1338 lines
40 KiB
C++
1338 lines
40 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2012, assimp team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file FBXConverter.cpp
|
|
* @brief Implementation of the FBX DOM -> aiScene converter
|
|
*/
|
|
#include "AssimpPCH.h"
|
|
|
|
#ifndef ASSIMP_BUILD_NO_FBX_IMPORTER
|
|
|
|
#include <boost/tuple/tuple.hpp>
|
|
|
|
#include "FBXParser.h"
|
|
#include "FBXConverter.h"
|
|
#include "FBXDocument.h"
|
|
#include "FBXUtil.h"
|
|
#include "FBXProperties.h"
|
|
#include "FBXImporter.h"
|
|
|
|
namespace Assimp {
|
|
namespace FBX {
|
|
|
|
using namespace Util;
|
|
|
|
// XXX vc9's debugger won't step into anonymous namespaces
|
|
//namespace {
|
|
|
|
/** Dummy class to encapsulate the conversion process */
|
|
class Converter
|
|
{
|
|
|
|
public:
|
|
|
|
Converter(aiScene* out, const Document& doc)
|
|
: out(out)
|
|
, doc(doc)
|
|
{
|
|
ConvertRootNode();
|
|
ConvertAnimations();
|
|
|
|
if(doc.Settings().readAllMaterials) {
|
|
// unfortunately this means we have to evaluate all objects
|
|
BOOST_FOREACH(const ObjectMap::value_type& v,doc.Objects()) {
|
|
|
|
const Object* ob = v.second->Get();
|
|
if(!ob) {
|
|
continue;
|
|
}
|
|
|
|
const Material* mat = dynamic_cast<const Material*>(ob);
|
|
if(mat) {
|
|
|
|
if (materials_converted.find(mat) == materials_converted.end()) {
|
|
ConvertMaterial(*mat);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TransferDataToScene();
|
|
}
|
|
|
|
|
|
~Converter()
|
|
{
|
|
std::for_each(meshes.begin(),meshes.end(),Util::delete_fun<aiMesh>());
|
|
std::for_each(materials.begin(),materials.end(),Util::delete_fun<aiMaterial>());
|
|
std::for_each(animations.begin(),animations.end(),Util::delete_fun<aiAnimation>());
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// find scene root and trigger recursive scene conversion
|
|
void ConvertRootNode()
|
|
{
|
|
out->mRootNode = new aiNode();
|
|
out->mRootNode->mName.Set("RootNode");
|
|
|
|
// root has ID 0
|
|
ConvertNodes(0L, *out->mRootNode);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// collect and assign child nodes
|
|
void ConvertNodes(uint64_t id, aiNode& parent)
|
|
{
|
|
const std::vector<const Connection*>& conns = doc.GetConnectionsByDestinationSequenced(id, "Model");
|
|
|
|
std::vector<aiNode*> nodes;
|
|
nodes.reserve(conns.size());
|
|
|
|
BOOST_FOREACH(const Connection* con, conns) {
|
|
|
|
// ignore object-property links
|
|
if(con->PropertyName().length()) {
|
|
continue;
|
|
}
|
|
|
|
const Object* const object = con->SourceObject();
|
|
if(!object) {
|
|
FBXImporter::LogWarn("failed to convert source object for node link");
|
|
continue;
|
|
}
|
|
|
|
const Model* const model = dynamic_cast<const Model*>(object);
|
|
|
|
|
|
if(model) {
|
|
aiNode* nd = new aiNode();
|
|
nodes.push_back(nd);
|
|
|
|
// strip Model:: prefix
|
|
std::string name = model->Name();
|
|
if(name.substr(0,7) == "Model::") {
|
|
name = name.substr(7);
|
|
}
|
|
|
|
nd->mName.Set(name);
|
|
nd->mParent = &parent;
|
|
|
|
ConvertTransformation(*model,*nd);
|
|
|
|
ConvertModel(*model, *nd);
|
|
ConvertNodes(model->ID(), *nd);
|
|
}
|
|
}
|
|
|
|
if(nodes.size()) {
|
|
parent.mChildren = new aiNode*[nodes.size()]();
|
|
parent.mNumChildren = static_cast<unsigned int>(nodes.size());
|
|
|
|
std::swap_ranges(nodes.begin(),nodes.end(),parent.mChildren);
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertTransformation(const Model& model, aiNode& nd)
|
|
{
|
|
const PropertyTable& props = model.Props();
|
|
|
|
bool ok;
|
|
|
|
aiVector3D Translation = PropertyGet<aiVector3D>(props,"Lcl Translation",ok);
|
|
if(!ok) {
|
|
Translation = aiVector3D(0.0f,0.0f,0.0f);
|
|
}
|
|
|
|
aiVector3D Scaling = PropertyGet<aiVector3D>(props,"Lcl Scaling",ok);
|
|
if(!ok) {
|
|
Scaling = aiVector3D(1.0f,1.0f,1.0f);
|
|
}
|
|
|
|
// XXX euler angles, radians, xyz order?
|
|
aiVector3D Rotation = PropertyGet<aiVector3D>(props,"Lcl Rotation",ok);
|
|
if(!ok) {
|
|
Rotation = aiVector3D(0.0f,0.0f,0.0f);
|
|
}
|
|
|
|
aiMatrix4x4 temp;
|
|
nd.mTransformation = aiMatrix4x4::Scaling(Scaling,temp);
|
|
if(fabs(Rotation.x) > 1e-6f) {
|
|
nd.mTransformation *= aiMatrix4x4::RotationX(Rotation.x,temp);
|
|
}
|
|
if(fabs(Rotation.y) > 1e-6f) {
|
|
nd.mTransformation *= aiMatrix4x4::RotationY(Rotation.y,temp);
|
|
}
|
|
if(fabs(Rotation.z) > 1e-6f) {
|
|
nd.mTransformation *= aiMatrix4x4::RotationZ(Rotation.z,temp);
|
|
}
|
|
nd.mTransformation.a4 = Translation.x;
|
|
nd.mTransformation.b4 = Translation.y;
|
|
nd.mTransformation.c4 = Translation.z;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertModel(const Model& model, aiNode& nd)
|
|
{
|
|
const std::vector<const Geometry*>& geos = model.GetGeometry();
|
|
|
|
std::vector<unsigned int> meshes;
|
|
meshes.reserve(geos.size());
|
|
|
|
BOOST_FOREACH(const Geometry* geo, geos) {
|
|
|
|
const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*>(geo);
|
|
if(mesh) {
|
|
const std::vector<unsigned int>& indices = ConvertMesh(*mesh, model);
|
|
std::copy(indices.begin(),indices.end(),std::back_inserter(meshes) );
|
|
}
|
|
else {
|
|
FBXImporter::LogWarn("ignoring unrecognized geometry: " + geo->Name());
|
|
}
|
|
}
|
|
|
|
if(meshes.size()) {
|
|
nd.mMeshes = new unsigned int[meshes.size()]();
|
|
nd.mNumMeshes = static_cast<unsigned int>(meshes.size());
|
|
|
|
std::swap_ranges(meshes.begin(),meshes.end(),nd.mMeshes);
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// MeshGeometry -> aiMesh, return mesh index + 1 or 0 if the conversion failed
|
|
std::vector<unsigned int> ConvertMesh(const MeshGeometry& mesh, const Model& model)
|
|
{
|
|
std::vector<unsigned int> temp;
|
|
|
|
MeshMap::const_iterator it = meshes_converted.find(&mesh);
|
|
if (it != meshes_converted.end()) {
|
|
std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(temp));
|
|
return temp;
|
|
}
|
|
|
|
const std::vector<aiVector3D>& vertices = mesh.GetVertices();
|
|
const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
|
|
if(vertices.empty() || faces.empty()) {
|
|
FBXImporter::LogWarn("ignoring empty geometry: " + mesh.Name());
|
|
return temp;
|
|
}
|
|
|
|
// one material per mesh maps easily to aiMesh. Multiple material
|
|
// meshes need to be split.
|
|
const std::vector<unsigned int>& mindices = mesh.GetMaterialIndices();
|
|
if (doc.Settings().readMaterials && !mindices.empty()) {
|
|
const unsigned int base = mindices[0];
|
|
BOOST_FOREACH(unsigned int index, mindices) {
|
|
if(index != base) {
|
|
return ConvertMeshMultiMaterial(mesh, model);
|
|
}
|
|
}
|
|
}
|
|
|
|
// faster codepath, just copy the data
|
|
temp.push_back(ConvertMeshSingleMaterial(mesh, model));
|
|
return temp;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiMesh* SetupEmptyMesh(const MeshGeometry& mesh, unsigned int material_index)
|
|
{
|
|
aiMesh* const out_mesh = new aiMesh();
|
|
meshes.push_back(out_mesh);
|
|
meshes_converted[&mesh].push_back(static_cast<unsigned int>(meshes.size()-1));
|
|
|
|
// set name
|
|
std::string name = mesh.Name();
|
|
if (name.substr(0,10) == "Geometry::") {
|
|
name = name.substr(10);
|
|
}
|
|
|
|
if(name.length()) {
|
|
out_mesh->mName.Set(name);
|
|
}
|
|
|
|
return out_mesh;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
unsigned int ConvertMeshSingleMaterial(const MeshGeometry& mesh, const Model& model)
|
|
{
|
|
const std::vector<unsigned int>& mindices = mesh.GetMaterialIndices();
|
|
aiMesh* const out_mesh = SetupEmptyMesh(mesh,mindices.size() ? mindices[0] : static_cast<unsigned int>(-1));
|
|
|
|
const std::vector<aiVector3D>& vertices = mesh.GetVertices();
|
|
const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
|
|
|
|
// copy vertices
|
|
out_mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
|
|
out_mesh->mVertices = new aiVector3D[vertices.size()];
|
|
std::copy(vertices.begin(),vertices.end(),out_mesh->mVertices);
|
|
|
|
// generate dummy faces
|
|
out_mesh->mNumFaces = static_cast<unsigned int>(faces.size());
|
|
aiFace* fac = out_mesh->mFaces = new aiFace[faces.size()]();
|
|
|
|
unsigned int cursor = 0;
|
|
BOOST_FOREACH(unsigned int pcount, faces) {
|
|
aiFace& f = *fac++;
|
|
f.mNumIndices = pcount;
|
|
f.mIndices = new unsigned int[pcount];
|
|
switch(pcount)
|
|
{
|
|
case 1:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
|
|
break;
|
|
case 2:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
|
|
break;
|
|
case 3:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
|
|
break;
|
|
default:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
|
|
break;
|
|
}
|
|
for (unsigned int i = 0; i < pcount; ++i) {
|
|
f.mIndices[i] = cursor++;
|
|
}
|
|
}
|
|
|
|
// copy normals
|
|
const std::vector<aiVector3D>& normals = mesh.GetNormals();
|
|
if(normals.size()) {
|
|
ai_assert(normals.size() == vertices.size());
|
|
|
|
out_mesh->mNormals = new aiVector3D[vertices.size()];
|
|
std::copy(normals.begin(),normals.end(),out_mesh->mNormals);
|
|
}
|
|
|
|
// copy tangents - assimp requires both tangents and bitangents (binormals)
|
|
// to be present, or neither of them. Compute binormals from normals
|
|
// and tangents if needed.
|
|
const std::vector<aiVector3D>& tangents = mesh.GetTangents();
|
|
const std::vector<aiVector3D>* binormals = &mesh.GetBinormals();
|
|
|
|
if(tangents.size()) {
|
|
std::vector<aiVector3D> tempBinormals;
|
|
if (!binormals->size()) {
|
|
if (normals.size()) {
|
|
tempBinormals.resize(normals.size());
|
|
for (unsigned int i = 0; i < tangents.size(); ++i) {
|
|
tempBinormals[i] = normals[i] ^ tangents[i];
|
|
}
|
|
|
|
binormals = &tempBinormals;
|
|
}
|
|
else {
|
|
binormals = NULL;
|
|
}
|
|
}
|
|
|
|
if(binormals) {
|
|
ai_assert(tangents.size() == vertices.size() && binormals->size() == vertices.size());
|
|
|
|
out_mesh->mTangents = new aiVector3D[vertices.size()];
|
|
std::copy(tangents.begin(),tangents.end(),out_mesh->mTangents);
|
|
|
|
out_mesh->mBitangents = new aiVector3D[vertices.size()];
|
|
std::copy(binormals->begin(),binormals->end(),out_mesh->mBitangents);
|
|
}
|
|
}
|
|
|
|
// copy texture coords
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i);
|
|
if(uvs.empty()) {
|
|
break;
|
|
}
|
|
|
|
aiVector3D* out_uv = out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()];
|
|
BOOST_FOREACH(const aiVector2D& v, uvs) {
|
|
*out_uv++ = aiVector3D(v.x,v.y,0.0f);
|
|
}
|
|
|
|
out_mesh->mNumUVComponents[i] = 2;
|
|
}
|
|
|
|
// copy vertex colors
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) {
|
|
const std::vector<aiColor4D>& colors = mesh.GetVertexColors(i);
|
|
if(colors.empty()) {
|
|
break;
|
|
}
|
|
|
|
out_mesh->mColors[i] = new aiColor4D[vertices.size()];
|
|
std::copy(colors.begin(),colors.end(),out_mesh->mColors[i]);
|
|
}
|
|
|
|
if(!doc.Settings().readMaterials || mindices.empty()) {
|
|
FBXImporter::LogError("no material assigned to mesh, setting default material");
|
|
out_mesh->mMaterialIndex = GetDefaultMaterial();
|
|
}
|
|
else {
|
|
ConvertMaterialForMesh(out_mesh,model,mesh,mindices[0]);
|
|
}
|
|
|
|
return static_cast<unsigned int>(meshes.size() - 1);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
std::vector<unsigned int> ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model)
|
|
{
|
|
const std::vector<unsigned int>& mindices = mesh.GetMaterialIndices();
|
|
ai_assert(mindices.size());
|
|
|
|
std::set<unsigned int> had;
|
|
std::vector<unsigned int> indices;
|
|
|
|
BOOST_FOREACH(unsigned int index, mindices) {
|
|
if(had.find(index) == had.end()) {
|
|
|
|
indices.push_back(ConvertMeshMultiMaterial(mesh, model, index));
|
|
had.insert(index);
|
|
}
|
|
}
|
|
|
|
return indices;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
unsigned int ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model, unsigned int index)
|
|
{
|
|
aiMesh* const out_mesh = SetupEmptyMesh(mesh, index);
|
|
|
|
const std::vector<unsigned int>& mindices = mesh.GetMaterialIndices();
|
|
const std::vector<aiVector3D>& vertices = mesh.GetVertices();
|
|
const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
|
|
|
|
unsigned int count_faces = 0;
|
|
unsigned int count_vertices = 0;
|
|
|
|
// count faces
|
|
for(std::vector<unsigned int>::const_iterator it = mindices.begin(),
|
|
end = mindices.end(), itf = faces.begin(); it != end; ++it, ++itf)
|
|
{
|
|
if ((*it) != index) {
|
|
continue;
|
|
}
|
|
++count_faces;
|
|
count_vertices += *itf;
|
|
}
|
|
|
|
ai_assert(count_faces);
|
|
|
|
|
|
// allocate output data arrays, but don't fill them yet
|
|
out_mesh->mNumVertices = count_vertices;
|
|
out_mesh->mVertices = new aiVector3D[count_vertices];
|
|
|
|
out_mesh->mNumFaces = count_faces;
|
|
aiFace* fac = out_mesh->mFaces = new aiFace[count_faces]();
|
|
|
|
|
|
// allocate normals
|
|
const std::vector<aiVector3D>& normals = mesh.GetNormals();
|
|
if(normals.size()) {
|
|
ai_assert(normals.size() == vertices.size());
|
|
out_mesh->mNormals = new aiVector3D[vertices.size()];
|
|
}
|
|
|
|
// allocate tangents, binormals.
|
|
const std::vector<aiVector3D>& tangents = mesh.GetTangents();
|
|
const std::vector<aiVector3D>* binormals = &mesh.GetBinormals();
|
|
|
|
if(tangents.size()) {
|
|
std::vector<aiVector3D> tempBinormals;
|
|
if (!binormals->size()) {
|
|
if (normals.size()) {
|
|
// XXX this computes the binormals for the entire mesh, not only
|
|
// the part for which we need them.
|
|
tempBinormals.resize(normals.size());
|
|
for (unsigned int i = 0; i < tangents.size(); ++i) {
|
|
tempBinormals[i] = normals[i] ^ tangents[i];
|
|
}
|
|
|
|
binormals = &tempBinormals;
|
|
}
|
|
else {
|
|
binormals = NULL;
|
|
}
|
|
}
|
|
|
|
if(binormals) {
|
|
ai_assert(tangents.size() == vertices.size() && binormals->size() == vertices.size());
|
|
|
|
out_mesh->mTangents = new aiVector3D[vertices.size()];
|
|
out_mesh->mBitangents = new aiVector3D[vertices.size()];
|
|
}
|
|
}
|
|
|
|
// allocate texture coords
|
|
unsigned int num_uvs = 0;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i, ++num_uvs) {
|
|
const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i);
|
|
if(uvs.empty()) {
|
|
break;
|
|
}
|
|
|
|
out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()];
|
|
out_mesh->mNumUVComponents[i] = 2;
|
|
}
|
|
|
|
// allocate vertex colors
|
|
unsigned int num_vcs = 0;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i, ++num_vcs) {
|
|
const std::vector<aiColor4D>& colors = mesh.GetVertexColors(i);
|
|
if(colors.empty()) {
|
|
break;
|
|
}
|
|
|
|
out_mesh->mColors[i] = new aiColor4D[vertices.size()];
|
|
}
|
|
|
|
unsigned int cursor = 0, in_cursor = 0;
|
|
|
|
for(std::vector<unsigned int>::const_iterator it = mindices.begin(),
|
|
end = mindices.end(), itf = faces.begin(); it != end; ++it, ++itf)
|
|
{
|
|
const unsigned int pcount = *itf;
|
|
if ((*it) != index) {
|
|
in_cursor += pcount;
|
|
continue;
|
|
}
|
|
|
|
aiFace& f = *fac++;
|
|
|
|
f.mNumIndices = pcount;
|
|
f.mIndices = new unsigned int[pcount];
|
|
switch(pcount)
|
|
{
|
|
case 1:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
|
|
break;
|
|
case 2:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
|
|
break;
|
|
case 3:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
|
|
break;
|
|
default:
|
|
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
|
|
break;
|
|
}
|
|
for (unsigned int i = 0; i < pcount; ++i, ++cursor, ++in_cursor) {
|
|
f.mIndices[i] = cursor;
|
|
|
|
out_mesh->mVertices[cursor] = vertices[in_cursor];
|
|
|
|
if(out_mesh->mNormals) {
|
|
out_mesh->mNormals[cursor] = normals[in_cursor];
|
|
}
|
|
|
|
if(out_mesh->mTangents) {
|
|
out_mesh->mTangents[cursor] = tangents[in_cursor];
|
|
out_mesh->mBitangents[cursor] = (*binormals)[in_cursor];
|
|
}
|
|
|
|
for (unsigned int i = 0; i < num_uvs; ++i) {
|
|
const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i);
|
|
out_mesh->mTextureCoords[i][cursor] = aiVector3D(uvs[in_cursor].x,uvs[in_cursor].y, 0.0f);
|
|
}
|
|
|
|
for (unsigned int i = 0; i < num_vcs; ++i) {
|
|
const std::vector<aiColor4D>& cols = mesh.GetVertexColors(i);
|
|
out_mesh->mColors[i][cursor] = cols[in_cursor];
|
|
}
|
|
}
|
|
}
|
|
|
|
ConvertMaterialForMesh(out_mesh,model,mesh,index);
|
|
return static_cast<unsigned int>(meshes.size() - 1);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertMaterialForMesh(aiMesh* out, const Model& model, const MeshGeometry& geo, unsigned int materialIndex)
|
|
{
|
|
// locate source materials for this mesh
|
|
const std::vector<const Material*>& mats = model.GetMaterials();
|
|
if (materialIndex >= mats.size()) {
|
|
FBXImporter::LogError("material index out of bounds, setting default material");
|
|
out->mMaterialIndex = GetDefaultMaterial();
|
|
return;
|
|
}
|
|
|
|
const Material* const mat = mats[materialIndex];
|
|
MaterialMap::const_iterator it = materials_converted.find(mat);
|
|
if (it != materials_converted.end()) {
|
|
out->mMaterialIndex = (*it).second;
|
|
return;
|
|
}
|
|
|
|
out->mMaterialIndex = ConvertMaterial(*mat);
|
|
materials_converted[mat] = out->mMaterialIndex;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
unsigned int GetDefaultMaterial()
|
|
{
|
|
if (defaultMaterialIndex) {
|
|
return defaultMaterialIndex - 1;
|
|
}
|
|
|
|
aiMaterial* out_mat = new aiMaterial();
|
|
materials.push_back(out_mat);
|
|
|
|
const aiColor3D diffuse = aiColor3D(0.8f,0.8f,0.8f);
|
|
out_mat->AddProperty(&diffuse,1,AI_MATKEY_COLOR_DIFFUSE);
|
|
|
|
aiString s;
|
|
s.Set(AI_DEFAULT_MATERIAL_NAME);
|
|
|
|
out_mat->AddProperty(&s,AI_MATKEY_NAME);
|
|
|
|
defaultMaterialIndex = static_cast<unsigned int>(materials.size());
|
|
return defaultMaterialIndex - 1;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Material -> aiMaterial
|
|
unsigned int ConvertMaterial(const Material& material)
|
|
{
|
|
const PropertyTable& props = material.Props();
|
|
|
|
// generate empty output material
|
|
aiMaterial* out_mat = new aiMaterial();
|
|
materials_converted[&material] = static_cast<unsigned int>(materials.size());
|
|
|
|
materials.push_back(out_mat);
|
|
|
|
aiString str;
|
|
|
|
// stip Material:: prefix
|
|
std::string name = material.Name();
|
|
if(name.substr(0,10) == "Material::") {
|
|
name = name.substr(10);
|
|
}
|
|
|
|
// set material name if not empty - this could happen
|
|
// and there should be no key for it in this case.
|
|
if(name.length()) {
|
|
str.Set(name);
|
|
out_mat->AddProperty(&str,AI_MATKEY_NAME);
|
|
}
|
|
|
|
// shading stuff and colors
|
|
SetShadingPropertiesCommon(out_mat,props);
|
|
|
|
// texture assignments
|
|
SetTextureProperties(out_mat,material.Textures());
|
|
|
|
return static_cast<unsigned int>(materials.size() - 1);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void TrySetTextureProperties(aiMaterial* out_mat, const TextureMap& textures, const std::string& propName, aiTextureType target)
|
|
{
|
|
TextureMap::const_iterator it = textures.find(propName);
|
|
if(it == textures.end()) {
|
|
return;
|
|
}
|
|
|
|
const Texture* const tex = (*it).second;
|
|
|
|
aiString path;
|
|
path.Set(tex->RelativeFilename());
|
|
|
|
out_mat->AddProperty(&path,_AI_MATKEY_TEXTURE_BASE,target,0);
|
|
|
|
aiUVTransform uvTrafo;
|
|
// XXX handle all kinds of UV transformations
|
|
uvTrafo.mScaling = tex->UVScaling();
|
|
uvTrafo.mTranslation = tex->UVTranslation();
|
|
out_mat->AddProperty(&uvTrafo,1,_AI_MATKEY_UVTRANSFORM_BASE,target,0);
|
|
|
|
const PropertyTable& props = tex->Props();
|
|
|
|
int uvIndex = 0;
|
|
|
|
bool ok;
|
|
const std::string& uvSet = PropertyGet<std::string>(props,"UVSet",ok);
|
|
if(ok) {
|
|
// "default" is the name which usually appears in the FbxFileTexture template
|
|
if(uvSet != "default" && uvSet.length()) {
|
|
// this is a bit awkward - we need to find a mesh that uses this
|
|
// material and scan its UV channels for the given UV name because
|
|
// assimp references UV channels by index, not by name.
|
|
|
|
// XXX: the case that UV channels may appear in different orders
|
|
// in meshes is unhandled. A possible solution would be to sort
|
|
// the UV channels alphabetically, but this would have the side
|
|
// effect that the primary (first) UV channel would sometimes
|
|
// be moved, causing trouble when users read only the first
|
|
// UV channel and ignore UV channel assignments altogether.
|
|
|
|
const unsigned int matIndex = std::distance(materials.begin(),
|
|
std::find(materials.begin(),materials.end(),out_mat)
|
|
);
|
|
|
|
uvIndex = -1;
|
|
BOOST_FOREACH(const MeshMap::value_type& v,meshes_converted) {
|
|
const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*> (v.first);
|
|
if(!mesh) {
|
|
continue;
|
|
}
|
|
|
|
const std::vector<unsigned int>& mats = mesh->GetMaterialIndices();
|
|
if(std::find(mats.begin(),mats.end(),matIndex) == mats.end()) {
|
|
continue;
|
|
}
|
|
|
|
int index = -1;
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
|
|
if(mesh->GetTextureCoords(i).empty()) {
|
|
break;
|
|
}
|
|
const std::string& name = mesh->GetTextureCoordChannelName(i);
|
|
if(name == uvSet) {
|
|
index = static_cast<int>(i);
|
|
break;
|
|
}
|
|
}
|
|
if(index == -1) {
|
|
FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material");
|
|
continue;
|
|
}
|
|
|
|
if(uvIndex == -1) {
|
|
uvIndex = index;
|
|
}
|
|
else {
|
|
FBXImporter::LogWarn("the UV channel named " + uvSet +
|
|
" appears at different positions in meshes, results will be wrong");
|
|
}
|
|
}
|
|
|
|
if(uvIndex == -1) {
|
|
FBXImporter::LogWarn("failed to resolve UV channel " + uvSet + ", using first UV channel");
|
|
uvIndex = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
out_mat->AddProperty(&uvIndex,1,_AI_MATKEY_UVWSRC_BASE,target,0);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void SetTextureProperties(aiMaterial* out_mat, const TextureMap& textures)
|
|
{
|
|
TrySetTextureProperties(out_mat, textures, "DiffuseColor", aiTextureType_DIFFUSE);
|
|
TrySetTextureProperties(out_mat, textures, "AmbientColor", aiTextureType_AMBIENT);
|
|
TrySetTextureProperties(out_mat, textures, "EmissiveColor", aiTextureType_EMISSIVE);
|
|
TrySetTextureProperties(out_mat, textures, "SpecularColor", aiTextureType_SPECULAR);
|
|
TrySetTextureProperties(out_mat, textures, "TransparentColor", aiTextureType_OPACITY);
|
|
TrySetTextureProperties(out_mat, textures, "ReflectionColor", aiTextureType_REFLECTION);
|
|
TrySetTextureProperties(out_mat, textures, "DisplacementColor", aiTextureType_DISPLACEMENT);
|
|
TrySetTextureProperties(out_mat, textures, "NormalMap", aiTextureType_NORMALS);
|
|
TrySetTextureProperties(out_mat, textures, "Bump", aiTextureType_HEIGHT);
|
|
}
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
aiColor3D GetColorPropertyFromMaterial(const PropertyTable& props,const std::string& baseName, bool& result)
|
|
{
|
|
result = true;
|
|
|
|
bool ok;
|
|
const aiVector3D& Diffuse = PropertyGet<aiVector3D>(props,baseName,ok);
|
|
if(ok) {
|
|
return aiColor3D(Diffuse.x,Diffuse.y,Diffuse.z);
|
|
}
|
|
else {
|
|
aiVector3D DiffuseColor = PropertyGet<aiVector3D>(props,baseName + "Color",ok);
|
|
if(ok) {
|
|
float DiffuseFactor = PropertyGet<float>(props,baseName + "Factor",ok);
|
|
if(ok) {
|
|
DiffuseColor *= DiffuseFactor;
|
|
}
|
|
|
|
return aiColor3D(DiffuseColor.x,DiffuseColor.y,DiffuseColor.z);
|
|
}
|
|
}
|
|
result = false;
|
|
return aiColor3D(0.0f,0.0f,0.0f);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void SetShadingPropertiesCommon(aiMaterial* out_mat, const PropertyTable& props)
|
|
{
|
|
// set shading properties. There are various, redundant ways in which FBX materials
|
|
// specify their shading settings (depending on shading models, prop
|
|
// template etc.). No idea which one is right in a particular context.
|
|
// Just try to make sense of it - there's no spec to verify this against,
|
|
// so why should we.
|
|
bool ok;
|
|
const aiColor3D& Diffuse = GetColorPropertyFromMaterial(props,"Diffuse",ok);
|
|
if(ok) {
|
|
out_mat->AddProperty(&Diffuse,1,AI_MATKEY_COLOR_DIFFUSE);
|
|
}
|
|
|
|
const aiColor3D& Emissive = GetColorPropertyFromMaterial(props,"Emissive",ok);
|
|
if(ok) {
|
|
out_mat->AddProperty(&Emissive,1,AI_MATKEY_COLOR_EMISSIVE);
|
|
}
|
|
|
|
const aiColor3D& Ambient = GetColorPropertyFromMaterial(props,"Ambient",ok);
|
|
if(ok) {
|
|
out_mat->AddProperty(&Ambient,1,AI_MATKEY_COLOR_AMBIENT);
|
|
}
|
|
|
|
const aiColor3D& Specular = GetColorPropertyFromMaterial(props,"Specular",ok);
|
|
if(ok) {
|
|
out_mat->AddProperty(&Specular,1,AI_MATKEY_COLOR_SPECULAR);
|
|
}
|
|
|
|
const float Opacity = PropertyGet<float>(props,"Opacity",ok);
|
|
if(ok) {
|
|
out_mat->AddProperty(&Opacity,1,AI_MATKEY_OPACITY);
|
|
}
|
|
|
|
const float Reflectivity = PropertyGet<float>(props,"Reflectivity",ok);
|
|
if(ok) {
|
|
out_mat->AddProperty(&Reflectivity,1,AI_MATKEY_REFLECTIVITY);
|
|
}
|
|
|
|
const float Shininess = PropertyGet<float>(props,"Shininess",ok);
|
|
if(ok) {
|
|
out_mat->AddProperty(&Shininess,1,AI_MATKEY_SHININESS_STRENGTH);
|
|
}
|
|
|
|
const float ShininessExponent = PropertyGet<float>(props,"ShininessExponent",ok);
|
|
if(ok) {
|
|
out_mat->AddProperty(&ShininessExponent,1,AI_MATKEY_SHININESS);
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// convert animation data to aiAnimation et al
|
|
void ConvertAnimations()
|
|
{
|
|
const std::vector<const AnimationStack*>& animations = doc.AnimationStacks();
|
|
BOOST_FOREACH(const AnimationStack* stack, animations) {
|
|
ConvertAnimationStack(*stack);
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
std::string FixNodeName(const std::string& name)
|
|
{
|
|
// XXX handle prefix
|
|
return name;
|
|
}
|
|
|
|
|
|
typedef std::map<const AnimationCurveNode*, const AnimationLayer*> LayerMap;
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertAnimationStack(const AnimationStack& st)
|
|
{
|
|
aiAnimation* const anim = new aiAnimation();
|
|
animations.push_back(anim);
|
|
|
|
// strip AnimationStack:: prefix
|
|
std::string name = st.Name();
|
|
if(name.substr(0,16) == "AnimationStack::") {
|
|
name = name.substr(16);
|
|
}
|
|
|
|
anim->mName.Set(name);
|
|
const AnimationLayerList& layers = st.Layers();
|
|
|
|
// need to find all nodes for which we need to generate node animations -
|
|
// it may happen that we need to merge multiple layers, though.
|
|
// XXX: better use multi_map ..
|
|
typedef std::map<std::string, std::vector<const AnimationCurveNode*> > NodeMap;
|
|
NodeMap node_map;
|
|
|
|
// reverse mapping from curves to layers, much faster than querying
|
|
// the FBX DOM for it.
|
|
LayerMap layer_map;
|
|
|
|
BOOST_FOREACH(const AnimationLayer* layer, layers) {
|
|
ai_assert(layer);
|
|
|
|
const AnimationCurveNodeList& nodes = layer->Nodes();
|
|
BOOST_FOREACH(const AnimationCurveNode* node, nodes) {
|
|
ai_assert(node);
|
|
|
|
const Model* model = node->TargetNode();
|
|
ai_assert(model);
|
|
|
|
const std::string& name = FixNodeName(model->Name());
|
|
node_map[name].push_back(node);
|
|
|
|
layer_map[node] = layer;
|
|
}
|
|
}
|
|
|
|
// generate node animations
|
|
std::vector<aiNodeAnim*> node_anims;
|
|
|
|
try {
|
|
|
|
NodeMap node_property_map;
|
|
BOOST_FOREACH(const NodeMap::value_type& kv, node_map) {
|
|
node_property_map.clear();
|
|
|
|
ai_assert(kv.second.size());
|
|
|
|
const AnimationCurveNode* curve_node;
|
|
BOOST_FOREACH(const AnimationCurveNode* node, kv.second) {
|
|
ai_assert(node);
|
|
|
|
if (node->TargetProperty().empty()) {
|
|
FBXImporter::LogWarn("target property for animation curve not set");
|
|
continue;
|
|
}
|
|
|
|
curve_node = node;
|
|
if (node->Curves().empty()) {
|
|
FBXImporter::LogWarn("no animation curves assigned to AnimationCurveNode");
|
|
continue;
|
|
}
|
|
|
|
node_property_map[node->TargetProperty()].push_back(node);
|
|
}
|
|
|
|
ai_assert(curve_node);
|
|
|
|
const NodeMap::const_iterator itScale = node_property_map.find("Lcl Scaling");
|
|
const NodeMap::const_iterator itRotation = node_property_map.find("Lcl Rotation");
|
|
const NodeMap::const_iterator itTranslation = node_property_map.find("Lcl Translation");
|
|
|
|
const bool hasScale = itScale != node_property_map.end();
|
|
const bool hasRotation = itRotation != node_property_map.end();
|
|
const bool hasTranslation = itTranslation != node_property_map.end();
|
|
|
|
if (!hasScale && !hasRotation && !hasTranslation) {
|
|
FBXImporter::LogWarn("ignoring node animation, did not find transformation key frames");
|
|
continue;
|
|
}
|
|
|
|
aiNodeAnim* const na = new aiNodeAnim();
|
|
node_anims.push_back(na);
|
|
|
|
const PropertyTable& props = curve_node->TargetNode()->Props();
|
|
|
|
// if a particular transformation is not given, grab it from
|
|
// the corresponding node to meet the semantics of aiNodeAnim,
|
|
// which requires all of rotation, scaling and translation
|
|
// to be set.
|
|
if(hasScale) {
|
|
ConvertScaleKeys(na, (*itScale).second, layer_map);
|
|
}
|
|
else {
|
|
na->mScalingKeys = new aiVectorKey[1];
|
|
na->mNumScalingKeys = 1;
|
|
|
|
na->mScalingKeys[0].mTime = 0.;
|
|
na->mScalingKeys[0].mValue = PropertyGet(props,"Lcl Scaling",aiVector3D(1.f,1.f,1.f));
|
|
}
|
|
|
|
if(hasRotation) {
|
|
ConvertRotationKeys(na, (*itRotation).second, layer_map);
|
|
}
|
|
else {
|
|
na->mRotationKeys = new aiQuatKey[1];
|
|
na->mNumRotationKeys = 1;
|
|
|
|
na->mRotationKeys[0].mTime = 0.;
|
|
na->mRotationKeys[0].mValue = EulerToQuaternion(
|
|
PropertyGet(props,"Lcl Rotation",aiVector3D(0.f,0.f,0.f))
|
|
);
|
|
}
|
|
|
|
if(hasTranslation) {
|
|
ConvertTranslationKeys(na, (*itTranslation).second, layer_map);
|
|
}
|
|
else {
|
|
na->mPositionKeys = new aiVectorKey[1];
|
|
na->mNumPositionKeys = 1;
|
|
|
|
na->mPositionKeys[0].mTime = 0.;
|
|
na->mPositionKeys[0].mValue = PropertyGet(props,"Lcl Translation",aiVector3D(0.f,0.f,0.f));
|
|
}
|
|
}
|
|
}
|
|
catch(std::exception&) {
|
|
std::for_each(node_anims.begin(), node_anims.end(), Util::delete_fun<aiNodeAnim>());
|
|
throw;
|
|
}
|
|
|
|
if(node_anims.size()) {
|
|
anim->mChannels = new aiNodeAnim*[node_anims.size()]();
|
|
anim->mNumChannels = static_cast<unsigned int>(node_anims.size());
|
|
|
|
std::swap_ranges(node_anims.begin(),node_anims.end(),anim->mChannels);
|
|
}
|
|
}
|
|
|
|
// key (time), value, mapto (component index)
|
|
typedef boost::tuple< KeyTimeList*, KeyValueList*, unsigned int > KeyFrameList;
|
|
typedef std::vector<KeyFrameList> KeyFrameListList;
|
|
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
KeyFrameListList GetKeyframeList(const std::vector<const AnimationCurveNode*>& nodes)
|
|
{
|
|
KeyFrameListList inputs;
|
|
inputs.reserve(nodes.size()*3);
|
|
|
|
BOOST_FOREACH(const AnimationCurveNode* node, nodes) {
|
|
ai_assert(node);
|
|
|
|
const AnimationCurveMap& curves = node->Curves();
|
|
BOOST_FOREACH(const AnimationCurveMap::value_type& kv, curves) {
|
|
|
|
unsigned int mapto;
|
|
if (kv.first == "d|X") {
|
|
mapto = 0;
|
|
}
|
|
else if (kv.first == "d|Y") {
|
|
mapto = 1;
|
|
}
|
|
else if (kv.first == "d|Z") {
|
|
mapto = 2;
|
|
}
|
|
else {
|
|
FBXImporter::LogWarn("ignoring scale animation curve, did not recognize target component");
|
|
continue;
|
|
}
|
|
|
|
const AnimationCurve* const curve = kv.second;
|
|
ai_assert(curve->GetKeys().size() == curve->GetValues().size() && curve->GetKeys().size());
|
|
|
|
inputs.push_back(boost::make_tuple(&curve->GetKeys(), &curve->GetValues(), mapto));
|
|
}
|
|
}
|
|
return inputs; // pray for NRVO :-)
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
KeyTimeList GetKeyTimeList(const KeyFrameListList& inputs)
|
|
{
|
|
ai_assert(inputs.size());
|
|
|
|
// reserve some space upfront - it is likely that the keyframe lists
|
|
// have matching time values, so max(of all keyframe lists) should
|
|
// be a good estimate.
|
|
KeyTimeList keys;
|
|
|
|
size_t estimate = 0;
|
|
BOOST_FOREACH(const KeyFrameList& kfl, inputs) {
|
|
estimate = std::max(estimate, kfl.get<0>()->size());
|
|
}
|
|
|
|
keys.reserve(estimate);
|
|
|
|
std::vector<unsigned int> next_pos;
|
|
next_pos.resize(inputs.size(),0);
|
|
|
|
const size_t count = inputs.size();
|
|
while(true) {
|
|
|
|
uint64_t min_tick = std::numeric_limits<uint64_t>::max();
|
|
for (size_t i = 0; i < count; ++i) {
|
|
const KeyFrameList& kfl = inputs[i];
|
|
|
|
if (kfl.get<0>()->size() > next_pos[i] && kfl.get<0>()->at(next_pos[i]) < min_tick) {
|
|
min_tick = kfl.get<0>()->at(next_pos[i]);
|
|
}
|
|
}
|
|
|
|
if (min_tick == std::numeric_limits<uint64_t>::max()) {
|
|
break;
|
|
}
|
|
keys.push_back(min_tick);
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
const KeyFrameList& kfl = inputs[i];
|
|
|
|
|
|
while(kfl.get<0>()->size() > next_pos[i] && kfl.get<0>()->at(next_pos[i]) == min_tick) {
|
|
++next_pos[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
return keys;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void InterpolateKeys(aiVectorKey* valOut,const KeyTimeList& keys, const KeyFrameListList& inputs, const bool geom = false)
|
|
{
|
|
ai_assert(keys.size());
|
|
ai_assert(valOut);
|
|
|
|
std::vector<unsigned int> next_pos;
|
|
const size_t count = inputs.size();
|
|
|
|
next_pos.resize(inputs.size(),0);
|
|
|
|
BOOST_FOREACH(KeyTimeList::value_type time, keys) {
|
|
float result[3] = {0.0f, 0.0f, 0.0f};
|
|
if(geom) {
|
|
result[0] = result[1] = result[2] = 1.0f;
|
|
}
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
const KeyFrameList& kfl = inputs[i];
|
|
|
|
const size_t ksize = kfl.get<0>()->size();
|
|
if (ksize > next_pos[i] && kfl.get<0>()->at(next_pos[i]) == time) {
|
|
++next_pos[i];
|
|
}
|
|
|
|
const size_t id0 = next_pos[i]>0 ? next_pos[i]-1 : 0;
|
|
const size_t id1 = next_pos[i]==ksize ? ksize-1 : next_pos[i];
|
|
|
|
// use lerp for interpolation
|
|
const KeyValueList::value_type valueA = kfl.get<1>()->at(id0);
|
|
const KeyValueList::value_type valueB = kfl.get<1>()->at(id1);
|
|
|
|
const KeyTimeList::value_type timeA = kfl.get<0>()->at(id0);
|
|
const KeyTimeList::value_type timeB = kfl.get<0>()->at(id1);
|
|
|
|
// do the actual interpolation in double-precision arithmetics
|
|
// because it is a bit sensitive to rounding errors.
|
|
const double factor = timeB == timeA ? 0. : static_cast<double>((time - timeA) / (timeB - timeA));
|
|
const float interpValue = static_cast<float>(valueA + (valueB - valueA) * factor);
|
|
|
|
if(geom) {
|
|
result[kfl.get<2>()] *= interpValue;
|
|
}
|
|
else {
|
|
result[kfl.get<2>()] += interpValue;
|
|
}
|
|
}
|
|
|
|
valOut->mTime = static_cast<double>(time);
|
|
valOut->mValue.x = result[0];
|
|
valOut->mValue.y = result[1];
|
|
valOut->mValue.z = result[2];
|
|
|
|
++valOut;
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void InterpolateKeys(aiQuatKey* valOut,const KeyTimeList& keys, const KeyFrameListList& inputs, const bool geom = false)
|
|
{
|
|
ai_assert(keys.size());
|
|
ai_assert(valOut);
|
|
|
|
boost::scoped_array<aiVectorKey> temp(new aiVectorKey[keys.size()]);
|
|
InterpolateKeys(temp.get(),keys,inputs,geom);
|
|
|
|
for (size_t i = 0, c = keys.size(); i < c; ++i) {
|
|
|
|
valOut[i].mTime = temp[i].mTime;
|
|
valOut[i].mValue = EulerToQuaternion(temp[i].mValue);
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// euler xyz -> quat
|
|
aiQuaternion EulerToQuaternion(const aiVector3D& rot)
|
|
{
|
|
aiMatrix4x4 m, mtemp;
|
|
if(fabs(rot.x) > 1e-6f) {
|
|
m *= aiMatrix4x4::RotationX(rot.x,mtemp);
|
|
}
|
|
if(fabs(rot.y) > 1e-6f) {
|
|
m *= aiMatrix4x4::RotationY(rot.y,mtemp);
|
|
}
|
|
if(fabs(rot.z) > 1e-6f) {
|
|
m *= aiMatrix4x4::RotationZ(rot.z,mtemp);
|
|
}
|
|
|
|
return aiQuaternion(aiMatrix3x3(m));
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertScaleKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& layers)
|
|
{
|
|
ai_assert(nodes.size());
|
|
|
|
// XXX for now, assume scale should be blended geometrically (i.e. two
|
|
// layers should be multiplied with each other). There is a FBX
|
|
// property in the layer to specify the behaviour, though.
|
|
|
|
const KeyFrameListList& inputs = GetKeyframeList(nodes);
|
|
const KeyTimeList& keys = GetKeyTimeList(inputs);
|
|
|
|
na->mNumScalingKeys = static_cast<unsigned int>(keys.size());
|
|
na->mScalingKeys = new aiVectorKey[keys.size()];
|
|
InterpolateKeys(na->mScalingKeys, keys, inputs, true);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertTranslationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& layers)
|
|
{
|
|
ai_assert(nodes.size());
|
|
|
|
// XXX see notes in ConvertScaleKeys()
|
|
const KeyFrameListList& inputs = GetKeyframeList(nodes);
|
|
const KeyTimeList& keys = GetKeyTimeList(inputs);
|
|
|
|
na->mNumPositionKeys = static_cast<unsigned int>(keys.size());
|
|
na->mPositionKeys = new aiVectorKey[keys.size()];
|
|
InterpolateKeys(na->mPositionKeys, keys, inputs, false);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertRotationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& layers)
|
|
{
|
|
ai_assert(nodes.size());
|
|
|
|
// XXX see notes in ConvertScaleKeys()
|
|
const std::vector< KeyFrameList >& inputs = GetKeyframeList(nodes);
|
|
const KeyTimeList& keys = GetKeyTimeList(inputs);
|
|
|
|
na->mNumRotationKeys = static_cast<unsigned int>(keys.size());
|
|
na->mRotationKeys = new aiQuatKey[keys.size()];
|
|
InterpolateKeys(na->mRotationKeys, keys, inputs, false);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// copy generated meshes, animations, lights, cameras and textures to the output scene
|
|
void TransferDataToScene()
|
|
{
|
|
ai_assert(!out->mMeshes && !out->mNumMeshes);
|
|
|
|
// note: the trailing () ensures initialization with NULL - not
|
|
// many C++ users seem to know this, so pointing it out to avoid
|
|
// confusion why this code works.
|
|
out->mMeshes = new aiMesh*[meshes.size()]();
|
|
out->mNumMeshes = static_cast<unsigned int>(meshes.size());
|
|
|
|
std::swap_ranges(meshes.begin(),meshes.end(),out->mMeshes);
|
|
|
|
|
|
if(materials.size()) {
|
|
out->mMaterials = new aiMaterial*[materials.size()]();
|
|
out->mNumMaterials = static_cast<unsigned int>(materials.size());
|
|
|
|
std::swap_ranges(materials.begin(),materials.end(),out->mMaterials);
|
|
}
|
|
|
|
if(animations.size()) {
|
|
out->mAnimations = new aiAnimation*[animations.size()]();
|
|
out->mNumAnimations = static_cast<unsigned int>(animations.size());
|
|
|
|
std::swap_ranges(animations.begin(),animations.end(),out->mAnimations);
|
|
}
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
// 0: not assigned yet, others: index is value - 1
|
|
unsigned int defaultMaterialIndex;
|
|
|
|
std::vector<aiMesh*> meshes;
|
|
std::vector<aiMaterial*> materials;
|
|
std::vector<aiAnimation*> animations;
|
|
|
|
typedef std::map<const Material*, unsigned int> MaterialMap;
|
|
MaterialMap materials_converted;
|
|
|
|
|
|
typedef std::map<const Geometry*, std::vector<unsigned int> > MeshMap;
|
|
MeshMap meshes_converted;
|
|
|
|
aiScene* const out;
|
|
const FBX::Document& doc;
|
|
};
|
|
|
|
//} // !anon
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ConvertToAssimpScene(aiScene* out, const Document& doc)
|
|
{
|
|
Converter converter(out,doc);
|
|
}
|
|
|
|
} // !FBX
|
|
} // !Assimp
|
|
|
|
#endif
|