assimp/code/MD5Loader.cpp

712 lines
25 KiB
C++

/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file MD5Loader.cpp
* @brief Implementation of the MD5 importer class
*/
#include "AssimpPCH.h"
#ifndef ASSIMP_BUILD_NO_MD5_IMPORTER
// internal headers
#include "MaterialSystem.h"
#include "RemoveComments.h"
#include "MD5Loader.h"
#include "StringComparison.h"
#include "fast_atof.h"
#include "SkeletonMeshBuilder.h"
using namespace Assimp;
// Minimum weight value. Weights inside [-n ... n] are ignored
#define AI_MD5_WEIGHT_EPSILON 1e-5f
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
MD5Importer::MD5Importer()
: configNoAutoLoad (false)
{}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
MD5Importer::~MD5Importer()
{}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool MD5Importer::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const
{
const std::string extension = GetExtension(pFile);
if (extension == "md5anim" || extension == "md5mesh" || extension == "md5camera")
return true;
else if (!extension.length() || checkSig) {
if (!pIOHandler)
return true;
const char* tokens[] = {"MD5Version"};
return SearchFileHeaderForToken(pIOHandler,pFile,tokens,1);
}
return false;
}
// ------------------------------------------------------------------------------------------------
// Get list of all supported extensions
void MD5Importer::GetExtensionList(std::string& append)
{
append.append("*.md5mesh;*.md5anim;*.md5camera");
}
// ------------------------------------------------------------------------------------------------
// Setup import properties
void MD5Importer::SetupProperties(const Importer* pImp)
{
// AI_CONFIG_IMPORT_MD5_NO_ANIM_AUTOLOAD
configNoAutoLoad = (0 != pImp->GetPropertyInteger(AI_CONFIG_IMPORT_MD5_NO_ANIM_AUTOLOAD,0));
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void MD5Importer::InternReadFile( const std::string& pFile,
aiScene* _pScene, IOSystem* _pIOHandler)
{
pIOHandler = _pIOHandler;
pScene = _pScene;
bHadMD5Mesh = bHadMD5Anim = bHadMD5Camera = false;
// remove the file extension
std::string::size_type pos = pFile.find_last_of('.');
mFile = (std::string::npos == pos ? pFile : pFile.substr(0,pos+1));
const std::string extension = GetExtension(pFile);
try {
if (extension == "md5camera") {
LoadMD5CameraFile();
}
else if (configNoAutoLoad || extension == "md5anim") {
// determine file extension and process just *one* file
if (extension.length() == 0) {
/* fixme */
}
if (extension == "md5anim") {
LoadMD5AnimFile();
}
else if (extension == "md5mesh") {
LoadMD5MeshFile();
}
}
else {
LoadMD5MeshFile();
LoadMD5AnimFile();
}
}
catch ( ImportErrorException* ex) {
UnloadFileFromMemory();
throw ex;
}
// make sure we have at least one file
if (!bHadMD5Mesh && !bHadMD5Anim && !bHadMD5Camera)
throw new ImportErrorException("Failed to read valid contents from this MD5 data set");
// the output scene wouldn't pass the validation without this flag
if (!bHadMD5Mesh)
pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
}
// ------------------------------------------------------------------------------------------------
// Load a file into a memory buffer
void MD5Importer::LoadFileIntoMemory (IOStream* file)
{
ai_assert(NULL != file);
fileSize = (unsigned int)file->FileSize();
// allocate storage and copy the contents of the file to a memory buffer
pScene = pScene;
mBuffer = new char[fileSize+1];
file->Read( (void*)mBuffer, 1, fileSize);
iLineNumber = 1;
// append a terminal 0
mBuffer[fileSize] = '\0';
// now remove all line comments from the file
CommentRemover::RemoveLineComments("//",mBuffer,' ');
}
// ------------------------------------------------------------------------------------------------
// Unload the current memory buffer
void MD5Importer::UnloadFileFromMemory ()
{
// delete the file buffer
delete[] mBuffer;
mBuffer = NULL;
fileSize = 0;
}
// ------------------------------------------------------------------------------------------------
// Build unique vertices
void MD5Importer::MakeDataUnique (MD5::MeshDesc& meshSrc)
{
std::vector<bool> abHad(meshSrc.mVertices.size(),false);
// allocate enough storage to keep the output structures
const unsigned int iNewNum = meshSrc.mFaces.size()*3;
unsigned int iNewIndex = meshSrc.mVertices.size();
meshSrc.mVertices.resize(iNewNum);
// try to guess how much storage we'll need for new weights
const float fWeightsPerVert = meshSrc.mWeights.size() / (float)iNewIndex;
const unsigned int guess = (unsigned int)(fWeightsPerVert*iNewNum);
meshSrc.mWeights.reserve(guess + (guess >> 3)); // + 12.5% as buffer
for (FaceList::const_iterator iter = meshSrc.mFaces.begin(),iterEnd = meshSrc.mFaces.end();
iter != iterEnd;++iter)
{
const aiFace& face = *iter;
for (unsigned int i = 0; i < 3;++i)
{
if (abHad[face.mIndices[i]]) {
// generate a new vertex
meshSrc.mVertices[iNewIndex] = meshSrc.mVertices[face.mIndices[i]];
face.mIndices[i] = iNewIndex++;
}
else abHad[face.mIndices[i]] = true;
}
}
}
// ------------------------------------------------------------------------------------------------
// Recursive node graph construction from a MD5MESH
void MD5Importer::AttachChilds_Mesh(int iParentID,aiNode* piParent, BoneList& bones)
{
ai_assert(NULL != piParent && !piParent->mNumChildren);
// First find out how many children we'll have
for (int i = 0; i < (int)bones.size();++i) {
if (iParentID != i && bones[i].mParentIndex == iParentID) {
++piParent->mNumChildren;
}
}
if (piParent->mNumChildren) {
piParent->mChildren = new aiNode*[piParent->mNumChildren];
for (int i = 0; i < (int)bones.size();++i) {
// (avoid infinite recursion)
if (iParentID != i && bones[i].mParentIndex == iParentID) {
aiNode* pc;
// setup a new node
*piParent->mChildren++ = pc = new aiNode();
pc->mName = aiString(bones[i].mName);
pc->mParent = piParent;
// get the transformation matrix from rotation and translational components
aiQuaternion quat;
MD5::ConvertQuaternion ( bones[i].mRotationQuat, quat );
bones[i].mTransform = aiMatrix4x4 ( quat.GetMatrix());
bones[i].mTransform.a4 = bones[i].mPositionXYZ.x;
bones[i].mTransform.b4 = bones[i].mPositionXYZ.y;
bones[i].mTransform.c4 = bones[i].mPositionXYZ.z;
// store it for later use
pc->mTransformation = bones[i].mInvTransform = bones[i].mTransform;
bones[i].mInvTransform.Inverse();
// the transformations for each bone are absolute, so we need to multiply them
// with the inverse of the absolute matrix of the parent joint
if (-1 != iParentID) {
pc->mTransformation = bones[iParentID].mInvTransform * pc->mTransformation;
}
// add children to this node, too
AttachChilds_Mesh( i, pc, bones);
}
}
// undo offset computations
piParent->mChildren -= piParent->mNumChildren;
}
}
// ------------------------------------------------------------------------------------------------
// Recursive node graph construction from a MD5ANIM
void MD5Importer::AttachChilds_Anim(int iParentID,aiNode* piParent, AnimBoneList& bones,const aiNodeAnim** node_anims)
{
ai_assert(NULL != piParent && !piParent->mNumChildren);
// First find out how many children we'll have
for (int i = 0; i < (int)bones.size();++i) {
if (iParentID != i && bones[i].mParentIndex == iParentID) {
++piParent->mNumChildren;
}
}
if (piParent->mNumChildren) {
piParent->mChildren = new aiNode*[piParent->mNumChildren];
for (int i = 0; i < (int)bones.size();++i) {
// (avoid infinite recursion)
if (iParentID != i && bones[i].mParentIndex == iParentID)
{
aiNode* pc;
// setup a new node
*piParent->mChildren++ = pc = new aiNode();
pc->mName = aiString(bones[i].mName);
pc->mParent = piParent;
// get the corresponding animation channel and its first frame
const aiNodeAnim** cur = node_anims;
while ((**cur).mNodeName != pc->mName)++cur;
aiMatrix4x4::Translation((**cur).mPositionKeys[0].mValue,pc->mTransformation);
pc->mTransformation = pc->mTransformation * aiMatrix4x4((**cur).mRotationKeys[0].mValue.GetMatrix()) ;
// add children to this node, too
AttachChilds_Anim( i, pc, bones,node_anims);
}
}
// undo offset computations
piParent->mChildren -= piParent->mNumChildren;
}
}
// ------------------------------------------------------------------------------------------------
// Load a MD5MESH file
void MD5Importer::LoadMD5MeshFile ()
{
std::string pFile = mFile + "md5mesh";
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile, "rb"));
// Check whether we can read from the file
if( file.get() == NULL) {
DefaultLogger::get()->warn("Failed to read MD5MESH file: " + pFile);
return;
}
bHadMD5Mesh = true;
LoadFileIntoMemory(file.get());
// now construct a parser and parse the file
MD5::MD5Parser parser(mBuffer,fileSize);
// load the mesh information from it
MD5::MD5MeshParser meshParser(parser.mSections);
// create the bone hierarchy - first the root node and dummy nodes for all meshes
pScene->mRootNode = new aiNode("<MD5_Root>");
pScene->mRootNode->mNumChildren = 2;
pScene->mRootNode->mChildren = new aiNode*[2];
// build the hierarchy from the MD5MESH file
aiNode* pcNode = pScene->mRootNode->mChildren[1] = new aiNode();
pcNode->mName.Set("<MD5_Hierarchy>");
pcNode->mParent = pScene->mRootNode;
AttachChilds_Mesh(-1,pcNode,meshParser.mJoints);
pcNode = pScene->mRootNode->mChildren[0] = new aiNode();
pcNode->mName.Set("<MD5_Mesh>");
pcNode->mParent = pScene->mRootNode;
#if 0
if (pScene->mRootNode->mChildren[1]->mNumChildren) /* start at the right hierarchy level */
SkeletonMeshBuilder skeleton_maker(pScene,pScene->mRootNode->mChildren[1]->mChildren[0]);
#else
std::vector<MD5::MeshDesc>::const_iterator end = meshParser.mMeshes.end();
// FIX: MD5 files exported from Blender can have empty meshes
for (std::vector<MD5::MeshDesc>::const_iterator it = meshParser.mMeshes.begin(),end = meshParser.mMeshes.end(); it != end;++it) {
if (!(*it).mFaces.empty() && !(*it).mVertices.empty())
++pScene->mNumMaterials;
}
// generate all meshes
pScene->mNumMeshes = pScene->mNumMaterials;
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
pScene->mMaterials = new aiMaterial*[pScene->mNumMeshes];
// storage for node mesh indices
pcNode->mNumMeshes = pScene->mNumMeshes;
pcNode->mMeshes = new unsigned int[pcNode->mNumMeshes];
for (unsigned int m = 0; m < pcNode->mNumMeshes;++m)
pcNode->mMeshes[m] = m;
unsigned int n = 0;
for (std::vector<MD5::MeshDesc>::iterator it = meshParser.mMeshes.begin(),end = meshParser.mMeshes.end(); it != end;++it) {
MD5::MeshDesc& meshSrc = *it;
if (meshSrc.mFaces.empty() || meshSrc.mVertices.empty())
continue;
aiMesh* mesh = pScene->mMeshes[n] = new aiMesh();
mesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;
// generate unique vertices in our internal verbose format
MakeDataUnique(meshSrc);
mesh->mNumVertices = (unsigned int) meshSrc.mVertices.size();
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices];
mesh->mNumUVComponents[0] = 2;
// copy texture coordinates
aiVector3D* pv = mesh->mTextureCoords[0];
for (MD5::VertexList::const_iterator iter = meshSrc.mVertices.begin();iter != meshSrc.mVertices.end();++iter,++pv) {
pv->x = (*iter).mUV.x;
pv->y = 1.0f-(*iter).mUV.y; // D3D to OpenGL
pv->z = 0.0f;
}
// sort all bone weights - per bone
unsigned int* piCount = new unsigned int[meshParser.mJoints.size()];
::memset(piCount,0,sizeof(unsigned int)*meshParser.mJoints.size());
for (MD5::VertexList::const_iterator iter = meshSrc.mVertices.begin();iter != meshSrc.mVertices.end();++iter,++pv) {
for (unsigned int jub = (*iter).mFirstWeight, w = jub; w < jub + (*iter).mNumWeights;++w)
{
MD5::WeightDesc& desc = meshSrc.mWeights[w];
/* FIX for some invalid exporters */
if (!(desc.mWeight < AI_MD5_WEIGHT_EPSILON && desc.mWeight >= -AI_MD5_WEIGHT_EPSILON ))
++piCount[desc.mBone];
}
}
// check how many we will need
for (unsigned int p = 0; p < meshParser.mJoints.size();++p)
if (piCount[p])mesh->mNumBones++;
if (mesh->mNumBones) // just for safety
{
mesh->mBones = new aiBone*[mesh->mNumBones];
for (unsigned int q = 0,h = 0; q < meshParser.mJoints.size();++q)
{
if (!piCount[q])continue;
aiBone* p = mesh->mBones[h] = new aiBone();
p->mNumWeights = piCount[q];
p->mWeights = new aiVertexWeight[p->mNumWeights];
p->mName = aiString(meshParser.mJoints[q].mName);
p->mOffsetMatrix = meshParser.mJoints[q].mInvTransform;
// store the index for later use
MD5::BoneDesc& boneSrc = meshParser.mJoints[q];
boneSrc.mMap = h++;
// compute w-component of quaternion
MD5::ConvertQuaternion( boneSrc.mRotationQuat, boneSrc.mRotationQuatConverted );
}
//unsigned int g = 0;
pv = mesh->mVertices;
for (MD5::VertexList::const_iterator iter = meshSrc.mVertices.begin();iter != meshSrc.mVertices.end();++iter,++pv) {
// compute the final vertex position from all single weights
*pv = aiVector3D();
// there are models which have weights which don't sum to 1 ...
float fSum = 0.0f;
for (unsigned int jub = (*iter).mFirstWeight, w = jub; w < jub + (*iter).mNumWeights;++w)
fSum += meshSrc.mWeights[w].mWeight;
if (!fSum) {
DefaultLogger::get()->error("MD5MESH: The sum of all vertex bone weights is 0");
continue;
}
// process bone weights
for (unsigned int jub = (*iter).mFirstWeight, w = jub; w < jub + (*iter).mNumWeights;++w)
{
MD5::WeightDesc& desc = meshSrc.mWeights[w];
if ( desc.mWeight < AI_MD5_WEIGHT_EPSILON && desc.mWeight >= -AI_MD5_WEIGHT_EPSILON)
continue;
const float fNewWeight = desc.mWeight / fSum;
// transform the local position into worldspace
MD5::BoneDesc& boneSrc = meshParser.mJoints[desc.mBone];
const aiVector3D v = boneSrc.mRotationQuatConverted.Rotate (desc.vOffsetPosition);
// use the original weight to compute the vertex position
// (some MD5s seem to depend on the invalid weight values ...)
*pv += ((boneSrc.mPositionXYZ+v)* desc.mWeight);
aiBone* bone = mesh->mBones[boneSrc.mMap];
*bone->mWeights++ = aiVertexWeight((unsigned int)(pv-mesh->mVertices),fNewWeight);
}
}
// undo our nice offset tricks ...
for (unsigned int p = 0; p < mesh->mNumBones;++p)
mesh->mBones[p]->mWeights -= mesh->mBones[p]->mNumWeights;
}
delete[] piCount;
// now setup all faces - we can directly copy the list
// (however, take care that the aiFace destructor doesn't delete the mIndices array)
mesh->mNumFaces = (unsigned int)meshSrc.mFaces.size();
mesh->mFaces = new aiFace[mesh->mNumFaces];
for (unsigned int c = 0; c < mesh->mNumFaces;++c)
{
mesh->mFaces[c].mNumIndices = 3;
mesh->mFaces[c].mIndices = meshSrc.mFaces[c].mIndices;
meshSrc.mFaces[c].mIndices = NULL;
}
// generate a material for the mesh
MaterialHelper* mat = new MaterialHelper();
pScene->mMaterials[n] = mat;
// insert the typical doom3 textures:
// nnn_local.tga - normal map
// nnn_h.tga - height map
// nnn_s.tga - specular map
// nnn_d.tga - diffuse map
if (meshSrc.mShader.length && !strchr(meshSrc.mShader.data,'.')) {
aiString temp(meshSrc.mShader);
temp.Append("_local.tga");
mat->AddProperty(&temp,AI_MATKEY_TEXTURE_NORMALS(0));
temp = aiString(meshSrc.mShader);
temp.Append("_s.tga");
mat->AddProperty(&temp,AI_MATKEY_TEXTURE_SPECULAR(0));
temp = aiString(meshSrc.mShader);
temp.Append("_d.tga");
mat->AddProperty(&temp,AI_MATKEY_TEXTURE_DIFFUSE(0));
temp = aiString(meshSrc.mShader);
temp.Append("_h.tga");
mat->AddProperty(&temp,AI_MATKEY_TEXTURE_HEIGHT(0));
// set this also as material name
mat->AddProperty(&meshSrc.mShader,AI_MATKEY_NAME);
}
else mat->AddProperty(&meshSrc.mShader,AI_MATKEY_TEXTURE_DIFFUSE(0));
mesh->mMaterialIndex = n++;
}
#endif
// delete the file again
UnloadFileFromMemory();
}
// ------------------------------------------------------------------------------------------------
// Load an MD5ANIM file
void MD5Importer::LoadMD5AnimFile ()
{
std::string pFile = mFile + "md5anim";
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile, "rb"));
// Check whether we can read from the file
if( file.get() == NULL) {
DefaultLogger::get()->warn("Failed to read MD5ANIM file: " + pFile);
return;
}
bHadMD5Anim = true;
LoadFileIntoMemory(file.get());
// parse the basic file structure
MD5::MD5Parser parser(mBuffer,fileSize);
// load the animation information from the parse tree
MD5::MD5AnimParser animParser(parser.mSections);
// generate and fill the output animation
if (!animParser.mAnimatedBones.empty()) {
pScene->mAnimations = new aiAnimation*[pScene->mNumAnimations = 1];
aiAnimation* anim = pScene->mAnimations[0] = new aiAnimation();
anim->mNumChannels = (unsigned int)animParser.mAnimatedBones.size();
anim->mChannels = new aiNodeAnim*[anim->mNumChannels];
for (unsigned int i = 0; i < anim->mNumChannels;++i) {
aiNodeAnim* node = anim->mChannels[i] = new aiNodeAnim();
node->mNodeName = aiString( animParser.mAnimatedBones[i].mName );
// allocate storage for the keyframes
node->mNumPositionKeys = node->mNumRotationKeys = (unsigned int)animParser.mFrames.size();
node->mPositionKeys = new aiVectorKey[node->mNumPositionKeys];
node->mRotationKeys = new aiQuatKey[node->mNumPositionKeys];
}
// 1 tick == 1 frame
anim->mTicksPerSecond = animParser.fFrameRate;
for (FrameList::const_iterator iter = animParser.mFrames.begin(), iterEnd = animParser.mFrames.end();iter != iterEnd;++iter){
double dTime = (double)(*iter).iIndex;
if (!(*iter).mValues.empty())
{
// now process all values in there ... read all joints
aiNodeAnim** pcAnimNode = anim->mChannels;
MD5::BaseFrameDesc* pcBaseFrame = &animParser.mBaseFrames[0];
for (AnimBoneList::const_iterator iter2 = animParser.mAnimatedBones.begin(); iter2 != animParser.mAnimatedBones.end();++iter2,
++pcAnimNode,++pcBaseFrame)
{
if((*iter2).iFirstKeyIndex >= (*iter).mValues.size()) {
DefaultLogger::get()->error("MD5: Keyframe index is out of range");
continue;
}
const float* fpCur = &(*iter).mValues[(*iter2).iFirstKeyIndex];
aiNodeAnim* pcCurAnimBone = *pcAnimNode;
aiVectorKey* vKey = pcCurAnimBone->mPositionKeys++;
aiQuatKey* qKey = pcCurAnimBone->mRotationKeys++;
aiVector3D vTemp;
// translational component
for (unsigned int i = 0; i < 3; ++i) {
if ((*iter2).iFlags & (1u << i))
vKey->mValue[i] = *fpCur++;
else vKey->mValue[i] = pcBaseFrame->vPositionXYZ[i];
}
// orientation component
for (unsigned int i = 0; i < 3; ++i) {
if ((*iter2).iFlags & (8u << i))
vTemp[i] = *fpCur++;
else vTemp[i] = pcBaseFrame->vRotationQuat[i];
}
MD5::ConvertQuaternion(vTemp, qKey->mValue);
aiMatrix4x4 m;
aiMatrix4x4::Translation(vKey->mValue,m);
m = m*aiMatrix4x4( qKey->mValue.GetMatrix() );
m.DecomposeNoScaling(qKey->mValue,vKey->mValue);
qKey->mTime = vKey->mTime = dTime;
}
}
// compute the duration of the animation
anim->mDuration = std::max(dTime,anim->mDuration);
}
// undo our offset computations
for (unsigned int i = 0; i < anim->mNumChannels;++i) {
aiNodeAnim* node = anim->mChannels[i];
node->mPositionKeys -= node->mNumPositionKeys;
node->mRotationKeys -= node->mNumPositionKeys;
}
// If we didn't build the hierarchy yet (== we didn't load a MD5MESH),
// construct it now from the data given in the MD5ANIM.
if (!pScene->mRootNode) {
pScene->mRootNode = new aiNode();
pScene->mRootNode->mName.Set("<MD5_Hierarchy>");
AttachChilds_Anim(-1,pScene->mRootNode,animParser.mAnimatedBones,(const aiNodeAnim**)anim->mChannels);
// Call SkeletonMeshBuilder to construct a mesh to represent the shape
if (pScene->mRootNode->mNumChildren) {
SkeletonMeshBuilder skeleton_maker(pScene,pScene->mRootNode->mChildren[0]);
}
}
}
// delete the file again
UnloadFileFromMemory();
}
// ------------------------------------------------------------------------------------------------
// Load an MD5CAMERA file
void MD5Importer::LoadMD5CameraFile ()
{
std::string pFile = mFile + "md5camera";
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile, "rb"));
// Check whether we can read from the file
if( file.get() == NULL) {
throw new ImportErrorException("Failed to read MD5CAMERA file: " + pFile);
}
bHadMD5Camera = true;
LoadFileIntoMemory(file.get());
// parse the basic file structure
MD5::MD5Parser parser(mBuffer,fileSize);
// load the camera animation data from the parse tree
MD5::MD5CameraParser cameraParser(parser.mSections);
if (cameraParser.frames.empty())
throw new ImportErrorException("MD5CAMERA: No frames parsed");
std::vector<unsigned int>& cuts = cameraParser.cuts;
std::vector<MD5::CameraAnimFrameDesc>& frames = cameraParser.frames;
// Construct output graph - a simple dummy node
aiNode* root = pScene->mRootNode = new aiNode();
root->mName.Set("<MD5Camera>");
// ... but with one camera assigned to it
pScene->mCameras = new aiCamera*[pScene->mNumCameras = 1];
aiCamera* cam = pScene->mCameras[0] = new aiCamera();
cam->mName = root->mName;
// FIXME: Fov is currently set to the first frame's value
cam->mHorizontalFOV = AI_DEG_TO_RAD( frames.front().fFOV );
// every cut is written to a separate aiAnimation
if (!cuts.size()) {
cuts.push_back(0);
cuts.push_back(frames.size()-1);
}
else {
cuts.insert(cuts.begin(),0);
if (cuts.back() < frames.size()-1)
cuts.push_back(frames.size()-1);
}
pScene->mNumAnimations = cuts.size()-1;
aiAnimation** tmp = pScene->mAnimations = new aiAnimation*[pScene->mNumAnimations];
for (std::vector<unsigned int>::const_iterator it = cuts.begin(); it != cuts.end()-1; ++it) {
aiAnimation* anim = *tmp++ = new aiAnimation();
anim->mName.length = ::sprintf(anim->mName.data,"anim%i_from_%i_to_%i",it-cuts.begin(),(*it),*(it+1));
anim->mTicksPerSecond = cameraParser.fFrameRate;
anim->mChannels = new aiNodeAnim*[anim->mNumChannels = 1];
aiNodeAnim* nd = anim->mChannels[0] = new aiNodeAnim();
nd->mNodeName.Set("<MD5Camera>");
nd->mNumPositionKeys = nd->mNumRotationKeys = *(it+1) - (*it);
nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys];
nd->mRotationKeys = new aiQuatKey [nd->mNumRotationKeys];
for (unsigned int i = 0; i < nd->mNumPositionKeys; ++i) {
nd->mPositionKeys[i].mValue = frames[*it+i].vPositionXYZ;
MD5::ConvertQuaternion(frames[*it+i].vRotationQuat,nd->mRotationKeys[i].mValue);
nd->mRotationKeys[i].mTime = nd->mPositionKeys[i].mTime = *it+i;
}
}
}
#endif // !! ASSIMP_BUILD_NO_MD5_IMPORTER