = static_cast<T*>(dst_ptr);
const T *src_arr = static_cast<const T*>(src_ptr);
for (int i = 0; i < count; i ++) {
FLECS_PLACEMENT_NEW(&dst_arr[i], T(src_arr[i]));
}
}
// T(T&&)
template <typename T>
void move_ctor_impl(
ecs_world_t*, ecs_entity_t, const EcsComponentLifecycle*,
const ecs_entity_t*, const ecs_entity_t*, void *dst_ptr,
void *src_ptr, size_t size, int32_t count, void*)
{
(void)size; ecs_assert(size == sizeof(T), ECS_INTERNAL_ERROR, NULL);
T *dst_arr = static_cast<T*>(dst_ptr);
T *src_arr = static_cast<T*>(src_ptr);
for (int i = 0; i < count; i ++) {
FLECS_PLACEMENT_NEW(&dst_arr[i], T(std::move(src_arr[i])));
}
}
// T(T&&), ~T()
// Typically used when moving to a new table, and removing from the old table
template <typename T>
void ctor_move_dtor_impl(
ecs_world_t*, ecs_entity_t, const EcsComponentLifecycle*,
const ecs_entity_t*, const ecs_entity_t*, void *dst_ptr,
void *src_ptr, size_t size, int32_t count, void*)
{
(void)size; ecs_assert(size == sizeof(T), ECS_INTERNAL_ERROR, NULL);
T *dst_arr = static_cast<T*>(dst_ptr);
T *src_arr = static_cast<T*>(src_ptr);
for (int i = 0; i < count; i ++) {
FLECS_PLACEMENT_NEW(&dst_arr[i], T(std::move(src_arr[i])));
src_arr[i].~T();
}
}
// Move assign + dtor (non-trivial move assigmnment)
// Typically used when moving a component to a deleted component
template <typename T, if_not_t<
std::is_trivially_move_assignable<T>::value > = 0>
void move_dtor_impl(
ecs_world_t*, ecs_entity_t, const EcsComponentLifecycle*,
const ecs_entity_t*, const ecs_entity_t*, void *dst_ptr,
void *src_ptr, size_t size, int32_t count, void*)
{
(void)size; ecs_assert(size == sizeof(T), ECS_INTERNAL_ERROR, NULL);
T *dst_arr = static_cast<T*>(dst_ptr);
T *src_arr = static_cast<T*>(src_ptr);
for (int i = 0; i < count; i ++) {
// Move assignment should free dst & assign dst to src
dst_arr[i] = std::move(src_arr[i]);
// Destruct src. Move should have left object in a state where it no
// longer holds resources, but it still needs to be destructed.
src_arr[i].~T();
}
}
// Move assign + dtor (trivial move assigmnment)
// Typically used when moving a component to a deleted component
template <typename T, if_t<
std::is_trivially_move_assignable<T>::value > = 0>
void move_dtor_impl(
ecs_world_t*, ecs_entity_t, const EcsComponentLifecycle*,
const ecs_entity_t*, const ecs_entity_t*, void *dst_ptr,
void *src_ptr, size_t size, int32_t count, void*)
{
(void)size; ecs_assert(size == sizeof(T), ECS_INTERNAL_ERROR, NULL);
T *dst_arr = static_cast<T*>(dst_ptr);
T *src_arr = static_cast<T*>(src_ptr);
for (int i = 0; i < count; i ++) {
// Cleanup resources of dst
dst_arr[i].~T();
// Copy src to dst
dst_arr[i] = std::move(src_arr[i]);
// No need to destruct src. Since this is a trivial move the code
// should be agnostic to the address of the component which means we
// can pretend nothing got destructed.
}
}
} // _
// Trait to test if type has flecs constructor
template <typename T>
struct has_flecs_ctor {
static constexpr bool value =
std::is_constructible<actual_type_t<T>,
flecs::world&, flecs::entity>::value;
};
// Trait to test if type is constructible by flecs
template <typename T>
struct is_flecs_constructible {
static constexpr bool value =
std::is_default_constructible<actual_type_t<T>>::value ||
std::is_constructible<actual_type_t<T>,
flecs::world&, flecs::entity>::value;
};
// Trait to test if type has a self constructor (flecs::entity, Args...)
template <typename T, typename ... Args>
struct is_self_constructible {
static constexpr bool value =
std::is_constructible<actual_type_t<T>,
flecs::entity, Args...>::value;
};
namespace _
{
// Trivially constructible
template <typename T, if_t< std::is_trivially_constructible<T>::value > = 0>
ecs_xtor_t ctor() {
return nullptr;
}
// Not constructible by flecs
template <typename T, if_t<
! std::is_default_constructible<T>::value &&
! has_flecs_ctor<T>::value > = 0>
ecs_xtor_t ctor() {
return ecs_ctor_illegal;
}
// Default constructible
template <typename T, if_t<
! std::is_trivially_constructible<T>::value &&
std::is_default_constructible<T>::value &&
! has_flecs_ctor<T>::value > = 0>
ecs_xtor_t ctor() {
return ctor_impl<T>;
}
// Flecs constructible: T(flecs::world, flecs::entity)
template <typename T, if_t< has_flecs_ctor<T>::value > = 0>
ecs_xtor_t ctor() {
return ctor_world_entity_impl<T>;
}
// No dtor
template <typename T, if_t< std::is_trivially_destructible<T>::value > = 0>
ecs_xtor_t dtor() {
return nullptr;
}
// Dtor
template <typename T, if_t<
std::is_destructible<T>::value &&
! std::is_trivially_destructible<T>::value > = 0>
ecs_xtor_t dtor() {
return dtor_impl<T>;
}
// Assert when the type cannot be destructed
template <typename T, if_not_t< std::is_destructible<T>::value > = 0>
ecs_xtor_t dtor() {
flecs_static_assert(always_false<T>::value,
"component type must be destructible");
return ecs_dtor_illegal;
}
// Trivially copyable
template <typename T, if_t< std::is_trivially_copyable<T>::value > = 0>
ecs_copy_t copy() {
return nullptr;
}
// Not copyable
template <typename T, if_t<
! std::is_trivially_copyable<T>::value &&
! std::is_copy_assignable<T>::value > = 0>
ecs_copy_t copy() {
return ecs_copy_illegal;
}
// Copy assignment
template <typename T, if_t<
std::is_copy_assignable<T>::value &&
! std::is_trivially_copyable<T>::value > = 0>
ecs_copy_t copy() {
return copy_impl<T>;
}
// Trivially move assignable
template <typename T, if_t< std::is_trivially_move_assignable<T>::value > = 0>
ecs_move_t move() {
return nullptr;
}
// Component types must be move assignable
template <typename T, if_not_t< std::is_move_assignable<T>::value > = 0>
ecs_move_t move() {
flecs_static_assert(always_false<T>::value,
"component type must be move assignable");
return ecs_move_illegal;
}
// Move assignment
template <typename T, if_t<
std::is_move_assignable<T>::value &&
! std::is_trivially_move_assignable<T>::value > = 0>
ecs_move_t move() {
return move_impl<T>;
}
// Trivially copy constructible
template <typename T, if_t<
std::is_trivially_copy_constructible<T>::value > = 0>
ecs_copy_ctor_t copy_ctor() {
return nullptr;
}
// No copy ctor
template <typename T, if_t< ! std::is_copy_constructible<T>::value > = 0>
ecs_copy_ctor_t copy_ctor() {
return ecs_copy_ctor_illegal;
}
// Copy ctor
template <typename T, if_t<
std::is_copy_constructible<T>::value &&
! std::is_trivially_copy_constructible<T>::value > = 0>
ecs_copy_ctor_t copy_ctor() {
return copy_ctor_impl<T>;
}
// Trivially move constructible
template <typename T, if_t<
std::is_trivially_move_constructible<T>::value > = 0>
ecs_move_ctor_t move_ctor() {
return nullptr;
}
// Component types must be move constructible
template <typename T, if_not_t< std::is_move_constructible<T>::value > = 0>
ecs_move_ctor_t move_ctor() {
flecs_static_assert(always_false<T>::value,
"component type must be move constructible");
return ecs_move_ctor_illegal;
}
// Move ctor
template <typename T, if_t<
std::is_move_constructible<T>::value &&
! std::is_trivially_move_constructible<T>::value > = 0>
ecs_move_ctor_t move_ctor() {
return move_ctor_impl<T>;
}
// Trivial merge (move assign + dtor)
template <typename T, if_t<
std::is_trivially_move_constructible<T>::value &&
std::is_trivially_destructible<T>::value > = 0>
ecs_move_ctor_t ctor_move_dtor() {
return nullptr;
}
// Component types must be move constructible and destructible
template <typename T, if_t<
! std::is_move_constructible<T>::value ||
! std::is_destructible<T>::value > = 0>
ecs_move_ctor_t ctor_move_dtor() {
flecs_static_assert(always_false<T>::value,
"component type must be move constructible and destructible");
return ecs_move_ctor_illegal;
}
// Merge ctor + dtor
template <typename T, if_t<
!(std::is_trivially_move_constructible<T>::value &&
std::is_trivially_destructible<T>::value) &&
std::is_move_constructible<T>::value &&
std::is_destructible<T>::value > = 0>
ecs_move_ctor_t ctor_move_dtor() {
return ctor_move_dtor_impl<T>;
}
// Trivial merge (move assign + dtor)
template <typename T, if_t<
std::is_trivially_move_assignable<T>::value &&
std::is_trivially_destructible<T>::value > = 0>
ecs_move_ctor_t move_dtor() {
return nullptr;
}
// Component types must be move constructible and destructible
template <typename T, if_t<
! std::is_move_assignable<T>::value ||
! std::is_destructible<T>::value > = 0>
ecs_move_ctor_t move_dtor() {
flecs_static_assert(always_false<T>::value,
"component type must be move constructible and destructible");
return ecs_move_ctor_illegal;
}
// Merge assign + dtor
template <typename T, if_t<
!(std::is_trivially_move_assignable<T>::value &&
std::is_trivially_destructible<T>::value) &&
std::is_move_assignable<T>::value &&
std::is_destructible<T>::value > = 0>
ecs_move_ctor_t move_dtor() {
return move_dtor_impl<T>;
}
} // _
} // flecs
namespace flecs
{
/** Unsafe wrapper class around a column.
* This class can be used when a system does not know the type of a column at
* compile time.
*/
class unsafe_column {
public:
unsafe_column(void* array, size_t size, size_t count, bool is_shared = false)
: m_array(array)
, m_size(size)
, m_count(count)
, m_is_shared(is_shared) {}
/** Return element in component array.
* This operator may only be used if the column is not shared.
*
* @param index Index of element.
* @return Reference to element.
*/
void* operator[](size_t index) {
ecs_assert(index < m_count, ECS_COLUMN_INDEX_OUT_OF_RANGE, NULL);
ecs_assert(!m_is_shared, ECS_INVALID_PARAMETER, NULL);
return ECS_OFFSET(m_array, m_size * index);
}
/** Return whether component is set.
* If the column is optional, this method may return false.
*
* @return True if component is set, false if component is not set.
*/
bool is_set() const {
return m_array != nullptr;
}
/** Return whether component is shared.
* If the column is shared, this method returns true.
*
* @return True if component is shared, false if component is owned.
*/
bool is_shared() const {
return m_is_shared;
}
protected:
void* m_array;
size_t m_size;
size_t m_count;
bool m_is_shared;
};
/** Wrapper class around a column.
*
* @tparam T component type of the column.
*/
template <typename T>
class column {
public:
static_assert(std::is_empty<T>() == false,
"invalid type for column, cannot iterate empty type");
/** Create column from component array.
*
* @param array Pointer to the component array.
* @param count Number of elements in component array.
* @param is_shared Is the component shared or not.
*/
column(T* array, size_t count, bool is_shared = false)
: m_array(array)
, m_count(count)
, m_is_shared(is_shared) {}
/** Create column from iterator.
*
* @param iter Iterator object.
* @param column Index of the signature of the query being iterated over.
*/
column(iter &iter, int column);
/** Return element in component array.
* This operator may only be used if the column is not shared.
*
* @param index Index of element.
* @return Reference to element.
*/
T& operator[](size_t index) {
ecs_assert(index < m_count, ECS_COLUMN_INDEX_OUT_OF_RANGE, NULL);
ecs_assert(!index || !m_is_shared, ECS_INVALID_PARAMETER, NULL);
ecs_assert(m_array != nullptr, ECS_COLUMN_INDEX_OUT_OF_RANGE, NULL);
return m_array[index];
}
/** Return first element of component array.
* This operator is typically used when the column is shared.
*
* @return Reference to the first element.
*/
T& operator*() {
ecs_assert(m_array != nullptr, ECS_COLUMN_INDEX_OUT_OF_RANGE, NULL);
return *m_array;
}
/** Return first element of component array.
* This operator is typically used when the column is shared.
*
* @return Pointer to the first element.
*/
T* operator->() {
ecs_assert(m_array != nullptr, ECS_COLUMN_INDEX_OUT_OF_RANGE, NULL);
return m_array;
}
/** Return whether component is set.
* If the column is optional, this method may return false.
*
* @return True if component is set, false if component is not set.
*/
bool is_set() const {
return m_array != nullptr;
}
/** Return whether component is shared.
* If the column is shared, this method returns true.
*
* @return True if component is shared, false if component is owned.
*/
bool is_shared() const {
return m_is_shared;
}
/** Return whether component is owned.
* If the column is shared, this method returns true.
*
* @return True if component is shared, false if component is owned.
*/
bool is_owned() const {
return !m_is_shared;
}
protected:
T* m_array;
size_t m_count;
bool m_is_shared;
};
////////////////////////////////////////////////////////////////////////////////
namespace _ {
////////////////////////////////////////////////////////////////////////////////
/** Iterate over an integer range (used to iterate over entity range).
*
* @tparam Type of the iterator
*/
template <typename T>
class range_iterator
{
public:
explicit range_iterator(T value)
: m_value(value){}
bool operator!=(range_iterator const& other) const
{
return m_value != other.m_value;
}
T const& operator*() const
{
return m_value;
}
range_iterator& operator++()
{
++m_value;
return *this;
}
private:
T m_value;
};
} // namespace _
} // namespace flecs
#ifdef FLECS_DEPRECATED
namespace flecs
{
/* Deprecated functions */
template<typename Base>
class iter_deprecated {
public:
ECS_DEPRECATED("use term_count(int32_t)")
int32_t column_count() const {
return base()->term_count();
}
ECS_DEPRECATED("use term_size(int32_t)")
size_t column_size(int32_t col) const {
return base()->term_size(col);
}
ECS_DEPRECATED("use is_owned(int32_t)")
bool is_shared(int32_t col) const {
return !base()->is_owned(col);
}
ECS_DEPRECATED("use term_source(int32_t)")
flecs::entity column_source(int32_t col) const;
ECS_DEPRECATED("use term_id(int32_t)")
flecs::entity column_entity(int32_t col) const;
ECS_DEPRECATED("no replacement")
flecs::type column_type(int32_t col) const;
ECS_DEPRECATED("use type()")
type table_type() const;
template <typename T, if_t< is_const<T>::value > = 0>
ECS_DEPRECATED("use term<const T>(int32_t)")
flecs::column<T> column(int32_t col) const {
return base()->template term<T>(col);
}
template <typename T, if_not_t< is_const<T>::value > = 0>
ECS_DEPRECATED("use term<T>(int32_t)")
flecs::column<T> column(int32_t col) const {
ecs_assert(!ecs_is_readonly(iter(), col),
ECS_COLUMN_ACCESS_VIOLATION, NULL);
return base()->template term<T>(col);
}
ECS_DEPRECATED("use term(int32_t)")
flecs::unsafe_column column(int32_t col) const {
return base()->term(col);
}
template <typename T>
ECS_DEPRECATED("use owned<T>(int32_t)")
flecs::column<T> owned(int32_t col) const {
return base()->template owned<T>(col);
}
template <typename T>
ECS_DEPRECATED("use shared<T>(int32_t)")
const T& shared(int32_t col) const {
return base()->template shared<T>(col);
}
template <typename T, if_t< is_const<T>::value > = 0>
ECS_DEPRECATED("no replacement")
T& element(int32_t col, int32_t row) const {
return base()->template get_element<T>(col, row);
}
template <typename T, if_not_t< is_const<T>::value > = 0>
ECS_DEPRECATED("no replacement")
T& element(int32_t col, int32_t row) const {
ecs_assert(!ecs_is_readonly(iter(), col),
ECS_COLUMN_ACCESS_VIOLATION, NULL);
return base()->template get_element<T>(col, row);
}
private:
const Base* base() const { return static_cast<const Base*>(this); }
const flecs::iter_t* iter() const { return base()->c_ptr(); }
};
}
#else
namespace flecs
{
template <typename Base>
class iter_deprecated { };
}
#endif
namespace flecs
{
////////////////////////////////////////////////////////////////////////////////
/** Class that enables iterating over table columns.
*/
class iter : public iter_deprecated<iter> {
using row_iterator = _::range_iterator<size_t>;
public:
/** Construct iterator from C iterator object.
* This operation is typically not invoked directly by the user.
*
* @param it Pointer to C iterator.
*/
iter(const ecs_iter_t *it) : m_iter(it) {
m_begin = 0;
m_end = static_cast<std::size_t>(it->count);
}
row_iterator begin() const {
return row_iterator(m_begin);
}
row_iterator end() const {
return row_iterator(m_end);
}
/** Obtain handle to current system.
*/
flecs::entity system() const;
/** Obtain current world.
*/
flecs::world world() const;
/** Obtain pointer to C iterator object
*/
const flecs::iter_t* c_ptr() const {
return m_iter;
}
/** Number of entities to iterate over.
*/
size_t count() const {
return static_cast<size_t>(m_iter->count);
}
/** Return delta_time of current frame.
*/
FLECS_FLOAT delta_time() const {
return m_iter->delta_time;
}
/** Return time elapsed since last time system was invoked.
*/
FLECS_FLOAT delta_system_time() const {
return m_iter->delta_system_time;
}
/** Return total time passed in simulation.
*/
FLECS_FLOAT world_time() const {
return m_iter->world_time;
}
/** Obtain type of the entities being iterated over.
*/
flecs::type type() const;
/** Is current type a module or does it contain module contents? */
bool has_module() const {
return ecs_table_has_module(ecs_iter_table(m_iter));
}
/** Access self.
* 'self' is an entity that can be associated with a trigger, observer or
* system when they are created. */
flecs::entity self() const;
/** Access ctx.
* ctx contains the context pointer assigned to a system.
*/
void* ctx() {
return m_iter->ctx;
}
/** Access param.
* param contains the pointer passed to the param argument of system::run
*/
void* param() {
return m_iter->param;
}
/** Obtain mutable handle to entity being iterated over.
*
* @param row Row being iterated over.
*/
flecs::entity entity(size_t row) const;
/** Obtain the total number of inactive tables the query is matched with.
*/
int32_t inactive_table_count() const {
return m_iter->inactive_table_count;
}
/** Returns whether term is owned.
*
* @param index The term index.
*/
bool is_owned(int32_t index) const {
return ecs_term_is_owned(m_iter, index);
}
/** Returns whether term is set.
*
* @param index The term index.
*/
bool is_set(int32_t index) const {
return ecs_term_is_set(m_iter, index);
}
/** Returns whether term is readonly.
*
* @param index The term index.
*/
bool is_readonly(int32_t index) const {
return ecs_term_is_readonly(m_iter, index);
}
/** Number of terms in iteator.
*/
int32_t term_count() const {
return m_iter->column_count;
}
/** Size of term data type.
*
* @param index The term id.
*/
size_t term_size(int32_t index) const {
return ecs_term_size(m_iter, index);
}
/** Obtain term source (0 if self)
*
* @param index The term index.
*/
flecs::entity term_source(int32_t index) const;
/** Obtain component/tag entity of term.
*
* @param index The term index.
*/
flecs::entity term_id(int32_t index) const;
/** Obtain term with const type.
* If the specified term index does not match with the provided type, the
* function will assert.
*
* @tparam T Type of the term.
* @param index The term index.
* @return The term data.
*/
template <typename T, typename A = actual_type_t<T>,
typename std::enable_if<std::is_const<T>::value, void>::type* = nullptr>
flecs::column<A> term(int32_t index) const {
return get_term<A>(index);
}
/** Obtain term with non-const type.
* If the specified term id does not match with the provided type or if
* the term is readonly, the function will assert.
*
* @tparam T Type of the term.
* @param index The term index.
* @return The term data.
*/
template <typename T, typename A = actual_type_t<T>,
typename std::enable_if<
std::is_const<T>::value == false, void>::type* = nullptr>
flecs::column<A> term(int32_t index) const {
ecs_assert(!ecs_term_is_readonly(m_iter, index),
ECS_COLUMN_ACCESS_VIOLATION, NULL);
return get_term<A>(index);
}
/** Obtain unsafe term.
* Unsafe terms are required when a system does not know at compile time
* which component will be passed to it.
*
* @param index The term index.
*/
flecs::unsafe_column term(int32_t index) const {
return get_unsafe_term(index);
}
/** Obtain owned term.
* Same as iter::term, but ensures that term is owned.
*
* @tparam Type of the term.
* @param index The term index.
* @return The term data.
*/
template <typename T, typename A = actual_type_t<T>>
flecs::column<A> term_owned(int32_t index) const {
ecs_assert(!!ecs_is_owned(m_iter, index), ECS_COLUMN_IS_SHARED, NULL);
return this->term<A>(index);
}
/** Obtain shared term.
* Same as iter::term, but ensures that term is shared.
*
* @tparam Type of the term.
* @param index The term index.
* @return The component term.
*/
template <typename T, typename A = actual_type_t<T>>
const T& term_shared(int32_t index) const {
ecs_assert(
ecs_term_id(m_iter, index) ==
_::cpp_type<T>::id(m_iter->world),
ECS_COLUMN_TYPE_MISMATCH, NULL);
ecs_assert(!ecs_term_is_owned(m_iter, index),
ECS_COLUMN_IS_NOT_SHARED, NULL);
return *static_cast<A*>(ecs_term_w_size(m_iter, sizeof(A), index));
}
/** Obtain the total number of tables the iterator will iterate over.
*/
int32_t table_count() const {
return m_iter->table_count;
}
/** Obtain untyped pointer to table column.
*
* @param table_column Id of table column (corresponds with location in table type).
* @return Pointer to table column.
*/
void* table_column(int32_t col) const {
return ecs_iter_column_w_size(m_iter, 0, col);
}
/** Obtain typed pointer to table column.
* If the table does not contain a column with the specified type, the
* function will assert.
*
* @tparam T Type of the table column.
*/
template <typename T, typename A = actual_type_t<T>>
flecs::column<T> table_column() const {
auto col = ecs_iter_find_column(m_iter, _::cpp_type<T>::id());
ecs_assert(col != -1, ECS_INVALID_PARAMETER, NULL);
return flecs::column<A>(static_cast<A*>(ecs_iter_column_w_size(m_iter,
sizeof(A), col)), static_cast<std::size_t>(m_iter->count), false);
}
template <typename T>
flecs::column<T> table_column(flecs::id_t obj) const {
auto col = ecs_iter_find_column(m_iter,
ecs_pair(_::cpp_type<T>::id(), obj));
ecs_assert(col != -1, ECS_INVALID_PARAMETER, NULL);
return flecs::column<T>(static_cast<T*>(ecs_iter_column_w_size(m_iter,
sizeof(T), col)), static_cast<std::size_t>(m_iter->count), false);
}
private:
/* Get term, check if correct type is used */
template <typename T, typename A = actual_type_t<T>>
flecs::column<T> get_term(int32_t index) const {
#ifndef NDEBUG
ecs_entity_t term_id = ecs_term_id(m_iter, index);
ecs_assert(term_id & ECS_PAIR || term_id & ECS_SWITCH ||
term_id & ECS_CASE ||
term_id == _::cpp_type<T>::id(m_iter->world),
ECS_COLUMN_TYPE_MISMATCH, NULL);
#endif
size_t count;
bool is_shared = !ecs_term_is_owned(m_iter, index);
/* If a shared column is retrieved with 'column', there will only be a
* single value. Ensure that the application does not accidentally read
* out of bounds. */
if (is_shared) {
count = 1;
} else {
/* If column is owned, there will be as many values as there are
* entities. */
count = static_cast<size_t>(m_iter->count);
}
return flecs::column<A>(
static_cast<T*>(ecs_term_w_size(m_iter, sizeof(A), index)),
count, is_shared);
}
flecs::unsafe_column get_unsafe_term(int32_t index) const {
size_t count;
size_t size = ecs_term_size(m_iter, index);
bool is_shared = !ecs_term_is_owned(m_iter, index);
/* If a shared column is retrieved with 'column', there will only be a
* single value. Ensure that the application does not accidentally read
* out of bounds. */
if (is_shared) {
count = 1;
} else {
/* If column is owned, there will be as many values as there are
* entities. */
count = static_cast<size_t>(m_iter->count);
}
return flecs::unsafe_column(
ecs_term_w_size(m_iter, 0, index), size, count, is_shared);
}
const flecs::iter_t *m_iter;
std::size_t m_begin;
std::size_t m_end;
};
} // namespace flecs
namespace flecs
{
/** Static helper functions to assign a component value */
// set(T&&), T = constructible
template <typename T, if_t< is_flecs_constructible<T>::value > = 0>
inline void set(world_t *world, entity_t entity, T&& value, ecs_id_t id) {
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
T& dst = *static_cast<T*>(ecs_get_mut_id(world, entity, id, NULL));
dst = std::move(value);
ecs_modified_id(world, entity, id);
}
// set(const T&), T = constructible
template <typename T, if_t< is_flecs_constructible<T>::value > = 0>
inline void set(world_t *world, entity_t entity, const T& value, ecs_id_t id) {
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
T& dst = *static_cast<T*>(ecs_get_mut_id(world, entity, id, NULL));
dst = value;
ecs_modified_id(world, entity, id);
}
// set(T&&), T = not constructible
template <typename T, if_not_t< is_flecs_constructible<T>::value > = 0>
inline void set(world_t *world, entity_t entity, T&& value, ecs_id_t id) {
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
bool is_new = false;
T& dst = *static_cast<T*>(ecs_get_mut_id(world, entity, id, &is_new));
/* If type is not constructible get_mut should assert on new values */
ecs_assert(!is_new, ECS_INTERNAL_ERROR, NULL);
dst = std::move(value);
ecs_modified_id(world, entity, id);
}
// set(const T&), T = not constructible
template <typename T, if_not_t< is_flecs_constructible<T>::value > = 0>
inline void set(world_t *world, id_t entity, const T& value, id_t id) {
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
bool is_new = false;
T& dst = *static_cast<T*>(ecs_get_mut_id(world, entity, id, &is_new));
/* If type is not constructible get_mut should assert on new values */
ecs_assert(!is_new, ECS_INTERNAL_ERROR, NULL);
dst = value;
ecs_modified_id(world, entity, id);
}
// emplace for T(Args...)
template <typename T, typename ... Args, if_t<
std::is_constructible<actual_type_t<T>, Args...>::value ||
std::is_default_constructible<actual_type_t<T>>::value > = 0>
inline void emplace(world_t *world, id_t entity, Args&&... args) {
id_t id = _::cpp_type<T>::id(world);
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
T& dst = *static_cast<T*>(ecs_emplace_id(world, entity, id));
FLECS_PLACEMENT_NEW(&dst, T{std::forward<Args>(args)...});
ecs_modified_id(world, entity, id);
}
// emplace for T(flecs::entity, Args...)
template <typename T, typename ... Args, if_t<
std::is_constructible<actual_type_t<T>, flecs::entity, Args...>::value > = 0>
inline void emplace(world_t *world, id_t entity, Args&&... args);
// set(T&&)
template <typename T, typename A>
inline void set(world_t *world, entity_t entity, A&& value) {
id_t id = _::cpp_type<T>::id(world);
flecs::set(world, entity, std::forward<A&&>(value), id);
}
// set(const T&)
template <typename T, typename A>
inline void set(world_t *world, entity_t entity, const A& value) {
id_t id = _::cpp_type<T>::id(world);
flecs::set(world, entity, value, id);
}
/** The world.
* The world is the container of all ECS data and systems. If the world is
* deleted, all data in the world will be deleted as well.
*/
class world final {
public:
/** Create world.
*/
explicit world()
: m_world( ecs_init() )
, m_owned( true ) { init_builtin_components(); }
/** Create world with command line arguments.
* Currently command line arguments are not interpreted, but they may be
* used in the future to configure Flecs parameters.
*/
explicit world(int argc, char *argv[])
: m_world( ecs_init_w_args(argc, argv) )
, m_owned( true ) { init_builtin_components(); }
/** Create world from C world.
*/
explicit world(world_t *w)
: m_world( w )
, m_owned( false ) { }
/** Not allowed to copy a world. May only take a reference.
*/
world(const world& obj) = delete;
world(world&& obj) {
m_world = obj.m_world;
m_owned = obj.m_owned;
obj.m_world = nullptr;
obj.m_owned = false;
}
/* Implicit conversion to world_t* */
operator world_t*() const { return m_world; }
/** Not allowed to copy a world. May only take a reference.
*/
world& operator=(const world& obj) = delete;
world& operator=(world&& obj) {
this->~world();
m_world = obj.m_world;
m_owned = obj.m_owned;
obj.m_world = nullptr;
obj.m_owned = false;
return *this;
}
~world() {
if (m_owned && ecs_stage_is_async(m_world)) {
ecs_async_stage_free(m_world);
} else
if (m_owned && m_world) {
ecs_fini(m_world);
}
}
/** Obtain pointer to C world object.
*/
world_t* c_ptr() const {
return m_world;
}
/** Enable tracing.
*
* @param level The tracing level.
*/
static void enable_tracing(int level) {
ecs_tracing_enable(level);
}
void set_pipeline(const flecs::pipeline& pip) const;
/** Progress world, run all systems.
*
* @param delta_time Custom delta_time. If 0 is provided, Flecs will automatically measure delta_time.
*/
bool progress(FLECS_FLOAT delta_time = 0.0) const {
return ecs_progress(m_world, delta_time);
}
/** Get last delta_time.
*/
FLECS_FLOAT delta_time() const {
const ecs_world_info_t *stats = ecs_get_world_info(m_world);
return stats->delta_time;
}
/** Signal application should quit.
* After calling this operation, the next call to progress() returns false.
*/
void quit() {
ecs_quit(m_world);
}
/** Test if quit() has been called.
*/
bool should_quit() {
return ecs_should_quit(m_world);
}
/** Get id from a type.
*/
template <typename T>
flecs::id id() const;
/** Id factory.
*/
template <typename ... Args>
flecs::id id(Args&&... args) const;
/** Get pair id from relation, object
*/
template <typename R, typename O>
flecs::id pair() const;
/** Get pair id from relation, object
*/
template <typename R>
flecs::id pair(entity_t o) const;
/** Get pair id from relation, object
*/
flecs::id pair(entity_t r, entity_t o) const;
/** Begin frame.
* When an application does not use progress() to control the main loop, it
* can still use Flecs features such as FPS limiting and time measurements.
* This operation needs to be invoked whenever a new frame is about to get
* processed.
*
* Calls to frame_begin must always be followed by frame_end.
*
* The function accepts a delta_time parameter, which will get passed to
* systems. This value is also used to compute the amount of time the
* function needs to sleep to ensure it does not exceed the target_fps, when
* it is set. When 0 is provided for delta_time, the time will be measured.
*
* This function should only be ran from the main thread.
*
* @param delta_time Time elapsed since the last frame.
* @return The provided delta_time, or measured time if 0 was provided.
*/
FLECS_FLOAT frame_begin(float delta_time = 0) {
return ecs_frame_begin(m_world, delta_time);
}
/** End frame.
* This operation must be called at the end of the frame, and always after
* ecs_frame_begin.
*
* This function should only be ran from the main thread.
*/
void frame_end() {
ecs_frame_end(m_world);
}
/** Begin staging.
* When an application does not use ecs_progress to control the main loop, it
* can still use Flecs features such as the defer queue. When an application
* needs to stage changes, it needs to call this function after ecs_frame_begin.
* A call to ecs_staging_begin must be followed by a call to ecs_staging_end.
*
* When staging is enabled, modifications to entities are stored to a stage.
* This ensures that arrays are not modified while iterating. Modifications are
* merged back to the "main stage" when ecs_staging_end is invoked.
*
* While the world is in staging mode, no structural changes (add/remove/...)
* can be made to the world itself. Operations must be executed on a stage
* instead (see ecs_get_stage).
*
* This function should only be ran from the main thread.
*
* @return Whether world is currently staged.
*/
bool staging_begin() {
return ecs_staging_begin(m_world);
}
/** End staging.
* Leaves staging mode. After this operation the world may be directly mutated
* again. By default this operation also merges data back into the world, unless
* automerging was disabled explicitly.
*
* This function should only be ran from the main thread.
*/
void staging_end() {
ecs_staging_end(m_world);
}
/** Defer operations until end of frame.
* When this operation is invoked while iterating, operations inbetween the
* defer_begin and defer_end operations are executed at the end of the frame.
*
* This operation is thread safe.
*/
bool defer_begin() {
return ecs_defer_begin(m_world);
}
/** End block of operations to defer.
* See defer_begin.
*
* This operation is thread safe.
*/
bool defer_end() {
return ecs_defer_end(m_world);
}
/** Test whether deferring is enabled.
*/
bool is_deferred() {
return ecs_is_deferred(m_world);
}
/** Configure world to have N stages.
* This initializes N stages, which allows applications to defer operations to
* multiple isolated defer queues. This is typically used for applications with
* multiple threads, where each thread gets its own queue, and commands are
* merged when threads are synchronized.
*
* Note that set_threads() already creates the appropriate number of stages.
* The set_stages() operation is useful for applications that want to manage
* their own stages and/or threads.
*
* @param stages The number of stages.
*/
void set_stages(int32_t stages) const {
ecs_set_stages(m_world, stages);
}
/** Get number of configured stages.
* Return number of stages set by set_stages.
*
* @return The number of stages used for threading.
*/
int32_t get_stage_count() const {
return ecs_get_stage_count(m_world);
}
/** Get current stage id.
* The stage id can be used by an application to learn about which stage it
* is using, which typically corresponds with the worker thread id.
*
* @return The stage id.
*/
int32_t get_stage_id() const {
return ecs_get_stage_id(m_world);
}
/** Enable/disable automerging for world or stage.
* When automerging is enabled, staged data will automatically be merged
* with the world when staging ends. This happens at the end of progress(),
* at a sync point or when staging_end() is called.
*
* Applications can exercise more control over when data from a stage is
* merged by disabling automerging. This requires an application to
* explicitly call merge() on the stage.
*
* When this function is invoked on the world, it sets all current stages to
* the provided value and sets the default for new stages. When this
* function is invoked on a stage, automerging is only set for that specific
* stage.
*
* @param automerge Whether to enable or disable automerging.
*/
void set_automerge(bool automerge) {
ecs_set_automerge(m_world, automerge);
}
/** Merge world or stage.
* When automatic merging is disabled, an application can call this
* operation on either an individual stage, or on the world which will merge
* all stages. This operation may only be called when staging is not enabled
* (either after progress() or after staging_end()).
*
* This operation may be called on an already merged stage or world.
*/
void merge() {
ecs_merge(m_world);
}
/** Get stage-specific world pointer.
* Flecs threads can safely invoke the API as long as they have a private
* context to write to, also referred to as the stage. This function returns a
* pointer to a stage, disguised as a world pointer.
*
* Note that this function does not(!) create a new world. It simply wraps the
* existing world in a thread-specific context, which the API knows how to
* unwrap. The reason the stage is returned as an ecs_world_t is so that it
* can be passed transparently to the existing API functions, vs. having to
* create a dediated API for threading.
*
* @param stage_id The index of the stage to retrieve.
* @return A thread-specific pointer to the world.
*/
flecs::world get_stage(int32_t stage_id) const {
return flecs::world(ecs_get_stage(m_world, stage_id));
}
/** Create asynchronous stage.
* An asynchronous stage can be used to asynchronously queue operations for
* later merging with the world. An asynchronous stage is similar to a regular
* stage, except that it does not allow reading from the world.
*
* Asynchronous stages are never merged automatically, and must therefore be
* manually merged with the ecs_merge function. It is not necessary to call
* defer_begin or defer_end before and after enqueuing commands, as an
* asynchronous stage unconditionally defers operations.
*
* The application must ensure that no commands are added to the stage while the
* stage is being merged.
*
* An asynchronous stage must be cleaned up by ecs_async_stage_free.
*
* @return The stage.
*/
flecs::world async_stage() const {
auto result = flecs::world(ecs_async_stage_new(m_world));
result.m_owned = true;
return result;
}
/** Get actual world.
* If the current object points to a stage, this operation will return the
* actual world.
*
* @return The actual world.
*/
flecs::world get_world() const {
/* Safe cast, mutability is checked */
return flecs::world(
m_world ? const_cast<flecs::world_t*>(ecs_get_world(m_world)) : nullptr);
}
/** Test whether the current world object is readonly.
* This function allows the code to test whether the currently used world
* object is readonly or whether it allows for writing.
*
* @return True if the world or stage is readonly.
*/
bool is_readonly() const {
return ecs_stage_is_readonly(m_world);
}
/** Set number of threads.
* This will distribute the load evenly across the configured number of
* threads for each system.
*
* @param threads Number of threads.
*/
void set_threads(int32_t threads) const {
ecs_set_threads(m_world, threads);
}
/** Get number of threads.
*
* @return Number of configured threads.
*/
int32_t get_threads() const {
return ecs_get_threads(m_world);
}
/** Get index of current thread.
*
* @return Unique index for current thread.
*/
ECS_DEPRECATED("use get_stage_id")
int32_t get_thread_index() const {
return ecs_get_stage_id(m_world);
}
/** Set target FPS
* This will ensure that the main loop (world::progress) does not run faster
* than the specified frames per second.
*
* @param target_fps Target frames per second.
*/
void set_target_fps(FLECS_FLOAT target_fps) const {
ecs_set_target_fps(m_world, target_fps);
}
/** Get target FPS
*
* @return Configured frames per second.
*/
FLECS_FLOAT get_target_fps() const {
const ecs_world_info_t *stats = ecs_get_world_info(m_world);
return stats->target_fps;
}
/** Get tick
*
* @return Monotonically increasing frame count.
*/
int32_t get_tick() const {
const ecs_world_info_t *stats = ecs_get_world_info(m_world);
return stats->frame_count_total;
}
/** Set timescale
*
* @return Monotonically increasing frame count.
*/
void set_time_scale(FLECS_FLOAT mul) const {
ecs_set_time_scale(m_world, mul);
}
/** Get timescale
*
* @return Monotonically increasing frame count.
*/
FLECS_FLOAT get_time_scale() const {
const ecs_world_info_t *stats = ecs_get_world_info(m_world);
return stats->time_scale;
}
/** Set world context.
* Set a context value that can be accessed by anyone that has a reference
* to the world.
*
* @param ctx The world context.
*/
void set_context(void* ctx) const {
ecs_set_context(m_world, ctx);
}
/** Get world context.
*
* @return The configured world context.
*/
void* get_context() const {
return ecs_get_context(m_world);
}
/** Preallocate memory for number of entities.
* This function preallocates memory for the entity index.
*
* @param entity_count Number of entities to preallocate memory for.
*/
void dim(int32_t entity_count) const {
ecs_dim(m_world, entity_count);
}
/** Preallocate memory for type
* This function preallocates memory for the component arrays of the
* specified type.
*
* @param type Type to preallocate memory for.
* @param entity_count Number of entities to preallocate memory for.
*/
void dim_type(type_t t, int32_t entity_count) const {
ecs_dim_type(m_world, t, entity_count);
}
/** Set entity range.
* This function limits the range of issued entity ids between min and max.
*
* @param min Minimum entity id issued.
* @param max Maximum entity id issued.
*/
void set_entity_range(entity_t min, entity_t max) const {
ecs_set_entity_range(m_world, min, max);
}
/** Enforce that operations cannot modify entities outside of range.
* This function ensures that only entities within the specified range can
* be modified. Use this function if specific parts of the code only are
* allowed to modify a certain set of entities, as could be the case for
* networked applications.
*
* @param enabled True if range check should be enabled, false if not.
*/
void enable_range_check(bool enabled) const {
ecs_enable_range_check(m_world, enabled);
}
/** Disables inactive systems.
*
* This removes systems that are not matched with any entities from the main
* loop. Systems are only added to the main loop after they first match with
* entities, but are not removed automatically.
*
* This function allows an application to manually disable inactive systems
* which removes them from the main loop. Doing so will cause Flecs to
* rebuild the pipeline in the next iteration.
*
* @param level The tracing level.
*/
void deactivate_systems() {
ecs_deactivate_systems(m_world);
}
/** Set current scope.
*
* @param scope The scope to set.
* @return The current scope;
*/
flecs::entity set_scope(const flecs::entity& scope) const;
/** Get current scope.
*
* @return The current scope.
*/
flecs::entity get_scope() const;
/** Lookup entity by name.
*
* @param name Entity name.
*/
flecs::entity lookup(const char *name) const;
/** Set singleton component.
*/
template <typename T>
void set(const T& value) const {
flecs::set<T>(m_world, _::cpp_type<T>::id(m_world), value);
}
template <typename T>
void set(T&& value) const {
flecs::set<T>(m_world, _::cpp_type<T>::id(m_world),
std::forward<T&&>(value));
}
template <typename T, typename ... Args>
void emplace(Args&&... args) const {
flecs::emplace<T>(m_world, _::cpp_type<T>::id(m_world),
std::forward<Args>(args)...);
}
/** Get mut singleton component.
*/
template <typename T>
T* get_mut() const;
/** Mark singleton component as modified.
*/
template <typename T>
void modified() const;
/** Patch singleton component.
*/
template <typename T, typename Func>
void patch(const Func& func) const;
/** Get singleton component.
*/
template <typename T>
const T* get() const;
/** Test if world has singleton component.
*/
template <typename T>
bool has() const;
/** Add singleton component.
*/
template <typename T>
void add() const;
/** Remove singleton component.
*/
template <typename T>
void remove() const;
/** Get id for type.
*/
template <typename T>
entity_t type_id() {
return _::cpp_type<T>::id(m_world);
}
/** Get singleton entity for type.
*/
template <typename T>
flecs::entity singleton();
/** Create alias for component.
*
* @tparam Component to create an alias for.
* @param alias Alias for the component.
*/
template <typename T>
flecs::entity use(const char *alias = nullptr);
/** Create alias for entity.
*
* @param name Name of the entity.
* @param alias Alias for the entity.
*/
flecs::entity use(const char *name, const char *alias = nullptr);
/** Create alias for entity.
*
* @param entity Entity for which to create the alias.
* @param alias Alias for the entity.
*/
void use(flecs::entity entity, const char *alias = nullptr);
/** Count entities matching a component.
*
* @tparam T The component to use for matching.
*/
template <typename T>
int count() const {
return ecs_count_id(m_world, _::cpp_type<T>::id(m_world));
}
flecs::filter_iterator begin() const;
flecs::filter_iterator end() const;
/** Enable locking.
*
* @param enabled True if locking should be enabled, false if not.
*/
bool enable_locking(bool enabled) {
return ecs_enable_locking(m_world, enabled);
}
/** Lock world.
*/
void lock() {
ecs_lock(m_world);
}
/** Unlock world.
*/
void unlock() {
ecs_unlock(m_world);
}
/** All entities created in function are created with id.
*/
template <typename Func>
void with(id_t with_id, const Func& func) const {
ecs_id_t prev = ecs_set_with(m_world, with_id);
func();
ecs_set_with(m_world, prev);
}
/** All entities created in function are created with type.
*/
template <typename T, typename Func>
void with(const Func& func) const {
with(this->id<T>(), func);
}
/** All entities created in function are created with relation.
*/
template <typename Relation, typename Object, typename Func>
void with(const Func& func) const {
with(ecs_pair(this->id<Relation>(), this->id<Object>()), func);
}
/** All entities created in function are created with relation.
*/
template <typename Relation, typename Func>
void with(id_t object, const Func& func) const {
with(ecs_pair(this->id<Relation>(), object), func);
}
/** All entities created in function are created with relation.
*/
template <typename Func>
void with(id_t relation, id_t object, const Func& func) const {
with(ecs_pair(relation, object), func);
}
/** All entities created in function are created in scope. All operations
* called in function (such as lookup) are relative to scope.
*/
template <typename Func>
void scope(id_t parent, const Func& func) const {
ecs_entity_t prev = ecs_set_scope(m_world, parent);
func();
ecs_set_scope(m_world, prev);
}
/** Defer all operations called in function. If the world is already in
* deferred mode, do nothing.
*/
template <typename Func>
void defer(const Func& func) const {
ecs_defer_begin(m_world);
func();
ecs_defer_end(m_world);
}
/** Iterate over all entities with provided component.
* The function parameter must match the following signature:
* void(*)(T&) or
* void(*)(flecs::entity, T&)
*/
template <typename T, typename Func>
void each(Func&& func) const;
/** Iterate over all entities with provided (component) id.
*/
template <typename Func>
void each(flecs::id_t term_id, Func&& func) const;
/** Iterate over all entities with components in argument list of function.
* The function parameter must match the following signature:
* void(*)(T&, U&, ...) or
* void(*)(flecs::entity, T&, U&, ...)
*/
template <typename Func>
void each(Func&& func) const;
/** Create a prefab.
*/
template <typename... Args>
flecs::entity entity(Args &&... args) const;
/** Create an entity.
*/
template <typename... Args>
flecs::entity prefab(Args &&... args) const;
/** Create a type.
*/
template <typename... Args>
flecs::type type(Args &&... args) const;
/** Create a pipeline.
*/
template <typename... Args>
flecs::pipeline pipeline(Args &&... args) const;
/** Create a module.
*/
template <typename Module, typename... Args>
flecs::entity module(Args &&... args) const;
/** Import a module.
*/
template <typename Module>
flecs::entity import(); // Cannot be const because modules accept a non-const world
/** Create a system from an entity
*/
flecs::system<> system(flecs::entity e) const;
/** Create a system.
*/
template <typename... Comps, typename... Args>
flecs::system_builder<Comps...> system(Args &&... args) const;
/** Create an observer.
*/
template <typename... Comps, typename... Args>
flecs::observer_builder<Comps...> observer(Args &&... args) const;
/** Create a filter.
*/
template <typename... Comps, typename... Args>
flecs::filter<Comps...> filter(Args &&... args) const;
/** Create a filter builder.
*/
template <typename... Comps, typename... Args>
flecs::filter_builder<Comps...> filter_builder(Args &&... args) const;
/** Create a query.
*/
template <typename... Comps, typename... Args>
flecs::query<Comps...> query(Args &&... args) const;
/** Create a query builder.
*/
template <typename... Comps, typename... Args>
flecs::query_builder<Comps...> query_builder(Args &&... args) const;
/** Create a term
*/
template<typename... Args>
flecs::term term(Args &&... args) const;
/** Create a term for a type
*/
template<typename T, typename... Args>
flecs::term term(Args &&... args) const;
/** Create a term for a pair
*/
template<typename R, typename O, typename... Args>
flecs::term term(Args &&... args) const;
/** Register a component.
*/
template <typename T, typename... Args>
flecs::entity component(Args &&... args) const;
/** Register a POD component.
*/
template <typename T, typename... Args>
flecs::entity pod_component(Args &&... args) const;
/** Register a relocatable component.
*/
template <typename T, typename... Args>
flecs::entity relocatable_component(Args &&... args) const;
/** Create a snapshot.
*/
template <typename... Args>
flecs::snapshot snapshot(Args &&... args) const;
private:
void init_builtin_components();
world_t *m_world;
bool m_owned;
};
// Downcast utility to make world available to classes in inheritance hierarchy
template<typename Base>
class world_base {
public:
template<typename IBuilder>
static flecs::world world(const IBuilder *self) {
return flecs::world(static_cast<const Base*>(self)->m_world);
}
flecs::world world() const {
return flecs::world(static_cast<const Base*>(this)->m_world);
}
};
} // namespace flecs
namespace flecs {
/** Class that stores a flecs id.
* A flecs id is an identifier that can store an entity id, an relation-object
* pair, or role annotated id (such as SWITCH | Movement).
*/
class id : public world_base<id> {
public:
explicit id(flecs::id_t value = 0)
: m_world(nullptr)
, m_id(value) { }
explicit id(flecs::world_t *world, flecs::id_t value = 0)
: m_world(world)
, m_id(value) { }
explicit id(flecs::world_t *world, flecs::id_t relation, flecs::id_t object)
: m_world(world)
, m_id(ecs_pair(relation, object)) { }
explicit id(flecs::id_t relation, flecs::id_t object)
: m_world(nullptr)
, m_id(ecs_pair(relation, object)) { }
explicit id(const flecs::id& relation, const flecs::id& object)
: m_world(relation.world())
, m_id(ecs_pair(relation.m_id, object.m_id)) { }
/** Test if id is pair (has relation, object) */
bool is_pair() const {
return (m_id & ECS_ROLE_MASK) == flecs::Pair;
}
/* Test if id is a wildcard */
bool is_wildcard() const {
return ecs_id_is_wildcard(m_id);
}
/* Test if id has the Switch role */
bool is_switch() const {
return (m_id & ECS_ROLE_MASK) == flecs::Switch;
}
/* Test if id has the Case role */
bool is_case() const {
return (m_id & ECS_ROLE_MASK) == flecs::Case;
}
/* Return id as entity (only allowed when id is valid entity) */
flecs::entity entity() const;
/* Return id with role added */
flecs::entity add_role(flecs::id_t role) const;
/* Return id with role removed */
flecs::entity remove_role(flecs::id_t role) const;
/* Return id without role */
flecs::entity remove_role() const;
/* Return id without role */
flecs::entity remove_generation() const;
/* Test if id has specified role */
bool has_role(flecs::id_t role) const {
return ((m_id & ECS_ROLE_MASK) == role);
}
/* Test if id has any role */
bool has_role() const {
return (m_id & ECS_ROLE_MASK) != 0;
}
flecs::entity role() const;
/* Test if id has specified relation */
bool has_relation(flecs::id_t relation) const {
if (!is_pair()) {
return false;
}
return ECS_PAIR_RELATION(m_id) == relation;
}
/** Get relation from pair.
* If the id is not a pair, this operation will fail. When the id has a
* world, the operation will ensure that the returned id has the correct
* generation count.
*/
flecs::entity relation() const;
/** Get object from pair.
* If the id is not a pair, this operation will fail. When the id has a
* world, the operation will ensure that the returned id has the correct
* generation count.
*/
flecs::entity object() const;
/* Convert id to string */
flecs::string str() const {
size_t size = ecs_id_str(m_world, m_id, NULL, 0);
char *result = static_cast<char*>(ecs_os_malloc(
static_cast<ecs_size_t>(size) + 1));
ecs_id_str(m_world, m_id, result, size + 1);
return flecs::string(result);
}
/** Convert role of id to string. */
flecs::string role_str() const {
return flecs::string_view( ecs_role_str(m_id & ECS_ROLE_MASK));
}
ECS_DEPRECATED("use object()")
flecs::entity lo() const;
ECS_DEPRECATED("use relation()")
flecs::entity hi() const;
ECS_DEPRECATED("use flecs::id(relation, object)")
static
flecs::entity comb(entity_view lo, entity_view hi);
flecs::id_t raw_id() const {
return m_id;
}
operator flecs::id_t() const {
return m_id;
}
/* World is optional, but guarantees that entity identifiers extracted from
* the id are valid */
flecs::world_t *m_world;
flecs::id_t m_id;
};
}
namespace flecs {
template<typename T, typename Base>
class entity_builder_base {
public:
const Base& base() const { return *static_cast<const Base*>(this); }
flecs::world_t* base_world() const { return base().world(); }
flecs::entity_t base_id() const { return base().id(); }
operator const Base&() const {
return this->base();
}
};
}
#ifdef FLECS_DEPRECATED
namespace flecs
{
struct entity_builder_deprecated_tag { };
/** Deprecated functions */
template <typename Base>
class entity_builder_deprecated : public entity_builder_base<entity_builder_deprecated_tag, Base> {
public:
template<typename T, typename C>
ECS_DEPRECATED("use add<Relation, Object>")
const Base& add_trait() const {
ecs_add_pair(this->base_world(), this->base_id(),
_::cpp_type<T>::id(this->base_world()),
_::cpp_type<C>::id(this->base_world()));
return *this;
}
template<typename T>
ECS_DEPRECATED("use add<Relation>(const entity&)")
const Base& add_trait(const Base& c) const {
ecs_add_pair(this->base_world(), this->base_id(), _::cpp_type<T>::id(this->base_world()), c.id());
return *this;
}
template<typename C>
ECS_DEPRECATED("use add_object<Object>(const entity&)")
const Base& add_trait_tag(const Base& t) const {
ecs_add_pair(this->base_world(), this->base_id(), t.id(), _::cpp_type<C>::id(this->base_world()));
return *this;
}
ECS_DEPRECATED("use add(const entity&, const entity&)")
const Base& add_trait(const Base& t, const Base& c) const {
ecs_add_pair(this->base_world(), this->base_id(), t.id(), c.id());
return *this;
}
template<typename T, typename C>
ECS_DEPRECATED("use remove<Relation, Object>")
const Base& remove_trait() const {
ecs_remove_pair(this->base_world(), this->base_id(),
_::cpp_type<T>::id(this->base_world()),
_::cpp_type<C>::id(this->base_world()));
return *this;
}
template<typename T>
ECS_DEPRECATED("use remove<Relation>(const entity&)")
const Base& remove_trait(const Base& c) const {
ecs_remove_pair(this->base_world(), this->base_id(), _::cpp_type<T>::id(this->base_world()), c.id());
return *this;
}
template<typename C>
ECS_DEPRECATED("use remove_object<Object>(const entity&)")
const Base& remove_trait_tag(const Base& t) const {
ecs_remove_pair(this->base_world(), this->base_id(), t.id(), _::cpp_type<C>::id(this->base_world()));
return *this;
}
ECS_DEPRECATED("use remove(const entity&, const entity&)")
const Base& remove_trait(const Base& t, const Base& c) const {
ecs_remove_pair(this->base_world(), this->base_id(), t.id(), c.id());
return *this;
}
template <typename T, typename C>
ECS_DEPRECATED("use set<Relation, Object>(const Relation&)")
const Base& set_trait(const T& value) const {
auto comp_id = _::cpp_type<T>::id(this->base_world());
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
ecs_set_ptr_w_entity(this->base_world(), this->base_id(),
ecs_pair(comp_id, _::cpp_type<C>::id(this->base_world())),
sizeof(T), &value);
return *this;
}
template <typename T>
ECS_DEPRECATED("use set<Relation>(const entity&, const Relation&)")
const Base& set_trait(const T& value, const Base& c) const {
auto comp_id = _::cpp_type<T>::id(this->base_world());
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
ecs_set_ptr_w_entity(this->base_world(), this->base_id(),
ecs_pair(comp_id, c.id()),
sizeof(T), &value);
return *this;
}
template <typename C>
ECS_DEPRECATED("use set_object<Object>(const entity&, const Object&)")
const Base& set_trait_tag(const Base& t, const C& value) const {
auto comp_id = _::cpp_type<C>::id(this->base_world());
ecs_assert(_::cpp_type<C>::size() != 0, ECS_INVALID_PARAMETER, NULL);
ecs_set_ptr_w_entity(this->base_world(), this->base_id(),
ecs_pair(t.id(), comp_id),
sizeof(C), &value);
return *this;
}
ECS_DEPRECATED("use set(Func func)")
template <typename T, typename Func>
const Base& patch(const Func& func) const {
auto comp_id = _::cpp_type<T>::id(this->base_world());
ecs_assert(_::cpp_type<T>::size() != 0,
ECS_INVALID_PARAMETER, NULL);
bool is_added;
T *ptr = static_cast<T*>(ecs_get_mut_w_entity(
this->base_world(), this->base_id(), comp_id, &is_added));
ecs_assert(ptr != NULL, ECS_INTERNAL_ERROR, NULL);
func(*ptr);
ecs_modified_w_entity(this->base_world(), this->base_id(), comp_id);
return *this;
}
};
struct entity_deprecated_tag { };
template<typename Base>
class entity_deprecated : entity_builder_base<entity_deprecated_tag, Base> {
public:
template<typename T, typename C>
ECS_DEPRECATED("use get<Relation, Object>")
const T* get_trait() const {
auto comp_id = _::cpp_type<T>::id(this->base_world());
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<const T*>(ecs_get_id(this->base_world(), this->base_id(), ecs_trait(
_::cpp_type<C>::id(this->base_world()), comp_id)));
}
template<typename T>
ECS_DEPRECATED("use get<Relation>(const entity&)")
const T* get_trait(const Base& c) const {
auto comp_id = _::cpp_type<T>::id(this->base_world());
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<const T*>(ecs_get_id(this->base_world(), this->base_id(), ecs_trait(
c.id(), comp_id)));
}
template<typename C>
ECS_DEPRECATED("use get_object<Object>(const entity&)")
const C* get_trait_tag(const Base& t) const {
auto comp_id = _::cpp_type<C>::id(this->base_world());
ecs_assert(_::cpp_type<C>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<const C*>(ecs_get_id(this->base_world(), this->base_id(), ecs_trait(
comp_id, t.id())));
}
ECS_DEPRECATED("use get(const entity&, const entity&)")
const void* get_trait(const Base& t, const Base& c) const{
return ecs_get_id(this->base_world(), this->base_id(), ecs_trait(c.id(), t.id()));
}
template <typename T, typename C>
ECS_DEPRECATED("use get_mut<Relation, Object>(bool)")
T* get_trait_mut(bool *is_added = nullptr) const {
auto t_id = _::cpp_type<T>::id(this->base_world());
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<T*>(
ecs_get_mut_w_entity(
this->base_world(), this->base_id(), ecs_trait(_::cpp_type<C>::id(this->base_world()),
t_id), is_added));
}
template <typename T>
ECS_DEPRECATED("use get_mut<Relation>(const entity&, bool)")
T* get_trait_mut(const Base& c, bool *is_added = nullptr) const {
auto comp_id = _::cpp_type<T>::id(this->base_world());
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<T*>(
ecs_get_mut_w_entity(
this->base_world(), this->base_id(), ecs_trait( comp_id, c.id()), is_added));
}
template <typename C>
ECS_DEPRECATED("use get_mut_object<Object>(const entity&, bool)")
C* get_trait_tag_mut(const Base& t, bool *is_added = nullptr) const {
auto comp_id = _::cpp_type<C>::id(this->base_world());
ecs_assert(_::cpp_type<C>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<C*>(
ecs_get_mut_w_entity(
this->base_world(), this->base_id(), ecs_trait(comp_id, t.id()), is_added));
}
template<typename T, typename C>
ECS_DEPRECATED("use has<Relation, Object>")
bool has_trait() const {
return ecs_has_entity(this->base_world(), this->base_id(), ecs_trait(
_::cpp_type<C>::id(this->base_world()),
_::cpp_type<T>::id(this->base_world())));
}
template<typename T>
ECS_DEPRECATED("use has<Relation>(const flecs::entity&)")
bool has_trait(const Base& component) const {
return ecs_has_entity(this->base_world(), this->base_id(), ecs_trait(
component.id(), _::cpp_type<T>::id(this->base_world())));
}
template<typename C>
ECS_DEPRECATED("use has_object<Object>(const flecs::entity&)")
bool has_trait_tag(const Base& trait) const {
return ecs_has_entity(this->base_world(), this->base_id(), ecs_trait(
_::cpp_type<C>::id(this->base_world()), trait.id()));
}
ECS_DEPRECATED("use has(const flecs::entity&, const flecs::entity&)")
bool has_trait(const Base& trait, const Base& e) const {
return ecs_has_entity(this->base_world(), this->base_id(), ecs_trait(
e.id(), trait.id()));
}
};
}
#else
namespace flecs
{
template <typename Base>
class entity_builder_deprecated { };
class entity_deprecated { };
}
#endif
namespace flecs
{
/** Entity view class
* This class provides readonly access to entities. Using this class to store
* entities in components ensures valid handles, as this class will always store
* the actual world vs. a stage. The constructors of this class will never
* create a new entity.
*
* To obtain a mutable handle to the entity, use the "mut" function.
*/
class entity_view : public id {
public:
entity_view() : flecs::id() { }
/** Wrap an existing entity id.
*
* @param world The world in which the entity is created.
* @param id The entity id.
*/
explicit entity_view(const flecs::world& world, const entity_view& id)
: flecs::id( world.get_world(), id.id() ) { }
/** Wrap an existing entity id.
*
* @param world Pointer to the world in which the entity is created.
* @param id The entity id.
*/
explicit entity_view(world_t *world, const entity_view& id)
: flecs::id( flecs::world(world).get_world(), id.id() ) { }
/** Implicit conversion from flecs::entity_t to flecs::entity_view. */
entity_view(entity_t id)
: flecs::id( nullptr, id ) { }
/** Get entity id.
* @return The integer entity id.
*/
entity_t id() const {
return m_id;
}
/** Check is entity is valid.
*
* @return True if the entity is alive, false otherwise.
*/
bool is_valid() const {
return m_world && ecs_is_valid(m_world, m_id);
}
explicit operator bool() const {
return is_valid();
}
/** Check is entity is alive.
*
* @return True if the entity is alive, false otherwise.
*/
bool is_alive() const {
return m_world && ecs_is_alive(m_world, m_id);
}
/** Return the entity name.
*
* @return The entity name, or an empty string if the entity has no name.
*/
flecs::string_view name() const {
return flecs::string_view(ecs_get_name(m_world, m_id));
}
/** Return the entity path.
*
* @return The hierarchical entity path, or an empty string if the entity
* has no name.
*/
flecs::string path(const char *sep = "::", const char *init_sep = "::") const {
char *path = ecs_get_path_w_sep(m_world, 0, m_id, sep, init_sep);
return flecs::string(path);
}
bool enabled() {
return !ecs_has_entity(m_world, m_id, flecs::Disabled);
}
/** Return the type.
*
* @return Returns the entity type.
*/
flecs::type type() const;
/** Return type containing the entity.
*
* @return A type that contains only this entity.
*/
flecs::type to_type() const;
/** Iterate (component) ids of an entity.
* The function parameter must match the following signature:
* void(*)(flecs::id id)
*
* @param func The function invoked for each id.
*/
template <typename Func>
void each(const Func& func) const;
/** Iterate objects for a given relationship.
* This operation will return the object for all ids that match with the
* (rel, *) pattern.
*
* The function parameter must match the following signature:
* void(*)(flecs::entity object)
*
* @param rel The relationship for which to iterate the objects.
* @param func The function invoked for each object.
*/
template <typename Func>
void each(const flecs::entity_view& rel, const Func& func) const;
/** Iterate objects for a given relationship.
* This operation will return the object for all ids that match with the
* (Rel, *) pattern.
*
* The function parameter must match the following signature:
* void(*)(flecs::entity object)
*
* @tparam Rel The relationship for which to iterate the objects.
* @param func The function invoked for each object.
*/
template <typename Rel, typename Func>
void each(const Func& func) const {
return each(_::cpp_type<Rel>::id(m_world), func);
}
/** Find all (component) ids contained by an entity matching a pattern.
* This operation will return all ids that match the provided pattern. The
* pattern may contain wildcards by using the flecs::Wildcard constant:
*
* match(flecs::Wildcard, ...)
* Matches with all non-pair ids.
*
* match(world.pair(rel, flecs::Wildcard))
* Matches all pair ids with relationship rel
*
* match(world.pair(flecs::Wildcard, obj))
* Matches all pair ids with object obj
*
* The function parameter must match the following signature:
* void(*)(flecs::id id)
*
* @param pattern The pattern to use for matching.
* @param func The function invoked for each matching id.
*/
template <typename Func>
void match(flecs::id_t pattern, const Func& func) const;
/** Get component value.
*
* @tparam T The component to get.
* @return Pointer to the component value, nullptr if the entity does not
* have the component.
*/
template <typename T, if_t< is_actual<T>::value > = 0>
const T* get() const {
auto comp_id = _::cpp_type<T>::id(m_world);
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<const T*>(ecs_get_id(m_world, m_id, comp_id));
}
/** Get component value.
* Overload for when T is not the same as the actual type, which happens
* when using pair types.
*
* @tparam T The component to get.
* @return Pointer to the component value, nullptr if the entity does not
* have the component.
*/
template <typename T, typename A = actual_type_t<T>,
if_not_t< is_actual<T>::value > = 0>
const A* get() const {
auto comp_id = _::cpp_type<T>::id(m_world);
ecs_assert(_::cpp_type<A>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<const A*>(ecs_get_id(m_world, m_id, comp_id));
}
/** Get a pair.
* This operation gets the value for a pair from the entity.
*
* @tparam R the relation type.
* @tparam O the object type.
*/
template <typename R, typename O, typename P = pair<R, O>,
typename A = actual_type_t<P>, if_not_t< flecs::is_pair<R>::value > = 0>
const A* get() const {
return this->get<P>();
}
/** Get a pair.
* This operation gets the value for a pair from the entity.
*
* @tparam R the relation type.
* @param object the object.
*/
template<typename R>
const R* get(const flecs::entity_view& object) const {
auto comp_id = _::cpp_type<R>::id(m_world);
ecs_assert(_::cpp_type<R>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<const R*>(
ecs_get_id(m_world, m_id, ecs_pair(comp_id, object.id())));
}
/** Get component value (untyped).
*
* @param component The component to get.
* @return Pointer to the component value, nullptr if the entity does not
* have the component.
*/
const void* get(const flecs::entity_view& component) const {
return ecs_get_id(m_world, m_id, component.id());
}
/** Get a pair (untyped).
* This operation gets the value for a pair from the entity. If neither the
* relation nor the object part of the pair are components, the operation
* will fail.
*
* @param relation the relation.
* @param object the object.
*/
const void* get(const flecs::entity_view& relation, const flecs::entity_view& object) const {
return ecs_get_id(m_world, m_id, ecs_pair(relation.id(), object.id()));
}
/** Get 1..N components.
* This operation accepts a callback with as arguments the components to
* retrieve. The callback will only be invoked when the entity has all
* the components.
*
* This operation is faster than individually calling get for each component
* as it only obtains entity metadata once.
*
* @param func The callback to invoke.
* @return True if the entity has all components, false if not.
*/
template <typename Func, if_t< is_callable<Func>::value > = 0>
bool get(const Func& func) const;
/** Get the object part from a pair.
* This operation gets the value for a pair from the entity. The relation
* part of the pair should not be a component.
*
* @tparam O the object type.
* @param relation the relation.
*/
template<typename O>
const O* get_w_object(const flecs::entity_view& relation) const {
auto comp_id = _::cpp_type<O>::id(m_world);
ecs_assert(_::cpp_type<O>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<const O*>(
ecs_get_id(m_world, m_id, ecs_pair(relation.id(), comp_id)));
}
/** Get the object part from a pair.
* This operation gets the value for a pair from the entity. The relation
* part of the pair should not be a component.
*
* @tparam R the relation type.
* @tparam O the object type.
*/
template<typename R, typename O>
const O* get_w_object() const {
return get<pair_object<R, O>>();
}
/** Get object for a given relation.
* This operation returns the object for a given relation. The optional
* index can be used to iterate through objects, in case the entity has
* multiple instances for the same relation.
*
* @param relation The relation for which to retrieve the object.
* @param index The index (0 for the first instance of the relation).
*/
flecs::entity get_object(flecs::entity_t relation, int32_t index = 0) const;
/** Get parent from an entity.
* This operation retrieves the parent entity that has the specified
* component. If no parent with the specified component is found, an entity
* with id 0 is returned. If multiple parents have the specified component,
* the operation returns the first encountered one.
*
* @tparam T The component for which to find the parent.
* @return The parent entity.
*/
template <typename T>
flecs::entity get_parent();
flecs::entity get_parent(flecs::entity_view e);
/** Lookup an entity by name.
* Lookup an entity in the scope of this entity. The provided path may
* contain double colons as scope separators, for example: "Foo::Bar".
*
* @param path The name of the entity to lookup.
* @return The found entity, or entity::null if no entity matched.
*/
flecs::entity lookup(const char *path) const;
/** Check if entity has the provided type.
*
* @param entity The type pointer to check.
* @return True if the entity has the provided type, false otherwise.
*/
bool has(type_t type) const {
return ecs_has_type(m_world, m_id, type);
}
/** Check if entity has the provided entity.
*
* @param entity The entity to check.
* @return True if the entity has the provided entity, false otherwise.
*/
bool has(flecs::id_t e) const {
return ecs_has_id(m_world, m_id, e);
}
/** Check if entity has the provided component.
*
* @tparam T The component to check.
* @return True if the entity has the provided component, false otherwise.
*/
template <typename T>
bool has() const {
return ecs_has_id(m_world, m_id, _::cpp_type<T>::id(m_world));
}
/** Check if entity has the provided pair.
*
* @tparam Relation The relation type.
* @param Object The object type.
* @return True if the entity has the provided component, false otherwise.
*/
template <typename Relation, typename Object>
bool has() const {
return this->has<Relation>(_::cpp_type<Object>::id(m_world));
}
/** Check if entity has the provided pair.
*
* @tparam Relation The relation type.
* @param object The object.
* @return True if the entity has the provided component, false otherwise.
*/
template <typename Relation>
bool has(flecs::id_t object) const {
auto comp_id = _::cpp_type<Relation>::id(m_world);
return ecs_has_id(m_world, m_id, ecs_pair(comp_id, object));
}
/** Check if entity has the provided pair.
*
* @param relation The relation.
* @param object The object.
* @return True if the entity has the provided component, false otherwise.
*/
bool has(flecs::id_t relation, flecs::id_t object) const {
return ecs_has_id(m_world, m_id, ecs_pair(relation, object));
}
/** Check if entity has the provided pair.
*
* @tparam Object The object type.
* @param relation The relation.
* @return True if the entity has the provided component, false otherwise.
*/
template <typename Object>
bool has_w_object(flecs::id_t relation) const {
auto comp_id = _::cpp_type<Object>::id(m_world);
return ecs_has_id(m_world, m_id, ecs_pair(relation, comp_id));
}
/** Check if entity owns the provided type.
* An type is owned if it is not shared from a base entity.
*
* @param type The type to check.
* @return True if the entity owns the provided type, false otherwise.
*/
bool owns(type_t type) const {
return ecs_type_owns_type(
m_world, ecs_get_type(m_world, m_id), type, true);
}
/** Check if entity owns the provided entity.
* An entity is owned if it is not shared from a base entity.
*
* @param entity The entity to check.
* @return True if the entity owns the provided entity, false otherwise.
*/
bool owns(flecs::id_t e) const {
return ecs_owns_entity(m_world, m_id, e, true);
}
/** Check if entity owns the provided pair.
*
* @tparam Relation The relation type.
* @param object The object.
* @return True if the entity owns the provided component, false otherwise.
*/
template <typename Relation>
bool owns(flecs::id_t object) const {
auto comp_id = _::cpp_type<Relation>::id(m_world);
return owns(ecs_pair(comp_id, object));
}
/** Check if entity owns the provided pair.
*
* @param relation The relation.
* @param object The object.
* @return True if the entity owns the provided component, false otherwise.
*/
bool owns(flecs::id_t relation, flecs::id_t object) const {
return owns(ecs_pair(relation, object));
}
/** Check if entity owns the provided component.
* An component is owned if it is not shared from a base entity.
*
* @tparam T The component to check.
* @return True if the entity owns the provided component, false otherwise.
*/
template <typename T>
bool owns() const {
return owns(_::cpp_type<T>::id(m_world));
}
/** Check if entity has the provided switch.
*
* @param sw The switch to check.
* @return True if the entity has the provided switch, false otherwise.
*/
bool has_switch(const flecs::type& sw) const;
template <typename T>
bool has_switch() const {
return ecs_has_entity(m_world, m_id,
flecs::Switch | _::cpp_type<T>::id(m_world));
}
/** Check if entity has the provided case.
*
* @param sw_case The case to check.
* @return True if the entity has the provided case, false otherwise.
*/
bool has_case(flecs::id_t sw_case) const {
return ecs_has_entity(m_world, m_id, flecs::Case | sw_case);
}
template<typename T>
bool has_case() const {
return this->has_case(_::cpp_type<T>::id(m_world));
}
/** Get case for switch.
*
* @param sw The switch for which to obtain the case.
* @return True if the entity has the provided case, false otherwise.
*/
flecs::entity get_case(flecs::id_t sw) const;
/** Get case for switch.
*
* @param sw The switch for which to obtain the case.
* @return True if the entity has the provided case, false otherwise.
*/
template<typename T>
flecs::entity get_case() const;
/** Get case for switch.
*
* @param sw The switch for which to obtain the case.
* @return True if the entity has the provided case, false otherwise.
*/
flecs::entity get_case(const flecs::type& sw) const;
/** Test if component is enabled.
*
* @tparam T The component to test.
* @return True if the component is enabled, false if it has been disabled.
*/
template<typename T>
bool is_enabled() {
return ecs_is_component_enabled_w_entity(
m_world, m_id, _::cpp_type<T>::id(m_world));
}
/** Test if component is enabled.
*
* @param entity The component to test.
* @return True if the component is enabled, false if it has been disabled.
*/
bool is_enabled(const flecs::entity_view& e) {
return ecs_is_component_enabled_w_entity(
m_world, m_id, e.id());
}
/** Get current delta time.
* Convenience function so system implementations can get delta_time, even
* if they are using the .each() function.
*
* @return Current delta_time.
*/
FLECS_FLOAT delta_time() const {
const ecs_world_info_t *stats = ecs_get_world_info(m_world);
return stats->delta_time;
}
/** Return iterator to entity children.
* Enables depth-first iteration over entity children.
*
* @return Iterator to child entities.
*/
child_iterator children() const;
/** Return mutable entity handle for current stage
* When an entity handle created from the world is used while the world is
* in staged mode, it will only allow for readonly operations since
* structural changes are not allowed on the world while in staged mode.
*
* To do mutations on the entity, this operation provides a handle to the
* entity that uses the stage instead of the actual world.
*
* Note that staged entity handles should never be stored persistently, in
* components or elsewhere. An entity handle should always point to the
* main world.
*
* Also note that this operation is not necessary when doing mutations on an
* entity outside of a system. It is allowed to do entity operations
* directly on the world, as long as the world is not in staged mode.
*
* @param stage The current stage.
* @return An entity handle that allows for mutations in the current stage.
*/
flecs::entity mut(const flecs::world& stage) const;
/** Same as mut(world), but for iterator.
* This operation allows for the construction of a mutable entity handle
* from an iterator.
*
* @param stage An created for the current stage.
* @return An entity handle that allows for mutations in the current stage.
*/
flecs::entity mut(const flecs::iter& it) const;
/** Same as mut(world), but for entity.
* This operation allows for the construction of a mutable entity handle
* from another entity. This is useful in each() functions, which only
* provide a handle to the entity being iterated over.
*
* @param stage An created for the current stage.
* @return An entity handle that allows for mutations in the current stage.
*/
flecs::entity mut(const flecs::entity_view& e) const;
private:
flecs::entity set_stage(world_t *stage);
};
/** Fluent API for chaining entity operations
* This class contains entity operations that can be chained. For example, by
* using this class, an entity can be created like this:
*
* flecs::entity e = flecs::entity(world)
* .add<Position>()
* .add<Velocity>();
*/
struct entity_builder_tag { }; // Tag to prevent ambiguous base
template <typename Base>
class entity_builder : public entity_builder_base<entity_builder_tag, Base> {
public:
/** Add a component to an entity.
* To ensure the component is initialized, it should have a constructor.
*
* @tparam T the component type to add.
*/
template <typename T>
const Base& add() const {
flecs_static_assert(is_flecs_constructible<T>::value,
"cannot default construct type: add T::T() or use emplace<T>()");
ecs_add_id(this->base_world(), this->base_id(), _::cpp_type<T>::id(this->base_world()));
return *this;
}
/** Add an entity to an entity.
* Add an entity to the entity. This is typically used for tagging.
*
* @param entity The entity to add.
*/
const Base& add(entity_t entity) const {
ecs_add_id(this->base_world(), this->base_id(), entity);
return *this;
}
/** Add a type to an entity.
* A type is a vector of component ids. This operation adds all components
* in a single operation, and is a more efficient version of doing
* individual add operations.
*
* @param type The type to add.
*/
const Base& add(const type& type) const;
/** Add a pair.
* This operation adds a pair to the entity.
*
* @param relation The relation id.
* @param object The object id.
*/
const Base& add(entity_t relation, entity_t object) const {
ecs_add_pair(this->base_world(), this->base_id(), relation, object);
return *this;
}
/** Add a pair.
* This operation adds a pair to the entity.
*
* @tparam R the relation type.
* @tparam O the object type.
*/
template<typename R, typename O>
const Base& add() const {
return this->add<R>(_::cpp_type<O>::id(this->base_world()));
}
/** Add a pair.
* This operation adds a pair to the entity.
*
* @tparam R the relation type.
* @param object the object type.
*/
template<typename R>
const Base& add(entity_t object) const {
flecs_static_assert(is_flecs_constructible<R>::value,
"cannot default construct type: add T::T() or use emplace<T>()");
return this->add(_::cpp_type<R>::id(this->base_world()), object);
}
/** Shortcut for add(IsA. obj).
*
* @param object the object id.
*/
const Base& is_a(entity_t object) const {
return this->add(flecs::IsA, object);
}
template <typename T>
const Base& is_a() const {
return this->add(flecs::IsA, _::cpp_type<T>::id(this->base_world()));
}
/** Shortcut for add(ChildOf. obj).
*
* @param object the object id.
*/
const Base& child_of(entity_t object) const {
return this->add(flecs::ChildOf, object);
}
/** Shortcut for add(ChildOf. obj).
*
* @param object the object id.
*/
template <typename T>
const Base& child_of() const {
return this->add(flecs::ChildOf, _::cpp_type<T>::id(this->base_world()));
}
/** Add a pair with object type.
* This operation adds a pair to the entity. The relation part of the pair
* should not be a component.
*
* @param relation the relation type.
* @tparam O the object type.
*/
template<typename O>
const Base& add_w_object(entity_t relation) const {
flecs_static_assert(is_flecs_constructible<O>::value,
"cannot default construct type: add T::T() or use emplace<T>()");
return this->add(relation, _::cpp_type<O>::id(this->base_world()));
}
/** Remove a component from an entity.
*
* @tparam T the type of the component to remove.
*/
template <typename T>
const Base& remove() const {
ecs_remove_id(this->base_world(), this->base_id(), _::cpp_type<T>::id(this->base_world()));
return *this;
}
/** Remove an entity from an entity.
*
* @param entity The entity to remove.
*/
const Base& remove(entity_t entity) const {
ecs_remove_id(this->base_world(), this->base_id(), entity);
return *this;
}
/** Remove a type from an entity.
* A type is a vector of component ids. This operation adds all components
* in a single operation, and is a more efficient version of doing
* individual add operations.
*
* @param type the type to remove.
*/
const Base& remove(const type& type) const;
/** Remove a pair.
* This operation removes a pair from the entity.
*
* @param relation The relation id.
* @param object The object id.
*/
const Base& remove(entity_t relation, entity_t object) const {
ecs_remove_pair(this->base_world(), this->base_id(), relation, object);
return *this;
}
/** Removes a pair.
* This operation removes a pair from the entity.
*
* @tparam Relation the relation type.
* @tparam Object the object type.
*/
template<typename Relation, typename Object>
const Base& remove() const {
return this->remove<Relation>(_::cpp_type<Object>::id(this->base_world()));
}
/** Remove a pair.
* This operation adds a pair to the entity.
*
* @tparam Relation the relation type.
* @param object the object type.
*/
template<typename Relation>
const Base& remove(entity_t object) const {
return this->remove(_::cpp_type<Relation>::id(this->base_world()), object);
}
/** Removes a pair with object type.
* This operation removes a pair from the entity.
*
* @param relation the relation type.
* @tparam Object the object type.
*/
template<typename Object>
const Base& remove_w_object(entity_t relation) const {
return this->remove(relation, _::cpp_type<Object>::id(this->base_world()));
}
/** Add owned flag for component (forces ownership when instantiating)
*
* @param entity The entity for which to add the OWNED flag
*/
const Base& add_owned(entity_t entity) const {
ecs_add_id(this->base_world(), this->base_id(), ECS_OWNED | entity);
return *this;
}
/** Add owned flag for component (forces ownership when instantiating)
*
* @tparam T The component for which to add the OWNED flag
*/
template <typename T>
const Base& add_owned() const {
ecs_add_id(this->base_world(), this->base_id(), ECS_OWNED | _::cpp_type<T>::id(this->base_world()));
return *this;
}
ECS_DEPRECATED("use add_owned(flecs::entity e)")
const Base& add_owned(const type& type) const;
/** Set value, add owned flag.
*
* @tparam T The component to set and for which to add the OWNED flag
*/
template <typename T>
const Base& set_owned(T&& val) const {
this->add_owned<T>();
this->set<T>(std::forward<T>(val));
return *this;
}
/** Add a switch to an entity by id.
* The switch entity must be a type, that is it must have the EcsType
* component. Entities created with flecs::type are valid here.
*
* @param sw The switch entity id to add.
*/
const Base& add_switch(entity_t sw) const {
ecs_add_id(this->base_world(), this->base_id(), ECS_SWITCH | sw);
return *this;
}
/** Add a switch to an entity by C++ type.
* The C++ type must be associated with a switch type.
*
* @param sw The switch to add.
*/
template <typename T>
const Base& add_switch() const {
ecs_add_id(this->base_world(), this->base_id(),
ECS_SWITCH | _::cpp_type<T>::id());
return *this;
}
/** Add a switch to an entity.
* Any instance of flecs::type can be used as a switch.
*
* @param sw The switch to add.
*/
const Base& add_switch(const type& sw) const;
/** Remove a switch from an entity by id.
*
* @param sw The switch entity id to remove.
*/
const Base& remove_switch(entity_t sw) const {
ecs_remove_id(this->base_world(), this->base_id(), ECS_SWITCH | sw);
return *this;
}
/** Add a switch to an entity by C++ type.
* The C++ type must be associated with a switch type.
*
* @param sw The switch to add.
*/
template <typename T>
const Base& remove_switch() const {
ecs_remove_id(this->base_world(), this->base_id(),
ECS_SWITCH | _::cpp_type<T>::id());
return *this;
}
/** Remove a switch from an entity.
* Any instance of flecs::type can be used as a switch.
*
* @param sw The switch to remove.
*/
const Base& remove_switch(const type& sw) const;
/** Add a switch to an entity by id.
* The case must belong to a switch that is already added to the entity.
*
* @param sw_case The case entity id to add.
*/
const Base& add_case(entity_t sw_case) const {
ecs_add_id(this->base_world(), this->base_id(), ECS_CASE | sw_case);
return *this;
}
/** Add a switch to an entity by id.
* The case must belong to a switch that is already added to the entity.
*
* @tparam T The case to add.
*/
template<typename T>
const Base& add_case() const {
return this->add_case(_::cpp_type<T>::id());
}
/** Remove a case from an entity by id.
* The case must belong to a switch that is already added to the entity.
*
* @param sw_case The case entity id to remove.
*/
const Base& remove_case(entity_t sw_case) const {
ecs_remove_id(this->base_world(), this->base_id(), ECS_CASE | sw_case);
return *this;
}
/** Remove a switch from an entity by id.
* The case must belong to a switch that is already added to the entity.
*
* @tparam T The case to remove.
*/
template<typename T>
const Base& remove_case() const {
return this->remove_case(_::cpp_type<T>::id());
}
/** Enable an entity.
* Enabled entities are matched with systems and can be searched with
* queries.
*/
const Base& enable() const {
ecs_enable(this->base_world(), this->base_id(), true);
return *this;
}
/** Disable an entity.
* Disabled entities are not matched with systems and cannot be searched
* with queries, unless explicitly specified in the query expression.
*/
const Base& disable() const {
ecs_enable(this->base_world(), this->base_id(), false);
return *this;
}
/** Enable a component.
* This sets the enabled bit for this component. If this is the first time
* the component is enabled or disabled, the bitset is added.
*
* @tparam T The component to enable.
*/
template<typename T>
const Base& enable() const {
ecs_enable_component_w_entity(this->base_world(), this->base_id(), _::cpp_type<T>::id(), true);
return *this;
}
/** Disable a component.
* This sets the enabled bit for this component. If this is the first time
* the component is enabled or disabled, the bitset is added.
*
* @tparam T The component to enable.
*/
template<typename T>
const Base& disable() const {
ecs_enable_component_w_entity(this->base_world(), this->base_id(), _::cpp_type<T>::id(), false);
return *this;
}
/** Enable a component.
* See enable<T>.
*
* @param component The component to enable.
*/
const Base& enable(entity_t comp) const {
ecs_enable_component_w_entity(this->base_world(), this->base_id(), comp, true);
return *this;
}
/** Disable a component.
* See disable<T>.
*
* @param component The component to disable.
*/
const Base& disable(entity_t comp) const {
ecs_enable_component_w_entity(this->base_world(), this->base_id(), comp, false);
return *this;
}
template<typename T, if_t<
!is_callable<T>::value && is_actual<T>::value> = 0 >
const Base& set(T&& value) const {
flecs::set<T>(this->base_world(), this->base_id(), std::forward<T&&>(value));
return *this;
}
template<typename T, if_t<
!is_callable<T>::value && is_actual<T>::value > = 0>
const Base& set(const T& value) const {
flecs::set<T>(this->base_world(), this->base_id(), value);
return *this;
}
template<typename T, typename A = actual_type_t<T>, if_not_t<
is_callable<T>::value || is_actual<T>::value > = 0>
const Base& set(A&& value) const {
flecs::set<T>(this->base_world(), this->base_id(), std::forward<A&&>(value));
return *this;
}
template<typename T, typename A = actual_type_t<T>, if_not_t<
is_callable<T>::value || is_actual<T>::value > = 0>
const Base& set(const A& value) const {
flecs::set<T>(this->base_world(), this->base_id(), value);
return *this;
}
/** Set a pair for an entity.
* This operation sets the pair value, and uses the relation as type. If the
* entity did not yet have the pair, it will be added.
*
* @tparam R The relation part of the pair.
* @tparam O The object part of the pair.
* @param value The value to set.
*/
template <typename R, typename O, typename P = pair<R, O>,
typename A = actual_type_t<P>, if_not_t< is_pair<R>::value> = 0>
const Base& set(const A& value) const {
flecs::set<P>(this->base_world(), this->base_id(), value);
return *this;
}
/** Set a pair for an entity.
* This operation sets the pair value, and uses the relation as type. If the
* entity did not yet have the pair, it will be added.
*
* @tparam R The relation part of the pair.
* @param object The object part of the pair.
* @param value The value to set.
*/
template <typename R>
const Base& set(entity_t object, const R& value) const {
auto relation = _::cpp_type<R>::id(this->base_world());
flecs::set(this->base_world(), this->base_id(), value,
ecs_pair(relation, object));
return *this;
}
/** Set a pair for an entity.
* This operation sets the pair value, and uses the relation as type. If the
* entity did not yet have the pair, it will be added.
*
* @tparam Object The object part of the pair.
* @param relation The relation part of the pair.
* @param value The value to set.
*/
template <typename O>
const Base& set_w_object(entity_t relation, const O& value) const {
auto object = _::cpp_type<O>::id(this->base_world());
flecs::set(this->base_world(), this->base_id(), value,
ecs_pair(relation, object));
return *this;
}
template <typename R, typename O>
const Base& set_w_object(const O& value) const {
flecs::set<pair_object<R, O>>(this->base_world(), this->base_id(), value);
return *this;
}
/** Set 1..N components.
* This operation accepts a callback with as arguments the components to
* set. If the entity does not have all of the provided components, they
* will be added.
*
* This operation is faster than individually calling get for each component
* as it only obtains entity metadata once. When this operation is called
* while deferred, its performance is equivalent to that of calling get_mut
* for each component separately.
*
* The operation will invoke modified for each component after the callback
* has been invoked.
*
* @param func The callback to invoke.
*/
template <typename Func, if_t< is_callable<Func>::value > = 0>
const Base& set(const Func& func) const;
/** Emplace component.
* Emplace constructs a component in the storage, which prevents calling the
* destructor on the object passed into the function.
*
* Emplace attempts the following signatures to construct the component:
* T{Args...}
* T{flecs::entity, Args...}
*
* If the second signature matches, emplace will pass in the current entity
* as argument to the constructor, which is useful if the component needs
* to be aware of the entity to which it has been added.
*
* Emplace may only be called for components that have not yet been added
* to the entity.
*
* @tparam T the component to emplace
* @param args The arguments to pass to the constructor of T
*/
template <typename T, typename ... Args>
const Base& emplace(Args&&... args) const {
flecs::emplace<T>(this->base_world(), this->base_id(),
std::forward<Args>(args)...);
return *this;
}
/** Entities created in function will have the current entity.
*
* @param func The function to call.
*/
template <typename Func>
const Base& with(const Func& func) const {
ecs_id_t prev = ecs_set_with(this->base_world(), this->base_id());
func();
ecs_set_with(this->base_world(), prev);
return *this;
}
/** Entities created in function will have (Relation, this)
* This operation is thread safe.
*
* @tparam Relation The relation to use.
* @param func The function to call.
*/
template <typename Relation, typename Func>
const Base& with(const Func& func) const {
with(_::cpp_type<Relation>::id(this->base_world()), func);
return *this;
}
/** Entities created in function will have (relation, this)
*
* @param relation The relation to use.
* @param func The function to call.
*/
template <typename Func>
const Base& with(id_t relation, const Func& func) const {
ecs_id_t prev = ecs_set_with(this->base_world(),
ecs_pair(relation, this->base_id()));
func();
ecs_set_with(this->base_world(), prev);
return *this;
}
/** The function will be ran with the scope set to the current entity. */
template <typename Func>
const Base& scope(const Func& func) const {
ecs_entity_t prev = ecs_set_scope(this->base_world(), this->base_id());
func();
ecs_set_scope(this->base_world(), prev);
return *this;
}
/** Associate entity with type.
* This operation enables using a type to refer to an entity, as it
* associates the entity id with the provided type.
*
* If the entity does not have a name, a name will be derived from the type.
* If the entity already is a component, the provided type must match in
* size with the component size of the entity. After this operation the
* entity will be a component (it will have the EcsComponent component) if
* the type has a non-zero size.
*
* @tparam T the type to associate with the entity.
*/
template <typename T>
const Base& component() const;
/* Set the entity name.
*/
const Base& set_name(const char *name) const {
ecs_set_name(this->base_world(), this->base_id(), name);
return *this;
}
};
////////////////////////////////////////////////////////////////////////////////
//// Quick and safe access to a component pointer
////////////////////////////////////////////////////////////////////////////////
template <typename T>
class ref {
public:
ref()
: m_world( nullptr )
, m_entity( 0 )
, m_ref() { }
ref(world_t *world, entity_t entity)
: m_world( world )
, m_entity( entity )
, m_ref()
{
auto comp_id = _::cpp_type<T>::id(world);
ecs_assert(_::cpp_type<T>::size() != 0,
ECS_INVALID_PARAMETER, NULL);
ecs_get_ref_w_id(
m_world, &m_ref, m_entity, comp_id);
}
const T* operator->() {
const T* result = static_cast<const T*>(ecs_get_ref_w_id(
m_world, &m_ref, m_entity, _::cpp_type<T>::id(m_world)));
ecs_assert(result != NULL, ECS_INVALID_PARAMETER, NULL);
return result;
}
const T* get() {
if (m_entity) {
ecs_get_ref_w_id(
m_world, &m_ref, m_entity, _::cpp_type<T>::id(m_world));
}
return static_cast<T*>(m_ref.ptr);
}
flecs::entity entity() const;
private:
world_t *m_world;
entity_t m_entity;
flecs::ref_t m_ref;
};
/** Entity class
* This class provides access to entities. */
class entity :
public entity_view,
public entity_builder<entity>,
public entity_deprecated<entity>,
public entity_builder_deprecated<entity>
{
public:
/** Default constructor.
*/
entity()
: flecs::entity_view() { }
/** Create entity.
*
* @param world The world in which to create the entity.
*/
explicit entity(world_t *world)
: flecs::entity_view()
{
m_world = world;
m_id = ecs_new_w_type(world, 0);
}
/** Create a named entity.
* Named entities can be looked up with the lookup functions. Entity names
* may be scoped, where each element in the name is separated by "::".
* For example: "Foo::Bar". If parts of the hierarchy in the scoped name do
* not yet exist, they will be automatically created.
*
* @param world The world in which to create the entity.
* @param name The entity name.
* @param is_component If true, the entity will be created from the pool of component ids (default = false).
*/
explicit entity(world_t *world, const char *name)
: flecs::entity_view()
{
m_world = world;
ecs_entity_desc_t desc = {};
desc.name = name;
desc.sep = "::";
m_id = ecs_entity_init(world, &desc);
}
/** Wrap an existing entity id.
*
* @param world The world in which the entity is created.
* @param id The entity id.
*/
explicit entity(world_t *world, entity_t id)
: flecs::entity_view()
{
m_world = world;
m_id = id;
}
/** Conversion from flecs::entity_t to flecs::entity. */
explicit entity(entity_t id)
: flecs::entity_view( nullptr, id ) { }
/** Get entity id.
* @return The integer entity id.
*/
entity_t id() const {
return m_id;
}
/** Get mutable component value.
* This operation returns a mutable pointer to the component. If the entity
* did not yet have the component, it will be added. If a base entity had
* the component, it will be overridden, and the value of the base component
* will be copied to the entity before this function returns.
*
* @tparam T The component to get.
* @param is_added If provided, this parameter will be set to true if the component was added.
* @return Pointer to the component value.
*/
template <typename T>
T* get_mut(bool *is_added = nullptr) const {
auto comp_id = _::cpp_type<T>::id(m_world);
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<T*>(
ecs_get_mut_w_entity(m_world, m_id, comp_id, is_added));
}
/** Get mutable component value (untyped).
* This operation returns a mutable pointer to the component. If the entity
* did not yet have the component, it will be added. If a base entity had
* the component, it will be overridden, and the value of the base component
* will be copied to the entity before this function returns.
*
* @param component The component to get.
* @param is_added If provided, this parameter will be set to true if the component was added.
* @return Pointer to the component value.
*/
void* get_mut(entity_t comp, bool *is_added = nullptr) const {
return ecs_get_mut_w_entity(m_world, m_id, comp, is_added);
}
/** Get mutable pointer for a pair.
* This operation gets the value for a pair from the entity.
*
* @tparam Relation the relation type.
* @tparam Object the object type.
*/
template <typename Relation, typename Object>
Relation* get_mut(bool *is_added = nullptr) const {
return this->get_mut<Relation>(
_::cpp_type<Object>::id(m_world), is_added);
}
/** Get mutable pointer for a pair.
* This operation gets the value for a pair from the entity.
*
* @tparam Relation the relation type.
* @param object the object.
*/
template <typename Relation>
Relation* get_mut(entity_t object, bool *is_added = nullptr) const {
auto comp_id = _::cpp_type<Relation>::id(m_world);
ecs_assert(_::cpp_type<Relation>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<Relation*>(
ecs_get_mut_w_entity(m_world, m_id,
ecs_pair(comp_id, object), is_added));
}
/** Get mutable pointer for a pair (untyped).
* This operation gets the value for a pair from the entity. If neither the
* relation or object are a component, the operation will fail.
*
* @param relation the relation.
* @param object the object.
*/
void* get_mut(entity_t relation, entity_t object, bool *is_added = nullptr) const {
return ecs_get_mut_w_entity(m_world, m_id,
ecs_pair(relation, object), is_added);
}
/** Get mutable pointer for the object from a pair.
* This operation gets the value for a pair from the entity.
*
* @tparam Object the object type.
* @param relation the relation.
*/
template <typename Object>
Object* get_mut_w_object(entity_t relation, bool *is_added = nullptr) const {
auto comp_id = _::cpp_type<Object>::id(m_world);
ecs_assert(_::cpp_type<Object>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return static_cast<Object*>(
ecs_get_mut_w_entity(m_world, m_id,
ecs_pair(relation, comp_id), is_added));
}
/** Signal that component was modified.
*
* @tparam T component that was modified.
*/
template <typename T>
void modified() const {
auto comp_id = _::cpp_type<T>::id(m_world);
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
this->modified(comp_id);
}
/** Signal that the relation part of a pair was modified.
*
* @tparam Relation the relation type.
* @tparam Object the object type.
*/
template <typename Relation, typename Object>
void modified() const {
this->modified<Relation>(_::cpp_type<Object>::id(m_world));
}
/** Signal that the relation part of a pair was modified.
*
* @tparam Relation the relation type.
* @param object the object.
*/
template <typename Relation>
void modified(entity_t object) const {
auto comp_id = _::cpp_type<Relation>::id(m_world);
ecs_assert(_::cpp_type<Relation>::size() != 0, ECS_INVALID_PARAMETER, NULL);
this->modified(comp_id, object);
}
/** Signal that a pair has modified (untyped).
* If neither the relation or object part of the pair are a component, the
* operation will fail.
*
* @param relation the relation.
* @param object the object.
*/
void modified(entity_t relation, entity_t object) const {
this->modified(ecs_pair(relation, object));
}
/** Signal that component was modified.
*
* @param component component that was modified.
*/
void modified(entity_t comp) const {
ecs_modified_w_entity(m_world, m_id, comp);
}
/** Get reference to component.
* A reference allows for quick and safe access to a component value, and is
* a faster alternative to repeatedly calling 'get' for the same component.
*
* @tparam T component for which to get a reference.
* @return The reference.
*/
template <typename T>
ref<T> get_ref() const {
// Ensure component is registered
_::cpp_type<T>::id(m_world);
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INVALID_PARAMETER, NULL);
return ref<T>(m_world, m_id);
}
/** Clear an entity.
* This operation removes all components from an entity without recycling
* the entity id.
*/
void clear() const {
ecs_clear(m_world, m_id);
}
/** Delete an entity.
* Entities have to be deleted explicitly, and are not deleted when the
* flecs::entity object goes out of scope.
*/
void destruct() const {
ecs_delete(m_world, m_id);
}
/** Used by builder class. Do not invoke (deprecated). */
template <typename Func>
void invoke(Func&& action) const {
action(m_world, m_id);
}
/** Entity id 0.
* This function is useful when the API must provide an entity object that
* belongs to a world, but the entity id is 0.
*
* @param world The world.
*/
static
flecs::entity null(const flecs::world& world) {
return flecs::entity(world.get_world().c_ptr(),
static_cast<entity_t>(0));
}
static
flecs::entity null() {
return flecs::entity(static_cast<entity_t>(0));
}
};
/** Prefab class */
class prefab final : public entity {
public:
explicit prefab(world_t *world, const char *name = nullptr)
: entity(world, name)
{
this->add(flecs::Prefab);
}
};
} // namespace flecs
////////////////////////////////////////////////////////////////////////////////
//// Register component, provide global access to component handles / metadata
////////////////////////////////////////////////////////////////////////////////
namespace flecs
{
namespace _
{
// Trick to obtain typename from type, as described here
// https://blog.molecular-matters.com/2015/12/11/getting-the-type-of-a-template-argument-as-string-without-rtti/
//
// The code from the link has been modified to work with more types, and across
// multiple compilers.
//
struct name_util {
/* Remove parts from typename that aren't needed for component name */
static void trim_name(char *typeName) {
ecs_size_t len = ecs_os_strlen(typeName);
/* Remove 'const' */
ecs_size_t const_len = ecs_os_strlen("const ");
if ((len > const_len) && !ecs_os_strncmp(typeName, "const ", const_len)) {
ecs_os_memmove(typeName, typeName + const_len, len - const_len);
typeName[len - const_len] = '\0';
len -= const_len;
}
/* Remove 'struct' */
ecs_size_t struct_len = ecs_os_strlen("struct ");
if ((len > struct_len) && !ecs_os_strncmp(typeName, "struct ", struct_len)) {
ecs_os_memmove(typeName, typeName + struct_len, len - struct_len);
typeName[len - struct_len] = '\0';
len -= struct_len;
}
/* Remove 'class' */
ecs_size_t class_len = ecs_os_strlen("class ");
if ((len > class_len) && !ecs_os_strncmp(typeName, "class ", class_len)) {
ecs_os_memmove(typeName, typeName + class_len, len - class_len);
typeName[len - class_len] = '\0';
len -= class_len;
}
while (typeName[len - 1] == ' ' ||
typeName[len - 1] == '&' ||
typeName[len - 1] == '*')
{
len --;
typeName[len] = '\0';
}
/* Remove const at end of string */
if (len > const_len) {
if (!ecs_os_strncmp(&typeName[len - const_len], " const", const_len)) {
typeName[len - const_len] = '\0';
}
}
}
};
// Compiler-specific conversion from __PRETTY_FUNCTION__ to component name.
// This code uses a trick that instantiates a function for the component type.
// Then __PRETTY_FUNCTION__ is used to obtain the name of the function. Because
// the result of __PRETTY_FUNCTION__ is not standardized, there are different
// implementations for clang, gcc and msvc. Code that uses a different compiler
// needs to register component names explicitly.
#if defined(__clang__)
static const unsigned int FRONT_SIZE = sizeof("static const char* flecs::_::name_helper<") - 1u;
static const unsigned int BACK_SIZE = sizeof(">::name() [T = ]") - 1u;
template <typename T>
struct name_helper
{
static const char* name(void) {
static const size_t size = (sizeof(__PRETTY_FUNCTION__) - FRONT_SIZE - BACK_SIZE) / 2 + 1u;
static char typeName[size + 6] = {};
memcpy(typeName, __PRETTY_FUNCTION__ + FRONT_SIZE, size - 1u);
name_util::trim_name(typeName);
return typeName;
}
};
#elif defined(__GNUC__)
static const unsigned int FRONT_SIZE = sizeof("static const char* flecs::_::name_helper<T>::name() [with T = ") - 1u;
static const unsigned int BACK_SIZE = sizeof("]") - 1u;
template <typename T>
struct name_helper
{
static const char* name(void) {
static const size_t size = sizeof(__PRETTY_FUNCTION__) - FRONT_SIZE - BACK_SIZE;
static char typeName[size + 6] = {};
memcpy(typeName, __PRETTY_FUNCTION__ + FRONT_SIZE, size - 1u);
name_util::trim_name(typeName);
return typeName;
}
};
#elif defined(_WIN32)
static const unsigned int FRONT_SIZE = sizeof("flecs::_::name_helper<") - 1u;
static const unsigned int BACK_SIZE = sizeof(">::name") - 1u;
template <typename T>
struct name_helper
{
static const char* name(void) {
static const size_t size = sizeof(__FUNCTION__) - FRONT_SIZE - BACK_SIZE;
static char typeName[size + 6] = {};
memcpy(typeName, __FUNCTION__ + FRONT_SIZE, size - 1u);
name_util::trim_name(typeName);
return typeName;
}
};
#else
#error "implicit component registration not supported"
#endif
// Translate a typename into a language-agnostic identifier. This allows for
// registration of components/modules across language boundaries.
template <typename T>
struct symbol_helper
{
static char* symbol(void) {
const char *name = name_helper<T>::name();
// Symbol is same as name, but with '::' replaced with '.'
char *ptr, *sym = ecs_os_strdup(name);
ecs_size_t i, len = ecs_os_strlen(sym);
ptr = sym;
for (i = 0, ptr = sym; i < len && *ptr; i ++, ptr ++) {
if (*ptr == ':') {
sym[i] = '.';
ptr ++;
} else {
sym[i] = *ptr;
}
}
sym[i] = '\0';
return sym;
}
};
// If type is trivial, don't register lifecycle actions. While the functions
// that obtain the lifecycle callback do detect whether the callback is required
// adding a special case for trivial types eases the burden a bit on the
// compiler as it reduces the number of templates to evaluate.
template<typename T, enable_if_t<
std::is_trivial<T>::value == true
>* = nullptr>
void register_lifecycle_actions(ecs_world_t*, ecs_entity_t) { }
// If the component is non-trivial, register component lifecycle actions.
// Depending on the type not all callbacks may be available.
template<typename T, enable_if_t<
std::is_trivial<T>::value == false
>* = nullptr>
void register_lifecycle_actions(
ecs_world_t *world,
ecs_entity_t component)
{
if (!ecs_component_has_actions(world, component)) {
EcsComponentLifecycle cl{};
cl.ctor = ctor<T>();
cl.dtor = dtor<T>();
cl.copy = copy<T>();
cl.copy_ctor = copy_ctor<T>();
cl.move = move<T>();
cl.move_ctor = move_ctor<T>();
cl.ctor_move_dtor = ctor_move_dtor<T>();
cl.move_dtor = move_dtor<T>();
ecs_set_component_actions_w_entity( world, component, &cl);
}
}
// Class that manages component ids across worlds & binaries.
// The cpp_type class stores the component id for a C++ type in a static global
// variable that is shared between worlds. Whenever a component is used this
// class will check if it already has been registered (has the global id been
// set), and if not, register the component with the world.
//
// If the id has been set, the class will ensure it is known by the world. If it
// is not known the component has been registered by another world and will be
// registered with the world using the same id. If the id does exist, the class
// will register it as a component, and verify whether the input is consistent.
template <typename T>
class cpp_type_size {
public:
static size_t size(bool allow_tag) {
// C++ types that have no members still have a size. Use std::is_empty
// to check if the type is empty. If so, use 0 for the component size.
//
// If s_allow_tag is set to false, the size returned by C++ is used.
// This is useful in cases where class instances are still required, as
// is the case with module classes.
if (allow_tag && std::is_empty<T>::value) {
return 0;
} else {
return sizeof(T);
}
}
static size_t alignment(bool allow_tag) {
if (size(allow_tag) == 0) {
return 0;
} else {
return alignof(T);
}
}
};
template <typename T>
class cpp_type_impl {
public:
// Initialize component identifier
static void init(world_t* world, entity_t entity, bool allow_tag = true) {
// If an identifier was already set, check for consistency
if (s_id) {
// If an identifier was registered, a name should've been registered
// as well.
ecs_assert(s_name.c_str() != nullptr, ECS_INTERNAL_ERROR, NULL);
// A component cannot be registered using a different identifier.
ecs_assert(s_id == entity, ECS_INCONSISTENT_COMPONENT_ID,
_::name_helper<T>::name());
ecs_assert(allow_tag == s_allow_tag, ECS_INTERNAL_ERROR, NULL);
// Component was already registered and data is consistent with new
// identifier, so nothing else to be done.
return;
}
// Component wasn't registered yet, set the values. Register component
// name as the fully qualified flecs path.
char *path = ecs_get_fullpath(world, entity);
s_id = entity;
s_name = flecs::string(path);
s_allow_tag = allow_tag;
}
// Names returned from the name_helper class do not start with ::
// but are relative to the root. If the namespace of the type
// overlaps with the namespace of the current module, strip it from
// the implicit identifier.
// This allows for registration of component types that are not in the
// module namespace to still be registered under the module scope.
static const char* strip_module(world_t *world) {
const char *name = _::name_helper<T>::name();
entity_t scope = ecs_get_scope(world);
if (!scope) {
return name;
}
char *path = ecs_get_path_w_sep(world, 0, scope, "::", nullptr);
if (path) {
const char *ptr = strrchr(name, ':');
ecs_assert(ptr != name, ECS_INTERNAL_ERROR, NULL);
if (ptr) {
ptr --;
ecs_assert(ptr[0] == ':', ECS_INTERNAL_ERROR, NULL);
ecs_size_t name_path_len = static_cast<ecs_size_t>(ptr - name);
if (name_path_len <= ecs_os_strlen(path)) {
if (!ecs_os_strncmp(name, path, name_path_len)) {
name = &name[name_path_len + 2];
}
}
}
}
ecs_os_free(path);
return name;
}
// Obtain a component identifier for explicit component registration.
static entity_t id_explicit(world_t *world = nullptr,
const char *name = nullptr, bool allow_tag = true, flecs::id_t id = 0)
{
if (!s_id) {
// If no world was provided the component cannot be registered
ecs_assert(world != nullptr, ECS_COMPONENT_NOT_REGISTERED, name);
s_allow_tag = allow_tag;
} else {
ecs_assert(!id || s_id == id, ECS_INCONSISTENT_COMPONENT_ID, NULL);
ecs_assert(s_allow_tag == allow_tag, ECS_INVALID_PARAMETER, NULL);
}
// If no id has been registered yet for the component (indicating the
// component has not yet been registered, or the component is used
// across more than one binary), or if the id does not exists in the
// world (indicating a multi-world application), register it. */
if (!s_id || (world && !ecs_exists(world, s_id))) {
if (!s_id) {
s_id = id;
}
// One type can only be associated with a single type
ecs_assert(!id || s_id == id, ECS_INTERNAL_ERROR, NULL);
char *symbol = nullptr;
// If an explicit id is provided, it is possible that the symbol and
// name differ from the actual type, as the application may alias
// one type to another.
if (!id) {
symbol = symbol_helper<T>::symbol();
if (!name) {
// If no name was provided, retrieve the name implicitly from
// the name_helper class.
name = strip_module(world);
}
} else {
// If an explicit id is provided but it has no name, inherit
// the name from the type.
if (!ecs_get_name(world, id)) {
name = strip_module(world);
}
}
ecs_component_desc_t desc = {};
desc.entity.entity = s_id;
desc.entity.name = name;
desc.entity.sep = "::";
desc.entity.root_sep = "::";
desc.entity.symbol = symbol;
desc.size = cpp_type_size<T>::size(allow_tag);
desc.alignment = cpp_type_size<T>::alignment(allow_tag);
ecs_entity_t entity = ecs_component_init(world, &desc);
ecs_assert(entity != 0, ECS_INTERNAL_ERROR, NULL);
ecs_assert(!s_id || s_id == entity, ECS_INTERNAL_ERROR, NULL);
ecs_os_free(symbol);
init(world, s_id, allow_tag);
s_id = entity;
}
// By now the identifier must be valid and known with the world.
ecs_assert(s_id != 0 && ecs_exists(world, s_id), ECS_INTERNAL_ERROR, NULL);
return s_id;
}
// Obtain a component identifier for implicit component registration. This
// is almost the same as id_explicit, except that this operation
// automatically registers lifecycle callbacks.
// Additionally, implicit registration temporarily resets the scope & with
// state of the world, so that the component is not implicitly created with
// the scope/with of the code it happens to be first used by.
static id_t id(world_t *world = nullptr, const char *name = nullptr,
bool allow_tag = true)
{
// If no id has been registered yet, do it now.
if (!s_id || (world && !ecs_exists(world, s_id))) {
ecs_entity_t prev_scope = 0;
ecs_id_t prev_with = 0;
if (world) {
prev_scope = ecs_set_scope(world, 0);
prev_with = ecs_set_with(world, 0);
}
// This will register a component id, but will not register
// lifecycle callbacks.
id_explicit(world, name, allow_tag);
// Register lifecycle callbacks, but only if the component has a
// size. Components that don't have a size are tags, and tags don't
// require construction/destruction/copy/move's. */
if (size()) {
register_lifecycle_actions<T>(world, s_id);
}
if (prev_with) {
ecs_set_with(world, prev_with);
}
if (prev_scope) {
ecs_set_scope(world, prev_scope);
}
}
// By now we should have a valid identifier
ecs_assert(s_id != 0, ECS_INTERNAL_ERROR, NULL);
return s_id;
}
// Obtain a component name
static const char* name(world_t *world = nullptr) {
// If no id has been registered yet, do it now.
if (!s_id) {
id(world);
}
// By now we should have a valid identifier
ecs_assert(s_id != 0, ECS_INTERNAL_ERROR, NULL);
// If the id is set, the name should also have been set
return s_name.c_str();
}
// Obtain a component name, don't register lifecycle if the component hadn't
// been registered yet. While functionally the same could be achieved by
// first calling id_explicit() and then name(), this function ensures
// that the lifecycle callback templates are not instantiated. This allows
// some types (such as module classes) to be created without a default
// constructor.
static const char* name_no_lifecycle(world_t *world = nullptr) {
// If no id has been registered yet, do it now.
if (!s_id) {
id_explicit(world);
}
// By now we should have a valid identifier
ecs_assert(s_id != 0, ECS_INTERNAL_ERROR, NULL);
// Return
return s_name.c_str();
}
// Return the type of a component.
// The type is a vector of component ids. This will return a type with just
// the current component id.
static type_t type(world_t *world = nullptr) {
// If no id has been registered yet, do it now.
if (!s_id) {
id(world);
}
// By now we should have a valid identifier
ecs_assert(s_id != 0, ECS_INTERNAL_ERROR, NULL);
// Create a type from the component id.
if (!s_type) {
s_type = ecs_type_from_id(world, s_id);
}
ecs_assert(s_type != nullptr, ECS_INTERNAL_ERROR, NULL);
return s_type;
}
// Return the size of a component.
static size_t size() {
ecs_assert(s_id != 0, ECS_INTERNAL_ERROR, NULL);
return cpp_type_size<T>::size(s_allow_tag);
}
// Return the alignment of a component.
static size_t alignment() {
ecs_assert(s_id != 0, ECS_INTERNAL_ERROR, NULL);
return cpp_type_size<T>::alignment(s_allow_tag);
}
// Was the component already registered.
static bool registered() {
return s_id != 0;
}
// This function is only used to test cross-translation unit features. No
// code other than test cases should invoke this function.
static void reset() {
s_id = 0;
s_type = NULL;
s_name.clear();
}
private:
static entity_t s_id;
static type_t s_type;
static flecs::string s_name;
static flecs::string s_symbol;
static bool s_allow_tag;
};
// Global templated variables that hold component identifier and other info
template <typename T> entity_t cpp_type_impl<T>::s_id( 0 );
template <typename T> type_t cpp_type_impl<T>::s_type( nullptr );
template <typename T> flecs::string cpp_type_impl<T>::s_name;
template <typename T> bool cpp_type_impl<T>::s_allow_tag( true );
// Front facing class for implicitly registering a component & obtaining
// static component data
// Regular type
template <typename T>
class cpp_type<T, if_not_t< is_pair<T>::value >>
: public cpp_type_impl<base_type_t<T>> { };
// Pair type
template <typename T>
class cpp_type<T, if_t< is_pair<T>::value >>
{
public:
// Override id method to return id of pair
static id_t id(world_t *world = nullptr) {
return ecs_pair(
cpp_type< pair_relation_t<T> >::id(world),
cpp_type< pair_object_t<T> >::id(world));
}
};
} // namespace _
////////////////////////////////////////////////////////////////////////////////
//// Register a component with flecs
////////////////////////////////////////////////////////////////////////////////
/** Plain old datatype, no lifecycle actions are registered */
template <typename T>
flecs::entity pod_component(
flecs::world_t *world,
const char *name = nullptr,
bool allow_tag = true,
flecs::id_t id = 0)
{
const char *n = name;
bool implicit_name = false;
if (!n) {
n = _::name_helper<T>::name();
/* Keep track of whether name was explicitly set. If not, and the
* component was already registered, just use the registered name.
*
* The registered name may differ from the typename as the registered
* name includes the flecs scope. This can in theory be different from
* the C++ namespace though it is good practice to keep them the same */
implicit_name = true;
}
if (_::cpp_type<T>::registered()) {
/* Obtain component id. Because the component is already registered,
* this operation does nothing besides returning the existing id */
id = _::cpp_type<T>::id_explicit(world, name, allow_tag, id);
/* If entity is not empty check if the name matches */
if (ecs_get_type(world, id) != nullptr) {
if (!implicit_name && id >= EcsFirstUserComponentId) {
char *path = ecs_get_path_w_sep(
world, 0, id, "::", nullptr);
ecs_assert(!strcmp(path, n),
ECS_INCONSISTENT_NAME, name);
ecs_os_free(path);
}
} else {
/* Register name with entity, so that when the entity is created the
* correct id will be resolved from the name. Only do this when the
* entity is empty.*/
ecs_add_path_w_sep(world, id, 0, n, "::", "::");
}
/* If a component was already registered with this id but with a
* different size, the ecs_component_init function will fail. */
/* We need to explicitly call ecs_component_init here again. Even though
* the component was already registered, it may have been registered
* with a different world. This ensures that the component is registered
* with the same id for the current world.
* If the component was registered already, nothing will change. */
ecs_component_desc_t desc = {};
desc.entity.entity = id;
desc.size = _::cpp_type<T>::size();
desc.alignment = _::cpp_type<T>::alignment();
ecs_entity_t entity = ecs_component_init(world, &desc);
(void)entity;
ecs_assert(entity == id, ECS_INTERNAL_ERROR, NULL);
/* This functionality could have been put in id_explicit, but since
* this code happens when a component is registered, and the entire API
* calls id_explicit, this would add a lot of overhead to each call.
* This is why when using multiple worlds, components should be
* registered explicitly. */
} else {
/* If the component is not yet registered, ensure no other component
* or entity has been registered with this name. Ensure component is
* looked up from root. */
ecs_entity_t prev_scope = ecs_set_scope(world, 0);
ecs_entity_t entity;
if (id) {
entity = id;
} else {
entity = ecs_lookup_path_w_sep(world, 0, n, "::", "::", false);
}
ecs_set_scope(world, prev_scope);
/* If entity exists, compare symbol name to ensure that the component
* we are trying to register under this name is the same */
if (entity) {
if (!id) {
const char *sym = ecs_get_symbol(world, entity);
ecs_assert(sym != NULL, ECS_INTERNAL_ERROR, NULL);
(void)sym;
char *symbol = _::symbol_helper<T>::symbol();
ecs_assert(!ecs_os_strcmp(sym, symbol), ECS_NAME_IN_USE, n);
ecs_os_free(symbol);
/* If an existing id was provided, it's possible that this id was
* registered with another type. Make sure that in this case at
* least the component size/alignment matches.
* This allows applications to alias two different types to the same
* id, which enables things like redefining a C type in C++ by
* inheriting from it & adding utility functions etc. */
} else {
const EcsComponent *comp = ecs_get(world, entity, EcsComponent);
if (comp) {
ecs_assert(comp->size == ECS_SIZEOF(T),
ECS_INVALID_COMPONENT_SIZE, NULL);
ecs_assert(comp->alignment == ECS_ALIGNOF(T),
ECS_INVALID_COMPONENT_ALIGNMENT, NULL);
} else {
/* If the existing id is not a component, no checking is
* needed. */
}
}
/* If no entity is found, lookup symbol to check if the component was
* registered under a different name. */
} else {
char *symbol = _::symbol_helper<T>::symbol();
entity = ecs_lookup_symbol(world, symbol, false);
ecs_assert(entity == 0, ECS_INCONSISTENT_COMPONENT_ID, symbol);
ecs_os_free(symbol);
}
/* Register id as usual */
id = _::cpp_type<T>::id_explicit(world, name, allow_tag, id);
}
return flecs::entity(world, id);
}
/** Register component */
template <typename T>
flecs::entity component(flecs::world_t *world, const char *name = nullptr) {
flecs::entity result = pod_component<T>(world, name);
if (_::cpp_type<T>::size()) {
_::register_lifecycle_actions<T>(world, result);
}
return result;
}
/* Register component with existing entity id */
template <typename T>
void component_for_id(flecs::world_t *world, flecs::id_t id) {
flecs::entity result = pod_component<T>(world, nullptr, true, id);
ecs_assert(result.id() == id, ECS_INTERNAL_ERROR, NULL);
if (_::cpp_type<T>::size()) {
_::register_lifecycle_actions<T>(world, result);
}
}
ECS_DEPRECATED("API detects automatically whether type is trivial")
template <typename T>
flecs::entity relocatable_component(const flecs::world& world, const char *name = nullptr) {
flecs::entity result = pod_component<T>(world, name);
_::register_lifecycle_actions<T>(world.c_ptr(), result.id());
return result;
}
template <typename T>
flecs::entity_t type_id() {
return _::cpp_type<T>::id();
}
} // namespace flecs
////////////////////////////////////////////////////////////////////////////////
//// Utility class to invoke a system each
////////////////////////////////////////////////////////////////////////////////
namespace flecs
{
namespace _
{
// Utility to convert template argument pack to array of term ptrs
struct term_ptr {
void *ptr;
bool is_ref;
};
template <typename ... Components>
class term_ptrs {
public:
using array = flecs::array<_::term_ptr, sizeof...(Components)>;
bool populate(const ecs_iter_t *iter) {
return populate(iter, 0, static_cast<
remove_reference_t<
remove_pointer_t<Components>>
*>(nullptr)...);
}
array m_terms;
private:
/* Populate terms array without checking for references */
bool populate(const ecs_iter_t*, size_t) { return false; }
template <typename T, typename... Targs>
bool populate(const ecs_iter_t *iter, size_t index, T, Targs... comps) {
m_terms[index].ptr = iter->ptrs[index];
bool is_ref = iter->subjects && iter->subjects[index] != 0;
m_terms[index].is_ref = is_ref;
is_ref |= populate(iter, index + 1, comps ...);
return is_ref;
}
};
class invoker { };
// Template that figures out from the template parameters of a query/system
// how to pass the value to the each callback
template <typename T, typename = int>
struct each_column { };
// Base class
struct each_column_base {
each_column_base(const _::term_ptr& term, size_t row)
: m_term(term), m_row(row) { }
protected:
const _::term_ptr& m_term;
size_t m_row;
};
// If type is not a pointer, return a reference to the type (default case)
template <typename T>
struct each_column<T, if_t< !is_pointer<T>::value && is_actual<T>::value > >
: public each_column_base
{
each_column(const _::term_ptr& term, size_t row)
: each_column_base(term, row) { }
T& get_row() {
return static_cast<T*>(this->m_term.ptr)[this->m_row];
}
};
// If argument type is not the same as actual component type, return by value.
// This requires that the actual type can be converted to the type.
// A typical scenario where this happens is when using flecs::pair types.
template <typename T>
struct each_column<T, if_t< !is_pointer<T>::value && !is_actual<T>::value> >
: public each_column_base
{
each_column(const _::term_ptr& term, size_t row)
: each_column_base(term, row) { }
T get_row() {
return static_cast<actual_type_t<T>*>(this->m_term.ptr)[this->m_row];
}
};
// If type is a pointer (indicating an optional value) return the type as is
template <typename T>
struct each_column<T, if_t< is_pointer<T>::value > >
: public each_column_base
{
each_column(const _::term_ptr& term, size_t row)
: each_column_base(term, row) { }
T get_row() {
if (this->m_term.ptr) {
return &static_cast<actual_type_t<T>>(this->m_term.ptr)[this->m_row];
} else {
// optional argument doesn't hava a value
return nullptr;
}
}
};
// If the query contains component references to other entities, check if the
// current argument is one.
template <typename T, typename = int>
struct each_ref_column : public each_column<T> {
each_ref_column(const _::term_ptr& term, size_t row)
: each_column<T>(term, row) {
if (term.is_ref) {
// If this is a reference, set the row to 0 as a ref always is a
// single value, not an array. This prevents the application from
// having to do an if-check on whether the column is owned.
//
// This check only happens when the current table being iterated
// over caused the query to match a reference. The check is
// performed once per iterated table.
this->m_row = 0;
}
}
};
template <typename Func, typename ... Components>
class each_invoker : public invoker {
public:
// If the number of arguments in the function signature is one more than the
// number of components in the query, an extra entity arg is required.
static constexpr bool PassEntity =
sizeof...(Components) == (arity<Func>::value - 1);
static_assert(arity<Func>::value > 0,
"each() must have at least one argument");
using Terms = typename term_ptrs<Components ...>::array;
explicit each_invoker(Func&& func) noexcept
: m_func(std::move(func)) { }
explicit each_invoker(const Func& func) noexcept
: m_func(func) { }
// Invoke object directly. This operation is useful when the calling
// function has just constructed the invoker, such as what happens when
// iterating a query.
void invoke(ecs_iter_t *iter) const {
term_ptrs<Components...> terms;
if (terms.populate(iter)) {
invoke_callback< each_ref_column >(iter, m_func, 0, terms.m_terms);
} else {
invoke_callback< each_column >(iter, m_func, 0, terms.m_terms);
}
}
// Static function that can be used as callback for systems/triggers
static void run(ecs_iter_t *iter) {
auto self = static_cast<const each_invoker*>(iter->binding_ctx);
ecs_assert(self != nullptr, ECS_INTERNAL_ERROR, NULL);
self->invoke(iter);
}
private:
// Number of function arguments is one more than number of components, pass
// entity as argument.
template <template<typename X, typename = int> class ColumnType,
typename... Args, if_t<
sizeof...(Components) == sizeof...(Args) && PassEntity> = 0>
static void invoke_callback(
ecs_iter_t *iter, const Func& func, size_t, Terms&, Args... comps)
{
#ifndef NDEBUG
ecs_table_t *table = iter->table;
if (table) {
ecs_table_lock(iter->world, table);
}
#endif
flecs::iter it(iter);
for (auto row : it) {
func(it.entity(row),
(ColumnType< remove_reference_t<Components> >(comps, row)
.get_row())...);
}
#ifndef NDEBUG
if (table) {
ecs_table_unlock(iter->world, table);
}
#endif
}
// Number of function arguments is equal to number of components, no entity
template <template<typename X, typename = int> class ColumnType,
typename... Args, if_t<
sizeof...(Components) == sizeof...(Args) && !PassEntity> = 0>
static void invoke_callback(
ecs_iter_t *iter, const Func& func, size_t, Terms&, Args... comps)
{
flecs::iter it(iter);
for (auto row : it) {
func( (ColumnType< remove_reference_t<Components> >(comps, row)
.get_row())...);
}
}
template <template<typename X, typename = int> class ColumnType,
typename... Args, if_t< sizeof...(Components) != sizeof...(Args) > = 0>
static void invoke_callback(ecs_iter_t *iter, const Func& func,
size_t index, Terms& columns, Args... comps)
{
invoke_callback<ColumnType>(
iter, func, index + 1, columns, comps..., columns[index]);
}
Func m_func;
};
////////////////////////////////////////////////////////////////////////////////
//// Utility class to invoke a system iterate action
////////////////////////////////////////////////////////////////////////////////
template <typename Func, typename ... Components>
class iter_invoker : public invoker {
static constexpr bool IterOnly = arity<Func>::value == 1;
using Terms = typename term_ptrs<Components ...>::array;
public:
explicit iter_invoker(Func&& func) noexcept
: m_func(std::move(func)) { }
explicit iter_invoker(const Func& func) noexcept
: m_func(func) { }
// Invoke object directly. This operation is useful when the calling
// function has just constructed the invoker, such as what happens when
// iterating a query.
void invoke(ecs_iter_t *iter) const {
term_ptrs<Components...> terms;
terms.populate(iter);
invoke_callback(iter, m_func, 0, terms.m_terms);
}
// Static function that can be used as callback for systems/triggers
static void run(ecs_iter_t *iter) {
auto self = static_cast<const iter_invoker*>(iter->binding_ctx);
ecs_assert(self != nullptr, ECS_INTERNAL_ERROR, NULL);
self->invoke(iter);
}
private:
template <typename... Args, if_t<!sizeof...(Args) && IterOnly> = 0>
static void invoke_callback(ecs_iter_t *iter, const Func& func,
size_t, Terms&, Args...)
{
flecs::iter it(iter);
func(it);
}
template <typename... Targs, if_t<!IterOnly &&
(sizeof...(Targs) == sizeof...(Components))> = 0>
static void invoke_callback(ecs_iter_t *iter, const Func& func, size_t,
Terms&, Targs... comps)
{
flecs::iter it(iter);
#ifndef NDEBUG
ecs_table_t *table = iter->table;
if (table) {
ecs_table_lock(iter->world, table);
}
#endif
func(it, ( static_cast<
remove_reference_t<
remove_pointer_t<
actual_type_t<Components> > >* >
(comps.ptr))...);
#ifndef NDEBUG
if (table) {
ecs_table_unlock(iter->world, table);
}
#endif
}
template <typename... Targs, if_t<!IterOnly &&
(sizeof...(Targs) != sizeof...(Components)) > = 0>
static void invoke_callback(ecs_iter_t *iter, const Func& func,
size_t index, Terms& columns, Targs... comps)
{
invoke_callback(iter, func, index + 1, columns, comps...,
columns[index]);
}
Func m_func;
};
////////////////////////////////////////////////////////////////////////////////
//// Utility class to invoke a system action (deprecated)
////////////////////////////////////////////////////////////////////////////////
template <typename Func, typename ... Components>
class action_invoker : public invoker {
using Terms = typename term_ptrs<Components ...>::array;
public:
explicit action_invoker(Func&& func) noexcept : m_func(std::move(func)) { }
explicit action_invoker(const Func& func) noexcept : m_func(func) { }
// Invoke object directly. This operation is useful when the calling
// function has just constructed the invoker, such as what happens when
// iterating a query.
void invoke(ecs_iter_t *iter) const {
term_ptrs<Components...> terms;
terms.populate(iter);
invoke_callback(iter, m_func, 0, terms.m_terms);
}
// Static function that can be used as callback for systems/triggers
static void run(ecs_iter_t *iter) {
auto self = static_cast<const action_invoker*>(iter->binding_ctx);
ecs_assert(self != nullptr, ECS_INTERNAL_ERROR, NULL);
self->invoke(iter);
}
private:
template <typename... Targs,
if_t< sizeof...(Targs) == sizeof...(Components) > = 0>
static void invoke_callback(
ecs_iter_t *iter, const Func& func, size_t, Terms&, Targs... comps)
{
flecs::iter iter_wrapper(iter);
func(iter_wrapper, (column<
remove_reference_t< remove_pointer_t<Components> > >(
static_cast< remove_reference_t<
remove_pointer_t<Components> > *>
(comps.ptr), iter->count, comps.is_ref))...);
}
template <typename... Targs,
if_t<sizeof...(Targs) != sizeof...(Components)> = 0>
static void invoke_callback(ecs_iter_t *iter, const Func& func,
size_t index, Terms& columns, Targs... comps)
{
invoke_callback(iter, func, index + 1, columns, comps...,
columns[index]);
}
Func m_func;
};
////////////////////////////////////////////////////////////////////////////////
//// Utility to invoke callback on entity if it has components in signature
////////////////////////////////////////////////////////////////////////////////
template<typename ... Args>
class entity_with_invoker_impl;
template<typename ... Args>
class entity_with_invoker_impl<arg_list<Args ...>> {
public:
using ColumnArray = flecs::array<int32_t, sizeof...(Args)>;
using ConstPtrArray = flecs::array<const void*, sizeof...(Args)>;
using PtrArray = flecs::array<void*, sizeof...(Args)>;
using DummyArray = flecs::array<int, sizeof...(Args)>;
using IdArray = flecs::array<id_t, sizeof...(Args)>;
template <typename ArrayType>
static bool get_ptrs(world& w, ecs_record_t *r, ecs_table_t *table,
ArrayType& ptrs)
{
ecs_assert(table != NULL, ECS_INTERNAL_ERROR, NULL);
ecs_type_t type = ecs_table_get_type(table);
if (!type) {
return false;
}
/* Get column indices for components */
ColumnArray columns ({
ecs_type_index_of(type, 0, w.id<Args>())...
});
/* Get pointers for columns for entity */
size_t i = 0;
for (int32_t column : columns) {
if (column == -1) {
return false;
}
ptrs[i ++] = ecs_record_get_column(r, column, 0);
}
return true;
}
template <typename ArrayType>
static bool get_mut_ptrs(world& w, ecs_entity_t e, ArrayType& ptrs) {
world_t *world = w.c_ptr();
/* Get pointers w/get_mut */
size_t i = 0;
DummyArray dummy ({
(ptrs[i ++] = ecs_get_mut_id(world, e, w.id<Args>(), NULL), 0)...
});
return true;
}
template <typename Func>
static bool invoke_get(world_t *world, entity_t id, const Func& func) {
flecs::world w(world);
ecs_record_t *r = ecs_record_find(world, id);
if (!r) {
return false;
}
ecs_table_t *table = r->table;
if (!table) {
return false;
}
ConstPtrArray ptrs;
if (!get_ptrs(w, r, table, ptrs)) {
return false;
}
invoke_callback(func, 0, ptrs);
return true;
}
// Utility for storing id in array in pack expansion
static size_t store_added(IdArray& added, size_t elem, ecs_table_t *prev,
ecs_table_t *next, id_t id)
{
// Array should only contain ids for components that are actually added,
// so check if the prev and next tables are different.
if (prev != next) {
added[elem] = id;
elem ++;
}
return elem;
}
template <typename Func>
static bool invoke_get_mut(world_t *world, entity_t id, const Func& func) {
flecs::world w(world);
PtrArray ptrs;
// When not deferred take the fast path.
if (!w.is_deferred()) {
// Bit of low level code so we only do at most one table move & one
// entity lookup for the entire operation.
// Find table for entity
ecs_record_t *r = ecs_record_find(world, id);
ecs_table_t *table = NULL;
if (r) {
table = r->table;
}
// Find destination table that has all components
ecs_table_t *prev = table, *next;
size_t elem = 0;
IdArray added;
// Iterate components, only store added component ids in added array
DummyArray dummy_before ({ (
next = ecs_table_add_id(world, prev, w.id<Args>()),
elem = store_added(added, elem, prev, next, w.id<Args>()),
prev = next, 0
)... });
(void)dummy_before;
// If table is different, move entity straight to it
if (table != next) {
ecs_ids_t ids;
ids.array = added.ptr();
ids.count = static_cast<ecs_size_t>(elem);
ecs_commit(world, id, r, next, &ids, NULL);
table = next;
}
if (!get_ptrs(w, r, table, ptrs)) {
ecs_abort(ECS_INTERNAL_ERROR, NULL);
}
// When deferred, obtain pointers with regular get_mut
} else {
get_mut_ptrs(w, id, ptrs);
}
invoke_callback(func, 0, ptrs);
// Call modified on each component
DummyArray dummy_after ({
( ecs_modified_id(world, id, w.id<Args>()), 0)...
});
(void)dummy_after;
return true;
}
private:
template <typename Func, typename ArrayType, typename ... TArgs,
if_t<sizeof...(TArgs) == sizeof...(Args)> = 0>
static void invoke_callback(
const Func& f, size_t, ArrayType&, TArgs&& ... comps)
{
f(*static_cast<typename base_arg_type<Args>::type*>(comps)...);
}
template <typename Func, typename ArrayType, typename ... TArgs,
if_t<sizeof...(TArgs) != sizeof...(Args)> = 0>
static void invoke_callback(const Func& f, size_t arg, ArrayType& ptrs,
TArgs&& ... comps)
{
invoke_callback(f, arg + 1, ptrs, comps..., ptrs[arg]);
}
};
template <typename Func, typename U = int>
class entity_with_invoker {
static_assert(function_traits<Func>::value, "type is not callable");
};
template <typename Func>
class entity_with_invoker<Func, if_t< is_callable<Func>::value > >
: public entity_with_invoker_impl< arg_list_t<Func> >
{
static_assert(function_traits<Func>::arity > 0,
"function must have at least one argument");
};
} // namespace _
} // namespace flecs
namespace flecs {
template<typename Base>
class term_id_builder_i {
public:
term_id_builder_i() : m_term_id(nullptr) { }
virtual ~term_id_builder_i() { }
template<typename T>
Base& entity() {
ecs_assert(m_term_id != NULL, ECS_INVALID_PARAMETER, NULL);
m_term_id->entity = _::cpp_type<T>::id(world());
return *this;
}
Base& entity(flecs::id_t id) {
ecs_assert(m_term_id != NULL, ECS_INVALID_PARAMETER, NULL);
m_term_id->entity = id;
return *this;
}
Base& name(const char *name) {
ecs_assert(m_term_id != NULL, ECS_INVALID_PARAMETER, NULL);
// Const cast is safe, when the value is actually used to construct a
// query, it will be duplicated.
m_term_id->name = const_cast<char*>(name);
return *this;
}
Base& var(flecs::var_kind_t var = flecs::VarIsVariable) {
m_term_id->var = static_cast<ecs_var_kind_t>(var);
return *this;
}
Base& var(const char *name) {
ecs_assert(m_term_id != NULL, ECS_INVALID_PARAMETER, NULL);
// Const cast is safe, when the value is actually used to construct a
// query, it will be duplicated.
m_term_id->name = const_cast<char*>(name);
return var(); // Default to VarIsVariable
}
Base& set(uint8_t mask, const flecs::id_t relation = flecs::IsA)
{
ecs_assert(m_term_id != NULL, ECS_INVALID_PARAMETER, NULL);
m_term_id->set.mask = mask;
m_term_id->set.relation = relation;
return *this;
}
Base& superset(const flecs::id_t relation = flecs::IsA, uint8_t mask = 0)
{
ecs_assert(!(mask & flecs::SubSet), ECS_INVALID_PARAMETER, NULL);
return set(flecs::SuperSet | mask, relation);
}
Base& subset(const flecs::id_t relation = flecs::IsA, uint8_t mask = 0)
{
ecs_assert(!(mask & flecs::SuperSet), ECS_INVALID_PARAMETER, NULL);
return set(flecs::SubSet | mask, relation);
}
Base& min_depth(int32_t min_depth) {
m_term_id->set.min_depth = min_depth;
return *this;
}
Base& max_depth(int32_t max_depth) {
m_term_id->set.max_depth = max_depth;
return *this;
}
ecs_term_id_t *m_term_id;
protected:
virtual flecs::world_t* world() = 0;
private:
operator Base&() {
return *static_cast<Base*>(this);
}
};
template<typename Base>
class term_builder_i : public term_id_builder_i<Base> {
public:
term_builder_i() : m_term(nullptr) { }
term_builder_i(ecs_term_t *term_ptr) {
set_term(term_ptr);
}
template<typename T>
Base& id() {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
m_term->pred.entity = _::cpp_type<T>::id(world());
return *this;
}
template<typename R, typename O>
Base& id() {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
m_term->pred.entity = _::cpp_type<R>::id(world());
m_term->args[1].entity = _::cpp_type<O>::id(world());
return *this;
}
template<typename R>
Base& id(id_t o) {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
m_term->pred.entity = _::cpp_type<R>::id(world());
m_term->args[1].entity = o;
return *this;
}
Base& id(id_t id) {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
m_term->pred.entity = id;
return *this;
}
Base& id(const flecs::type& type);
Base& id(id_t r, id_t o) {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
m_term->pred.entity = r;
m_term->args[1].entity = o;
return *this;
}
Base& expr(const char *expr) {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
const char *ptr;
if ((ptr = ecs_parse_term(world(), nullptr, expr, expr, m_term)) == nullptr) {
ecs_abort(ECS_INVALID_PARAMETER, NULL);
}
// Should not have more than one term
ecs_assert(ptr[0] == 0, ECS_INVALID_PARAMETER, NULL);
return *this;
}
Base& predicate() {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
this->m_term_id = &m_term->pred;
return *this;
}
Base& subject() {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
this->m_term_id = &m_term->args[0];
return *this;
}
Base& object() {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
this->m_term_id = &m_term->args[1];
return *this;
}
Base& subject(entity_t entity) {
this->subject();
this->m_term_id->entity = entity;
return *this;
}
Base& object(entity_t entity) {
this->object();
this->m_term_id->entity = entity;
return *this;
}
template<typename T>
Base& subject() {
this->subject();
this->m_term_id->entity = _::cpp_type<T>::id(world());
return *this;
}
template<typename T>
Base& object() {
this->object();
this->m_term_id->entity = _::cpp_type<T>::id(world());
return *this;
}
Base& role(id_t role) {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
m_term->role = role;
return *this;
}
Base& inout(flecs::inout_kind_t inout) {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
m_term->inout = static_cast<ecs_inout_kind_t>(inout);
return *this;
}
Base& oper(flecs::oper_kind_t oper) {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
m_term->oper = static_cast<ecs_oper_kind_t>(oper);
return *this;
}
Base& singleton() {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
ecs_assert(m_term->id || m_term->pred.entity, ECS_INVALID_PARAMETER, NULL);
flecs::id_t pred = m_term->id;
if (!pred) {
pred = m_term->pred.entity;
}
ecs_assert(pred != 0, ECS_INVALID_PARAMETER, NULL);
m_term->args[0].entity = pred;
return *this;
}
flecs::id id() {
return flecs::id(world(), m_term->id);
}
flecs::entity get_subject() {
return flecs::entity(world(), m_term->args[0].entity);
}
flecs::entity get_object() {
return flecs::entity(world(), m_term->args[1].entity);
}
flecs::inout_kind_t inout() {
return static_cast<flecs::inout_kind_t>(m_term->inout);
}
flecs::oper_kind_t oper() {
return static_cast<flecs::oper_kind_t>(m_term->oper);
}
ecs_term_t *m_term;
protected:
virtual flecs::world_t* world() = 0;
void set_term(ecs_term_t *term) {
m_term = term;
if (term) {
this->m_term_id = &m_term->args[0]; // default to subject
} else {
this->m_term_id = nullptr;
}
}
private:
operator Base&() {
return *static_cast<Base*>(this);
}
};
// Class that describes a term
class term final : public term_builder_i<term> {
public:
term(flecs::world_t *world_ptr)
: term_builder_i<term>(&value)
, value({})
, m_world(world_ptr) { value.move = true; }
term(flecs::world_t *world_ptr, id_t id)
: term_builder_i<term>(&value)
, value({})
, m_world(world_ptr) {
value.move = true;
this->id(id);
}
term(flecs::world_t *world_ptr, ecs_term_t t)
: term_builder_i<term>(&value)
, value({})
, m_world(world_ptr) {
value = t;
value.move = false;
this->set_term(&value);
}
term(flecs::world_t *world_ptr, id_t r, id_t o)
: term_builder_i<term>(&value)
, value({})
, m_world(world_ptr) {
value.move = true;
this->id(r, o);
}
term(const term& obj) : term_builder_i<term>(&value) {
m_world = obj.m_world;
value = ecs_term_copy(&obj.value);
this->set_term(&value);
}
term(term&& obj) : term_builder_i<term>(&value) {
m_world = obj.m_world;
value = ecs_term_move(&obj.value);
obj.reset();
this->set_term(&value);
}
term& operator=(const term& obj) {
ecs_assert(m_world == obj.m_world, ECS_INVALID_PARAMETER, NULL);
ecs_term_fini(&value);
value = ecs_term_copy(&obj.value);
this->set_term(&value);
return *this;
}
term& operator=(term&& obj) {
ecs_assert(m_world == obj.m_world, ECS_INVALID_PARAMETER, NULL);
ecs_term_fini(&value);
value = obj.value;
this->set_term(&value);
obj.reset();
return *this;
}
~term() {
ecs_term_fini(&value);
}
void reset() {
value = {};
this->set_term(nullptr);
}
int finalize() {
return ecs_term_finalize(m_world, nullptr, nullptr, &value);
}
bool is_set() {
return ecs_term_is_initialized(&value);
}
bool is_trivial() {
return ecs_term_is_trivial(&value);
}
ecs_term_t move() { /* explicit move to ecs_term_t */
return ecs_term_move(&value);
}
ecs_term_t value;
protected:
flecs::world_t* world() override { return m_world; }
private:
flecs::world_t *m_world;
};
// Filter builder interface
template<typename Base, typename ... Components>
class filter_builder_i : public term_builder_i<Base> {
public:
filter_builder_i(ecs_filter_desc_t *desc, int32_t term_index = 0)
: m_term_index(term_index)
, m_desc(desc) { }
Base& expr(const char *expr) {
m_desc->expr = expr;
return *this;
}
Base& substitute_default(bool value = true) {
m_desc->substitute_default = value;
return *this;
}
Base& term() {
ecs_assert(m_term_index < ECS_TERM_CACHE_SIZE,
ECS_INVALID_PARAMETER, NULL);
this->set_term(&m_desc->terms[m_term_index]);
m_term_index ++;
return *this;
}
Base& arg(int32_t term_index) {
ecs_assert(term_index > 0, ECS_INVALID_PARAMETER, NULL);
m_term_index = term_index - 1;
this->term();
ecs_assert(ecs_term_is_initialized(this->m_term), ECS_INVALID_PARAMETER, NULL);
return *this;
}
template<typename T>
Base& term() {
this->term();
*this->m_term = flecs::term(world()).id<T>().move();
return *this;
}
Base& term(id_t id) {
this->term();
*this->m_term = flecs::term(world()).id(id).move();
return *this;
}
template<typename R, typename O>
Base& term() {
this->term();
*this->m_term = flecs::term(world()).id<R, O>().move();
return *this;
}
template<typename R>
Base& term(id_t o) {
this->term();
*this->m_term = flecs::term(world()).id<R>(o).move();
return *this;
}
Base& term(id_t r, id_t o) {
this->term();
*this->m_term = flecs::term(world()).id(r, o).move();
return *this;
}
Base& term(const flecs::type& type) {
this->term();
*this->m_term = flecs::term(world()).id(type).move();
return *this;
}
Base& term(const char *expr) {
this->term();
*this->m_term = flecs::term(world()).expr(expr).move();
return *this;
}
Base& term(flecs::term& term) {
this->term();
*this->m_term = term.move();
return *this;
}
Base& term(flecs::term&& term) {
this->term();
*this->m_term = term.move();
return *this;
}
void populate_filter_from_pack() {
flecs::array<flecs::id_t, sizeof...(Components)> ids ({
(_::cpp_type<Components>::id(world()))...
});
flecs::array<flecs::inout_kind_t, sizeof...(Components)> inout_kinds ({
(type_to_inout<Components>())...
});
flecs::array<flecs::oper_kind_t, sizeof...(Components)> oper_kinds ({
(type_to_oper<Components>())...
});
size_t i = 0;
for (auto id : ids) {
this->term(id).inout(inout_kinds[i]).oper(oper_kinds[i]);
i ++;
}
}
protected:
virtual flecs::world_t* world() = 0;
int32_t m_term_index;
private:
operator Base&() {
return *static_cast<Base*>(this);
}
template <typename T, if_t< is_const<T>::value > = 0>
constexpr flecs::inout_kind_t type_to_inout() const {
return flecs::In;
}
template <typename T, if_t< is_reference<T>::value > = 0>
constexpr flecs::inout_kind_t type_to_inout() const {
return flecs::Out;
}
template <typename T, if_not_t<
is_const<T>::value || is_reference<T>::value > = 0>
constexpr flecs::inout_kind_t type_to_inout() const {
return flecs::InOutDefault;
}
template <typename T, if_t< is_pointer<T>::value > = 0>
constexpr flecs::oper_kind_t type_to_oper() const {
return flecs::Optional;
}
template <typename T, if_not_t< is_pointer<T>::value > = 0>
constexpr flecs::oper_kind_t type_to_oper() const {
return flecs::And;
}
ecs_filter_desc_t *m_desc;
};
// Query builder interface
template<typename Base, typename ... Components>
class query_builder_i : public filter_builder_i<Base, Components ...> {
using BaseClass = filter_builder_i<Base, Components ...>;
public:
query_builder_i()
: BaseClass(nullptr)
, m_desc(nullptr) { }
query_builder_i(ecs_query_desc_t *desc, int32_t term_index = 0)
: BaseClass(&desc->filter, term_index)
, m_desc(desc) { }
/** Sort the output of a query.
* This enables sorting of entities across matched tables. As a result of this
* operation, the order of entities in the matched tables may be changed.
* Resorting happens when a query iterator is obtained, and only if the table
* data has changed.
*
* If multiple queries that match the same (sub)set of tables specify different
* sorting functions, resorting is likely to happen every time an iterator is
* obtained, which can significantly slow down iterations.
*
* The sorting function will be applied to the specified component. Resorting
* only happens if that component has changed, or when the entity order in the
* table has changed. If no component is provided, resorting only happens when
* the entity order changes.
*
* @tparam T The component used to sort.
* @param compare The compare function used to sort the components.
*/
template <typename T>
Base& order_by(int(*compare)(flecs::entity_t, const T*, flecs::entity_t, const T*)) {
ecs_order_by_action_t cmp = reinterpret_cast<ecs_order_by_action_t>(compare);
return this->order_by(_::cpp_type<T>::id(world()), cmp);
}
/** Sort the output of a query.
* Same as order_by<T>, but with component identifier.
*
* @param component The component used to sort.
* @param compare The compare function used to sort the components.
*/
Base& order_by(flecs::entity_t component, int(*compare)(flecs::entity_t, const void*, flecs::entity_t, const void*)) {
m_desc->order_by = reinterpret_cast<ecs_order_by_action_t>(compare);
m_desc->order_by_component = component;
return *this;
}
/** Group and sort matched tables.
* Similar yo ecs_query_order_by, but instead of sorting individual entities, this
* operation only sorts matched tables. This can be useful of a query needs to
* enforce a certain iteration order upon the tables it is iterating, for
* example by giving a certain component or tag a higher priority.
*
* The sorting function assigns a "rank" to each type, which is then used to
* sort the tables. Tables with higher ranks will appear later in the iteration.
*
* Resorting happens when a query iterator is obtained, and only if the set of
* matched tables for a query has changed. If table sorting is enabled together
* with entity sorting, table sorting takes precedence, and entities will be
* sorted within each set of tables that are assigned the same rank.
*
* @tparam T The component used to determine the group rank.
* @param rank The rank action.
*/
template <typename T>
Base& group_by(int(*rank)(flecs::world_t*, flecs::entity_t, flecs::type_t type)) {
ecs_group_by_action_t rnk = reinterpret_cast<ecs_group_by_action_t>(rank);
return this->group_by(_::cpp_type<T>::id(this->m_world), rnk);
}
/** Group and sort matched tables.
* Same as group_by<T>, but with component identifier.
*
* @param component The component used to determine the group rank.
* @param rank The rank action.
*/
Base& group_by(flecs::entity_t component, int(*rank)(flecs::world_t*, flecs::entity_t, flecs::type_t type)) {
m_desc->group_by = reinterpret_cast<ecs_group_by_action_t>(rank);
m_desc->group_by_id = component;
return *this;
}
/** Specify parent query (creates subquery) */
Base& parent(const query_base& parent);
protected:
virtual flecs::world_t* world() = 0;
private:
operator Base&() {
return *static_cast<Base*>(this);
}
ecs_query_desc_t *m_desc;
};
// System builder interface
template<typename Base, typename ... Components>
class system_builder_i : public query_builder_i<Base, Components ...> {
using BaseClass = query_builder_i<Base, Components ...>;
public:
system_builder_i()
: BaseClass(nullptr)
, m_desc(nullptr)
, m_add_count(0) { }
system_builder_i(ecs_system_desc_t *desc)
: BaseClass(&desc->query)
, m_desc(desc)
, m_add_count(0) { }
/** Specify string-based signature. */
Base& signature(const char *signature) {
m_desc->query.filter.expr = signature;
return *this;
}
/** Specify when the system should be ran.
* Use this function to set in which phase the system should run or whether
* the system is reactive. Valid values for reactive systems are:
*
* flecs::OnAdd
* flecs::OnRemove
* flecs::OnSet
* flecs::UnSet
*
* @param kind The kind that specifies when the system should be ran.
*/
Base& kind(entity_t kind) {
m_desc->entity.add[0] = kind;
return *this;
}
/** Set system interval.
* This operation will cause the system to be ran at the specified interval.
*
* The timer is synchronous, and is incremented each frame by delta_time.
*
* @param interval The interval value.
*/
Base& interval(FLECS_FLOAT interval) {
m_desc->interval = interval;
return *this;
}
/** Set system rate.
* This operation will cause the system to be ran at a multiple of the
* provided tick source. The tick source may be any entity, including
* another system.
*
* @param tick_source The tick source.
* @param rate The multiple at which to run the system.
*/
Base& rate(const entity_t tick_source, int32_t rate) {
m_desc->rate = rate;
m_desc->tick_source = tick_source;
return *this;
}
/** Set system rate.
* This operation will cause the system to be ran at a multiple of the
* frame tick frequency. If a tick source was provided, this just updates
* the rate of the system.
*
* @param rate The multiple at which to run the system.
*/
Base& rate(int32_t rate) {
m_desc->rate = rate;
return *this;
}
/** System is an on demand system */
Base& on_demand() {
m_desc->entity.add[m_add_count ++] = flecs::OnDemand;
return *this;
}
/** System is a hidden system */
Base& hidden() {
m_desc->entity.add[m_add_count ++] = flecs::Hidden;
return *this;
}
/** Associate system with entity */
Base& self(flecs::entity self) {
m_desc->self = self;
return *this;
}
/** Set system context */
Base& ctx(void *ptr) {
m_desc->ctx = ptr;
return *this;
}
ECS_DEPRECATED("use interval")
Base& period(FLECS_FLOAT period) {
return this->interval(period);
}
ECS_DEPRECATED("use ctx")
Base& set_context(void *ptr) {
ctx(ptr);
return *this;
}
protected:
virtual flecs::world_t* world() = 0;
private:
operator Base&() {
return *static_cast<Base*>(this);
}
ecs_system_desc_t *m_desc;
int32_t m_add_count;
};
// Observer builder interface
template<typename Base, typename ... Components>
class observer_builder_i : public filter_builder_i<Base, Components ...> {
using BaseClass = filter_builder_i<Base, Components ...>;
public:
observer_builder_i()
: BaseClass(nullptr)
, m_desc(nullptr)
, m_event_count(0) { }
observer_builder_i(ecs_observer_desc_t *desc)
: BaseClass(&desc->filter)
, m_desc(desc)
, m_event_count(0) { }
/** Specify when the system should be ran.
* Use this function to set in which phase the system should run or whether
* the system is reactive. Valid values for reactive systems are:
*
* flecs::OnAdd
* flecs::OnRemove
* flecs::OnSet
* flecs::UnSet
*
* @param kind The kind that specifies when the system should be ran.
*/
Base& event(entity_t kind) {
m_desc->events[m_event_count ++] = kind;
return *this;
}
/** Associate observer with entity */
Base& self(flecs::entity self) {
m_desc->self = self;
return *this;
}
/** Set system context */
Base& ctx(void *ptr) {
m_desc->ctx = ptr;
return *this;
}
protected:
virtual flecs::world_t* world() = 0;
private:
operator Base&() {
return *static_cast<Base*>(this);
}
ecs_observer_desc_t *m_desc;
int32_t m_event_count;
};
// Filter builder
template<typename ... Components>
class filter_builder_base
: public filter_builder_i<filter_builder_base<Components...>, Components ...>
{
public:
filter_builder_base(flecs::world_t *world)
: filter_builder_i<filter_builder_base<Components...>, Components ...>(&m_desc)
, m_desc({})
, m_world(world)
{
this->populate_filter_from_pack();
}
filter_builder_base(const filter_builder_base& obj)
: filter_builder_i<filter_builder_base<Components...>, Components ...>(&m_desc, obj.m_term_index)
{
m_world = obj.m_world;
m_desc = obj.m_desc;
}
filter_builder_base(filter_builder_base&& obj)
: filter_builder_i<filter_builder_base<Components...>, Components ...>(&m_desc, obj.m_term_index)
{
m_world = obj.m_world;
m_desc = obj.m_desc;
}
operator filter<Components ...>() const;
operator ecs_filter_t() const {
ecs_filter_t f;
int res = ecs_filter_init(this->m_world, &f, &this->m_desc);
if (res != 0) {
ecs_abort(ECS_INVALID_PARAMETER, NULL);
}
return f;
}
filter<Components ...> build() const;
ecs_filter_desc_t m_desc;
flecs::world_t* world() override { return m_world; }
protected:
flecs::world_t *m_world;
};
template<typename ... Components>
class filter_builder final : public filter_builder_base<Components...> {
public:
filter_builder(flecs::world_t *world)
: filter_builder_base<Components ...>(world) { }
operator filter<>() const;
};
// Query builder
template<typename ... Components>
class query_builder_base
: public query_builder_i<query_builder_base<Components...>, Components ...>
{
public:
query_builder_base(flecs::world_t *world)
: query_builder_i<query_builder_base<Components...>, Components ...>(&m_desc)
, m_desc({})
, m_world(world)
{
this->populate_filter_from_pack();
}
query_builder_base(const query_builder_base& obj)
: query_builder_i<query_builder_base<Components...>, Components ...>(&m_desc, obj.m_term_index)
{
m_world = obj.m_world;
m_desc = obj.m_desc;
}
query_builder_base(query_builder_base&& obj)
: query_builder_i<query_builder_base<Components...>, Components ...>(&m_desc, obj.m_term_index)
{
m_world = obj.m_world;
m_desc = obj.m_desc;
}
operator query<Components ...>() const;
operator ecs_query_t*() const {
return ecs_query_init(this->m_world, &this->m_desc);
}
query<Components ...> build() const;
ecs_query_desc_t m_desc;
flecs::world_t* world() override { return m_world; }
protected:
flecs::world_t *m_world;
};
template<typename ... Components>
class query_builder final : public query_builder_base<Components...> {
public:
query_builder(flecs::world_t *world)
: query_builder_base<Components ...>(world) { }
operator query<>() const;
};
template<typename ... Components>
class system_builder final
: public system_builder_i<system_builder<Components ...>, Components ...>
{
using Class = system_builder<Components ...>;
public:
explicit system_builder(flecs::world_t* world, const char *name = nullptr, const char *expr = nullptr)
: system_builder_i<Class, Components ...>(&m_desc)
, m_desc({})
, m_world(world)
{
m_desc.entity.name = name;
m_desc.entity.sep = "::";
m_desc.entity.add[0] = flecs::OnUpdate;
m_desc.query.filter.expr = expr;
this->populate_filter_from_pack();
}
// put using outside of action so we can still use it without it being
// flagged as deprecated.
template <typename Func>
using action_invoker_t = typename _::iter_invoker<
typename std::decay<Func>::type, Components...>;
template <typename Func>
ECS_DEPRECATED("use each or iter")
system<Components...> action(Func&& func) const;
/* Iter (or each) is mandatory and always the last thing that
* is added in the fluent method chain. Create system signature from both
* template parameters and anything provided by the signature method. */
template <typename Func>
system<Components...> iter(Func&& func) const;
/* Each is similar to action, but accepts a function that operates on a
* single entity */
template <typename Func>
system<Components...> each(Func&& func) const;
ecs_system_desc_t m_desc;
protected:
flecs::world_t* world() override { return m_world; }
flecs::world_t *m_world;
private:
template <typename Invoker, typename Func>
entity_t build(Func&& func, bool is_each) const {
auto ctx = FLECS_NEW(Invoker)(std::forward<Func>(func));
entity_t e, kind = m_desc.entity.add[0];
bool is_trigger = kind == flecs::OnAdd || kind == flecs::OnRemove;
if (is_trigger) {
ecs_trigger_desc_t desc = {};
ecs_term_t term = m_desc.query.filter.terms[0];
if (ecs_term_is_initialized(&term)) {
desc.term = term;
} else {
desc.expr = m_desc.query.filter.expr;
}
desc.entity.entity = m_desc.entity.entity;
desc.events[0] = kind;
desc.callback = Invoker::run;
desc.self = m_desc.self;
desc.ctx = m_desc.ctx;
desc.binding_ctx = ctx;
desc.binding_ctx_free = reinterpret_cast<
ecs_ctx_free_t>(_::free_obj<Invoker>);
e = ecs_trigger_init(m_world, &desc);
} else {
ecs_system_desc_t desc = m_desc;
desc.callback = Invoker::run;
desc.self = m_desc.self;
desc.query.filter.substitute_default = is_each;
desc.binding_ctx = ctx;
desc.binding_ctx_free = reinterpret_cast<
ecs_ctx_free_t>(_::free_obj<Invoker>);
e = ecs_system_init(m_world, &desc);
}
return e;
}
};
template<typename ... Components>
class observer_builder final
: public observer_builder_i<observer_builder<Components ...>, Components ...>
{
using Class = observer_builder<Components ...>;
public:
explicit observer_builder(flecs::world_t* world, const char *name = nullptr, const char *expr = nullptr)
: observer_builder_i<Class, Components ...>(&m_desc)
, m_desc({})
, m_world(world)
{
m_desc.entity.name = name;
m_desc.entity.sep = "::";
m_desc.entity.add[0] = flecs::OnUpdate;
m_desc.filter.expr = expr;
this->populate_filter_from_pack();
}
/* Iter (or each) is mandatory and always the last thing that
* is added in the fluent method chain. Create system signature from both
* template parameters and anything provided by the signature method. */
template <typename Func>
observer<Components...> iter(Func&& func) const;
/* Each is similar to action, but accepts a function that operates on a
* single entity */
template <typename Func>
observer<Components...> each(Func&& func) const;
ecs_observer_desc_t m_desc;
protected:
flecs::world_t* world() override { return m_world; }
flecs::world_t *m_world;
private:
template <typename Invoker, typename Func>
entity_t build(Func&& func, bool is_each) const {
auto ctx = FLECS_NEW(Invoker)(std::forward<Func>(func));
ecs_observer_desc_t desc = m_desc;
desc.callback = Invoker::run;
desc.filter.substitute_default = is_each;
desc.binding_ctx = ctx;
desc.binding_ctx_free = reinterpret_cast<
ecs_ctx_free_t>(_::free_obj<Invoker>);
return ecs_observer_init(m_world, &desc);
}
};
}
#ifdef FLECS_DEPRECATED
namespace flecs
{
/* Deprecated functions */
template<typename Base>
class type_deprecated {
public:
template <typename T, typename C>
ECS_DEPRECATED("use add<Relation, Object>")
type& add_trait() {
static_cast<Base*>(this)->add(ecs_pair(
_::cpp_type<T>::id(world()),
_::cpp_type<C>::id(world())));
return *base();
}
template <typename T>
ECS_DEPRECATED("use add<Relation>(const flecs::entity&)")
type& add_trait(const flecs::entity& c) {
static_cast<Base*>(this)->add(ecs_pair(_::cpp_type<T>::id(world()), c.id()));
return *base();
}
ECS_DEPRECATED("use add(const flecs::entity&, const flecs::entity&)")
type& add_trait(const flecs::entity& t, const flecs::entity& c) {
static_cast<Base*>(this)->add(ecs_pair(t.id(), c.id()));
return *base();
}
template <typename C>
ECS_DEPRECATED("use add_object<Object>(const flecs::entity&)")
type& add_trait_tag(const flecs::entity& t) {
static_cast<Base*>(this)->add(ecs_pair(t.id(), _::cpp_type<C>::id(world())));
return *base();
}
private:
Base* base() { return static_cast<Base*>(this); }
flecs::world_t* world() { return base()->world().c_ptr(); }
};
}
#else
template <typename Base>
class type_deprecated { };
#endif
namespace flecs
{
////////////////////////////////////////////////////////////////////////////////
//// A collection of component ids used to describe the contents of a table
////////////////////////////////////////////////////////////////////////////////
template <typename Base>
class type_base : public type_deprecated<type> {
public:
explicit type_base(
world_t *world, const char *name = nullptr, const char *expr = nullptr)
{
ecs_type_desc_t desc = {};
desc.entity.name = name;
desc.ids_expr = expr;
m_entity = flecs::entity(world, ecs_type_init(world, &desc));
sync_from_flecs();
}
explicit type_base(world_t *world, type_t t)
: m_entity( world, static_cast<flecs::id_t>(0) )
, m_type( t )
, m_normalized( t ) { }
type_base(type_t t)
: m_type( t )
, m_normalized( t ) { }
Base& add(const Base& t) {
m_type = ecs_type_add(world(), m_type, t.id());
m_normalized = ecs_type_merge(world(), m_normalized, t, nullptr);
sync_from_me();
return *this;
}
Base& add(id_t e) {
m_type = ecs_type_add(world(), m_type, e);
m_normalized = ecs_type_add(world(), m_normalized, e);
sync_from_me();
return *this;
}
template <typename T>
Base& add() {
return this->add(_::cpp_type<T>::id(world()));
}
Base& add(entity_t relation, entity_t object) {
return this->add(ecs_pair(relation, object));
}
template <typename Relation, typename Object>
Base& add() {
return this->add<Relation>(_::cpp_type<Object>::id(world()));
}
Base& is_a(entity_t object) {
return this->add(flecs::IsA, object);
}
Base& child_of(entity_t object) {
return this->add(flecs::ChildOf, object);
}
template <typename Relation>
Base& add(entity_t object) {
return this->add(_::cpp_type<Relation>::id(world()), object);
}
template <typename Object>
Base& add_w_object(entity_t relation) {
return this->add(relation, _::cpp_type<Object>::id(world()));
}
bool has(id_t id) {
return ecs_type_has_id(world(), m_normalized, id, false);
}
bool has(id_t relation, id_t object) {
return ecs_type_has_id(world(), m_normalized,
ecs_pair(relation, object), false);
}
template <typename T>
bool has() {
return this->has(_::cpp_type<T>::id(world()));
}
template <typename Relation, typename Object>
bool has() {
return this->has(_::cpp_type<flecs::pair<Relation, Object>>::id(world()));
}
template <typename T>
Base& component() {
component_for_id<T>(world(), m_entity);
return *this;
}
flecs::string str() const {
char *str = ecs_type_str(world(), m_type);
return flecs::string(str);
}
type_t c_ptr() const {
return m_type;
}
flecs::id_t id() const {
return m_entity.id();
}
flecs::entity entity() const {
return m_entity;
}
flecs::world world() const {
return m_entity.world();
}
type_t c_normalized() const {
return m_normalized;
}
void enable() const {
ecs_enable(world(), id(), true);
}
void disable() const {
ecs_enable(world(), id(), false);
}
flecs::vector<flecs::id_t> vector() {
return flecs::vector<flecs::id_t>( const_cast<ecs_vector_t*>(m_normalized));
}
flecs::id get(int32_t index) {
return flecs::id(world(), vector().get(index));
}
/* Implicit conversion to type_t */
operator type_t() const { return m_normalized; }
operator Base&() { return *static_cast<Base*>(this); }
private:
void sync_from_me() {
if (!id()) {
return;
}
EcsType *tc = ecs_get_mut(world(), id(), EcsType, NULL);
ecs_assert(tc != NULL, ECS_INTERNAL_ERROR, NULL);
tc->type = m_type;
tc->normalized = m_normalized;
ecs_modified(world(), id(), EcsType);
}
void sync_from_flecs() {
if (!id()) {
return;
}
EcsType *tc = ecs_get_mut(world(), id(), EcsType, NULL);
ecs_assert(tc != NULL, ECS_INTERNAL_ERROR, NULL);
m_type = tc->type;
m_normalized = tc->normalized;
ecs_modified(world(), id(), EcsType);
}
flecs::entity m_entity;
type_t m_type;
type_t m_normalized;
};
class type : public type_base<type> {
public:
explicit type(
world_t *world, const char *name = nullptr, const char *expr = nullptr)
: type_base(world, name, expr) { }
explicit type(world_t *world, type_t t) : type_base(world, t) { }
type(type_t t) : type_base(t) { }
};
class pipeline : public type_base<pipeline> {
public:
explicit pipeline(world_t *world, const char *name) : type_base(world, name)
{
this->entity().add(flecs::Pipeline);
}
};
} // namespace flecs
namespace flecs
{
////////////////////////////////////////////////////////////////////////////////
//// Define a module
////////////////////////////////////////////////////////////////////////////////
template <typename T>
flecs::entity module(const flecs::world& world, const char *name = nullptr) {
ecs_set_scope(world.c_ptr(), 0);
flecs::entity result = pod_component<T>(world, name, false);
ecs_add_module_tag(world, result.id());
ecs_set_scope(world.c_ptr(), result.id());
// Only register copy/move/dtor, make sure to not instantiate ctor as the
// default ctor doesn't work for modules. Additionally, the module ctor
// should only be invoked once per import.
EcsComponentLifecycle cl{};
cl.copy = _::copy<T>();
cl.move = _::move<T>();
cl.dtor = _::dtor<T>();
ecs_set_component_actions_w_entity(world, result, &cl);
return result;
}
////////////////////////////////////////////////////////////////////////////////
//// Import a module
////////////////////////////////////////////////////////////////////////////////
template <typename T>
ecs_entity_t do_import(world& world, const char *symbol) {
ecs_trace_1("import %s", _::name_helper<T>::name());
ecs_log_push();
ecs_entity_t scope = ecs_get_scope(world);
// Create custom storage to prevent object destruction
T* module_data = static_cast<T*>(ecs_os_malloc(sizeof(T)));
FLECS_PLACEMENT_NEW(module_data, T(world));
ecs_set_scope(world, scope);
// It should now be possible to lookup the module
ecs_entity_t m = ecs_lookup_symbol(world, symbol, true);
ecs_assert(m != 0, ECS_MODULE_UNDEFINED, symbol);
_::cpp_type<T>::init(world, m, false);
ecs_assert(_::cpp_type<T>::size() != 0, ECS_INTERNAL_ERROR, NULL);
// Set module singleton component
T* module_ptr = static_cast<T*>(
ecs_get_mut_id(world, m,
_::cpp_type<T>::id_explicit(world, nullptr, false), NULL));
*module_ptr = std::move(*module_data);
// Don't dtor, as a module should only be destructed once when the module
// component is removed.
ecs_os_free(module_data);
// Add module tag
ecs_add_id(world, m, flecs::Module);
ecs_log_pop();
return m;
}
template <typename T>
flecs::entity import(world& world) {
char *symbol = _::symbol_helper<T>::symbol();
ecs_entity_t m = ecs_lookup_symbol(world.c_ptr(), symbol, true);
if (!_::cpp_type<T>::registered()) {
/* Module is registered with world, initialize static data */
if (m) {
_::cpp_type<T>::init(world.c_ptr(), m, false);
/* Module is not yet registered, register it now */
} else {
m = do_import<T>(world, symbol);
}
/* Module has been registered, but could have been for another world. Import
* if module hasn't been registered for this world. */
} else if (!m) {
m = do_import<T>(world, symbol);
}
ecs_os_free(symbol);
return flecs::entity(world, m);
}
} // namespace flecs
namespace flecs
{
////////////////////////////////////////////////////////////////////////////////
//// Ad hoc queries (filters)
////////////////////////////////////////////////////////////////////////////////
class filter_base {
public:
filter_base()
: m_world(nullptr)
, m_filter({}) { }
filter_base(world_t *world, ecs_filter_t *filter = NULL)
: m_world(world) {
ecs_filter_move(&m_filter, filter);
}
/** Get pointer to C filter object.
*/
const filter_t* c_ptr() const {
if (m_filter.term_count) {
return &m_filter;
} else {
return NULL;
}
}
filter_base(const filter_base& obj) {
this->m_world = obj.m_world;
ecs_filter_copy(&m_filter, &obj.m_filter);
}
filter_base& operator=(const filter_base& obj) {
this->m_world = obj.m_world;
ecs_filter_copy(&m_filter, &obj.m_filter);
return *this;
}
filter_base(filter_base&& obj) {
this->m_world = obj.m_world;
ecs_filter_move(&m_filter, &obj.m_filter);
}
filter_base& operator=(filter_base&& obj) {
this->m_world = obj.m_world;
ecs_filter_move(&m_filter, &obj.m_filter);
return *this;
}
/** Free the filter.
*/
~filter_base() {
ecs_filter_fini(&m_filter);
}
template <typename Func>
void iter(Func&& func) const {
ecs_iter_t it = ecs_filter_iter(m_world, &m_filter);
while (ecs_filter_next(&it)) {
_::iter_invoker<Func>(func).invoke(&it);
}
}
template <typename Func>
void each_term(const Func& func) {
for (int i = 0; i < m_filter.term_count; i ++) {
flecs::term t(m_world, m_filter.terms[i]);
func(t);
}
}
flecs::term term(int32_t index) {
return flecs::term(m_world, m_filter.terms[index]);
}
int32_t term_count() {
return m_filter.term_count;
}
flecs::string str() {
char *result = ecs_filter_str(m_world, &m_filter);
return flecs::string(result);
}
protected:
world_t *m_world;
filter_t m_filter;
};
template<typename ... Components>
class filter : public filter_base {
using Terms = typename _::term_ptrs<Components...>::array;
public:
filter() { }
filter(world_t *world, filter_t *f)
: filter_base(world, f) { }
explicit filter(const world& world, const char *expr = nullptr)
: filter_base(world.c_ptr())
{
auto qb = world.filter_builder<Components ...>()
.expr(expr);
if (!expr) {
qb.substitute_default();
}
flecs::filter_t f = qb;
ecs_filter_move(&m_filter, &f);
}
filter(const filter& obj) : filter_base(obj) { }
filter& operator=(const filter& obj) {
*this = obj;
return *this;
}
filter(filter&& obj) : filter_base(std::move(obj)) { }
filter& operator=(filter&& obj) {
filter_base(std::move(obj));
return *this;
}
template <typename Func>
void each(Func&& func) const {
iterate<_::each_invoker>(std::forward<Func>(func), ecs_filter_next);
}
template <typename Func>
void iter(Func&& func) const {
iterate<_::iter_invoker>(std::forward<Func>(func), ecs_filter_next);
}
private:
template < template<typename Func, typename ... Comps> class Invoker, typename Func, typename NextFunc, typename ... Args>
void iterate(Func&& func, NextFunc next, Args &&... args) const {
ecs_iter_t it = ecs_filter_iter(m_world, &m_filter);
while (next(&it, std::forward<Args>(args)...)) {
Invoker<Func, Components...>(std::move(func)).invoke(&it);
}
}
};
}
namespace flecs
{
////////////////////////////////////////////////////////////////////////////////
//// Snapshots make a copy of the world state that can be restored
////////////////////////////////////////////////////////////////////////////////
class snapshot final {
public:
explicit snapshot(const world& world)
: m_world( world )
, m_snapshot( nullptr ) { }
snapshot(const snapshot& obj)
: m_world( obj.m_world )
{
ecs_iter_t it = ecs_snapshot_iter(obj.m_snapshot, nullptr);
m_snapshot = ecs_snapshot_take_w_iter(&it, ecs_snapshot_next);
}
snapshot(snapshot&& obj)
: m_world(obj.m_world)
, m_snapshot(obj.m_snapshot)
{
obj.m_snapshot = nullptr;
}
snapshot& operator=(const snapshot& obj) {
ecs_assert(m_world.c_ptr() == obj.m_world.c_ptr(), ECS_INVALID_PARAMETER, NULL);
ecs_iter_t it = ecs_snapshot_iter(obj.m_snapshot, nullptr);
m_snapshot = ecs_snapshot_take_w_iter(&it, ecs_snapshot_next);
return *this;
}
snapshot& operator=(snapshot&& obj) {
ecs_assert(m_world.c_ptr() == obj.m_world.c_ptr(), ECS_INVALID_PARAMETER, NULL);
m_snapshot = obj.m_snapshot;
obj.m_snapshot = nullptr;
return *this;
}
void take() {
if (m_snapshot) {
ecs_snapshot_free(m_snapshot);
}
m_snapshot = ecs_snapshot_take(m_world.c_ptr());
}
template <typename F>
void take(const F& f) {
if (m_snapshot) {
ecs_snapshot_free(m_snapshot);
}
ecs_iter_t it = ecs_filter_iter(m_world, f.c_ptr());
printf("filter = %s\n", ecs_filter_str(m_world, f.c_ptr()));
m_snapshot = ecs_snapshot_take_w_iter(&it, ecs_filter_next);
}
void restore() {
if (m_snapshot) {
ecs_snapshot_restore(m_world.c_ptr(), m_snapshot);
m_snapshot = nullptr;
}
}
~snapshot() {
if (m_snapshot) {
ecs_snapshot_free(m_snapshot);
}
}
snapshot_t* c_ptr() const {
return m_snapshot;
}
filter_iterator begin();
filter_iterator end();
private:
const world& m_world;
snapshot_t *m_snapshot;
};
} // namespace flecs
namespace flecs
{
////////////////////////////////////////////////////////////////////////////////
//// Utility for iterating over tables that match a filter
////////////////////////////////////////////////////////////////////////////////
class filter_iterator
{
public:
filter_iterator(ecs_iter_next_action_t action)
: m_world(nullptr)
, m_has_next(false)
, m_iter{ }
, m_action(action) { }
filter_iterator(const world& world, ecs_iter_next_action_t action)
: m_world( world.c_ptr() )
, m_iter( ecs_filter_iter(m_world, NULL) )
, m_action(action)
{
m_has_next = m_action(&m_iter);
}
filter_iterator(const world& world, const snapshot& snapshot, ecs_iter_next_action_t action)
: m_world( world.c_ptr() )
, m_iter( ecs_snapshot_iter(snapshot.c_ptr(), NULL) )
, m_action(action)
{
m_has_next = m_action(&m_iter);
}
bool operator!=(filter_iterator const& other) const {
return m_has_next != other.m_has_next;
}
flecs::iter const operator*() const {
return flecs::iter(&m_iter);
}
filter_iterator& operator++() {
m_has_next = m_action(&m_iter);
return *this;
}
private:
world_t *m_world;
bool m_has_next;
ecs_iter_t m_iter;
ecs_iter_next_action_t m_action;
};
////////////////////////////////////////////////////////////////////////////////
//// Tree iterator
////////////////////////////////////////////////////////////////////////////////
class tree_iterator
{
public:
tree_iterator()
: m_has_next(false)
, m_iter{ } { }
tree_iterator(flecs::world_t *world, const flecs::entity_t entity)
: m_iter( ecs_scope_iter(world, entity ))
{
m_has_next = ecs_scope_next(&m_iter);
}
bool operator!=(tree_iterator const& other) const {
return m_has_next != other.m_has_next;
}
flecs::iter const operator*() const {
return flecs::iter(&m_iter);
}
tree_iterator& operator++() {
m_has_next = ecs_scope_next(&m_iter);
return *this;
}
private:
bool m_has_next;
ecs_iter_t m_iter;
};
////////////////////////////////////////////////////////////////////////////////
//// Utility for creating a world-based filter iterator
////////////////////////////////////////////////////////////////////////////////
class world_filter {
public:
world_filter(const world& world)
: m_world( world ) { }
inline filter_iterator begin() const {
return filter_iterator(m_world, ecs_filter_next);
}
inline filter_iterator end() const {
return filter_iterator(ecs_filter_next);
}
private:
const world& m_world;
};
////////////////////////////////////////////////////////////////////////////////
//// Utility for creating a snapshot-based filter iterator
////////////////////////////////////////////////////////////////////////////////
class snapshot_filter {
public:
snapshot_filter(const world& world, const snapshot& snapshot)
: m_world( world )
, m_snapshot( snapshot ) { }
inline filter_iterator begin() const {
return filter_iterator(m_world, m_snapshot, ecs_snapshot_next);
}
inline filter_iterator end() const {
return filter_iterator(ecs_snapshot_next);
}
private:
const world& m_world;
const snapshot& m_snapshot;
};
////////////////////////////////////////////////////////////////////////////////
//// Utility for creating a child table iterator
////////////////////////////////////////////////////////////////////////////////
class child_iterator {
public:
child_iterator(const flecs::entity_view& entity)
: m_world( entity.world().c_ptr() )
, m_parent( entity.id() ) { }
inline tree_iterator begin() const {
return tree_iterator(m_world, m_parent);
}
inline tree_iterator end() const {
return tree_iterator();
}
private:
flecs::world_t *m_world;
flecs::entity_t m_parent;
};
////////////////////////////////////////////////////////////////////////////////
//// Filter fwd declared functions
////////////////////////////////////////////////////////////////////////////////
inline filter_iterator snapshot::begin() {
return filter_iterator(m_world, *this, ecs_snapshot_next);
}
inline filter_iterator snapshot::end() {
return filter_iterator(ecs_snapshot_next);
}
}
namespace flecs
{
////////////////////////////////////////////////////////////////////////////////
//// Persistent queries
////////////////////////////////////////////////////////////////////////////////
class query_base {
public:
query_base()
: m_world(nullptr)
, m_query(nullptr) { }
query_base(world_t *world, query_t *query = nullptr)
: m_world(world)
, m_query(query) { }
/** Get pointer to C query object.
*/
query_t* c_ptr() const {
return m_query;
}
/** Sort the output of a query.
* This enables sorting of entities across matched tables. As a result of this
* operation, the order of entities in the matched tables may be changed.
* Resorting happens when a query iterator is obtained, and only if the table
* data has changed.
*
* If multiple queries that match the same (sub)set of tables specify different
* sorting functions, resorting is likely to happen every time an iterator is
* obtained, which can significantly slow down iterations.
*
* The sorting function will be applied to the specified component. Resorting
* only happens if that component has changed, or when the entity order in the
* table has changed. If no component is provided, resorting only happens when
* the entity order changes.
*
* @tparam T The component used to sort.
* @param compare The compare function used to sort the components.
*/
template <typename T>
void order_by(int(*compare)(flecs::entity_t, const T*, flecs::entity_t, const T*)) {
ecs_query_order_by(m_world, m_query,
flecs::_::cpp_type<T>::id(m_world),
reinterpret_cast<ecs_order_by_action_t>(compare));
}
/** Sort the output of a query.
* Same as order_by<T>, but with component identifier.
*
* @param component The component used to sort.
* @param compare The compare function used to sort the components.
*/
void order_by(flecs::entity component, int(*compare)(flecs::entity_t, const void*, flecs::entity_t, const void*)) {
ecs_query_order_by(m_world, m_query, component.id(), compare);
}
/** Group and sort matched tables.
* Similar yo ecs_query_order_by, but instead of sorting individual entities, this
* operation only sorts matched tables. This can be useful of a query needs to
* enforce a certain iteration order upon the tables it is iterating, for
* example by giving a certain component or tag a higher priority.
*
* The sorting function assigns a "rank" to each type, which is then used to
* sort the tables. Tables with higher ranks will appear later in the iteration.
*
* Resorting happens when a query iterator is obtained, and only if the set of
* matched tables for a query has changed. If table sorting is enabled together
* with entity sorting, table sorting takes precedence, and entities will be
* sorted within each set of tables that are assigned the same rank.
*
* @tparam T The component used to determine the group rank.
* @param rank The rank action.
*/
template <typename T>
void group_by(ecs_group_by_action_t callback) {
ecs_query_group_by(m_world, m_query,
flecs::_::cpp_type<T>::id(m_world), callback);
}
/** Group and sort matched tables.
* Same as group_by<T>, but with component identifier.
*
* @param component The component used to determine the group rank.
* @param rank The rank action.
*/
void group_by(flecs::entity component, ecs_group_by_action_t callback) {
ecs_query_group_by(m_world, m_query, component.id(), callback);
}
/** Returns whether the query data changed since the last iteration.
* This operation must be invoked before obtaining the iterator, as this will
* reset the changed state. The operation will return true after:
* - new entities have been matched with
* - matched entities were deleted
* - matched components were changed
*
* @return true if entities changed, otherwise false.
*/
bool changed() {
return ecs_query_changed(m_query);
}
/** Returns whether query is orphaned.
* When the parent query of a subquery is deleted, it is left in an orphaned
* state. The only valid operation on an orphaned query is deleting it. Only
* subqueries can be orphaned.
*
* @return true if query is orphaned, otherwise false.
*/
bool orphaned() {
return ecs_query_orphaned(m_query);
}
/** Free the query.
*/
void destruct() {
ecs_query_free(m_query);
m_world = nullptr;
m_query = nullptr;
}
template <typename Func>
void iter(Func&& func) const {
ecs_iter_t it = ecs_query_iter(m_query);
while (ecs_query_next(&it)) {
_::iter_invoker<Func>(func).invoke(&it);
}
}
template <typename Func>
void each_term(const Func& func) {
const ecs_filter_t *f = ecs_query_get_filter(m_query);
ecs_assert(f != NULL, ECS_INVALID_PARAMETER, NULL);
for (int i = 0; i < f->term_count; i ++) {
flecs::term t(m_world, f->terms[i]);
func(t);
}
}
flecs::term term(int32_t index) {
const ecs_filter_t *f = ecs_query_get_filter(m_query);
ecs_assert(f != NULL, ECS_INVALID_PARAMETER, NULL);
return flecs::term(m_world, f->terms[index]);
}
int32_t term_count() {
const ecs_filter_t *f = ecs_query_get_filter(m_query);
return f->term_count;
}
flecs::string str() {
const ecs_filter_t *f = ecs_query_get_filter(m_query);
char *result = ecs_filter_str(m_world, f);
return flecs::string(result);
}
protected:
world_t *m_world;
query_t *m_query;
};
template<typename ... Components>
class query : public query_base {
using Terms = typename _::term_ptrs<Components...>::array;
public:
query() { }
query(world_t *world, query_t *q)
: query_base(world, q) { }
explicit query(const world& world, const char *expr = nullptr)
: query_base(world.c_ptr())
{
auto qb = world.query_builder<Components ...>()
.expr(expr);
if (!expr) {
qb.substitute_default();
}
m_query = qb;
}
explicit query(const world& world, query_base& parent, const char *expr = nullptr)
: query_base(world.c_ptr())
{
auto qb = world.query_builder<Components ...>()
.parent(parent)
.expr(expr);
if (!expr) {
qb.substitute_default();
}
m_query = qb;
}
template <typename Func>
void each(Func&& func) const {
iterate<_::each_invoker>(std::forward<Func>(func), ecs_query_next);
}
template <typename Func>
void each_worker(int32_t stage_current, int32_t stage_count, Func&& func) const {
iterate<_::each_invoker>(std::forward<Func>(func),
ecs_query_next_worker, stage_current, stage_count);
}
template <typename Func>
void iter(Func&& func) const {
iterate<_::iter_invoker>(std::forward<Func>(func), ecs_query_next);
}
template <typename Func>
void iter_worker(int32_t stage_current, int32_t stage_count, Func&& func) const {
iterate<_::iter_invoker>(std::forward<Func>(func),
ecs_query_next_worker, stage_current, stage_count);
}
template <typename Func>
ECS_DEPRECATED("use each or iter")
void action(Func&& func) const {
iterate<_::action_invoker>(std::forward<Func>(func), ecs_query_next);
}
private:
template < template<typename Func, typename ... Comps> class Invoker, typename Func, typename NextFunc, typename ... Args>
void iterate(Func&& func, NextFunc next, Args &&... args) const {
ecs_iter_t it = ecs_query_iter(m_query);
while (next(&it, std::forward<Args>(args)...)) {
Invoker<Func, Components...>(func).invoke(&it);
}
}
};
} // namespace flecs
namespace flecs
{
////////////////////////////////////////////////////////////////////////////////
//// Fluent interface to run a system manually
////////////////////////////////////////////////////////////////////////////////
class system_runner_fluent {
public:
system_runner_fluent(
world_t *world,
entity_t id,
int32_t stage_current,
int32_t stage_count,
FLECS_FLOAT delta_time,
void *param)
: m_stage(world)
, m_id(id)
, m_delta_time(delta_time)
, m_param(param)
, m_filter()
, m_offset(0)
, m_limit(0)
, m_stage_current(stage_current)
, m_stage_count(stage_count) { }
template <typename F>
system_runner_fluent& filter(const F& f) {
m_filter = f;
return *this;
}
system_runner_fluent& offset(int32_t offset) {
m_offset = offset;
return *this;
}
system_runner_fluent& limit(int32_t limit) {
m_limit = limit;
return *this;
}
system_runner_fluent& stage(flecs::world& stage) {
m_stage = stage.c_ptr();
return *this;
}
~system_runner_fluent() {
if (m_stage_count) {
ecs_run_worker(
m_stage, m_id, m_stage_current, m_stage_count, m_delta_time,
m_param);
} else {
ecs_run_w_filter(
m_stage, m_id, m_delta_time, m_offset, m_limit,
m_filter.c_ptr(), m_param);
}
}
private:
world_t *m_stage;
entity_t m_id;
FLECS_FLOAT m_delta_time;
void *m_param;
flecs::filter<> m_filter;
int32_t m_offset;
int32_t m_limit;
int32_t m_stage_current;
int32_t m_stage_count;
};
////////////////////////////////////////////////////////////////////////////////
//// Register a system with Flecs
////////////////////////////////////////////////////////////////////////////////
template<typename ... Components>
class system : public entity
{
public:
explicit system()
: entity() { }
explicit system(flecs::world_t *world, flecs::entity_t id)
: entity(world, id) { }
template <typename T>
void order_by(int(*compare)(flecs::entity_t, const T*, flecs::entity_t, const T*)) {
this->order_by(flecs::_::cpp_type<T>::id(m_world),
reinterpret_cast<ecs_order_by_action_t>(compare));
}
void order_by(flecs::entity_t comp, int(*compare)(flecs::entity_t, const void*, flecs::entity_t, const void*)) {
ecs_query_t *q = query().c_ptr();
ecs_assert(q != NULL, ECS_INVALID_PARAMETER, NULL);
ecs_query_order_by(m_world, q, comp, compare);
}
template <typename T>
void group_by(int(*rank)(flecs::world_t*, flecs::entity_t, flecs::type_t type)) {
this->group_by(flecs::_::cpp_type<T>::id(m_world), rank);
}
void group_by(flecs::entity_t comp, int(*rank)(flecs::world_t*, flecs::entity_t, flecs::type_t type)) {
ecs_query_t *q = query().c_ptr();
ecs_assert(q != NULL, ECS_INVALID_PARAMETER, NULL);
ecs_query_group_by(m_world, q, comp, rank);
}
/** Set system interval.
* This operation will cause the system to be ran at the specified interval.
*
* The timer is synchronous, and is incremented each frame by delta_time.
*
* @param interval The interval value.
*/
void interval(FLECS_FLOAT interval) {
ecs_set_interval(m_world, m_id, interval);
}
/** Set system rate.
* This operation will cause the system to be ran at a multiple of the
* provided tick source. The tick source may be any entity, including
* another system.
*
* @param tick_source The tick source.
* @param rate The multiple at which to run the system.
*/
void rate(const flecs::entity& tick_source, int32_t rate) {
ecs_set_rate(m_world, m_id, rate, tick_source.id());
}
/** Set system rate.
* This operation will cause the system to be ran at a multiple of the
* frame tick frequency. If a tick source was provided, this just updates
* the rate of the system.
*
* @param rate The multiple at which to run the system.
*/
void rate(int32_t rate) {
ecs_set_rate(m_world, m_id, rate, 0);
}
/** Get interval.
* Get interval at which the system is running.
*
* @return The timer entity.
*/
FLECS_FLOAT interval() {
return ecs_get_interval(m_world, m_id);
}
void enable() {
ecs_enable(m_world, m_id, true);
}
void disable() {
ecs_enable(m_world, m_id, false);
}
void ctx(void *ctx) {
if (ecs_has(m_world, m_id, EcsSystem)) {
ecs_system_desc_t desc = {};
desc.entity.entity = m_id;
desc.ctx = ctx;
ecs_system_init(m_world, &desc);
} else {
ecs_trigger_desc_t desc = {};
desc.entity.entity = m_id;
desc.ctx = ctx;
ecs_trigger_init(m_world, &desc);
}
}
void* ctx() const {
if (ecs_has(m_world, m_id, EcsSystem)) {
return ecs_get_system_ctx(m_world, m_id);
} else {
return ecs_get_trigger_ctx(m_world, m_id);
}
}
ECS_DEPRECATED("use interval")
void period(FLECS_FLOAT period) {
this->interval(period);
}
ECS_DEPRECATED("use interval")
void set_period(FLECS_FLOAT period) const {
this->interval(period);
}
ECS_DEPRECATED("use ctx(void*)")
void set_context(void *ptr) {
ctx(ptr);
}
ECS_DEPRECATED("use void* ctx()")
void* get_context() const {
return ctx();
}
query_base query() const {
return query_base(m_world, ecs_get_system_query(m_world, m_id));
}
system_runner_fluent run(FLECS_FLOAT delta_time = 0.0f, void *param = nullptr) const {
return system_runner_fluent(m_world, m_id, 0, 0, delta_time, param);
}
system_runner_fluent run_worker(
int32_t stage_current,
int32_t stage_count,
FLECS_FLOAT delta_time = 0.0f,
void *param = nullptr) const
{
return system_runner_fluent(
m_world, m_id, stage_current, stage_count, delta_time, param);
}
};
} // namespace flecs
namespace flecs
{
template<typename ... Components>
class observer : public entity
{
public:
explicit observer()
: entity() { }
explicit observer(flecs::world_t *world, flecs::entity_t id)
: entity(world, id) { }
void ctx(void *ctx) {
ecs_observer_desc_t desc = {};
desc.entity.entity = m_id;
desc.ctx = ctx;
ecs_observer_init(m_world, &desc);
}
void* ctx() const {
return ecs_get_observer_ctx(m_world, m_id);
}
};
} // namespace flecs
namespace flecs
{
namespace _
{
template <typename T>
inline void ctor_world_entity_impl(
ecs_world_t* world, ecs_entity_t, const ecs_entity_t* ids, void *ptr,
size_t size, int32_t count, void*)
{
(void)size; ecs_assert(size == sizeof(T), ECS_INTERNAL_ERROR, NULL);
T *arr = static_cast<T*>(ptr);
flecs::world w(world);
for (int i = 0; i < count; i ++) {
flecs::entity e(world, ids[i]);
FLECS_PLACEMENT_NEW(&arr[i], T(w, e));
}
}
} // _
} // flecs
namespace flecs
{
inline flecs::entity id::entity() const {
ecs_assert(!is_pair(), ECS_INVALID_OPERATION, NULL);
ecs_assert(!role(), ECS_INVALID_OPERATION, NULL);
return flecs::entity(m_world, m_id);
}
inline flecs::entity id::role() const {
return flecs::entity(m_world, m_id & ECS_ROLE_MASK);
}
inline flecs::entity id::relation() const {
ecs_assert(is_pair(), ECS_INVALID_OPERATION, NULL);
flecs::entity_t e = ECS_PAIR_RELATION(m_id);
if (m_world) {
return flecs::entity(m_world, ecs_get_alive(m_world, e));
} else {
return flecs::entity(e);
}
}
inline flecs::entity id::object() const {
flecs::entity_t e = ECS_PAIR_OBJECT(m_id);
if (m_world) {
return flecs::entity(m_world, ecs_get_alive(m_world, e));
} else {
return flecs::entity(m_world, e);
}
}
inline flecs::entity id::add_role(flecs::id_t role) const {
return flecs::entity(m_world, m_id | role);
}
inline flecs::entity id::remove_role(flecs::id_t role) const {
(void)role;
ecs_assert((m_id & ECS_ROLE_MASK) == role, ECS_INVALID_PARAMETER, NULL);
return flecs::entity(m_world, m_id & ECS_COMPONENT_MASK);
}
inline flecs::entity id::remove_role() const {
return flecs::entity(m_world, m_id & ECS_COMPONENT_MASK);
}
inline flecs::entity id::remove_generation() const {
return flecs::entity(m_world, static_cast<uint32_t>(m_id));
}
inline entity id::lo() const {
return flecs::entity(m_world, ecs_entity_t_lo(m_id));
}
inline entity id::hi() const {
return flecs::entity(m_world, ecs_entity_t_hi(m_id));
}
inline entity id::comb(entity_view lo, entity_view hi) {
return flecs::entity(lo.world(),
ecs_entity_t_comb(lo.id(), hi.id()));
}
}
namespace flecs
{
////////////////////////////////////////////////////////////////////////////////
//// Entity range, allows for operating on a range of consecutive entities
////////////////////////////////////////////////////////////////////////////////
class ECS_DEPRECATED("do not use") entity_range final {
public:
entity_range(const world& world, int32_t count)
: m_world(world.c_ptr())
, m_ids( ecs_bulk_new_w_type(m_world, nullptr, count)) { }
entity_range(const world& world, int32_t count, flecs::type type)
: m_world(world.c_ptr())
, m_ids( ecs_bulk_new_w_type(m_world, type.c_ptr(), count)) { }
private:
world_t *m_world;
const entity_t *m_ids;
};
template <typename T>
flecs::entity ref<T>::entity() const {
return flecs::entity(m_world, m_entity);
}
template <typename Base>
inline const Base& entity_builder<Base>::add(const type& type) const {
ecs_add_type(this->base_world(), this->base_id(), type.c_ptr());
return *this;
}
template <typename Base>
inline const Base& entity_builder<Base>::remove(const type& type) const {
ecs_remove_type(this->base_world(), this->base_id(), type.c_ptr());
return *this;
}
template <typename Base>
inline const Base& entity_builder<Base>::add_owned(const type& type) const {
return add_owned(type.id());
}
template <typename Base>
inline const Base& entity_builder<Base>::add_switch(const type& sw) const {
return add_switch(sw.id());
}
template <typename Base>
inline const Base& entity_builder<Base>::remove_switch(const type& sw) const {
return remove_switch(sw.id());
}
template <typename Base>
template <typename Func, if_t< is_callable<Func>::value > >
inline const Base& entity_builder<Base>::set(const Func& func) const {
_::entity_with_invoker<Func>::invoke_get_mut(
this->base_world(), this->base_id(), func);
return *this;
}
template <typename Base>
template <typename T>
inline const Base& entity_builder<Base>::component() const {
component_for_id<T>(this->base_world(), this->base_id());
return *this;
}
inline bool entity_view::has_switch(const flecs::type& type) const {
return ecs_has_entity(m_world, m_id, flecs::Switch | type.id());
}
inline flecs::entity entity_view::get_case(const flecs::type& sw) const {
return flecs::entity(m_world, ecs_get_case(m_world, m_id, sw.id()));
}
inline flecs::entity entity_view::get_case(flecs::id_t sw) const {
return flecs::entity(m_world, ecs_get_case(m_world, m_id, sw));
}
template <typename T>
inline flecs::entity entity_view::get_case() const {
return get_case(_::cpp_type<T>::id(m_world));
}
inline flecs::entity entity_view::get_object(
flecs::entity_t relation,
int32_t index) const
{
return flecs::entity(m_world,
ecs_get_object(m_world, m_id, relation, index));
}
inline flecs::entity entity_view::mut(const flecs::world& stage) const {
ecs_assert(!stage.is_readonly(), ECS_INVALID_PARAMETER,
"cannot use readonly world/stage to create mutable handle");
return flecs::entity(m_id).set_stage(stage.c_ptr());
}
/** Same as mut(world), but for iterator.
* This operation allows for the construction of a mutable entity handle
* from an iterator.
*
* @param stage An created for the current stage.
* @return An entity handle that allows for mutations in the current stage.
*/
inline flecs::entity entity_view::mut(const flecs::iter& it) const {
ecs_assert(!it.world().is_readonly(), ECS_INVALID_PARAMETER,
"cannot use iterator created for readonly world/stage to create mutable handle");
return flecs::entity(m_id).set_stage(it.world().c_ptr());
}
/** Same as mut(world), but for entity.
* This operation allows for the construction of a mutable entity handle
* from another entity. This is useful in each() functions, which only
* provide a handle to the entity being iterated over.
*
* @param stage An created for the current stage.
* @return An entity handle that allows for mutations in the current stage.
*/
inline flecs::entity entity_view::mut(const flecs::entity_view& e) const {
ecs_assert(!e.world().is_readonly(), ECS_INVALID_PARAMETER,
"cannot use entity created for readonly world/stage to create mutable handle");
return flecs::entity(m_id).set_stage(e.m_world);
}
inline flecs::entity entity_view::set_stage(world_t *stage) {
m_world = stage;
return flecs::entity(m_world, m_id);
}
inline flecs::type entity_view::type() const {
return flecs::type(m_world, ecs_get_type(m_world, m_id));
}
inline flecs::type entity_view::to_type() const {
ecs_type_t type = ecs_type_from_id(m_world, m_id);
return flecs::type(m_world, type);
}
inline child_iterator entity_view::children() const {
ecs_assert(m_id != 0, ECS_INVALID_PARAMETER, NULL);
return flecs::child_iterator(*this);
}
template <typename Func>
inline void entity_view::each(const Func& func) const {
const ecs_vector_t *type = ecs_get_type(m_world, m_id);
if (!type) {
return;
}
const ecs_id_t *ids = static_cast<ecs_id_t*>(
_ecs_vector_first(type, ECS_VECTOR_T(ecs_id_t)));
int32_t count = ecs_vector_count(type);
for (int i = 0; i < count; i ++) {
ecs_id_t id = ids[i];
flecs::id ent(m_world, id);
func(ent);
// Case is not stored in type, so handle separately
if ((id & ECS_ROLE_MASK) == flecs::Switch) {
ent = flecs::id(
m_world, flecs::Case | ecs_get_case(
m_world, m_id, ent.object().id()));
func(ent);
}
}
}
template <typename Func>
inline void entity_view::match(id_t pattern, const Func& func) const {
const ecs_vector_t *type = ecs_get_type(m_world, m_id);
if (!type) {
return;
}
id_t *ids = static_cast<ecs_id_t*>(
_ecs_vector_first(type, ECS_VECTOR_T(ecs_id_t)));
int32_t cur = 0;
while (-1 != (cur = ecs_type_index_of(type, cur, pattern))) {
flecs::id ent(m_world, ids[cur]);
func(ent);
cur ++;
}
}
template <typename Func>
inline void entity_view::each(const flecs::entity_view& rel, const Func& func) const {
return this->match(ecs_pair(rel, flecs::Wildcard), [&](flecs::id id) {
flecs::entity obj = id.object();
func(obj);
});
}
template <typename Func, if_t< is_callable<Func>::value > >
inline bool entity_view::get(const Func& func) const {
return _::entity_with_invoker<Func>::invoke_get(m_world, m_id, func);
}
template <typename T>
inline flecs::entity entity_view::get_parent() {
return flecs::entity(m_world, ecs_get_parent_w_entity(m_world, m_id,
_::cpp_type<T>::id(m_world)));
}
inline flecs::entity entity_view::get_parent(flecs::entity_view e) {
return flecs::entity(m_world,
ecs_get_parent_w_entity(m_world, m_id, e.id()));
}
inline flecs::entity entity_view::lookup(const char *path) const {
auto id = ecs_lookup_path_w_sep(m_world, m_id, path, "::", "::", false);
return flecs::entity(m_world, id);
}
}
namespace flecs
{
inline flecs::entity iter::system() const {
return flecs::entity(m_iter->world, m_iter->system);
}
inline flecs::entity iter::self() const {
return flecs::entity(m_iter->world, m_iter->self);
}
inline flecs::world iter::world() const {
return flecs::world(m_iter->world);
}
inline flecs::entity iter::entity(size_t row) const {
ecs_assert(row < static_cast<size_t>(m_iter->count), ECS_COLUMN_INDEX_OUT_OF_RANGE, NULL);
if (!this->world().is_readonly()) {
return flecs::entity(m_iter->entities[row])
.mut(this->world());
} else {
return flecs::entity(this->world().c_ptr(), m_iter->entities[row]);
}
}
/* Obtain column source (0 if self) */
template <typename Base>
inline flecs::entity iter_deprecated<Base>::column_source(int32_t col) const {
return flecs::entity(iter()->world, ecs_term_source(iter(), col));
}
/* Obtain component/tag entity of column */
template <typename Base>
inline flecs::entity iter_deprecated<Base>::column_entity(int32_t col) const {
return flecs::entity(iter()->world, ecs_term_id(iter(), col));
}
/* Obtain type of column */
template <typename Base>
inline type iter_deprecated<Base>::column_type(int32_t col) const {
return flecs::type(iter()->world, ecs_column_type(iter(), col));
}
/* Obtain type of table being iterated over */
template <typename Base>
inline type iter_deprecated<Base>::table_type() const {
return flecs::type(iter()->world, ecs_iter_type(iter()));
}
template <typename T>
inline column<T>::column(iter &iter, int32_t index) {
*this = iter.term<T>(index);
}
inline flecs::entity iter::term_source(int32_t index) const {
return flecs::entity(m_iter->world, ecs_term_source(m_iter, index));
}
inline flecs::entity iter::term_id(int32_t index) const {
return flecs::entity(m_iter->world, ecs_term_id(m_iter, index));
}
/* Obtain type of iter */
inline flecs::type iter::type() const {
return flecs::type(m_iter->world, ecs_iter_type(m_iter));
}
} // namespace flecs
namespace flecs
{
// emplace for T(flecs::entity, Args...)
template <typename T, typename ... Args, if_t<
std::is_constructible<actual_type_t<T>, flecs::entity, Args...>::value >>
inline void emplace(world_t *world, id_t entity, Args&&... args) {
flecs::entity self(world, entity);
emplace<T>(world, entity, self, std::forward<Args>(args)...);
}
/** Get id from a type. */
template <typename T>
inline flecs::id world::id() const {
return flecs::id(m_world, _::cpp_type<T>::id(m_world));
}
template <typename ... Args>
inline flecs::id world::id(Args&&... args) const {
return flecs::id(m_world, std::forward<Args>(args)...);
}
template <typename R, typename O>
inline flecs::id world::pair() const {
return flecs::id(
m_world,
ecs_pair(
_::cpp_type<R>::id(m_world),
_::cpp_type<O>::id(m_world)));
}
template <typename R>
inline flecs::id world::pair(entity_t o) const {
return flecs::id(
m_world,
ecs_pair(
_::cpp_type<R>::id(m_world),
o));
}
inline flecs::id world::pair(entity_t r, entity_t o) const {
return flecs::id(
m_world,
ecs_pair(r, o));
}
inline filter_iterator world::begin() const {
return filter_iterator(*this, ecs_filter_next);
}
inline filter_iterator world::end() const {
return filter_iterator(ecs_filter_next);
}
/** All entities created in function are created in scope. All operations
* called in function (such as lookup) are relative to scope.
*/
template <typename Func>
void scope(id_t parent, const Func& func);
inline void world::init_builtin_components() {
pod_component<Component>("flecs::core::Component");
pod_component<Type>("flecs::core::Type");
pod_component<Identifier>("flecs::core::Identifier");
pod_component<Trigger>("flecs::core::Trigger");
pod_component<Observer>("flecs::core::Observer");
pod_component<Query>("flecs::core::Query");
pod_component<TickSource>("flecs::system::TickSource");
pod_component<RateFilter>("flecs::timer::RateFilter");
pod_component<Timer>("flecs::timer::Timer");
}
template <typename T>
inline flecs::entity world::use(const char *alias) {
entity_t e = _::cpp_type<T>::id(m_world);
const char *name = alias;
if (!name) {
// If no name is defined, use the entity name without the scope
name = ecs_get_name(m_world, e);
}
ecs_use(m_world, e, name);
return flecs::entity(m_world, e);
}
inline flecs::entity world::use(const char *name, const char *alias) {
entity_t e = ecs_lookup_path_w_sep(m_world, 0, name, "::", "::", true);
ecs_assert(e != 0, ECS_INVALID_PARAMETER, NULL);
ecs_use(m_world, e, alias);
return flecs::entity(m_world, e);
}
inline void world::use(flecs::entity e, const char *alias) {
entity_t eid = e.id();
const char *name = alias;
if (!name) {
// If no name is defined, use the entity name without the scope
ecs_get_name(m_world, eid);
}
ecs_use(m_world, eid, alias);
}
inline flecs::entity world::set_scope(const flecs::entity& s) const {
return flecs::entity(ecs_set_scope(m_world, s.id()));
}
inline flecs::entity world::get_scope() const {
return flecs::entity(ecs_get_scope(m_world));
}
inline entity world::lookup(const char *name) const {
auto e = ecs_lookup_path_w_sep(m_world, 0, name, "::", "::", true);
return flecs::entity(*this, e);
}
template <typename T>
T* world::get_mut() const {
flecs::entity e(m_world, _::cpp_type<T>::id(m_world));
return e.get_mut<T>();
}
template <typename T>
void world::modified() const {
flecs::entity e(m_world, _::cpp_type<T>::id(m_world));
return e.modified<T>();
}
template <typename T, typename Func>
void world::patch(const Func& func) const {
flecs::entity e(m_world, _::cpp_type<T>::id(m_world));
e.patch<T>(func);
}
template <typename T>
const T* world::get() const {
flecs::entity e(m_world, _::cpp_type<T>::id(m_world));
return e.get<T>();
}
template <typename T>
bool world::has() const {
flecs::entity e(m_world, _::cpp_type<T>::id(m_world));
return e.has<T>();
}
template <typename T>
void world::add() const {
flecs::entity e(m_world, _::cpp_type<T>::id(m_world));
e.add<T>();
}
template <typename T>
void world::remove() const {
flecs::entity e(m_world, _::cpp_type<T>::id(m_world));
e.remove<T>();
}
inline void world::set_pipeline(const flecs::pipeline& pip) const {
ecs_set_pipeline(m_world, pip.id());
}
template <typename T>
inline flecs::entity world::singleton() {
return flecs::entity(m_world, _::cpp_type<T>::id(m_world));
}
template <typename... Args>
inline flecs::entity world::entity(Args &&... args) const {
return flecs::entity(*this, std::forward<Args>(args)...);
}
template <typename... Args>
inline flecs::entity world::prefab(Args &&... args) const {
return flecs::prefab(*this, std::forward<Args>(args)...);
}
template <typename... Args>
inline flecs::type world::type(Args &&... args) const {
return flecs::type(*this, std::forward<Args>(args)...);
}
template <typename... Args>
inline flecs::pipeline world::pipeline(Args &&... args) const {
return flecs::pipeline(*this, std::forward<Args>(args)...);
}
inline flecs::system<> world::system(flecs::entity e) const {
return flecs::system<>(m_world, e);
}
template <typename... Comps, typename... Args>
inline flecs::system_builder<Comps...> world::system(Args &&... args) const {
return flecs::system_builder<Comps...>(*this, std::forward<Args>(args)...);
}
template <typename... Comps, typename... Args>
inline flecs::observer_builder<Comps...> world::observer(Args &&... args) const {
return flecs::observer_builder<Comps...>(*this, std::forward<Args>(args)...);
}
template <typename... Comps, typename... Args>
inline flecs::filter<Comps...> world::filter(Args &&... args) const {
return flecs::filter<Comps...>(*this, std::forward<Args>(args)...);
}
template <typename... Comps, typename... Args>
inline flecs::filter_builder<Comps...> world::filter_builder(Args &&... args) const {
return flecs::filter_builder<Comps...>(*this, std::forward<Args>(args)...);
}
template <typename... Comps, typename... Args>
inline flecs::query<Comps...> world::query(Args &&... args) const {
return flecs::query<Comps...>(*this, std::forward<Args>(args)...);
}
template <typename... Comps, typename... Args>
inline flecs::query_builder<Comps...> world::query_builder(Args &&... args) const {
return flecs::query_builder<Comps...>(*this, std::forward<Args>(args)...);
}
template <typename... Args>
inline flecs::term world::term(Args &&... args) const {
return flecs::term(*this, std::forward<Args>(args)...);
}
template <typename T, typename... Args>
inline flecs::term world::term(Args &&... args) const {
return flecs::term(*this, std::forward<Args>(args)...).id<T>();
}
template <typename R, typename O, typename... Args>
inline flecs::term world::term(Args &&... args) const {
return flecs::term(*this, std::forward<Args>(args)...).id<R, O>();
}
template <typename Module, typename... Args>
inline flecs::entity world::module(Args &&... args) const {
return flecs::module<Module>(*this, std::forward<Args>(args)...);
}
template <typename Module>
inline flecs::entity world::import() {
return flecs::import<Module>(*this);
}
template <typename T, typename... Args>
inline flecs::entity world::component(Args &&... args) const {
return flecs::component<T>(*this, std::forward<Args>(args)...);
}
template <typename T, typename... Args>
inline flecs::entity world::pod_component(Args &&... args) const {
return flecs::pod_component<T>(*this, std::forward<Args>(args)...);
}
template <typename T, typename... Args>
inline flecs::entity world::relocatable_component(Args &&... args) const {
return flecs::relocatable_component<T>(*this, std::forward<Args>(args)...);
}
template <typename... Args>
inline flecs::snapshot world::snapshot(Args &&... args) const {
return flecs::snapshot(*this, std::forward<Args>(args)...);
}
template <typename T, typename Func>
inline void world::each(Func&& func) const {
ecs_term_t t = {};
t.id = _::cpp_type<T>::id();
ecs_iter_t it = ecs_term_iter(m_world, &t);
while (ecs_term_next(&it)) {
_::each_invoker<Func, T>(func).invoke(&it);
}
}
template <typename Func>
inline void world::each(flecs::id_t term_id, Func&& func) const {
ecs_term_t t = {};
t.id = term_id;
ecs_iter_t it = ecs_term_iter(m_world, &t);
while (ecs_term_next(&it)) {
_::each_invoker<Func>(func).invoke(&it);
}
}
namespace _ {
// Each with entity parameter
template<typename Func, typename ... Args>
struct filter_invoker_w_ent;
template<typename Func, typename E, typename ... Args>
struct filter_invoker_w_ent<Func, arg_list<E, Args ...> >
{
filter_invoker_w_ent(const flecs::world& world, Func&& func) {
flecs::filter<Args ...> f(world);
f.each(std::move(func));
}
};
// Each without entity parameter
template<typename Func, typename ... Args>
struct filter_invoker_no_ent;
template<typename Func, typename ... Args>
struct filter_invoker_no_ent<Func, arg_list<Args ...> >
{
filter_invoker_no_ent(const flecs::world& world, Func&& func) {
flecs::filter<Args ...> f(world);
f.each(std::move(func));
}
};
// Switch between function with & without entity parameter
template<typename Func, typename T = int>
class filter_invoker;
template <typename Func>
class filter_invoker<Func, if_t<is_same<first_arg_t<Func>, flecs::entity>::value> > {
public:
filter_invoker(const flecs::world& world, Func&& func) {
filter_invoker_w_ent<Func, arg_list_t<Func>>(world, std::move(func));
}
};
template <typename Func>
class filter_invoker<Func, if_not_t<is_same<first_arg_t<Func>, flecs::entity>::value> > {
public:
filter_invoker(const flecs::world& world, Func&& func) {
filter_invoker_no_ent<Func, arg_list_t<Func>>(world, std::move(func));
}
};
}
template <typename Func>
inline void world::each(Func&& func) const {
_::filter_invoker<Func> f_invoker(*this, std::move(func));
}
} // namespace flecs
namespace flecs
{
template<typename Base>
inline Base& term_builder_i<Base>::id(const flecs::type& type) {
ecs_assert(m_term != nullptr, ECS_INVALID_PARAMETER, NULL);
m_term->pred.entity = type.id();
return *this;
}
template <typename ... Components>
inline filter_builder_base<Components...>::operator filter<Components ...>() const {
ecs_filter_t filter = *this;
return flecs::filter<Components...>(m_world, &filter);
}
template <typename ... Components>
inline filter_builder<Components ...>::operator filter<>() const {
ecs_filter_t filter = *this;
return flecs::filter<>(this->m_world, &filter);
}
template <typename ... Components>
inline filter<Components ...> filter_builder_base<Components...>::build() const {
ecs_filter_t filter = *this;
return flecs::filter<Components...>(m_world, &filter);
}
template <typename ... Components>
inline query_builder_base<Components...>::operator query<Components ...>() const {
ecs_query_t *query = *this;
return flecs::query<Components...>(m_world, query);
}
template <typename ... Components>
inline query_builder<Components ...>::operator query<>() const {
ecs_query_t *query = *this;
return flecs::query<>(this->m_world, query);
}
template <typename ... Components>
inline query<Components ...> query_builder_base<Components...>::build() const {
ecs_query_t *query = *this;
return flecs::query<Components...>(m_world, query);
}
template <typename Base, typename ... Components>
inline Base& query_builder_i<Base, Components ...>::parent(const query_base& parent) {
m_desc->parent = parent.c_ptr();
return *static_cast<Base*>(this);
}
template <typename ... Components>
template <typename Func>
inline system<Components ...> system_builder<Components...>::action(Func&& func) const {
flecs::entity_t system = build<action_invoker_t<Func>>(std::forward<Func>(func), false);
return flecs::system<Components...>(m_world, system);
}
template <typename ... Components>
template <typename Func>
inline system<Components ...> system_builder<Components...>::iter(Func&& func) const {
using Invoker = typename _::iter_invoker<
typename std::decay<Func>::type, Components...>;
flecs::entity_t system = build<Invoker>(std::forward<Func>(func), false);
return flecs::system<Components...>(m_world, system);
}
template <typename ... Components>
template <typename Func>
inline system<Components ...> system_builder<Components...>::each(Func&& func) const {
using Invoker = typename _::each_invoker<
typename std::decay<Func>::type, Components...>;
flecs::entity_t system = build<Invoker>(std::forward<Func>(func), true);
return flecs::system<Components...>(m_world, system);
}
template <typename ... Components>
template <typename Func>
inline observer<Components ...> observer_builder<Components...>::iter(Func&& func) const {
using Invoker = typename _::iter_invoker<
typename std::decay<Func>::type, Components...>;
flecs::entity_t observer = build<Invoker>(std::forward<Func>(func), false);
return flecs::observer<Components...>(m_world, observer);
}
template <typename ... Components>
template <typename Func>
inline observer<Components ...> observer_builder<Components...>::each(Func&& func) const {
using Invoker = typename _::each_invoker<
typename std::decay<Func>::type, Components...>;
flecs::entity_t observer = build<Invoker>(std::forward<Func>(func), true);
return flecs::observer<Components...>(m_world, observer);
}
}
#endif
#endif
#endif
#endif