assimp/code/M3D/m3d.h

5613 lines
246 KiB
C++

/*
* m3d.h
*
* Copyright (C) 2019 bzt (bztsrc@gitlab)
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* @brief ANSI C89 / C++11 single header importer / exporter SDK for the Model 3D (.M3D) format
* https://gitlab.com/bztsrc/model3d
*
* PNG decompressor included from (with minor modifications to make it C89 valid):
* stb_image - v2.13 - public domain image loader - http://nothings.org/stb_image.h
*
* @version: 1.0.0
*/
#ifndef _M3D_H_
#define _M3D_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
/*** configuration ***/
#ifndef M3D_MALLOC
# define M3D_MALLOC(sz) malloc(sz)
#endif
#ifndef M3D_REALLOC
# define M3D_REALLOC(p,nsz) realloc(p,nsz)
#endif
#ifndef M3D_FREE
# define M3D_FREE(p) free(p)
#endif
#ifndef M3D_LOG
# define M3D_LOG(x)
#endif
#ifndef M3D_APIVERSION
#define M3D_APIVERSION 0x0100
#ifndef M3D_DOUBLE
typedef float M3D_FLOAT;
#ifndef M3D_EPSILON
/* carefully choosen for IEEE 754 don't change */
#define M3D_EPSILON ((M3D_FLOAT)1e-7)
#endif
#else
typedef double M3D_FLOAT;
#ifndef M3D_EPSILON
#define M3D_EPSILON ((M3D_FLOAT)1e-14)
#endif
#endif
#if !defined(M3D_SMALLINDEX)
typedef uint32_t M3D_INDEX;
#define M3D_UNDEF 0xffffffff
#define M3D_INDEXMAX 0xfffffffe
#else
typedef uint16_t M3D_INDEX;
#define M3D_UNDEF 0xffff
#define M3D_INDEXMAX 0xfffe
#endif
#define M3D_NOTDEFINED 0xffffffff
#ifndef M3D_NUMBONE
#define M3D_NUMBONE 4
#endif
#ifndef M3D_BONEMAXLEVEL
#define M3D_BONEMAXLEVEL 8
#endif
#ifndef _MSC_VER
#define _inline __inline__
#define _pack __attribute__((packed))
#define _unused __attribute__((unused))
#else
#define _inline
#define _pack
#define _unused __pragma(warning(suppress:4100))
#endif
#ifndef __cplusplus
#define _register register
#else
#define _register
#endif
/*** File format structures ***/
/**
* M3D file format structure
* 3DMO m3dchunk_t file header chunk, may followed by compressed data
* HEAD m3dhdr_t model header chunk
* n x m3dchunk_t more chunks follow
* PRVW preview chunk (optional)
* CMAP color map chunk (optional)
* TMAP texture map chunk (optional)
* VRTS vertex data chunk (optional if it's a material library)
* BONE bind-pose skeleton, bone hierarchy chunk (optional)
* n x m3db_t contains propably more, but at least one bone
* n x m3ds_t skin group records
* MTRL* material chunk(s), can be more (optional)
* n x m3dp_t each material contains propapbly more, but at least one property
* the properties are configurable with a static array, see m3d_propertytypes
* n x m3dchunk_t at least one, but maybe more face chunks
* PROC* procedural face, or
* MESH* triangle mesh (vertex index list) or
* SHPE* mathematical shapes like parameterized surfaces
* LBLS* annotation label chunks, can be more (optional)
* ACTN* action chunk(s), animation-pose skeletons, can be more (optional)
* n x m3dfr_t each action contains probably more, but at least one frame
* n x m3dtr_t each frame contains probably more, but at least one transformation
* ASET* inlined asset chunk(s), can be more (optional)
* OMD3 end chunk
*
* Typical chunks for a game engine: 3DMO, HEAD, CMAP, TMAP, VRTS, BONE, MTRL, MESH, ACTN, OMD3
* Typical chunks for CAD software: 3DMO, HEAD, PRVW, CMAP, TMAP, VRTS, MTRL, SHPE, LBLS, OMD3
*/
#ifdef _MSC_VER
#pragma pack(push)
#pragma pack(1)
#endif
typedef struct {
char magic[4];
uint32_t length;
float scale; /* deliberately not M3D_FLOAT */
uint32_t types;
} _pack m3dhdr_t;
typedef struct {
char magic[4];
uint32_t length;
} _pack m3dchunk_t;
#ifdef _MSC_VER
#pragma pack(pop)
#endif
/*** in-memory model structure ***/
/* textmap entry */
typedef struct {
M3D_FLOAT u;
M3D_FLOAT v;
} m3dti_t;
#define m3d_textureindex_t m3dti_t
/* texture */
typedef struct {
char *name; /* texture name */
uint8_t *d; /* pixels data */
uint16_t w; /* width */
uint16_t h; /* height */
uint8_t f; /* format, 1 = grayscale, 2 = grayscale+alpha, 3 = rgb, 4 = rgba */
} m3dtx_t;
#define m3d_texturedata_t m3dtx_t
typedef struct {
M3D_INDEX vertexid;
M3D_FLOAT weight;
} m3dw_t;
#define m3d_weight_t m3dw_t
/* bone entry */
typedef struct {
M3D_INDEX parent; /* parent bone index */
char *name; /* name for this bone */
M3D_INDEX pos; /* vertex index position */
M3D_INDEX ori; /* vertex index orientation (quaternion) */
M3D_INDEX numweight; /* number of controlled vertices */
m3dw_t *weight; /* weights for those vertices */
M3D_FLOAT mat4[16]; /* transformation matrix */
} m3db_t;
#define m3d_bone_t m3db_t
/* skin: bone per vertex entry */
typedef struct {
M3D_INDEX boneid[M3D_NUMBONE];
M3D_FLOAT weight[M3D_NUMBONE];
} m3ds_t;
#define m3d_skin_t m3ds_t
/* vertex entry */
typedef struct {
M3D_FLOAT x; /* 3D coordinates and weight */
M3D_FLOAT y;
M3D_FLOAT z;
M3D_FLOAT w;
uint32_t color; /* default vertex color */
M3D_INDEX skinid; /* skin index */
#ifdef M3D_VERTEXTYPE
uint8_t type;
#endif
} m3dv_t;
#define m3d_vertex_t m3dv_t
/* material property formats */
enum {
m3dpf_color,
m3dpf_uint8,
m3dpf_uint16,
m3dpf_uint32,
m3dpf_float,
m3dpf_map
};
typedef struct {
uint8_t format;
uint8_t id;
#ifdef M3D_ASCII
#define M3D_PROPERTYDEF(f,i,n) { (f), (i), (char*)(n) }
char *key;
#else
#define M3D_PROPERTYDEF(f,i,n) { (f), (i) }
#endif
} m3dpd_t;
/* material property types */
/* You shouldn't change the first 8 display and first 4 physical property. Assign the rest as you like. */
enum {
m3dp_Kd = 0, /* scalar display properties */
m3dp_Ka,
m3dp_Ks,
m3dp_Ns,
m3dp_Ke,
m3dp_Tf,
m3dp_Km,
m3dp_d,
m3dp_il,
m3dp_Pr = 64, /* scalar physical properties */
m3dp_Pm,
m3dp_Ps,
m3dp_Ni,
m3dp_Nt,
m3dp_map_Kd = 128, /* textured display map properties */
m3dp_map_Ka,
m3dp_map_Ks,
m3dp_map_Ns,
m3dp_map_Ke,
m3dp_map_Tf,
m3dp_map_Km, /* bump map */
m3dp_map_D,
m3dp_map_N, /* normal map */
m3dp_map_Pr = 192, /* textured physical map properties */
m3dp_map_Pm,
m3dp_map_Ps,
m3dp_map_Ni,
m3dp_map_Nt
};
enum { /* aliases */
m3dp_bump = m3dp_map_Km,
m3dp_map_il = m3dp_map_N,
m3dp_refl = m3dp_map_Pm
};
/* material property */
typedef struct {
uint8_t type; /* property type, see "m3dp_*" enumeration */
union {
uint32_t color; /* if value is a color, m3dpf_color */
uint32_t num; /* if value is a number, m3dpf_uint8, m3pf_uint16, m3dpf_uint32 */
float fnum; /* if value is a floating point number, m3dpf_float */
M3D_INDEX textureid; /* if value is a texture, m3dpf_map */
} value;
} m3dp_t;
#define m3d_property_t m3dp_t
/* material entry */
typedef struct {
char *name; /* name of the material */
uint8_t numprop; /* number of properties */
m3dp_t *prop; /* properties array */
} m3dm_t;
#define m3d_material_t m3dm_t
/* face entry */
typedef struct {
M3D_INDEX materialid; /* material index */
M3D_INDEX vertex[3]; /* 3D points of the triangle in CCW order */
M3D_INDEX normal[3]; /* normal vectors */
M3D_INDEX texcoord[3]; /* UV coordinates */
} m3df_t;
#define m3d_face_t m3df_t
/* shape command types. must match the row in m3d_commandtypes */
enum {
/* special commands */
m3dc_use = 0, /* use material */
m3dc_inc, /* include another shape */
m3dc_mesh, /* include part of polygon mesh */
/* approximations */
m3dc_div, /* subdivision by constant resolution for both u, v */
m3dc_sub, /* subdivision by constant, different for u and v */
m3dc_len, /* spacial subdivision by maxlength */
m3dc_dist, /* subdivision by maxdistance and maxangle */
/* modifiers */
m3dc_degu, /* degree for both u, v */
m3dc_deg, /* separate degree for u and v */
m3dc_rangeu, /* range for u */
m3dc_range, /* range for u and v */
m3dc_paru, /* u parameters (knots) */
m3dc_parv, /* v parameters */
m3dc_trim, /* outer trimming curve */
m3dc_hole, /* inner trimming curve */
m3dc_scrv, /* spacial curve */
m3dc_sp, /* special points */
/* helper curves */
m3dc_bez1, /* Bezier 1D */
m3dc_bsp1, /* B-spline 1D */
m3dc_bez2, /* bezier 2D */
m3dc_bsp2, /* B-spline 2D */
/* surfaces */
m3dc_bezun, /* Bezier 3D with control, UV, normal */
m3dc_bezu, /* with control and UV */
m3dc_bezn, /* with control and normal */
m3dc_bez, /* control points only */
m3dc_nurbsun, /* B-spline 3D */
m3dc_nurbsu,
m3dc_nurbsn,
m3dc_nurbs,
m3dc_conn, /* connect surfaces */
/* geometrical */
m3dc_line,
m3dc_polygon,
m3dc_circle,
m3dc_cylinder,
m3dc_shpere,
m3dc_torus,
m3dc_cone,
m3dc_cube
};
/* shape command argument types */
enum {
m3dcp_mi_t = 1, /* material index */
m3dcp_hi_t, /* shape index */
m3dcp_fi_t, /* face index */
m3dcp_ti_t, /* texture map index */
m3dcp_vi_t, /* vertex index */
m3dcp_qi_t, /* vertex index for quaternions */
m3dcp_vc_t, /* coordinate or radius, float scalar */
m3dcp_i1_t, /* int8 scalar */
m3dcp_i2_t, /* int16 scalar */
m3dcp_i4_t, /* int32 scalar */
m3dcp_va_t /* variadic arguments */
};
#define M3D_CMDMAXARG 8 /* if you increase this, add more arguments to the macro below */
typedef struct {
#ifdef M3D_ASCII
#define M3D_CMDDEF(t,n,p,a,b,c,d,e,f,g,h) { (char*)(n), (p), { (a), (b), (c), (d), (e), (f), (g), (h) } }
char *key;
#else
#define M3D_CMDDEF(t,n,p,a,b,c,d,e,f,g,h) { (p), { (a), (b), (c), (d), (e), (f), (g), (h) } }
#endif
uint8_t p;
uint8_t a[M3D_CMDMAXARG];
} m3dcd_t;
/* shape command */
typedef struct {
uint16_t type; /* shape type */
uint32_t *arg; /* arguments array */
} m3dc_t;
#define m3d_shapecommand_t m3dc_t
/* shape entry */
typedef struct {
char *name; /* name of the mathematical shape */
M3D_INDEX group; /* group this shape belongs to or -1 */
uint32_t numcmd; /* number of commands */
m3dc_t *cmd; /* commands array */
} m3dh_t;
#define m3d_shape_t m3dh_t
/* label entry */
typedef struct {
char *name; /* name of the annotation layer or NULL */
char *lang; /* language code or NULL */
char *text; /* the label text */
uint32_t color; /* color */
M3D_INDEX vertexid; /* the vertex the label refers to */
} m3dl_t;
#define m3d_label_t m3dl_t
/* frame transformations / working copy skeleton entry */
typedef struct {
M3D_INDEX boneid; /* selects a node in bone hierarchy */
M3D_INDEX pos; /* vertex index new position */
M3D_INDEX ori; /* vertex index new orientation (quaternion) */
} m3dtr_t;
#define m3d_transform_t m3dtr_t
/* animation frame entry */
typedef struct {
uint32_t msec; /* frame's position on the timeline, timestamp */
M3D_INDEX numtransform; /* number of transformations in this frame */
m3dtr_t *transform; /* transformations */
} m3dfr_t;
#define m3d_frame_t m3dfr_t
/* model action entry */
typedef struct {
char *name; /* name of the action */
uint32_t durationmsec; /* duration in millisec (1/1000 sec) */
M3D_INDEX numframe; /* number of frames in this animation */
m3dfr_t *frame; /* frames array */
} m3da_t;
#define m3d_action_t m3da_t
/* inlined asset */
typedef struct {
char *name; /* asset name (same pointer as in texture[].name) */
uint8_t *data; /* compressed asset data */
uint32_t length; /* compressed data length */
} m3di_t;
#define m3d_inlinedasset_t m3di_t
/*** in-memory model structure ***/
#define M3D_FLG_FREERAW (1<<0)
#define M3D_FLG_FREESTR (1<<1)
#define M3D_FLG_MTLLIB (1<<2)
#define M3D_FLG_GENNORM (1<<3)
typedef struct {
m3dhdr_t *raw; /* pointer to raw data */
char flags; /* internal flags */
signed char errcode; /* returned error code */
char vc_s, vi_s, si_s, ci_s, ti_s, bi_s, nb_s, sk_s, fc_s, hi_s,fi_s; /* decoded sizes for types */
char *name; /* name of the model, like "Utah teapot" */
char *license; /* usage condition or license, like "MIT", "LGPL" or "BSD-3clause" */
char *author; /* nickname, email, homepage or github URL etc. */
char *desc; /* comments, descriptions. May contain '\n' newline character */
M3D_FLOAT scale; /* the model's bounding cube's size in SI meters */
M3D_INDEX numcmap;
uint32_t *cmap; /* color map */
M3D_INDEX numtmap;
m3dti_t *tmap; /* texture map indices */
M3D_INDEX numtexture;
m3dtx_t *texture; /* uncompressed textures */
M3D_INDEX numbone;
m3db_t *bone; /* bone hierarchy */
M3D_INDEX numvertex;
m3dv_t *vertex; /* vertex data */
M3D_INDEX numskin;
m3ds_t *skin; /* skin data */
M3D_INDEX nummaterial;
m3dm_t *material; /* material list */
M3D_INDEX numface;
m3df_t *face; /* model face, polygon (triangle) mesh */
M3D_INDEX numshape;
m3dh_t *shape; /* model face, shape commands */
M3D_INDEX numlabel;
m3dl_t *label; /* annotation labels */
M3D_INDEX numaction;
m3da_t *action; /* action animations */
M3D_INDEX numinlined;
m3di_t *inlined; /* inlined assets */
M3D_INDEX numextra;
m3dchunk_t **extra; /* unknown chunks, application / engine specific data probably */
m3di_t preview; /* preview chunk */
} m3d_t;
/*** export parameters ***/
#define M3D_EXP_INT8 0
#define M3D_EXP_INT16 1
#define M3D_EXP_FLOAT 2
#define M3D_EXP_DOUBLE 3
#define M3D_EXP_NOCMAP (1<<0)
#define M3D_EXP_NOMATERIAL (1<<1)
#define M3D_EXP_NOFACE (1<<2)
#define M3D_EXP_NONORMAL (1<<3)
#define M3D_EXP_NOTXTCRD (1<<4)
#define M3D_EXP_FLIPTXTCRD (1<<5)
#define M3D_EXP_NORECALC (1<<6)
#define M3D_EXP_IDOSUCK (1<<7)
#define M3D_EXP_NOBONE (1<<8)
#define M3D_EXP_NOACTION (1<<9)
#define M3D_EXP_INLINE (1<<10)
#define M3D_EXP_EXTRA (1<<11)
#define M3D_EXP_NOZLIB (1<<14)
#define M3D_EXP_ASCII (1<<15)
/*** error codes ***/
#define M3D_SUCCESS 0
#define M3D_ERR_ALLOC -1
#define M3D_ERR_BADFILE -2
#define M3D_ERR_UNIMPL -65
#define M3D_ERR_UNKPROP -66
#define M3D_ERR_UNKMESH -67
#define M3D_ERR_UNKIMG -68
#define M3D_ERR_UNKFRAME -69
#define M3D_ERR_UNKCMD -70
#define M3D_ERR_TRUNC -71
#define M3D_ERR_CMAP -72
#define M3D_ERR_TMAP -73
#define M3D_ERR_VRTS -74
#define M3D_ERR_BONE -75
#define M3D_ERR_MTRL -76
#define M3D_ERR_SHPE -77
#define M3D_ERR_ISFATAL(x) ((x) < 0 && (x) > -65)
/* callbacks */
typedef unsigned char *(*m3dread_t)(char *filename, unsigned int *size); /* read file contents into buffer */
typedef void (*m3dfree_t)(void *buffer); /* free file contents buffer */
typedef int (*m3dtxsc_t)(const char *name, const void *script, uint32_t len, m3dtx_t *output); /* interpret texture script */
typedef int (*m3dprsc_t)(const char *name, const void *script, uint32_t len, m3d_t *model); /* interpret surface script */
#endif /* ifndef M3D_APIVERSION */
/*** C prototypes ***/
/* import / export */
m3d_t *m3d_load(unsigned char *data, m3dread_t readfilecb, m3dfree_t freecb, m3d_t *mtllib);
unsigned char *m3d_save(m3d_t *model, int quality, int flags, unsigned int *size);
void m3d_free(m3d_t *model);
/* generate animation pose skeleton */
m3dtr_t *m3d_frame(m3d_t *model, M3D_INDEX actionid, M3D_INDEX frameid, m3dtr_t *skeleton);
m3db_t *m3d_pose(m3d_t *model, M3D_INDEX actionid, uint32_t msec);
/* private prototypes used by both importer and exporter */
char *_m3d_safestr(char *in, int morelines);
/*** C implementation ***/
#ifdef M3D_IMPLEMENTATION
#if !defined(M3D_NOIMPORTER) || defined(M3D_EXPORTER)
/* material property definitions */
static m3dpd_t m3d_propertytypes[] = {
M3D_PROPERTYDEF(m3dpf_color, m3dp_Kd, "Kd"), /* diffuse color */
M3D_PROPERTYDEF(m3dpf_color, m3dp_Ka, "Ka"), /* ambient color */
M3D_PROPERTYDEF(m3dpf_color, m3dp_Ks, "Ks"), /* specular color */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Ns, "Ns"), /* specular exponent */
M3D_PROPERTYDEF(m3dpf_color, m3dp_Ke, "Ke"), /* emissive (emitting light of this color) */
M3D_PROPERTYDEF(m3dpf_color, m3dp_Tf, "Tf"), /* transmission color */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Km, "Km"), /* bump strength */
M3D_PROPERTYDEF(m3dpf_float, m3dp_d, "d"), /* dissolve (transparency) */
M3D_PROPERTYDEF(m3dpf_uint8, m3dp_il, "il"), /* illumination model (informational, ignored by PBR-shaders) */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Pr, "Pr"), /* roughness */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Pm, "Pm"), /* metallic, also reflection */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Ps, "Ps"), /* sheen */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Ni, "Ni"), /* index of refraction (optical density) */
M3D_PROPERTYDEF(m3dpf_float, m3dp_Nt, "Nt"), /* thickness of face in millimeter, for printing */
/* aliases, note that "map_*" aliases are handled automatically */
M3D_PROPERTYDEF(m3dpf_map, m3dp_map_Km, "bump"),
M3D_PROPERTYDEF(m3dpf_map, m3dp_map_N, "map_N"),/* as normal map has no scalar version, it's counterpart is 'il' */
M3D_PROPERTYDEF(m3dpf_map, m3dp_map_Pm, "refl")
};
/* shape command definitions. if more commands start with the same string, the longer must come first */
static m3dcd_t m3d_commandtypes[] = {
/* technical */
M3D_CMDDEF(m3dc_use, "use", 1, m3dcp_mi_t, 0, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_inc, "inc", 3, m3dcp_hi_t, m3dcp_vi_t, m3dcp_qi_t, m3dcp_vi_t, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_mesh, "mesh", 1, m3dcp_fi_t, m3dcp_fi_t, m3dcp_vi_t, m3dcp_qi_t, m3dcp_vi_t, 0, 0, 0),
/* approximations */
M3D_CMDDEF(m3dc_div, "div", 1, m3dcp_vc_t, 0, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_sub, "sub", 2, m3dcp_vc_t, m3dcp_vc_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_len, "len", 1, m3dcp_vc_t, 0, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_dist, "dist", 2, m3dcp_vc_t, m3dcp_vc_t, 0, 0, 0, 0, 0, 0),
/* modifiers */
M3D_CMDDEF(m3dc_degu, "degu", 1, m3dcp_i1_t, 0, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_deg, "deg", 2, m3dcp_i1_t, m3dcp_i1_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_rangeu, "rangeu", 1, m3dcp_ti_t, 0, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_range, "range", 2, m3dcp_ti_t, m3dcp_ti_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_paru, "paru", 2, m3dcp_va_t, m3dcp_vc_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_parv, "parv", 2, m3dcp_va_t, m3dcp_vc_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_trim, "trim", 3, m3dcp_va_t, m3dcp_ti_t, m3dcp_i2_t, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_hole, "hole", 3, m3dcp_va_t, m3dcp_ti_t, m3dcp_i2_t, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_scrv, "scrv", 3, m3dcp_va_t, m3dcp_ti_t, m3dcp_i2_t, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_sp, "sp", 2, m3dcp_va_t, m3dcp_vi_t, 0, 0, 0, 0, 0, 0),
/* helper curves */
M3D_CMDDEF(m3dc_bez1, "bez1", 2, m3dcp_va_t, m3dcp_vi_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_bsp1, "bsp1", 2, m3dcp_va_t, m3dcp_vi_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_bez2, "bez2", 2, m3dcp_va_t, m3dcp_vi_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_bsp2, "bsp2", 2, m3dcp_va_t, m3dcp_vi_t, 0, 0, 0, 0, 0, 0),
/* surfaces */
M3D_CMDDEF(m3dc_bezun, "bezun", 4, m3dcp_va_t, m3dcp_vi_t, m3dcp_ti_t, m3dcp_vi_t, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_bezu, "bezu", 3, m3dcp_va_t, m3dcp_vi_t, m3dcp_ti_t, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_bezn, "bezn", 3, m3dcp_va_t, m3dcp_vi_t, m3dcp_vi_t, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_bez, "bez", 2, m3dcp_va_t, m3dcp_vi_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_nurbsun, "nurbsun", 4, m3dcp_va_t, m3dcp_vi_t, m3dcp_ti_t, m3dcp_vi_t, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_nurbsu, "nurbsu", 3, m3dcp_va_t, m3dcp_vi_t, m3dcp_ti_t, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_nurbsn, "nurbsn", 3, m3dcp_va_t, m3dcp_vi_t, m3dcp_vi_t, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_nurbs, "nurbs", 2, m3dcp_va_t, m3dcp_vi_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_conn, "conn", 6, m3dcp_i2_t, m3dcp_ti_t, m3dcp_i2_t, m3dcp_i2_t, m3dcp_ti_t, m3dcp_i2_t, 0, 0),
/* geometrical */
M3D_CMDDEF(m3dc_line, "line", 2, m3dcp_va_t, m3dcp_vi_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_polygon, "polygon", 2, m3dcp_va_t, m3dcp_vi_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_circle, "circle", 3, m3dcp_vi_t, m3dcp_qi_t, m3dcp_vc_t, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_cylinder,"cylinder",6, m3dcp_vi_t, m3dcp_qi_t, m3dcp_vc_t, m3dcp_vi_t, m3dcp_qi_t, m3dcp_vc_t, 0, 0),
M3D_CMDDEF(m3dc_shpere, "shpere", 2, m3dcp_vi_t, m3dcp_vc_t, 0, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_torus, "torus", 4, m3dcp_vi_t, m3dcp_qi_t, m3dcp_vc_t, m3dcp_vc_t, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_cone, "cone", 3, m3dcp_vi_t, m3dcp_vi_t, m3dcp_vi_t, 0, 0, 0, 0, 0),
M3D_CMDDEF(m3dc_cube, "cube", 3, m3dcp_vi_t, m3dcp_vi_t, m3dcp_vi_t, 0, 0, 0, 0, 0)
};
#endif
#include <stdlib.h>
#include <string.h>
#if !defined(M3D_NOIMPORTER) && !defined(STBI_INCLUDE_STB_IMAGE_H)
/* PNG decompressor from
stb_image - v2.23 - public domain image loader - http://nothings.org/stb_image.h
*/
static const char *_m3dstbi__g_failure_reason;
enum
{
STBI_default = 0,
STBI_grey = 1,
STBI_grey_alpha = 2,
STBI_rgb = 3,
STBI_rgb_alpha = 4
};
enum
{
STBI__SCAN_load=0,
STBI__SCAN_type,
STBI__SCAN_header
};
typedef unsigned short _m3dstbi_us;
typedef uint16_t _m3dstbi__uint16;
typedef int16_t _m3dstbi__int16;
typedef uint32_t _m3dstbi__uint32;
typedef int32_t _m3dstbi__int32;
typedef struct
{
_m3dstbi__uint32 img_x, img_y;
int img_n, img_out_n;
void *io_user_data;
int read_from_callbacks;
int buflen;
unsigned char buffer_start[128];
unsigned char *img_buffer, *img_buffer_end;
unsigned char *img_buffer_original, *img_buffer_original_end;
} _m3dstbi__context;
typedef struct
{
int bits_per_channel;
int num_channels;
int channel_order;
} _m3dstbi__result_info;
#define STBI_ASSERT(v)
#define STBI_NOTUSED(v) (void)sizeof(v)
#define STBI__BYTECAST(x) ((unsigned char) ((x) & 255))
#define STBI_MALLOC(sz) M3D_MALLOC(sz)
#define STBI_REALLOC(p,newsz) M3D_REALLOC(p,newsz)
#define STBI_FREE(p) M3D_FREE(p)
#define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz)
_inline static unsigned char _m3dstbi__get8(_m3dstbi__context *s)
{
if (s->img_buffer < s->img_buffer_end)
return *s->img_buffer++;
return 0;
}
_inline static int _m3dstbi__at_eof(_m3dstbi__context *s)
{
return s->img_buffer >= s->img_buffer_end;
}
static void _m3dstbi__skip(_m3dstbi__context *s, int n)
{
if (n < 0) {
s->img_buffer = s->img_buffer_end;
return;
}
s->img_buffer += n;
}
static int _m3dstbi__getn(_m3dstbi__context *s, unsigned char *buffer, int n)
{
if (s->img_buffer+n <= s->img_buffer_end) {
memcpy(buffer, s->img_buffer, n);
s->img_buffer += n;
return 1;
} else
return 0;
}
static int _m3dstbi__get16be(_m3dstbi__context *s)
{
int z = _m3dstbi__get8(s);
return (z << 8) + _m3dstbi__get8(s);
}
static _m3dstbi__uint32 _m3dstbi__get32be(_m3dstbi__context *s)
{
_m3dstbi__uint32 z = _m3dstbi__get16be(s);
return (z << 16) + _m3dstbi__get16be(s);
}
#define _m3dstbi__err(x,y) _m3dstbi__errstr(y)
static int _m3dstbi__errstr(const char *str)
{
_m3dstbi__g_failure_reason = str;
return 0;
}
_inline static void *_m3dstbi__malloc(size_t size)
{
return STBI_MALLOC(size);
}
static int _m3dstbi__addsizes_valid(int a, int b)
{
if (b < 0) return 0;
return a <= 2147483647 - b;
}
static int _m3dstbi__mul2sizes_valid(int a, int b)
{
if (a < 0 || b < 0) return 0;
if (b == 0) return 1;
return a <= 2147483647/b;
}
static int _m3dstbi__mad2sizes_valid(int a, int b, int add)
{
return _m3dstbi__mul2sizes_valid(a, b) && _m3dstbi__addsizes_valid(a*b, add);
}
static int _m3dstbi__mad3sizes_valid(int a, int b, int c, int add)
{
return _m3dstbi__mul2sizes_valid(a, b) && _m3dstbi__mul2sizes_valid(a*b, c) &&
_m3dstbi__addsizes_valid(a*b*c, add);
}
static void *_m3dstbi__malloc_mad2(int a, int b, int add)
{
if (!_m3dstbi__mad2sizes_valid(a, b, add)) return NULL;
return _m3dstbi__malloc(a*b + add);
}
static void *_m3dstbi__malloc_mad3(int a, int b, int c, int add)
{
if (!_m3dstbi__mad3sizes_valid(a, b, c, add)) return NULL;
return _m3dstbi__malloc(a*b*c + add);
}
static unsigned char _m3dstbi__compute_y(int r, int g, int b)
{
return (unsigned char) (((r*77) + (g*150) + (29*b)) >> 8);
}
static unsigned char *_m3dstbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y)
{
int i,j;
unsigned char *good;
if (req_comp == img_n) return data;
STBI_ASSERT(req_comp >= 1 && req_comp <= 4);
good = (unsigned char *) _m3dstbi__malloc_mad3(req_comp, x, y, 0);
if (good == NULL) {
STBI_FREE(data);
_m3dstbi__err("outofmem", "Out of memory");
return NULL;
}
for (j=0; j < (int) y; ++j) {
unsigned char *src = data + j * x * img_n ;
unsigned char *dest = good + j * x * req_comp;
#define STBI__COMBO(a,b) ((a)*8+(b))
#define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
switch (STBI__COMBO(img_n, req_comp)) {
STBI__CASE(1,2) { dest[0]=src[0], dest[1]=255; } break;
STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break;
STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; } break;
STBI__CASE(2,1) { dest[0]=src[0]; } break;
STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break;
STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; } break;
STBI__CASE(3,4) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; } break;
STBI__CASE(3,1) { dest[0]=_m3dstbi__compute_y(src[0],src[1],src[2]); } break;
STBI__CASE(3,2) { dest[0]=_m3dstbi__compute_y(src[0],src[1],src[2]), dest[1] = 255; } break;
STBI__CASE(4,1) { dest[0]=_m3dstbi__compute_y(src[0],src[1],src[2]); } break;
STBI__CASE(4,2) { dest[0]=_m3dstbi__compute_y(src[0],src[1],src[2]), dest[1] = src[3]; } break;
STBI__CASE(4,3) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; } break;
default: STBI_ASSERT(0);
}
#undef STBI__CASE
}
STBI_FREE(data);
return good;
}
static _m3dstbi__uint16 _m3dstbi__compute_y_16(int r, int g, int b)
{
return (_m3dstbi__uint16) (((r*77) + (g*150) + (29*b)) >> 8);
}
static _m3dstbi__uint16 *_m3dstbi__convert_format16(_m3dstbi__uint16 *data, int img_n, int req_comp, unsigned int x, unsigned int y)
{
int i,j;
_m3dstbi__uint16 *good;
if (req_comp == img_n) return data;
STBI_ASSERT(req_comp >= 1 && req_comp <= 4);
good = (_m3dstbi__uint16 *) _m3dstbi__malloc(req_comp * x * y * 2);
if (good == NULL) {
STBI_FREE(data);
_m3dstbi__err("outofmem", "Out of memory");
return NULL;
}
for (j=0; j < (int) y; ++j) {
_m3dstbi__uint16 *src = data + j * x * img_n ;
_m3dstbi__uint16 *dest = good + j * x * req_comp;
#define STBI__COMBO(a,b) ((a)*8+(b))
#define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
switch (STBI__COMBO(img_n, req_comp)) {
STBI__CASE(1,2) { dest[0]=src[0], dest[1]=0xffff; } break;
STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break;
STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=0xffff; } break;
STBI__CASE(2,1) { dest[0]=src[0]; } break;
STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break;
STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; } break;
STBI__CASE(3,4) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=0xffff; } break;
STBI__CASE(3,1) { dest[0]=_m3dstbi__compute_y_16(src[0],src[1],src[2]); } break;
STBI__CASE(3,2) { dest[0]=_m3dstbi__compute_y_16(src[0],src[1],src[2]), dest[1] = 0xffff; } break;
STBI__CASE(4,1) { dest[0]=_m3dstbi__compute_y_16(src[0],src[1],src[2]); } break;
STBI__CASE(4,2) { dest[0]=_m3dstbi__compute_y_16(src[0],src[1],src[2]), dest[1] = src[3]; } break;
STBI__CASE(4,3) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; } break;
default: STBI_ASSERT(0);
}
#undef STBI__CASE
}
STBI_FREE(data);
return good;
}
#define STBI__ZFAST_BITS 9
#define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1)
typedef struct
{
_m3dstbi__uint16 fast[1 << STBI__ZFAST_BITS];
_m3dstbi__uint16 firstcode[16];
int maxcode[17];
_m3dstbi__uint16 firstsymbol[16];
unsigned char size[288];
_m3dstbi__uint16 value[288];
} _m3dstbi__zhuffman;
_inline static int _m3dstbi__bitreverse16(int n)
{
n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1);
n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2);
n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4);
n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8);
return n;
}
_inline static int _m3dstbi__bit_reverse(int v, int bits)
{
STBI_ASSERT(bits <= 16);
return _m3dstbi__bitreverse16(v) >> (16-bits);
}
static int _m3dstbi__zbuild_huffman(_m3dstbi__zhuffman *z, unsigned char *sizelist, int num)
{
int i,k=0;
int code, next_code[16], sizes[17];
memset(sizes, 0, sizeof(sizes));
memset(z->fast, 0, sizeof(z->fast));
for (i=0; i < num; ++i)
++sizes[sizelist[i]];
sizes[0] = 0;
for (i=1; i < 16; ++i)
if (sizes[i] > (1 << i))
return _m3dstbi__err("bad sizes", "Corrupt PNG");
code = 0;
for (i=1; i < 16; ++i) {
next_code[i] = code;
z->firstcode[i] = (_m3dstbi__uint16) code;
z->firstsymbol[i] = (_m3dstbi__uint16) k;
code = (code + sizes[i]);
if (sizes[i])
if (code-1 >= (1 << i)) return _m3dstbi__err("bad codelengths","Corrupt PNG");
z->maxcode[i] = code << (16-i);
code <<= 1;
k += sizes[i];
}
z->maxcode[16] = 0x10000;
for (i=0; i < num; ++i) {
int s = sizelist[i];
if (s) {
int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s];
_m3dstbi__uint16 fastv = (_m3dstbi__uint16) ((s << 9) | i);
z->size [c] = (unsigned char ) s;
z->value[c] = (_m3dstbi__uint16) i;
if (s <= STBI__ZFAST_BITS) {
int j = _m3dstbi__bit_reverse(next_code[s],s);
while (j < (1 << STBI__ZFAST_BITS)) {
z->fast[j] = fastv;
j += (1 << s);
}
}
++next_code[s];
}
}
return 1;
}
typedef struct
{
unsigned char *zbuffer, *zbuffer_end;
int num_bits;
_m3dstbi__uint32 code_buffer;
char *zout;
char *zout_start;
char *zout_end;
int z_expandable;
_m3dstbi__zhuffman z_length, z_distance;
} _m3dstbi__zbuf;
_inline static unsigned char _m3dstbi__zget8(_m3dstbi__zbuf *z)
{
if (z->zbuffer >= z->zbuffer_end) return 0;
return *z->zbuffer++;
}
static void _m3dstbi__fill_bits(_m3dstbi__zbuf *z)
{
do {
STBI_ASSERT(z->code_buffer < (1U << z->num_bits));
z->code_buffer |= (unsigned int) _m3dstbi__zget8(z) << z->num_bits;
z->num_bits += 8;
} while (z->num_bits <= 24);
}
_inline static unsigned int _m3dstbi__zreceive(_m3dstbi__zbuf *z, int n)
{
unsigned int k;
if (z->num_bits < n) _m3dstbi__fill_bits(z);
k = z->code_buffer & ((1 << n) - 1);
z->code_buffer >>= n;
z->num_bits -= n;
return k;
}
static int _m3dstbi__zhuffman_decode_slowpath(_m3dstbi__zbuf *a, _m3dstbi__zhuffman *z)
{
int b,s,k;
k = _m3dstbi__bit_reverse(a->code_buffer, 16);
for (s=STBI__ZFAST_BITS+1; ; ++s)
if (k < z->maxcode[s])
break;
if (s == 16) return -1;
b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s];
STBI_ASSERT(z->size[b] == s);
a->code_buffer >>= s;
a->num_bits -= s;
return z->value[b];
}
_inline static int _m3dstbi__zhuffman_decode(_m3dstbi__zbuf *a, _m3dstbi__zhuffman *z)
{
int b,s;
if (a->num_bits < 16) _m3dstbi__fill_bits(a);
b = z->fast[a->code_buffer & STBI__ZFAST_MASK];
if (b) {
s = b >> 9;
a->code_buffer >>= s;
a->num_bits -= s;
return b & 511;
}
return _m3dstbi__zhuffman_decode_slowpath(a, z);
}
static int _m3dstbi__zexpand(_m3dstbi__zbuf *z, char *zout, int n)
{
char *q;
int cur, limit, old_limit;
z->zout = zout;
if (!z->z_expandable) return _m3dstbi__err("output buffer limit","Corrupt PNG");
cur = (int) (z->zout - z->zout_start);
limit = old_limit = (int) (z->zout_end - z->zout_start);
while (cur + n > limit)
limit *= 2;
q = (char *) STBI_REALLOC_SIZED(z->zout_start, old_limit, limit);
STBI_NOTUSED(old_limit);
if (q == NULL) return _m3dstbi__err("outofmem", "Out of memory");
z->zout_start = q;
z->zout = q + cur;
z->zout_end = q + limit;
return 1;
}
static int _m3dstbi__zlength_base[31] = {
3,4,5,6,7,8,9,10,11,13,
15,17,19,23,27,31,35,43,51,59,
67,83,99,115,131,163,195,227,258,0,0 };
static int _m3dstbi__zlength_extra[31]=
{ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
static int _m3dstbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,
257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0};
static int _m3dstbi__zdist_extra[32] =
{ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
static int _m3dstbi__parse_huffman_block(_m3dstbi__zbuf *a)
{
char *zout = a->zout;
for(;;) {
int z = _m3dstbi__zhuffman_decode(a, &a->z_length);
if (z < 256) {
if (z < 0) return _m3dstbi__err("bad huffman code","Corrupt PNG");
if (zout >= a->zout_end) {
if (!_m3dstbi__zexpand(a, zout, 1)) return 0;
zout = a->zout;
}
*zout++ = (char) z;
} else {
unsigned char *p;
int len,dist;
if (z == 256) {
a->zout = zout;
return 1;
}
z -= 257;
len = _m3dstbi__zlength_base[z];
if (_m3dstbi__zlength_extra[z]) len += _m3dstbi__zreceive(a, _m3dstbi__zlength_extra[z]);
z = _m3dstbi__zhuffman_decode(a, &a->z_distance);
if (z < 0) return _m3dstbi__err("bad huffman code","Corrupt PNG");
dist = _m3dstbi__zdist_base[z];
if (_m3dstbi__zdist_extra[z]) dist += _m3dstbi__zreceive(a, _m3dstbi__zdist_extra[z]);
if (zout - a->zout_start < dist) return _m3dstbi__err("bad dist","Corrupt PNG");
if (zout + len > a->zout_end) {
if (!_m3dstbi__zexpand(a, zout, len)) return 0;
zout = a->zout;
}
p = (unsigned char *) (zout - dist);
if (dist == 1) {
unsigned char v = *p;
if (len) { do *zout++ = v; while (--len); }
} else {
if (len) { do *zout++ = *p++; while (--len); }
}
}
}
}
static int _m3dstbi__compute_huffman_codes(_m3dstbi__zbuf *a)
{
static unsigned char length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
_m3dstbi__zhuffman z_codelength;
unsigned char lencodes[286+32+137];
unsigned char codelength_sizes[19];
int i,n;
int hlit = _m3dstbi__zreceive(a,5) + 257;
int hdist = _m3dstbi__zreceive(a,5) + 1;
int hclen = _m3dstbi__zreceive(a,4) + 4;
int ntot = hlit + hdist;
memset(codelength_sizes, 0, sizeof(codelength_sizes));
for (i=0; i < hclen; ++i) {
int s = _m3dstbi__zreceive(a,3);
codelength_sizes[length_dezigzag[i]] = (unsigned char) s;
}
if (!_m3dstbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0;
n = 0;
while (n < ntot) {
int c = _m3dstbi__zhuffman_decode(a, &z_codelength);
if (c < 0 || c >= 19) return _m3dstbi__err("bad codelengths", "Corrupt PNG");
if (c < 16)
lencodes[n++] = (unsigned char) c;
else {
unsigned char fill = 0;
if (c == 16) {
c = _m3dstbi__zreceive(a,2)+3;
if (n == 0) return _m3dstbi__err("bad codelengths", "Corrupt PNG");
fill = lencodes[n-1];
} else if (c == 17)
c = _m3dstbi__zreceive(a,3)+3;
else {
STBI_ASSERT(c == 18);
c = _m3dstbi__zreceive(a,7)+11;
}
if (ntot - n < c) return _m3dstbi__err("bad codelengths", "Corrupt PNG");
memset(lencodes+n, fill, c);
n += c;
}
}
if (n != ntot) return _m3dstbi__err("bad codelengths","Corrupt PNG");
if (!_m3dstbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0;
if (!_m3dstbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0;
return 1;
}
_inline static int _m3dstbi__parse_uncompressed_block(_m3dstbi__zbuf *a)
{
unsigned char header[4];
int len,nlen,k;
if (a->num_bits & 7)
_m3dstbi__zreceive(a, a->num_bits & 7);
k = 0;
while (a->num_bits > 0) {
header[k++] = (unsigned char) (a->code_buffer & 255);
a->code_buffer >>= 8;
a->num_bits -= 8;
}
STBI_ASSERT(a->num_bits == 0);
while (k < 4)
header[k++] = _m3dstbi__zget8(a);
len = header[1] * 256 + header[0];
nlen = header[3] * 256 + header[2];
if (nlen != (len ^ 0xffff)) return _m3dstbi__err("zlib corrupt","Corrupt PNG");
if (a->zbuffer + len > a->zbuffer_end) return _m3dstbi__err("read past buffer","Corrupt PNG");
if (a->zout + len > a->zout_end)
if (!_m3dstbi__zexpand(a, a->zout, len)) return 0;
memcpy(a->zout, a->zbuffer, len);
a->zbuffer += len;
a->zout += len;
return 1;
}
static int _m3dstbi__parse_zlib_header(_m3dstbi__zbuf *a)
{
int cmf = _m3dstbi__zget8(a);
int cm = cmf & 15;
/* int cinfo = cmf >> 4; */
int flg = _m3dstbi__zget8(a);
if ((cmf*256+flg) % 31 != 0) return _m3dstbi__err("bad zlib header","Corrupt PNG");
if (flg & 32) return _m3dstbi__err("no preset dict","Corrupt PNG");
if (cm != 8) return _m3dstbi__err("bad compression","Corrupt PNG");
return 1;
}
static unsigned char _m3dstbi__zdefault_length[288], _m3dstbi__zdefault_distance[32];
static void _m3dstbi__init_zdefaults(void)
{
int i;
for (i=0; i <= 143; ++i) _m3dstbi__zdefault_length[i] = 8;
for ( ; i <= 255; ++i) _m3dstbi__zdefault_length[i] = 9;
for ( ; i <= 279; ++i) _m3dstbi__zdefault_length[i] = 7;
for ( ; i <= 287; ++i) _m3dstbi__zdefault_length[i] = 8;
for (i=0; i <= 31; ++i) _m3dstbi__zdefault_distance[i] = 5;
}
static int _m3dstbi__parse_zlib(_m3dstbi__zbuf *a, int parse_header)
{
int final, type;
if (parse_header)
if (!_m3dstbi__parse_zlib_header(a)) return 0;
a->num_bits = 0;
a->code_buffer = 0;
do {
final = _m3dstbi__zreceive(a,1);
type = _m3dstbi__zreceive(a,2);
if (type == 0) {
if (!_m3dstbi__parse_uncompressed_block(a)) return 0;
} else if (type == 3) {
return 0;
} else {
if (type == 1) {
if (!_m3dstbi__zbuild_huffman(&a->z_length , _m3dstbi__zdefault_length , 288)) return 0;
if (!_m3dstbi__zbuild_huffman(&a->z_distance, _m3dstbi__zdefault_distance, 32)) return 0;
} else {
if (!_m3dstbi__compute_huffman_codes(a)) return 0;
}
if (!_m3dstbi__parse_huffman_block(a)) return 0;
}
} while (!final);
return 1;
}
static int _m3dstbi__do_zlib(_m3dstbi__zbuf *a, char *obuf, int olen, int exp, int parse_header)
{
a->zout_start = obuf;
a->zout = obuf;
a->zout_end = obuf + olen;
a->z_expandable = exp;
_m3dstbi__init_zdefaults();
return _m3dstbi__parse_zlib(a, parse_header);
}
char *_m3dstbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header)
{
_m3dstbi__zbuf a;
char *p = (char *) _m3dstbi__malloc(initial_size);
if (p == NULL) return NULL;
a.zbuffer = (unsigned char *) buffer;
a.zbuffer_end = (unsigned char *) buffer + len;
if (_m3dstbi__do_zlib(&a, p, initial_size, 1, parse_header)) {
if (outlen) *outlen = (int) (a.zout - a.zout_start);
return a.zout_start;
} else {
STBI_FREE(a.zout_start);
return NULL;
}
}
typedef struct
{
_m3dstbi__uint32 length;
_m3dstbi__uint32 type;
} _m3dstbi__pngchunk;
static _m3dstbi__pngchunk _m3dstbi__get_chunk_header(_m3dstbi__context *s)
{
_m3dstbi__pngchunk c;
c.length = _m3dstbi__get32be(s);
c.type = _m3dstbi__get32be(s);
return c;
}
_inline static int _m3dstbi__check_png_header(_m3dstbi__context *s)
{
static unsigned char png_sig[8] = { 137,80,78,71,13,10,26,10 };
int i;
for (i=0; i < 8; ++i)
if (_m3dstbi__get8(s) != png_sig[i]) return _m3dstbi__err("bad png sig","Not a PNG");
return 1;
}
typedef struct
{
_m3dstbi__context *s;
unsigned char *idata, *expanded, *out;
int depth;
} _m3dstbi__png;
enum {
STBI__F_none=0,
STBI__F_sub=1,
STBI__F_up=2,
STBI__F_avg=3,
STBI__F_paeth=4,
STBI__F_avg_first,
STBI__F_paeth_first
};
static unsigned char first_row_filter[5] =
{
STBI__F_none,
STBI__F_sub,
STBI__F_none,
STBI__F_avg_first,
STBI__F_paeth_first
};
static int _m3dstbi__paeth(int a, int b, int c)
{
int p = a + b - c;
int pa = abs(p-a);
int pb = abs(p-b);
int pc = abs(p-c);
if (pa <= pb && pa <= pc) return a;
if (pb <= pc) return b;
return c;
}
static unsigned char _m3dstbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 };
static int _m3dstbi__create_png_image_raw(_m3dstbi__png *a, unsigned char *raw, _m3dstbi__uint32 raw_len, int out_n, _m3dstbi__uint32 x, _m3dstbi__uint32 y, int depth, int color)
{
int bytes = (depth == 16? 2 : 1);
_m3dstbi__context *s = a->s;
_m3dstbi__uint32 i,j,stride = x*out_n*bytes;
_m3dstbi__uint32 img_len, img_width_bytes;
int k;
int img_n = s->img_n;
int output_bytes = out_n*bytes;
int filter_bytes = img_n*bytes;
int width = x;
STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1);
a->out = (unsigned char *) _m3dstbi__malloc_mad3(x, y, output_bytes, 0);
if (!a->out) return _m3dstbi__err("outofmem", "Out of memory");
if (!_m3dstbi__mad3sizes_valid(img_n, x, depth, 7)) return _m3dstbi__err("too large", "Corrupt PNG");
img_width_bytes = (((img_n * x * depth) + 7) >> 3);
img_len = (img_width_bytes + 1) * y;
if (s->img_x == x && s->img_y == y) {
if (raw_len != img_len) return _m3dstbi__err("not enough pixels","Corrupt PNG");
} else {
if (raw_len < img_len) return _m3dstbi__err("not enough pixels","Corrupt PNG");
}
for (j=0; j < y; ++j) {
unsigned char *cur = a->out + stride*j;
unsigned char *prior = cur - stride;
int filter = *raw++;
if (filter > 4)
return _m3dstbi__err("invalid filter","Corrupt PNG");
if (depth < 8) {
STBI_ASSERT(img_width_bytes <= x);
cur += x*out_n - img_width_bytes;
filter_bytes = 1;
width = img_width_bytes;
}
prior = cur - stride;
if (j == 0) filter = first_row_filter[filter];
for (k=0; k < filter_bytes; ++k) {
switch (filter) {
case STBI__F_none : cur[k] = raw[k]; break;
case STBI__F_sub : cur[k] = raw[k]; break;
case STBI__F_up : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break;
case STBI__F_avg : cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break;
case STBI__F_paeth : cur[k] = STBI__BYTECAST(raw[k] + _m3dstbi__paeth(0,prior[k],0)); break;
case STBI__F_avg_first : cur[k] = raw[k]; break;
case STBI__F_paeth_first: cur[k] = raw[k]; break;
}
}
if (depth == 8) {
if (img_n != out_n)
cur[img_n] = 255;
raw += img_n;
cur += out_n;
prior += out_n;
} else if (depth == 16) {
if (img_n != out_n) {
cur[filter_bytes] = 255;
cur[filter_bytes+1] = 255;
}
raw += filter_bytes;
cur += output_bytes;
prior += output_bytes;
} else {
raw += 1;
cur += 1;
prior += 1;
}
if (depth < 8 || img_n == out_n) {
int nk = (width - 1)*filter_bytes;
#define STBI__CASE(f) \
case f: \
for (k=0; k < nk; ++k)
switch (filter) {
case STBI__F_none: memcpy(cur, raw, nk); break;
STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); } break;
STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;
STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); } break;
STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + _m3dstbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); } break;
STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); } break;
STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + _m3dstbi__paeth(cur[k-filter_bytes],0,0)); } break;
}
#undef STBI__CASE
raw += nk;
} else {
STBI_ASSERT(img_n+1 == out_n);
#define STBI__CASE(f) \
case f: \
for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \
for (k=0; k < filter_bytes; ++k)
switch (filter) {
STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } break;
STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k- output_bytes]); } break;
STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;
STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k- output_bytes])>>1)); } break;
STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + _m3dstbi__paeth(cur[k- output_bytes],prior[k],prior[k- output_bytes])); } break;
STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k- output_bytes] >> 1)); } break;
STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + _m3dstbi__paeth(cur[k- output_bytes],0,0)); } break;
}
#undef STBI__CASE
if (depth == 16) {
cur = a->out + stride*j;
for (i=0; i < x; ++i,cur+=output_bytes) {
cur[filter_bytes+1] = 255;
}
}
}
}
if (depth < 8) {
for (j=0; j < y; ++j) {
unsigned char *cur = a->out + stride*j;
unsigned char *in = a->out + stride*j + x*out_n - img_width_bytes;
unsigned char scale = (color == 0) ? _m3dstbi__depth_scale_table[depth] : 1;
if (depth == 4) {
for (k=x*img_n; k >= 2; k-=2, ++in) {
*cur++ = scale * ((*in >> 4) );
*cur++ = scale * ((*in ) & 0x0f);
}
if (k > 0) *cur++ = scale * ((*in >> 4) );
} else if (depth == 2) {
for (k=x*img_n; k >= 4; k-=4, ++in) {
*cur++ = scale * ((*in >> 6) );
*cur++ = scale * ((*in >> 4) & 0x03);
*cur++ = scale * ((*in >> 2) & 0x03);
*cur++ = scale * ((*in ) & 0x03);
}
if (k > 0) *cur++ = scale * ((*in >> 6) );
if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03);
if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03);
} else if (depth == 1) {
for (k=x*img_n; k >= 8; k-=8, ++in) {
*cur++ = scale * ((*in >> 7) );
*cur++ = scale * ((*in >> 6) & 0x01);
*cur++ = scale * ((*in >> 5) & 0x01);
*cur++ = scale * ((*in >> 4) & 0x01);
*cur++ = scale * ((*in >> 3) & 0x01);
*cur++ = scale * ((*in >> 2) & 0x01);
*cur++ = scale * ((*in >> 1) & 0x01);
*cur++ = scale * ((*in ) & 0x01);
}
if (k > 0) *cur++ = scale * ((*in >> 7) );
if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01);
if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01);
if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01);
if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01);
if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01);
if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01);
}
if (img_n != out_n) {
int q;
cur = a->out + stride*j;
if (img_n == 1) {
for (q=x-1; q >= 0; --q) {
cur[q*2+1] = 255;
cur[q*2+0] = cur[q];
}
} else {
STBI_ASSERT(img_n == 3);
for (q=x-1; q >= 0; --q) {
cur[q*4+3] = 255;
cur[q*4+2] = cur[q*3+2];
cur[q*4+1] = cur[q*3+1];
cur[q*4+0] = cur[q*3+0];
}
}
}
}
} else if (depth == 16) {
unsigned char *cur = a->out;
_m3dstbi__uint16 *cur16 = (_m3dstbi__uint16*)cur;
for(i=0; i < x*y*out_n; ++i,cur16++,cur+=2) {
*cur16 = (cur[0] << 8) | cur[1];
}
}
return 1;
}
static int _m3dstbi__create_png_image(_m3dstbi__png *a, unsigned char *image_data, _m3dstbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced)
{
int bytes = (depth == 16 ? 2 : 1);
int out_bytes = out_n * bytes;
unsigned char *final;
int p;
if (!interlaced)
return _m3dstbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color);
final = (unsigned char *) _m3dstbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0);
for (p=0; p < 7; ++p) {
int xorig[] = { 0,4,0,2,0,1,0 };
int yorig[] = { 0,0,4,0,2,0,1 };
int xspc[] = { 8,8,4,4,2,2,1 };
int yspc[] = { 8,8,8,4,4,2,2 };
int i,j,x,y;
x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p];
y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p];
if (x && y) {
_m3dstbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y;
if (!_m3dstbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) {
STBI_FREE(final);
return 0;
}
for (j=0; j < y; ++j) {
for (i=0; i < x; ++i) {
int out_y = j*yspc[p]+yorig[p];
int out_x = i*xspc[p]+xorig[p];
memcpy(final + out_y*a->s->img_x*out_bytes + out_x*out_bytes,
a->out + (j*x+i)*out_bytes, out_bytes);
}
}
STBI_FREE(a->out);
image_data += img_len;
image_data_len -= img_len;
}
}
a->out = final;
return 1;
}
static int _m3dstbi__compute_transparency(_m3dstbi__png *z, unsigned char tc[3], int out_n)
{
_m3dstbi__context *s = z->s;
_m3dstbi__uint32 i, pixel_count = s->img_x * s->img_y;
unsigned char *p = z->out;
STBI_ASSERT(out_n == 2 || out_n == 4);
if (out_n == 2) {
for (i=0; i < pixel_count; ++i) {
p[1] = (p[0] == tc[0] ? 0 : 255);
p += 2;
}
} else {
for (i=0; i < pixel_count; ++i) {
if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
p[3] = 0;
p += 4;
}
}
return 1;
}
static int _m3dstbi__compute_transparency16(_m3dstbi__png *z, _m3dstbi__uint16 tc[3], int out_n)
{
_m3dstbi__context *s = z->s;
_m3dstbi__uint32 i, pixel_count = s->img_x * s->img_y;
_m3dstbi__uint16 *p = (_m3dstbi__uint16*) z->out;
STBI_ASSERT(out_n == 2 || out_n == 4);
if (out_n == 2) {
for (i = 0; i < pixel_count; ++i) {
p[1] = (p[0] == tc[0] ? 0 : 65535);
p += 2;
}
} else {
for (i = 0; i < pixel_count; ++i) {
if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
p[3] = 0;
p += 4;
}
}
return 1;
}
static int _m3dstbi__expand_png_palette(_m3dstbi__png *a, unsigned char *palette, int len, int pal_img_n)
{
_m3dstbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y;
unsigned char *p, *temp_out, *orig = a->out;
p = (unsigned char *) _m3dstbi__malloc_mad2(pixel_count, pal_img_n, 0);
if (p == NULL) return _m3dstbi__err("outofmem", "Out of memory");
temp_out = p;
if (pal_img_n == 3) {
for (i=0; i < pixel_count; ++i) {
int n = orig[i]*4;
p[0] = palette[n ];
p[1] = palette[n+1];
p[2] = palette[n+2];
p += 3;
}
} else {
for (i=0; i < pixel_count; ++i) {
int n = orig[i]*4;
p[0] = palette[n ];
p[1] = palette[n+1];
p[2] = palette[n+2];
p[3] = palette[n+3];
p += 4;
}
}
STBI_FREE(a->out);
a->out = temp_out;
STBI_NOTUSED(len);
return 1;
}
#define STBI__PNG_TYPE(a,b,c,d) (((unsigned) (a) << 24) + ((unsigned) (b) << 16) + ((unsigned) (c) << 8) + (unsigned) (d))
static int _m3dstbi__parse_png_file(_m3dstbi__png *z, int scan, int req_comp)
{
unsigned char palette[1024], pal_img_n=0;
unsigned char has_trans=0, tc[3];
_m3dstbi__uint16 tc16[3];
_m3dstbi__uint32 ioff=0, idata_limit=0, i, pal_len=0;
int first=1,k,interlace=0, color=0;
_m3dstbi__context *s = z->s;
z->expanded = NULL;
z->idata = NULL;
z->out = NULL;
if (!_m3dstbi__check_png_header(s)) return 0;
if (scan == STBI__SCAN_type) return 1;
for (;;) {
_m3dstbi__pngchunk c = _m3dstbi__get_chunk_header(s);
switch (c.type) {
case STBI__PNG_TYPE('C','g','B','I'):
_m3dstbi__skip(s, c.length);
break;
case STBI__PNG_TYPE('I','H','D','R'): {
int comp,filter;
if (!first) return _m3dstbi__err("multiple IHDR","Corrupt PNG");
first = 0;
if (c.length != 13) return _m3dstbi__err("bad IHDR len","Corrupt PNG");
s->img_x = _m3dstbi__get32be(s); if (s->img_x > (1 << 24)) return _m3dstbi__err("too large","Very large image (corrupt?)");
s->img_y = _m3dstbi__get32be(s); if (s->img_y > (1 << 24)) return _m3dstbi__err("too large","Very large image (corrupt?)");
z->depth = _m3dstbi__get8(s); if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16) return _m3dstbi__err("1/2/4/8/16-bit only","PNG not supported: 1/2/4/8/16-bit only");
color = _m3dstbi__get8(s); if (color > 6) return _m3dstbi__err("bad ctype","Corrupt PNG");
if (color == 3 && z->depth == 16) return _m3dstbi__err("bad ctype","Corrupt PNG");
if (color == 3) pal_img_n = 3; else if (color & 1) return _m3dstbi__err("bad ctype","Corrupt PNG");
comp = _m3dstbi__get8(s); if (comp) return _m3dstbi__err("bad comp method","Corrupt PNG");
filter= _m3dstbi__get8(s); if (filter) return _m3dstbi__err("bad filter method","Corrupt PNG");
interlace = _m3dstbi__get8(s); if (interlace>1) return _m3dstbi__err("bad interlace method","Corrupt PNG");
if (!s->img_x || !s->img_y) return _m3dstbi__err("0-pixel image","Corrupt PNG");
if (!pal_img_n) {
s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0);
if ((1 << 30) / s->img_x / s->img_n < s->img_y) return _m3dstbi__err("too large", "Image too large to decode");
if (scan == STBI__SCAN_header) return 1;
} else {
s->img_n = 1;
if ((1 << 30) / s->img_x / 4 < s->img_y) return _m3dstbi__err("too large","Corrupt PNG");
}
break;
}
case STBI__PNG_TYPE('P','L','T','E'): {
if (first) return _m3dstbi__err("first not IHDR", "Corrupt PNG");
if (c.length > 256*3) return _m3dstbi__err("invalid PLTE","Corrupt PNG");
pal_len = c.length / 3;
if (pal_len * 3 != c.length) return _m3dstbi__err("invalid PLTE","Corrupt PNG");
for (i=0; i < pal_len; ++i) {
palette[i*4+0] = _m3dstbi__get8(s);
palette[i*4+1] = _m3dstbi__get8(s);
palette[i*4+2] = _m3dstbi__get8(s);
palette[i*4+3] = 255;
}
break;
}
case STBI__PNG_TYPE('t','R','N','S'): {
if (first) return _m3dstbi__err("first not IHDR", "Corrupt PNG");
if (z->idata) return _m3dstbi__err("tRNS after IDAT","Corrupt PNG");
if (pal_img_n) {
if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; }
if (pal_len == 0) return _m3dstbi__err("tRNS before PLTE","Corrupt PNG");
if (c.length > pal_len) return _m3dstbi__err("bad tRNS len","Corrupt PNG");
pal_img_n = 4;
for (i=0; i < c.length; ++i)
palette[i*4+3] = _m3dstbi__get8(s);
} else {
if (!(s->img_n & 1)) return _m3dstbi__err("tRNS with alpha","Corrupt PNG");
if (c.length != (_m3dstbi__uint32) s->img_n*2) return _m3dstbi__err("bad tRNS len","Corrupt PNG");
has_trans = 1;
if (z->depth == 16) {
for (k = 0; k < s->img_n; ++k) tc16[k] = (_m3dstbi__uint16)_m3dstbi__get16be(s);
} else {
for (k = 0; k < s->img_n; ++k) tc[k] = (unsigned char)(_m3dstbi__get16be(s) & 255) * _m3dstbi__depth_scale_table[z->depth];
}
}
break;
}
case STBI__PNG_TYPE('I','D','A','T'): {
if (first) return _m3dstbi__err("first not IHDR", "Corrupt PNG");
if (pal_img_n && !pal_len) return _m3dstbi__err("no PLTE","Corrupt PNG");
if (scan == STBI__SCAN_header) { s->img_n = pal_img_n; return 1; }
if ((int)(ioff + c.length) < (int)ioff) return 0;
if (ioff + c.length > idata_limit) {
_m3dstbi__uint32 idata_limit_old = idata_limit;
unsigned char *p;
if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096;
while (ioff + c.length > idata_limit)
idata_limit *= 2;
STBI_NOTUSED(idata_limit_old);
p = (unsigned char *) STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return _m3dstbi__err("outofmem", "Out of memory");
z->idata = p;
}
if (!_m3dstbi__getn(s, z->idata+ioff,c.length)) return _m3dstbi__err("outofdata","Corrupt PNG");
ioff += c.length;
break;
}
case STBI__PNG_TYPE('I','E','N','D'): {
_m3dstbi__uint32 raw_len, bpl;
if (first) return _m3dstbi__err("first not IHDR", "Corrupt PNG");
if (scan != STBI__SCAN_load) return 1;
if (z->idata == NULL) return _m3dstbi__err("no IDAT","Corrupt PNG");
bpl = (s->img_x * z->depth + 7) / 8;
raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */;
z->expanded = (unsigned char *) _m3dstbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, 1);
if (z->expanded == NULL) return 0;
STBI_FREE(z->idata); z->idata = NULL;
if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans)
s->img_out_n = s->img_n+1;
else
s->img_out_n = s->img_n;
if (!_m3dstbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0;
if (has_trans) {
if (z->depth == 16) {
if (!_m3dstbi__compute_transparency16(z, tc16, s->img_out_n)) return 0;
} else {
if (!_m3dstbi__compute_transparency(z, tc, s->img_out_n)) return 0;
}
}
if (pal_img_n) {
s->img_n = pal_img_n;
s->img_out_n = pal_img_n;
if (req_comp >= 3) s->img_out_n = req_comp;
if (!_m3dstbi__expand_png_palette(z, palette, pal_len, s->img_out_n))
return 0;
} else if (has_trans) {
++s->img_n;
}
STBI_FREE(z->expanded); z->expanded = NULL;
return 1;
}
default:
if (first) return _m3dstbi__err("first not IHDR", "Corrupt PNG");
if ((c.type & (1 << 29)) == 0) {
return _m3dstbi__err("invalid_chunk", "PNG not supported: unknown PNG chunk type");
}
_m3dstbi__skip(s, c.length);
break;
}
_m3dstbi__get32be(s);
}
}
static void *_m3dstbi__do_png(_m3dstbi__png *p, int *x, int *y, int *n, int req_comp, _m3dstbi__result_info *ri)
{
void *result=NULL;
if (req_comp < 0 || req_comp > 4) { _m3dstbi__err("bad req_comp", "Internal error"); return NULL; }
if (_m3dstbi__parse_png_file(p, STBI__SCAN_load, req_comp)) {
if (p->depth < 8)
ri->bits_per_channel = 8;
else
ri->bits_per_channel = p->depth;
result = p->out;
p->out = NULL;
if (req_comp && req_comp != p->s->img_out_n) {
if (ri->bits_per_channel == 8)
result = _m3dstbi__convert_format((unsigned char *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
else
result = _m3dstbi__convert_format16((_m3dstbi__uint16 *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
p->s->img_out_n = req_comp;
if (result == NULL) return result;
}
*x = p->s->img_x;
*y = p->s->img_y;
if (n) *n = p->s->img_n;
}
STBI_FREE(p->out); p->out = NULL;
STBI_FREE(p->expanded); p->expanded = NULL;
STBI_FREE(p->idata); p->idata = NULL;
return result;
}
static void *_m3dstbi__png_load(_m3dstbi__context *s, int *x, int *y, int *comp, int req_comp, _m3dstbi__result_info *ri)
{
_m3dstbi__png p;
p.s = s;
return _m3dstbi__do_png(&p, x,y,comp,req_comp, ri);
}
#define stbi__context _m3dstbi__context
#define stbi__result_info _m3dstbi__result_info
#define stbi__png_load _m3dstbi__png_load
#define stbi_zlib_decode_malloc_guesssize_headerflag _m3dstbi_zlib_decode_malloc_guesssize_headerflag
#endif
#if defined(M3D_EXPORTER) && !defined(INCLUDE_STB_IMAGE_WRITE_H)
/* zlib_compressor from
stb_image_write - v1.13 - public domain - http://nothings.org/stb/stb_image_write.h
*/
typedef unsigned char _m3dstbiw__uc;
typedef unsigned short _m3dstbiw__us;
typedef uint16_t _m3dstbiw__uint16;
typedef int16_t _m3dstbiw__int16;
typedef uint32_t _m3dstbiw__uint32;
typedef int32_t _m3dstbiw__int32;
#define STBIW_MALLOC(s) M3D_MALLOC(s)
#define STBIW_REALLOC(p,ns) M3D_REALLOC(p,ns)
#define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz)
#define STBIW_FREE M3D_FREE
#define STBIW_MEMMOVE memmove
#define STBIW_UCHAR (uint8_t)
#define STBIW_ASSERT(x)
#define _m3dstbiw___sbraw(a) ((int *) (a) - 2)
#define _m3dstbiw___sbm(a) _m3dstbiw___sbraw(a)[0]
#define _m3dstbiw___sbn(a) _m3dstbiw___sbraw(a)[1]
#define _m3dstbiw___sbneedgrow(a,n) ((a)==0 || _m3dstbiw___sbn(a)+n >= _m3dstbiw___sbm(a))
#define _m3dstbiw___sbmaybegrow(a,n) (_m3dstbiw___sbneedgrow(a,(n)) ? _m3dstbiw___sbgrow(a,n) : 0)
#define _m3dstbiw___sbgrow(a,n) _m3dstbiw___sbgrowf((void **) &(a), (n), sizeof(*(a)))
#define _m3dstbiw___sbpush(a, v) (_m3dstbiw___sbmaybegrow(a,1), (a)[_m3dstbiw___sbn(a)++] = (v))
#define _m3dstbiw___sbcount(a) ((a) ? _m3dstbiw___sbn(a) : 0)
#define _m3dstbiw___sbfree(a) ((a) ? STBIW_FREE(_m3dstbiw___sbraw(a)),0 : 0)
static void *_m3dstbiw___sbgrowf(void **arr, int increment, int itemsize)
{
int m = *arr ? 2*_m3dstbiw___sbm(*arr)+increment : increment+1;
void *p = STBIW_REALLOC_SIZED(*arr ? _m3dstbiw___sbraw(*arr) : 0, *arr ? (_m3dstbiw___sbm(*arr)*itemsize + sizeof(int)*2) : 0, itemsize * m + sizeof(int)*2);
STBIW_ASSERT(p);
if (p) {
if (!*arr) ((int *) p)[1] = 0;
*arr = (void *) ((int *) p + 2);
_m3dstbiw___sbm(*arr) = m;
}
return *arr;
}
static unsigned char *_m3dstbiw___zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount)
{
while (*bitcount >= 8) {
_m3dstbiw___sbpush(data, STBIW_UCHAR(*bitbuffer));
*bitbuffer >>= 8;
*bitcount -= 8;
}
return data;
}
static int _m3dstbiw___zlib_bitrev(int code, int codebits)
{
int res=0;
while (codebits--) {
res = (res << 1) | (code & 1);
code >>= 1;
}
return res;
}
static unsigned int _m3dstbiw___zlib_countm(unsigned char *a, unsigned char *b, int limit)
{
int i;
for (i=0; i < limit && i < 258; ++i)
if (a[i] != b[i]) break;
return i;
}
static unsigned int _m3dstbiw___zhash(unsigned char *data)
{
_m3dstbiw__uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16);
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 4;
hash += hash >> 17;
hash ^= hash << 25;
hash += hash >> 6;
return hash;
}
#define _m3dstbiw___zlib_flush() (out = _m3dstbiw___zlib_flushf(out, &bitbuf, &bitcount))
#define _m3dstbiw___zlib_add(code,codebits) \
(bitbuf |= (code) << bitcount, bitcount += (codebits), _m3dstbiw___zlib_flush())
#define _m3dstbiw___zlib_huffa(b,c) _m3dstbiw___zlib_add(_m3dstbiw___zlib_bitrev(b,c),c)
#define _m3dstbiw___zlib_huff1(n) _m3dstbiw___zlib_huffa(0x30 + (n), 8)
#define _m3dstbiw___zlib_huff2(n) _m3dstbiw___zlib_huffa(0x190 + (n)-144, 9)
#define _m3dstbiw___zlib_huff3(n) _m3dstbiw___zlib_huffa(0 + (n)-256,7)
#define _m3dstbiw___zlib_huff4(n) _m3dstbiw___zlib_huffa(0xc0 + (n)-280,8)
#define _m3dstbiw___zlib_huff(n) ((n) <= 143 ? _m3dstbiw___zlib_huff1(n) : (n) <= 255 ? _m3dstbiw___zlib_huff2(n) : (n) <= 279 ? _m3dstbiw___zlib_huff3(n) : _m3dstbiw___zlib_huff4(n))
#define _m3dstbiw___zlib_huffb(n) ((n) <= 143 ? _m3dstbiw___zlib_huff1(n) : _m3dstbiw___zlib_huff2(n))
#define _m3dstbiw___ZHASH 16384
unsigned char * _m3dstbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality)
{
static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 };
static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 };
static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 };
static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };
unsigned int bitbuf=0;
int i,j, bitcount=0;
unsigned char *out = NULL;
unsigned char ***hash_table = (unsigned char***) STBIW_MALLOC(_m3dstbiw___ZHASH * sizeof(char**));
if (hash_table == NULL)
return NULL;
if (quality < 5) quality = 5;
_m3dstbiw___sbpush(out, 0x78);
_m3dstbiw___sbpush(out, 0x5e);
_m3dstbiw___zlib_add(1,1);
_m3dstbiw___zlib_add(1,2);
for (i=0; i < _m3dstbiw___ZHASH; ++i)
hash_table[i] = NULL;
i=0;
while (i < data_len-3) {
int h = _m3dstbiw___zhash(data+i)&(_m3dstbiw___ZHASH-1), best=3;
unsigned char *bestloc = 0;
unsigned char **hlist = hash_table[h];
int n = _m3dstbiw___sbcount(hlist);
for (j=0; j < n; ++j) {
if (hlist[j]-data > i-32768) {
int d = _m3dstbiw___zlib_countm(hlist[j], data+i, data_len-i);
if (d >= best) best=d,bestloc=hlist[j];
}
}
if (hash_table[h] && _m3dstbiw___sbn(hash_table[h]) == 2*quality) {
STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality);
_m3dstbiw___sbn(hash_table[h]) = quality;
}
_m3dstbiw___sbpush(hash_table[h],data+i);
if (bestloc) {
h = _m3dstbiw___zhash(data+i+1)&(_m3dstbiw___ZHASH-1);
hlist = hash_table[h];
n = _m3dstbiw___sbcount(hlist);
for (j=0; j < n; ++j) {
if (hlist[j]-data > i-32767) {
int e = _m3dstbiw___zlib_countm(hlist[j], data+i+1, data_len-i-1);
if (e > best) {
bestloc = NULL;
break;
}
}
}
}
if (bestloc) {
int d = (int) (data+i - bestloc);
STBIW_ASSERT(d <= 32767 && best <= 258);
for (j=0; best > lengthc[j+1]-1; ++j);
_m3dstbiw___zlib_huff(j+257);
if (lengtheb[j]) _m3dstbiw___zlib_add(best - lengthc[j], lengtheb[j]);
for (j=0; d > distc[j+1]-1; ++j);
_m3dstbiw___zlib_add(_m3dstbiw___zlib_bitrev(j,5),5);
if (disteb[j]) _m3dstbiw___zlib_add(d - distc[j], disteb[j]);
i += best;
} else {
_m3dstbiw___zlib_huffb(data[i]);
++i;
}
}
for (;i < data_len; ++i)
_m3dstbiw___zlib_huffb(data[i]);
_m3dstbiw___zlib_huff(256);
while (bitcount)
_m3dstbiw___zlib_add(0,1);
for (i=0; i < _m3dstbiw___ZHASH; ++i)
(void) _m3dstbiw___sbfree(hash_table[i]);
STBIW_FREE(hash_table);
{
unsigned int s1=1, s2=0;
int blocklen = (int) (data_len % 5552);
j=0;
while (j < data_len) {
for (i=0; i < blocklen; ++i) s1 += data[j+i], s2 += s1;
s1 %= 65521, s2 %= 65521;
j += blocklen;
blocklen = 5552;
}
_m3dstbiw___sbpush(out, STBIW_UCHAR(s2 >> 8));
_m3dstbiw___sbpush(out, STBIW_UCHAR(s2));
_m3dstbiw___sbpush(out, STBIW_UCHAR(s1 >> 8));
_m3dstbiw___sbpush(out, STBIW_UCHAR(s1));
}
*out_len = _m3dstbiw___sbn(out);
STBIW_MEMMOVE(_m3dstbiw___sbraw(out), out, *out_len);
return (unsigned char *) _m3dstbiw___sbraw(out);
}
#define stbi_zlib_compress _m3dstbi_zlib_compress
#else
unsigned char * _m3dstbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality);
#endif
#define M3D_CHUNKMAGIC(m, a,b,c,d) ((m)[0]==(a) && (m)[1]==(b) && (m)[2]==(c) && (m)[3]==(d))
#ifdef M3D_ASCII
#include <stdio.h> /* get sprintf */
#include <locale.h> /* sprintf and strtod cares about number locale */
#endif
#ifdef M3D_PROFILING
#include <sys/time.h>
#endif
#if !defined(M3D_NOIMPORTER) && defined(M3D_ASCII)
/* helper functions for the ASCII parser */
static char *_m3d_findarg(char *s) {
while(s && *s && *s != ' ' && *s != '\t' && *s != '\r' && *s != '\n') s++;
while(s && *s && (*s == ' ' || *s == '\t')) s++;
return s;
}
static char *_m3d_findnl(char *s) {
while(s && *s && *s != '\r' && *s != '\n') s++;
if(*s == '\r') s++;
if(*s == '\n') s++;
return s;
}
static char *_m3d_gethex(char *s, uint32_t *ret)
{
if(*s == '#') s++;
*ret = 0;
for(; *s; s++) {
if(*s >= '0' && *s <= '9') { *ret <<= 4; *ret += (uint32_t)(*s-'0'); }
else if(*s >= 'a' && *s <= 'f') { *ret <<= 4; *ret += (uint32_t)(*s-'a'+10); }
else if(*s >= 'A' && *s <= 'F') { *ret <<= 4; *ret += (uint32_t)(*s-'A'+10); }
else break;
}
return _m3d_findarg(s);
}
static char *_m3d_getint(char *s, uint32_t *ret)
{
char *e = s;
if(!s || !*s || *s == '\r' || *s == '\n') return s;
for(; *e >= '0' && *e <= '9'; e++);
*ret = atoi(s);
return e;
}
static char *_m3d_getfloat(char *s, M3D_FLOAT *ret)
{
char *e = s;
if(!s || !*s || *s == '\r' || *s == '\n') return s;
for(; *e == '-' || *e == '+' || *e == '.' || (*e >= '0' && *e <= '9') || *e == 'e' || *e == 'E'; e++);
*ret = (M3D_FLOAT)strtod(s, NULL);
return _m3d_findarg(e);
}
#endif
#if !defined(M3D_NODUP) && (!defined(M3D_NOIMPORTER) || defined(M3D_ASCII) || defined(M3D_EXPORTER))
/* helper function to create safe strings */
char *_m3d_safestr(char *in, int morelines)
{
char *out, *o, *i = in;
int l;
if(!in || !*in) {
out = (char*)M3D_MALLOC(1);
if(!out) return NULL;
out[0] =0;
} else {
for(o = in, l = 0; *o && ((morelines & 1) || (*o != '\r' && *o != '\n')) && l < 256; o++, l++);
out = o = (char*)M3D_MALLOC(l+1);
if(!out) return NULL;
while(*i == ' ' || *i == '\t' || *i == '\r' || (morelines && *i == '\n')) i++;
for(; *i && (morelines || (*i != '\r' && *i != '\n')); i++) {
if(*i == '\r') continue;
if(*i == '\n') {
if(morelines >= 3 && o > out && *(o-1) == '\n') break;
if(i > in && *(i-1) == '\n') continue;
if(morelines & 1) {
if(morelines == 1) *o++ = '\r';
*o++ = '\n';
} else
break;
} else
if(*i == ' ' || *i == '\t') {
*o++ = morelines? ' ' : '_';
} else
*o++ = !morelines && (*i == '/' || *i == '\\') ? '_' : *i;
}
for(; o > out && (*(o-1) == ' ' || *(o-1) == '\t' || *(o-1) == '\r' || *(o-1) == '\n'); o--);
*o = 0;
out = (char*)M3D_REALLOC(out, (uintptr_t)o - (uintptr_t)out + 1);
}
return out;
}
#endif
#ifndef M3D_NOIMPORTER
/* helper function to load and decode/generate a texture */
M3D_INDEX _m3d_gettx(m3d_t *model, m3dread_t readfilecb, m3dfree_t freecb, char *fn)
{
unsigned int i, len = 0;
unsigned char *buff = NULL;
char *fn2;
#ifdef STBI__PNG_TYPE
unsigned int w, h;
stbi__context s;
stbi__result_info ri;
#endif
/* do we have loaded this texture already? */
for(i = 0; i < model->numtexture; i++)
if(!strcmp(fn, model->texture[i].name)) return i;
/* see if it's inlined in the model */
if(model->inlined) {
for(i = 0; i < model->numinlined; i++)
if(!strcmp(fn, model->inlined[i].name)) {
buff = model->inlined[i].data;
len = model->inlined[i].length;
freecb = NULL;
break;
}
}
/* try to load from external source */
if(!buff && readfilecb) {
i = (unsigned int)strlen(fn);
if(i < 5 || fn[i - 4] != '.') {
fn2 = (char*)M3D_MALLOC(i + 5);
if(!fn2) { model->errcode = M3D_ERR_ALLOC; return M3D_UNDEF; }
memcpy(fn2, fn, i);
memcpy(fn2+i, ".png", 5);
buff = (*readfilecb)(fn2, &len);
M3D_FREE(fn2);
}
if(!buff) {
buff = (*readfilecb)(fn, &len);
if(!buff) return M3D_UNDEF;
}
}
/* add to textures array */
i = model->numtexture++;
model->texture = (m3dtx_t*)M3D_REALLOC(model->texture, model->numtexture * sizeof(m3dtx_t));
if(!model->texture) {
if(buff && freecb) (*freecb)(buff);
model->errcode = M3D_ERR_ALLOC;
return M3D_UNDEF;
}
model->texture[i].name = fn;
model->texture[i].w = model->texture[i].h = 0; model->texture[i].d = NULL;
if(buff) {
if(buff[0] == 0x89 && buff[1] == 'P' && buff[2] == 'N' && buff[3] == 'G') {
#ifdef STBI__PNG_TYPE
s.read_from_callbacks = 0;
s.img_buffer = s.img_buffer_original = (unsigned char *) buff;
s.img_buffer_end = s.img_buffer_original_end = (unsigned char *) buff+len;
/* don't use model->texture[i].w directly, it's a uint16_t */
w = h = len = 0;
ri.bits_per_channel = 8;
model->texture[i].d = (uint8_t*)stbi__png_load(&s, (int*)&w, (int*)&h, (int*)&len, 0, &ri);
model->texture[i].w = w;
model->texture[i].h = h;
model->texture[i].f = (uint8_t)len;
#endif
} else {
#ifdef M3D_TX_INTERP
if((model->errcode = M3D_TX_INTERP(fn, buff, len, &model->texture[i])) != M3D_SUCCESS) {
M3D_LOG("Unable to generate texture");
M3D_LOG(fn);
}
#else
M3D_LOG("Unimplemented interpreter");
M3D_LOG(fn);
#endif
}
if(freecb) (*freecb)(buff);
}
if(!model->texture[i].d)
model->errcode = M3D_ERR_UNKIMG;
return i;
}
/* helper function to load and generate a procedural surface */
void _m3d_getpr(m3d_t *model, _unused m3dread_t readfilecb, _unused m3dfree_t freecb, _unused char *fn)
{
#ifdef M3D_PR_INTERP
unsigned int i, len = 0;
unsigned char *buff = readfilecb ? (*readfilecb)(fn, &len) : NULL;
if(!buff && model->inlined) {
for(i = 0; i < model->numinlined; i++)
if(!strcmp(fn, model->inlined[i].name)) {
buff = model->inlined[i].data;
len = model->inlined[i].length;
freecb = NULL;
break;
}
}
if(!buff || !len || (model->errcode = M3D_PR_INTERP(fn, buff, len, model)) != M3D_SUCCESS) {
M3D_LOG("Unable to generate procedural surface");
M3D_LOG(fn);
model->errcode = M3D_ERR_UNKIMG;
}
if(freecb && buff) (*freecb)(buff);
#else
(void)readfilecb;
(void)freecb;
(void)fn;
M3D_LOG("Unimplemented interpreter");
M3D_LOG(fn);
model->errcode = M3D_ERR_UNIMPL;
#endif
}
/* helpers to read indices from data stream */
#define M3D_GETSTR(x) do{offs=0;data=_m3d_getidx(data,model->si_s,&offs);x=offs?((char*)model->raw+16+offs):NULL;}while(0)
_inline static unsigned char *_m3d_getidx(unsigned char *data, char type, M3D_INDEX *idx)
{
switch(type) {
case 1: *idx = data[0] > 253 ? (int8_t)data[0] : data[0]; data++; break;
case 2: *idx = *((uint16_t*)data) > 65533 ? *((int16_t*)data) : *((uint16_t*)data); data += 2; break;
case 4: *idx = *((int32_t*)data); data += 4; break;
}
return data;
}
#ifndef M3D_NOANIMATION
/* multiply 4 x 4 matrices. Do not use float *r[16] as argument, because some compilers misinterpret that as
* 16 pointers each pointing to a float, but we need a single pointer to 16 floats. */
void _m3d_mul(M3D_FLOAT *r, M3D_FLOAT *a, M3D_FLOAT *b)
{
r[ 0] = b[ 0] * a[ 0] + b[ 4] * a[ 1] + b[ 8] * a[ 2] + b[12] * a[ 3];
r[ 1] = b[ 1] * a[ 0] + b[ 5] * a[ 1] + b[ 9] * a[ 2] + b[13] * a[ 3];
r[ 2] = b[ 2] * a[ 0] + b[ 6] * a[ 1] + b[10] * a[ 2] + b[14] * a[ 3];
r[ 3] = b[ 3] * a[ 0] + b[ 7] * a[ 1] + b[11] * a[ 2] + b[15] * a[ 3];
r[ 4] = b[ 0] * a[ 4] + b[ 4] * a[ 5] + b[ 8] * a[ 6] + b[12] * a[ 7];
r[ 5] = b[ 1] * a[ 4] + b[ 5] * a[ 5] + b[ 9] * a[ 6] + b[13] * a[ 7];
r[ 6] = b[ 2] * a[ 4] + b[ 6] * a[ 5] + b[10] * a[ 6] + b[14] * a[ 7];
r[ 7] = b[ 3] * a[ 4] + b[ 7] * a[ 5] + b[11] * a[ 6] + b[15] * a[ 7];
r[ 8] = b[ 0] * a[ 8] + b[ 4] * a[ 9] + b[ 8] * a[10] + b[12] * a[11];
r[ 9] = b[ 1] * a[ 8] + b[ 5] * a[ 9] + b[ 9] * a[10] + b[13] * a[11];
r[10] = b[ 2] * a[ 8] + b[ 6] * a[ 9] + b[10] * a[10] + b[14] * a[11];
r[11] = b[ 3] * a[ 8] + b[ 7] * a[ 9] + b[11] * a[10] + b[15] * a[11];
r[12] = b[ 0] * a[12] + b[ 4] * a[13] + b[ 8] * a[14] + b[12] * a[15];
r[13] = b[ 1] * a[12] + b[ 5] * a[13] + b[ 9] * a[14] + b[13] * a[15];
r[14] = b[ 2] * a[12] + b[ 6] * a[13] + b[10] * a[14] + b[14] * a[15];
r[15] = b[ 3] * a[12] + b[ 7] * a[13] + b[11] * a[14] + b[15] * a[15];
}
/* calculate 4 x 4 matrix inverse */
void _m3d_inv(M3D_FLOAT *m)
{
M3D_FLOAT r[16];
M3D_FLOAT det =
m[ 0]*m[ 5]*m[10]*m[15] - m[ 0]*m[ 5]*m[11]*m[14] + m[ 0]*m[ 6]*m[11]*m[13] - m[ 0]*m[ 6]*m[ 9]*m[15]
+ m[ 0]*m[ 7]*m[ 9]*m[14] - m[ 0]*m[ 7]*m[10]*m[13] - m[ 1]*m[ 6]*m[11]*m[12] + m[ 1]*m[ 6]*m[ 8]*m[15]
- m[ 1]*m[ 7]*m[ 8]*m[14] + m[ 1]*m[ 7]*m[10]*m[12] - m[ 1]*m[ 4]*m[10]*m[15] + m[ 1]*m[ 4]*m[11]*m[14]
+ m[ 2]*m[ 7]*m[ 8]*m[13] - m[ 2]*m[ 7]*m[ 9]*m[12] + m[ 2]*m[ 4]*m[ 9]*m[15] - m[ 2]*m[ 4]*m[11]*m[13]
+ m[ 2]*m[ 5]*m[11]*m[12] - m[ 2]*m[ 5]*m[ 8]*m[15] - m[ 3]*m[ 4]*m[ 9]*m[14] + m[ 3]*m[ 4]*m[10]*m[13]
- m[ 3]*m[ 5]*m[10]*m[12] + m[ 3]*m[ 5]*m[ 8]*m[14] - m[ 3]*m[ 6]*m[ 8]*m[13] + m[ 3]*m[ 6]*m[ 9]*m[12];
if(det == (M3D_FLOAT)0.0 || det == (M3D_FLOAT)-0.0) det = (M3D_FLOAT)1.0; else det = (M3D_FLOAT)1.0 / det;
r[ 0] = det *(m[ 5]*(m[10]*m[15] - m[11]*m[14]) + m[ 6]*(m[11]*m[13] - m[ 9]*m[15]) + m[ 7]*(m[ 9]*m[14] - m[10]*m[13]));
r[ 1] = -det*(m[ 1]*(m[10]*m[15] - m[11]*m[14]) + m[ 2]*(m[11]*m[13] - m[ 9]*m[15]) + m[ 3]*(m[ 9]*m[14] - m[10]*m[13]));
r[ 2] = det *(m[ 1]*(m[ 6]*m[15] - m[ 7]*m[14]) + m[ 2]*(m[ 7]*m[13] - m[ 5]*m[15]) + m[ 3]*(m[ 5]*m[14] - m[ 6]*m[13]));
r[ 3] = -det*(m[ 1]*(m[ 6]*m[11] - m[ 7]*m[10]) + m[ 2]*(m[ 7]*m[ 9] - m[ 5]*m[11]) + m[ 3]*(m[ 5]*m[10] - m[ 6]*m[ 9]));
r[ 4] = -det*(m[ 4]*(m[10]*m[15] - m[11]*m[14]) + m[ 6]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 7]*(m[ 8]*m[14] - m[10]*m[12]));
r[ 5] = det *(m[ 0]*(m[10]*m[15] - m[11]*m[14]) + m[ 2]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 3]*(m[ 8]*m[14] - m[10]*m[12]));
r[ 6] = -det*(m[ 0]*(m[ 6]*m[15] - m[ 7]*m[14]) + m[ 2]*(m[ 7]*m[12] - m[ 4]*m[15]) + m[ 3]*(m[ 4]*m[14] - m[ 6]*m[12]));
r[ 7] = det *(m[ 0]*(m[ 6]*m[11] - m[ 7]*m[10]) + m[ 2]*(m[ 7]*m[ 8] - m[ 4]*m[11]) + m[ 3]*(m[ 4]*m[10] - m[ 6]*m[ 8]));
r[ 8] = det *(m[ 4]*(m[ 9]*m[15] - m[11]*m[13]) + m[ 5]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 7]*(m[ 8]*m[13] - m[ 9]*m[12]));
r[ 9] = -det*(m[ 0]*(m[ 9]*m[15] - m[11]*m[13]) + m[ 1]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 3]*(m[ 8]*m[13] - m[ 9]*m[12]));
r[10] = det *(m[ 0]*(m[ 5]*m[15] - m[ 7]*m[13]) + m[ 1]*(m[ 7]*m[12] - m[ 4]*m[15]) + m[ 3]*(m[ 4]*m[13] - m[ 5]*m[12]));
r[11] = -det*(m[ 0]*(m[ 5]*m[11] - m[ 7]*m[ 9]) + m[ 1]*(m[ 7]*m[ 8] - m[ 4]*m[11]) + m[ 3]*(m[ 4]*m[ 9] - m[ 5]*m[ 8]));
r[12] = -det*(m[ 4]*(m[ 9]*m[14] - m[10]*m[13]) + m[ 5]*(m[10]*m[12] - m[ 8]*m[14]) + m[ 6]*(m[ 8]*m[13] - m[ 9]*m[12]));
r[13] = det *(m[ 0]*(m[ 9]*m[14] - m[10]*m[13]) + m[ 1]*(m[10]*m[12] - m[ 8]*m[14]) + m[ 2]*(m[ 8]*m[13] - m[ 9]*m[12]));
r[14] = -det*(m[ 0]*(m[ 5]*m[14] - m[ 6]*m[13]) + m[ 1]*(m[ 6]*m[12] - m[ 4]*m[14]) + m[ 2]*(m[ 4]*m[13] - m[ 5]*m[12]));
r[15] = det *(m[ 0]*(m[ 5]*m[10] - m[ 6]*m[ 9]) + m[ 1]*(m[ 6]*m[ 8] - m[ 4]*m[10]) + m[ 2]*(m[ 4]*m[ 9] - m[ 5]*m[ 8]));
memcpy(m, &r, sizeof(r));
}
/* compose a coloumn major 4 x 4 matrix from vec3 position and vec4 orientation/rotation quaternion */
void _m3d_mat(M3D_FLOAT *r, m3dv_t *p, m3dv_t *q)
{
if(q->x == (M3D_FLOAT)0.0 && q->y == (M3D_FLOAT)0.0 && q->z >=(M3D_FLOAT) 0.7071065 && q->z <= (M3D_FLOAT)0.7071075 &&
q->w == (M3D_FLOAT)0.0) {
r[ 1] = r[ 2] = r[ 4] = r[ 6] = r[ 8] = r[ 9] = (M3D_FLOAT)0.0;
r[ 0] = r[ 5] = r[10] = (M3D_FLOAT)-1.0;
} else {
r[ 0] = 1 - 2 * (q->y * q->y + q->z * q->z); if(r[ 0]>-M3D_EPSILON && r[ 0]<M3D_EPSILON) r[ 0]=(M3D_FLOAT)0.0;
r[ 1] = 2 * (q->x * q->y - q->z * q->w); if(r[ 1]>-M3D_EPSILON && r[ 1]<M3D_EPSILON) r[ 1]=(M3D_FLOAT)0.0;
r[ 2] = 2 * (q->x * q->z + q->y * q->w); if(r[ 2]>-M3D_EPSILON && r[ 2]<M3D_EPSILON) r[ 2]=(M3D_FLOAT)0.0;
r[ 4] = 2 * (q->x * q->y + q->z * q->w); if(r[ 4]>-M3D_EPSILON && r[ 4]<M3D_EPSILON) r[ 4]=(M3D_FLOAT)0.0;
r[ 5] = 1 - 2 * (q->x * q->x + q->z * q->z); if(r[ 5]>-M3D_EPSILON && r[ 5]<M3D_EPSILON) r[ 5]=(M3D_FLOAT)0.0;
r[ 6] = 2 * (q->y * q->z - q->x * q->w); if(r[ 6]>-M3D_EPSILON && r[ 6]<M3D_EPSILON) r[ 6]=(M3D_FLOAT)0.0;
r[ 8] = 2 * (q->x * q->z - q->y * q->w); if(r[ 8]>-M3D_EPSILON && r[ 8]<M3D_EPSILON) r[ 8]=(M3D_FLOAT)0.0;
r[ 9] = 2 * (q->y * q->z + q->x * q->w); if(r[ 9]>-M3D_EPSILON && r[ 9]<M3D_EPSILON) r[ 9]=(M3D_FLOAT)0.0;
r[10] = 1 - 2 * (q->x * q->x + q->y * q->y); if(r[10]>-M3D_EPSILON && r[10]<M3D_EPSILON) r[10]=(M3D_FLOAT)0.0;
}
r[ 3] = p->x; r[ 7] = p->y; r[11] = p->z;
r[12] = 0; r[13] = 0; r[14] = 0; r[15] = 1;
}
#endif
#if !defined(M3D_NOANIMATION) || !defined(M3D_NONORMALS)
/* portable fast inverse square root calculation. returns 1/sqrt(x) */
static M3D_FLOAT _m3d_rsq(M3D_FLOAT x)
{
#ifdef M3D_DOUBLE
return ((M3D_FLOAT)15.0/(M3D_FLOAT)8.0) + ((M3D_FLOAT)-5.0/(M3D_FLOAT)4.0)*x + ((M3D_FLOAT)3.0/(M3D_FLOAT)8.0)*x*x;
#else
/* John Carmack's */
float x2 = x * 0.5f;
*((uint32_t*)&x) = (0x5f3759df - (*((uint32_t*)&x) >> 1));
return x * (1.5f - (x2 * x * x));
#endif
}
#endif
/**
* Function to decode a Model 3D into in-memory format
*/
m3d_t *m3d_load(unsigned char *data, m3dread_t readfilecb, m3dfree_t freecb, m3d_t *mtllib)
{
unsigned char *end, *chunk, *buff, weights[8];
unsigned int i, j, k, l, n, am, len = 0, reclen, offs;
char *name, *lang;
float f;
m3d_t *model;
M3D_INDEX mi;
M3D_FLOAT w;
m3dcd_t *cd;
m3dtx_t *tx;
m3dh_t *h;
m3dm_t *m;
m3da_t *a;
m3di_t *t;
#ifndef M3D_NONORMALS
char neednorm = 0;
m3dv_t *norm = NULL, *v0, *v1, *v2, va, vb;
#endif
#ifndef M3D_NOANIMATION
M3D_FLOAT r[16];
#endif
#if !defined(M3D_NOWEIGHTS) || !defined(M3D_NOANIMATION)
m3db_t *b;
#endif
#ifndef M3D_NOWEIGHTS
m3ds_t *sk;
#endif
#ifdef M3D_ASCII
m3ds_t s;
M3D_INDEX bi[M3D_BONEMAXLEVEL+1], level;
const char *ol;
char *ptr, *pe, *fn;
#endif
#ifdef M3D_PROFILING
struct timeval tv0, tv1, tvd;
gettimeofday(&tv0, NULL);
#endif
if(!data || (!M3D_CHUNKMAGIC(data, '3','D','M','O')
#ifdef M3D_ASCII
&& !M3D_CHUNKMAGIC(data, '3','d','m','o')
#endif
)) return NULL;
model = (m3d_t*)M3D_MALLOC(sizeof(m3d_t));
if(!model) {
M3D_LOG("Out of memory");
return NULL;
}
memset(model, 0, sizeof(m3d_t));
if(mtllib) {
model->nummaterial = mtllib->nummaterial;
model->material = mtllib->material;
model->numtexture = mtllib->numtexture;
model->texture = mtllib->texture;
model->flags |= M3D_FLG_MTLLIB;
}
#ifdef M3D_ASCII
/* ASCII variant? */
if(M3D_CHUNKMAGIC(data, '3','d','m','o')) {
model->errcode = M3D_ERR_BADFILE;
model->flags |= M3D_FLG_FREESTR;
model->raw = (m3dhdr_t*)data;
ptr = (char*)data;
ol = setlocale(LC_NUMERIC, NULL);
setlocale(LC_NUMERIC, "C");
/* parse header. Don't use sscanf, that's incredibly slow */
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
pe = _m3d_findnl(ptr);
model->scale = (float)strtod(ptr, NULL); ptr = pe;
if(model->scale <= (M3D_FLOAT)0.0) model->scale = (M3D_FLOAT)1.0;
model->name = _m3d_safestr(ptr, 2); ptr = _m3d_findnl(ptr);
if(!*ptr) goto asciiend;
model->license = _m3d_safestr(ptr, 2); ptr = _m3d_findnl(ptr);
if(!*ptr) goto asciiend;
model->author = _m3d_safestr(ptr, 2); ptr = _m3d_findnl(ptr);
if(!*ptr) goto asciiend;
if(*ptr != '\r' && *ptr != '\n')
model->desc = _m3d_safestr(ptr, 3);
while(*ptr) {
while(*ptr && *ptr!='\n') ptr++;
ptr++; if(*ptr=='\r') ptr++;
if(*ptr == '\n') break;
}
/* the main chunk reader loop */
while(*ptr) {
while(*ptr && (*ptr == '\r' || *ptr == '\n')) ptr++;
if(!*ptr || (ptr[0]=='E' && ptr[1]=='n' && ptr[2]=='d')) break;
/* make sure there's at least one data row */
pe = ptr; ptr = _m3d_findnl(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
/* Preview chunk */
if(!memcmp(pe, "Preview", 7)) {
if(readfilecb) {
pe = _m3d_safestr(ptr, 0);
if(!pe || !*pe) goto asciiend;
model->preview.data = (*readfilecb)(pe, &model->preview.length);
M3D_FREE(pe);
}
while(*ptr && *ptr != '\r' && *ptr != '\n')
ptr = _m3d_findnl(ptr);
} else
/* texture map chunk */
if(!memcmp(pe, "Textmap", 7)) {
if(model->tmap) { M3D_LOG("More texture map chunks, should be unique"); goto asciiend; }
while(*ptr && *ptr != '\r' && *ptr != '\n') {
i = model->numtmap++;
model->tmap = (m3dti_t*)M3D_REALLOC(model->tmap, model->numtmap * sizeof(m3dti_t));
if(!model->tmap) goto memerr;
ptr = _m3d_getfloat(ptr, &model->tmap[i].u);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
_m3d_getfloat(ptr, &model->tmap[i].v);
ptr = _m3d_findnl(ptr);
}
} else
/* vertex chunk */
if(!memcmp(pe, "Vertex", 6)) {
if(model->vertex) { M3D_LOG("More vertex chunks, should be unique"); goto asciiend; }
while(*ptr && *ptr != '\r' && *ptr != '\n') {
i = model->numvertex++;
model->vertex = (m3dv_t*)M3D_REALLOC(model->vertex, model->numvertex * sizeof(m3dv_t));
if(!model->vertex) goto memerr;
memset(&model->vertex[i], 0, sizeof(m3dv_t));
model->vertex[i].skinid = M3D_UNDEF;
model->vertex[i].color = 0;
model->vertex[i].w = (M3D_FLOAT)1.0;
ptr = _m3d_getfloat(ptr, &model->vertex[i].x);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
ptr = _m3d_getfloat(ptr, &model->vertex[i].y);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
ptr = _m3d_getfloat(ptr, &model->vertex[i].z);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
ptr = _m3d_getfloat(ptr, &model->vertex[i].w);
if(!*ptr) goto asciiend;
if(*ptr == '#') {
ptr = _m3d_gethex(ptr, &model->vertex[i].color);
if(!*ptr) goto asciiend;
}
/* parse skin */
memset(&s, 0, sizeof(m3ds_t));
for(j = 0, w = (M3D_FLOAT)0.0; j < M3D_NUMBONE && *ptr && *ptr != '\r' && *ptr != '\n'; j++) {
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
ptr = _m3d_getint(ptr, &k);
s.boneid[j] = (M3D_INDEX)k;
if(*ptr == ':') {
ptr++;
ptr = _m3d_getfloat(ptr, &s.weight[j]);
w += s.weight[j];
} else if(!j)
s.weight[j] = (M3D_FLOAT)1.0;
if(!*ptr) goto asciiend;
}
if(s.boneid[0] != M3D_UNDEF && s.weight[0] > (M3D_FLOAT)0.0) {
if(w != (M3D_FLOAT)1.0 && w != (M3D_FLOAT)0.0)
for(j = 0; j < M3D_NUMBONE && s.weight[j] > (M3D_FLOAT)0.0; j++)
s.weight[j] /= w;
k = M3D_NOTDEFINED;
if(model->skin) {
for(j = 0; j < model->numskin; j++)
if(!memcmp(&model->skin[j], &s, sizeof(m3ds_t))) { k = j; break; }
}
if(k == M3D_NOTDEFINED) {
k = model->numskin++;
model->skin = (m3ds_t*)M3D_REALLOC(model->skin, model->numskin * sizeof(m3ds_t));
memcpy(&model->skin[k], &s, sizeof(m3ds_t));
}
model->vertex[i].skinid = (M3D_INDEX)k;
}
ptr = _m3d_findnl(ptr);
}
} else
/* Skeleton, bone hierarchy */
if(!memcmp(pe, "Bones", 5)) {
if(model->bone) { M3D_LOG("More bones chunks, should be unique"); goto asciiend; }
bi[0] = M3D_UNDEF;
while(*ptr && *ptr != '\r' && *ptr != '\n') {
i = model->numbone++;
model->bone = (m3db_t*)M3D_REALLOC(model->bone, model->numbone * sizeof(m3db_t));
if(!model->bone) goto memerr;
for(level = 0; *ptr == '/'; ptr++, level++);
if(level > M3D_BONEMAXLEVEL || !*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
bi[level+1] = i;
model->bone[i].numweight = 0;
model->bone[i].weight = NULL;
model->bone[i].parent = bi[level];
ptr = _m3d_getint(ptr, &k);
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
model->bone[i].pos = (M3D_INDEX)k;
ptr = _m3d_getint(ptr, &k);
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
model->bone[i].ori = (M3D_INDEX)k;
model->vertex[k].skinid = M3D_INDEXMAX;
pe = _m3d_safestr(ptr, 0);
if(!pe || !*pe) goto asciiend;
model->bone[i].name = pe;
ptr = _m3d_findnl(ptr);
}
} else
/* material chunk */
if(!memcmp(pe, "Material", 8)) {
pe = _m3d_findarg(pe);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
pe = _m3d_safestr(pe, 0);
if(!pe || !*pe) goto asciiend;
for(i = 0; i < model->nummaterial; i++)
if(!strcmp(pe, model->material[i].name)) {
M3D_LOG("Multiple definitions for material");
M3D_LOG(pe);
M3D_FREE(pe);
pe = NULL;
while(*ptr && *ptr != '\r' && *ptr != '\n') ptr = _m3d_findnl(ptr);
break;
}
if(!pe) continue;
i = model->nummaterial++;
if(model->flags & M3D_FLG_MTLLIB) {
m = model->material;
model->material = (m3dm_t*)M3D_MALLOC(model->nummaterial * sizeof(m3dm_t));
if(!model->material) goto memerr;
memcpy(model->material, m, (model->nummaterial - 1) * sizeof(m3dm_t));
if(model->texture) {
tx = model->texture;
model->texture = (m3dtx_t*)M3D_MALLOC(model->numtexture * sizeof(m3dtx_t));
if(!model->texture) goto memerr;
memcpy(model->texture, tx, model->numtexture * sizeof(m3dm_t));
}
model->flags &= ~M3D_FLG_MTLLIB;
} else {
model->material = (m3dm_t*)M3D_REALLOC(model->material, model->nummaterial * sizeof(m3dm_t));
if(!model->material) goto memerr;
}
m = &model->material[i];
m->name = pe;
m->numprop = 0;
m->prop = NULL;
while(*ptr && *ptr != '\r' && *ptr != '\n') {
k = n = 256;
if(*ptr == 'm' && *(ptr+1) == 'a' && *(ptr+2) == 'p' && *(ptr+3) == '_') {
k = m3dpf_map;
ptr += 4;
}
for(j = 0; j < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); j++)
if(!memcmp(ptr, m3d_propertytypes[j].key, strlen(m3d_propertytypes[j].key))) {
n = m3d_propertytypes[j].id;
if(k != m3dpf_map) k = m3d_propertytypes[j].format;
break;
}
if(n != 256 && k != 256) {
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
j = m->numprop++;
m->prop = (m3dp_t*)M3D_REALLOC(m->prop, m->numprop * sizeof(m3dp_t));
if(!m->prop) goto memerr;
m->prop[j].type = n + (k == m3dpf_map && n < 128 ? 128 : 0);
switch(k) {
case m3dpf_color: ptr = _m3d_gethex(ptr, &m->prop[j].value.color); break;
case m3dpf_uint8:
case m3dpf_uint16:
case m3dpf_uint32: ptr = _m3d_getint(ptr, &m->prop[j].value.num); break;
case m3dpf_float: ptr = _m3d_getfloat(ptr, &m->prop[j].value.fnum); break;
case m3dpf_map:
pe = _m3d_safestr(ptr, 0);
if(!pe || !*pe) goto asciiend;
m->prop[j].value.textureid = _m3d_gettx(model, readfilecb, freecb, pe);
if(model->errcode == M3D_ERR_ALLOC) { M3D_FREE(pe); goto memerr; }
/* this error code only returned if readfilecb was specified */
if(m->prop[j].value.textureid == M3D_UNDEF) {
M3D_LOG("Texture not found");
M3D_LOG(pe);
m->numprop--;
}
M3D_FREE(pe);
break;
}
} else {
M3D_LOG("Unknown material property in");
M3D_LOG(m->name);
model->errcode = M3D_ERR_UNKPROP;
}
ptr = _m3d_findnl(ptr);
}
if(!m->numprop) model->nummaterial--;
} else
/* procedural */
if(!memcmp(pe, "Procedural", 10)) {
pe = _m3d_safestr(ptr, 0);
_m3d_getpr(model, readfilecb, freecb, pe);
M3D_FREE(pe);
while(*ptr && *ptr != '\r' && *ptr != '\n') ptr = _m3d_findnl(ptr);
} else
/* mesh */
if(!memcmp(pe, "Mesh", 4)) {
mi = M3D_UNDEF;
while(*ptr && *ptr != '\r' && *ptr != '\n') {
if(*ptr == 'u') {
ptr = _m3d_findarg(ptr);
if(!*ptr) goto asciiend;
mi = M3D_UNDEF;
if(*ptr != '\r' && *ptr != '\n') {
pe = _m3d_safestr(ptr, 0);
if(!pe || !*pe) goto asciiend;
for(j = 0; j < model->nummaterial; j++)
if(!strcmp(pe, model->material[j].name)) { mi = (M3D_INDEX)j; break; }
if(mi == M3D_UNDEF && !(model->flags & M3D_FLG_MTLLIB)) {
mi = model->nummaterial++;
model->material = (m3dm_t*)M3D_REALLOC(model->material, model->nummaterial * sizeof(m3dm_t));
if(!model->material) goto memerr;
model->material[mi].name = pe;
model->material[mi].numprop = 1;
model->material[mi].prop = NULL;
} else
M3D_FREE(pe);
}
} else {
i = model->numface++;
model->face = (m3df_t*)M3D_REALLOC(model->face, model->numface * sizeof(m3df_t));
if(!model->face) goto memerr;
memset(&model->face[i], 255, sizeof(m3df_t)); /* set all index to -1 by default */
model->face[i].materialid = mi;
/* hardcoded triangles. */
for(j = 0; j < 3; j++) {
/* vertex */
ptr = _m3d_getint(ptr, &k);
model->face[i].vertex[j] = (M3D_INDEX)k;
if(!*ptr) goto asciiend;
if(*ptr == '/') {
ptr++;
if(*ptr != '/') {
/* texcoord */
ptr = _m3d_getint(ptr, &k);
model->face[i].texcoord[j] = (M3D_INDEX)k;
if(!*ptr) goto asciiend;
}
if(*ptr == '/') {
ptr++;
/* normal */
ptr = _m3d_getint(ptr, &k);
model->face[i].normal[j] = (M3D_INDEX)k;
if(!*ptr) goto asciiend;
}
}
#ifndef M3D_NONORMALS
if(model->face[i].normal[j] == M3D_UNDEF) neednorm = 1;
#endif
ptr = _m3d_findarg(ptr);
}
}
ptr = _m3d_findnl(ptr);
}
} else
/* mathematical shape */
if(!memcmp(pe, "Shape", 5)) {
pe = _m3d_findarg(pe);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
pe = _m3d_safestr(pe, 0);
if(!pe || !*pe) goto asciiend;
i = model->numshape++;
model->shape = (m3dh_t*)M3D_REALLOC(model->shape, model->numshape * sizeof(m3ds_t));
if(!model->shape) goto memerr;
h = &model->shape[i];
h->name = pe;
h->group = M3D_UNDEF;
h->numcmd = 0;
h->cmd = NULL;
while(*ptr && *ptr != '\r' && *ptr != '\n') {
if(!memcmp(ptr, "group", 5)) {
ptr = _m3d_findarg(ptr);
ptr = _m3d_getint(ptr, &h->group);
ptr = _m3d_findnl(ptr);
if(h->group != M3D_UNDEF && h->group >= model->numbone) {
M3D_LOG("Unknown bone id as shape group in shape");
M3D_LOG(pe);
h->group = M3D_UNDEF;
model->errcode = M3D_ERR_SHPE;
}
continue;
}
for(cd = NULL, k = 0; k < (unsigned int)(sizeof(m3d_commandtypes)/sizeof(m3d_commandtypes[0])); k++) {
j = (unsigned int)strlen(m3d_commandtypes[k].key);
if(!memcmp(ptr, m3d_commandtypes[k].key, j) && (ptr[j] == ' ' || ptr[j] == '\r' || ptr[j] == '\n'))
{ cd = &m3d_commandtypes[k]; break; }
}
if(cd) {
j = h->numcmd++;
h->cmd = (m3dc_t*)M3D_REALLOC(h->cmd, h->numcmd * sizeof(m3dc_t));
if(!h->cmd) goto memerr;
h->cmd[j].type = k;
h->cmd[j].arg = (uint32_t*)M3D_MALLOC(cd->p * sizeof(uint32_t));
if(!h->cmd[j].arg) goto memerr;
memset(h->cmd[j].arg, 0, cd->p * sizeof(uint32_t));
for(k = n = 0, l = cd->p; k < l; k++) {
ptr = _m3d_findarg(ptr);
if(!*ptr) goto asciiend;
if(*ptr == '[') {
ptr = _m3d_findarg(ptr + 1);
if(!*ptr) goto asciiend;
}
if(*ptr == ']' || *ptr == '\r' || *ptr == '\n') break;
switch(cd->a[((k - n) % (cd->p - n)) + n]) {
case m3dcp_mi_t:
mi = M3D_UNDEF;
if(*ptr != '\r' && *ptr != '\n') {
pe = _m3d_safestr(ptr, 0);
if(!pe || !*pe) goto asciiend;
for(n = 0; n < model->nummaterial; n++)
if(!strcmp(pe, model->material[n].name)) { mi = (M3D_INDEX)n; break; }
if(mi == M3D_UNDEF && !(model->flags & M3D_FLG_MTLLIB)) {
mi = model->nummaterial++;
model->material = (m3dm_t*)M3D_REALLOC(model->material,
model->nummaterial * sizeof(m3dm_t));
if(!model->material) goto memerr;
model->material[mi].name = pe;
model->material[mi].numprop = 1;
model->material[mi].prop = NULL;
} else
M3D_FREE(pe);
}
h->cmd[j].arg[k] = mi;
break;
case m3dcp_vc_t:
_m3d_getfloat(ptr, &w);
h->cmd[j].arg[k] = *((uint32_t*)&w);
break;
case m3dcp_va_t:
ptr = _m3d_getint(ptr, &h->cmd[j].arg[k]);
n = k + 1; l += (h->cmd[j].arg[k] - 1) * (cd->p - k - 1);
h->cmd[j].arg = (uint32_t*)M3D_REALLOC(h->cmd[j].arg, l * sizeof(uint32_t));
if(!h->cmd[j].arg) goto memerr;
memset(&h->cmd[j].arg[k + 1], 0, (l - k - 1) * sizeof(uint32_t));
break;
case m3dcp_qi_t:
ptr = _m3d_getint(ptr, &h->cmd[j].arg[k]);
model->vertex[h->cmd[i].arg[k]].skinid = M3D_INDEXMAX;
break;
default:
ptr = _m3d_getint(ptr, &h->cmd[j].arg[k]);
break;
}
}
} else {
M3D_LOG("Unknown shape command in");
M3D_LOG(h->name);
model->errcode = M3D_ERR_UNKCMD;
}
ptr = _m3d_findnl(ptr);
}
if(!h->numcmd) model->numshape--;
} else
/* annotation labels */
if(!memcmp(pe, "Labels", 6)) {
pe = _m3d_findarg(pe);
if(!*pe) goto asciiend;
if(*pe == '\r' || *pe == '\n') pe = NULL;
else pe = _m3d_safestr(pe, 0);
k = 0; fn = NULL;
while(*ptr && *ptr != '\r' && *ptr != '\n') {
if(*ptr == 'c') {
ptr = _m3d_findarg(ptr);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
ptr = _m3d_gethex(ptr, &k);
} else
if(*ptr == 'l') {
ptr = _m3d_findarg(ptr);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
fn = _m3d_safestr(ptr, 2);
} else {
i = model->numlabel++;
model->label = (m3dl_t*)M3D_REALLOC(model->label, model->numlabel * sizeof(m3dl_t));
if(!model->label) goto memerr;
model->label[i].name = pe;
model->label[i].lang = fn;
model->label[i].color = k;
ptr = _m3d_getint(ptr, &j);
model->label[i].vertexid = (M3D_INDEX)j;
ptr = _m3d_findarg(ptr);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
model->label[i].text = _m3d_safestr(ptr, 2);
}
ptr = _m3d_findnl(ptr);
}
} else
/* action */
if(!memcmp(pe, "Action", 6)) {
pe = _m3d_findarg(pe);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
pe = _m3d_getint(pe, &k);
pe = _m3d_findarg(pe);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
pe = _m3d_safestr(pe, 0);
if(!pe || !*pe) goto asciiend;
i = model->numaction++;
model->action = (m3da_t*)M3D_REALLOC(model->action, model->numaction * sizeof(m3da_t));
if(!model->action) goto memerr;
a = &model->action[i];
a->name = pe;
a->durationmsec = k;
/* skip the first frame marker as there's always at least one frame */
a->numframe = 1;
a->frame = (m3dfr_t*)M3D_MALLOC(sizeof(m3dfr_t));
if(!a->frame) goto memerr;
a->frame[0].msec = 0;
a->frame[0].numtransform = 0;
a->frame[0].transform = NULL;
i = 0;
if(*ptr == 'f')
ptr = _m3d_findnl(ptr);
while(*ptr && *ptr != '\r' && *ptr != '\n') {
if(*ptr == 'f') {
i = a->numframe++;
a->frame = (m3dfr_t*)M3D_REALLOC(a->frame, a->numframe * sizeof(m3dfr_t));
if(!a->frame) goto memerr;
ptr = _m3d_findarg(ptr);
ptr = _m3d_getint(ptr, &a->frame[i].msec);
a->frame[i].numtransform = 0;
a->frame[i].transform = NULL;
} else {
j = a->frame[i].numtransform++;
a->frame[i].transform = (m3dtr_t*)M3D_REALLOC(a->frame[i].transform,
a->frame[i].numtransform * sizeof(m3dtr_t));
if(!a->frame[i].transform) goto memerr;
ptr = _m3d_getint(ptr, &k);
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
a->frame[i].transform[j].boneid = (M3D_INDEX)k;
ptr = _m3d_getint(ptr, &k);
ptr = _m3d_findarg(ptr);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
a->frame[i].transform[j].pos = (M3D_INDEX)k;
ptr = _m3d_getint(ptr, &k);
if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend;
a->frame[i].transform[j].ori = (M3D_INDEX)k;
model->vertex[k].skinid = M3D_INDEXMAX;
}
ptr = _m3d_findnl(ptr);
}
} else
/* inlined assets chunk */
if(!memcmp(pe, "Assets", 6)) {
while(*ptr && *ptr != '\r' && *ptr != '\n') {
if(readfilecb) {
pe = _m3d_safestr(ptr, 2);
if(!pe || !*pe) goto asciiend;
i = model->numinlined++;
model->inlined = (m3di_t*)M3D_REALLOC(model->inlined, model->numinlined * sizeof(m3di_t));
if(!model->inlined) goto memerr;
t = &model->inlined[i];
model->inlined[i].data = (*readfilecb)(pe, &model->inlined[i].length);
if(model->inlined[i].data) {
fn = strrchr(pe, '.');
if(fn && (fn[1] == 'p' || fn[1] == 'P') && (fn[2] == 'n' || fn[2] == 'N') &&
(fn[3] == 'g' || fn[3] == 'G')) *fn = 0;
fn = strrchr(pe, '/');
if(!fn) fn = strrchr(pe, '\\');
if(!fn) fn = pe; else fn++;
model->inlined[i].name = _m3d_safestr(fn, 0);
} else
model->numinlined--;
M3D_FREE(pe);
}
ptr = _m3d_findnl(ptr);
}
} else
/* extra chunks */
if(!memcmp(pe, "Extra", 5)) {
pe = _m3d_findarg(pe);
if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend;
buff = (unsigned char*)_m3d_findnl(ptr);
k = ((uint32_t)((uintptr_t)buff - (uintptr_t)ptr) / 3) + 1;
i = model->numextra++;
model->extra = (m3dchunk_t**)M3D_REALLOC(model->extra, model->numextra * sizeof(m3dchunk_t*));
if(!model->extra) goto memerr;
model->extra[i] = (m3dchunk_t*)M3D_MALLOC(k + sizeof(m3dchunk_t));
if(!model->extra[i]) goto memerr;
memcpy(&model->extra[i]->magic, pe, 4);
model->extra[i]->length = sizeof(m3dchunk_t);
pe = (char*)model->extra[i] + sizeof(m3dchunk_t);
while(*ptr && *ptr != '\r' && *ptr != '\n') {
ptr = _m3d_gethex(ptr, &k);
*pe++ = (uint8_t)k;
model->extra[i]->length++;
}
} else
goto asciiend;
}
model->errcode = M3D_SUCCESS;
asciiend:
setlocale(LC_NUMERIC, ol);
goto postprocess;
}
#endif
/* Binary variant */
if(!M3D_CHUNKMAGIC(data + 8, 'H','E','A','D')) {
buff = (unsigned char *)stbi_zlib_decode_malloc_guesssize_headerflag((const char*)data+8, ((m3dchunk_t*)data)->length-8,
4096, (int*)&len, 1);
if(!buff || !len || !M3D_CHUNKMAGIC(buff, 'H','E','A','D')) {
if(buff) M3D_FREE(buff);
M3D_FREE(model);
return NULL;
}
buff = (unsigned char*)M3D_REALLOC(buff, len);
model->flags |= M3D_FLG_FREERAW; /* mark that we have to free the raw buffer */
data = buff;
#ifdef M3D_PROFILING
gettimeofday(&tv1, NULL);
tvd.tv_sec = tv1.tv_sec - tv0.tv_sec;
tvd.tv_usec = tv1.tv_usec - tv0.tv_usec;
if(tvd.tv_usec < 0) { tvd.tv_sec--; tvd.tv_usec += 1000000L; }
printf(" Deflate model %ld.%06ld sec\n", tvd.tv_sec, tvd.tv_usec);
memcpy(&tv0, &tv1, sizeof(struct timeval));
#endif
} else {
len = ((m3dhdr_t*)data)->length;
data += 8;
}
model->raw = (m3dhdr_t*)data;
end = data + len;
/* parse header */
data += sizeof(m3dhdr_t);
M3D_LOG(data);
model->name = (char*)data;
for(; data < end && *data; data++) {}; data++;
model->license = (char*)data;
for(; data < end && *data; data++) {}; data++;
model->author = (char*)data;
for(; data < end && *data; data++) {}; data++;
model->desc = (char*)data;
chunk = (unsigned char*)model->raw + model->raw->length;
model->scale = (M3D_FLOAT)model->raw->scale;
if(model->scale <= (M3D_FLOAT)0.0) model->scale = (M3D_FLOAT)1.0;
model->vc_s = 1 << ((model->raw->types >> 0) & 3); /* vertex coordinate size */
model->vi_s = 1 << ((model->raw->types >> 2) & 3); /* vertex index size */
model->si_s = 1 << ((model->raw->types >> 4) & 3); /* string offset size */
model->ci_s = 1 << ((model->raw->types >> 6) & 3); /* color index size */
model->ti_s = 1 << ((model->raw->types >> 8) & 3); /* tmap index size */
model->bi_s = 1 << ((model->raw->types >>10) & 3); /* bone index size */
model->nb_s = 1 << ((model->raw->types >>12) & 3); /* number of bones per vertex */
model->sk_s = 1 << ((model->raw->types >>14) & 3); /* skin index size */
model->fc_s = 1 << ((model->raw->types >>16) & 3); /* frame counter size */
model->hi_s = 1 << ((model->raw->types >>18) & 3); /* shape index size */
model->fi_s = 1 << ((model->raw->types >>20) & 3); /* face index size */
if(model->ci_s == 8) model->ci_s = 0; /* optional indices */
if(model->ti_s == 8) model->ti_s = 0;
if(model->bi_s == 8) model->bi_s = 0;
if(model->sk_s == 8) model->sk_s = 0;
if(model->fc_s == 8) model->fc_s = 0;
if(model->hi_s == 8) model->hi_s = 0;
if(model->fi_s == 8) model->fi_s = 0;
/* variable limit checks */
if(sizeof(M3D_FLOAT) == 4 && model->vc_s > 4) {
M3D_LOG("Double precision coordinates not supported, truncating to float...");
model->errcode = M3D_ERR_TRUNC;
}
if(sizeof(M3D_INDEX) == 2 && (model->vi_s > 2 || model->si_s > 2 || model->ci_s > 2 || model->ti_s > 2 ||
model->bi_s > 2 || model->sk_s > 2 || model->fc_s > 2 || model->hi_s > 2 || model->fi_s > 2)) {
M3D_LOG("32 bit indices not supported, unable to load model");
M3D_FREE(model);
return NULL;
}
if(model->vi_s > 4 || model->si_s > 4) {
M3D_LOG("Invalid index size, unable to load model");
M3D_FREE(model);
return NULL;
}
if(model->nb_s > M3D_NUMBONE) {
M3D_LOG("Model has more bones per vertex than what importer was configured to support");
model->errcode = M3D_ERR_TRUNC;
}
/* look for inlined assets in advance, material and procedural chunks may need them */
buff = chunk;
while(buff < end && !M3D_CHUNKMAGIC(buff, 'O','M','D','3')) {
data = buff;
len = ((m3dchunk_t*)data)->length;
buff += len;
if(len < sizeof(m3dchunk_t) || buff >= end) {
M3D_LOG("Invalid chunk size");
break;
}
len -= sizeof(m3dchunk_t) + model->si_s;
/* inlined assets */
if(M3D_CHUNKMAGIC(data, 'A','S','E','T') && len > 0) {
M3D_LOG("Inlined asset");
i = model->numinlined++;
model->inlined = (m3di_t*)M3D_REALLOC(model->inlined, model->numinlined * sizeof(m3di_t));
if(!model->inlined) {
memerr: M3D_LOG("Out of memory");
model->errcode = M3D_ERR_ALLOC;
return model;
}
data += sizeof(m3dchunk_t);
t = &model->inlined[i];
M3D_GETSTR(t->name);
M3D_LOG(t->name);
t->data = (uint8_t*)data;
t->length = len;
}
}
/* parse chunks */
while(chunk < end && !M3D_CHUNKMAGIC(chunk, 'O','M','D','3')) {
data = chunk;
len = ((m3dchunk_t*)chunk)->length;
chunk += len;
if(len < sizeof(m3dchunk_t) || chunk >= end) {
M3D_LOG("Invalid chunk size");
break;
}
len -= sizeof(m3dchunk_t);
/* preview chunk */
if(M3D_CHUNKMAGIC(data, 'P','R','V','W') && len > 0) {
model->preview.length = len;
model->preview.data = data + sizeof(m3dchunk_t);
} else
/* color map */
if(M3D_CHUNKMAGIC(data, 'C','M','A','P')) {
M3D_LOG("Color map");
if(model->cmap) { M3D_LOG("More color map chunks, should be unique"); model->errcode = M3D_ERR_CMAP; continue; }
if(!model->ci_s) { M3D_LOG("Color map chunk, shouldn't be any"); model->errcode = M3D_ERR_CMAP; continue; }
model->numcmap = len / sizeof(uint32_t);
model->cmap = (uint32_t*)(data + sizeof(m3dchunk_t));
} else
/* texture map */
if(M3D_CHUNKMAGIC(data, 'T','M','A','P')) {
M3D_LOG("Texture map");
if(model->tmap) { M3D_LOG("More texture map chunks, should be unique"); model->errcode = M3D_ERR_TMAP; continue; }
if(!model->ti_s) { M3D_LOG("Texture map chunk, shouldn't be any"); model->errcode = M3D_ERR_TMAP; continue; }
reclen = model->vc_s + model->vc_s;
model->numtmap = len / reclen;
model->tmap = (m3dti_t*)M3D_MALLOC(model->numtmap * sizeof(m3dti_t));
if(!model->tmap) goto memerr;
for(i = 0, data += sizeof(m3dchunk_t); data < chunk; i++) {
switch(model->vc_s) {
case 1:
model->tmap[i].u = (M3D_FLOAT)(data[0]) / (M3D_FLOAT)255.0;
model->tmap[i].v = (M3D_FLOAT)(data[1]) / (M3D_FLOAT)255.0;
break;
case 2:
model->tmap[i].u = (M3D_FLOAT)(*((int16_t*)(data+0))) / (M3D_FLOAT)65535.0;
model->tmap[i].v = (M3D_FLOAT)(*((int16_t*)(data+2))) / (M3D_FLOAT)65535.0;
break;
case 4:
model->tmap[i].u = (M3D_FLOAT)(*((float*)(data+0)));
model->tmap[i].v = (M3D_FLOAT)(*((float*)(data+4)));
break;
case 8:
model->tmap[i].u = (M3D_FLOAT)(*((double*)(data+0)));
model->tmap[i].v = (M3D_FLOAT)(*((double*)(data+8)));
break;
}
data += reclen;
}
} else
/* vertex list */
if(M3D_CHUNKMAGIC(data, 'V','R','T','S')) {
M3D_LOG("Vertex list");
if(model->vertex) { M3D_LOG("More vertex chunks, should be unique"); model->errcode = M3D_ERR_VRTS; continue; }
if(model->ci_s && model->ci_s < 4 && !model->cmap) model->errcode = M3D_ERR_CMAP;
reclen = model->ci_s + model->sk_s + 4 * model->vc_s;
model->numvertex = len / reclen;
model->vertex = (m3dv_t*)M3D_MALLOC(model->numvertex * sizeof(m3dv_t));
if(!model->vertex) goto memerr;
memset(model->vertex, 0, model->numvertex * sizeof(m3dv_t));
for(i = 0, data += sizeof(m3dchunk_t); data < chunk && i < model->numvertex; i++) {
switch(model->vc_s) {
case 1:
model->vertex[i].x = (M3D_FLOAT)((int8_t)data[0]) / (M3D_FLOAT)127.0;
model->vertex[i].y = (M3D_FLOAT)((int8_t)data[1]) / (M3D_FLOAT)127.0;
model->vertex[i].z = (M3D_FLOAT)((int8_t)data[2]) / (M3D_FLOAT)127.0;
model->vertex[i].w = (M3D_FLOAT)((int8_t)data[3]) / (M3D_FLOAT)127.0;
data += 4;
break;
case 2:
model->vertex[i].x = (M3D_FLOAT)(*((int16_t*)(data+0))) / (M3D_FLOAT)32767.0;
model->vertex[i].y = (M3D_FLOAT)(*((int16_t*)(data+2))) / (M3D_FLOAT)32767.0;
model->vertex[i].z = (M3D_FLOAT)(*((int16_t*)(data+4))) / (M3D_FLOAT)32767.0;
model->vertex[i].w = (M3D_FLOAT)(*((int16_t*)(data+6))) / (M3D_FLOAT)32767.0;
data += 8;
break;
case 4:
model->vertex[i].x = (M3D_FLOAT)(*((float*)(data+0)));
model->vertex[i].y = (M3D_FLOAT)(*((float*)(data+4)));
model->vertex[i].z = (M3D_FLOAT)(*((float*)(data+8)));
model->vertex[i].w = (M3D_FLOAT)(*((float*)(data+12)));
data += 16;
break;
case 8:
model->vertex[i].x = (M3D_FLOAT)(*((double*)(data+0)));
model->vertex[i].y = (M3D_FLOAT)(*((double*)(data+8)));
model->vertex[i].z = (M3D_FLOAT)(*((double*)(data+16)));
model->vertex[i].w = (M3D_FLOAT)(*((double*)(data+24)));
data += 32;
break;
}
switch(model->ci_s) {
case 1: model->vertex[i].color = model->cmap ? model->cmap[data[0]] : 0; data++; break;
case 2: model->vertex[i].color = model->cmap ? model->cmap[*((uint16_t*)data)] : 0; data += 2; break;
case 4: model->vertex[i].color = *((uint32_t*)data); data += 4; break;
/* case 8: break; */
}
model->vertex[i].skinid = M3D_UNDEF;
data = _m3d_getidx(data, model->sk_s, &model->vertex[i].skinid);
}
} else
/* skeleton: bone hierarchy and skin */
if(M3D_CHUNKMAGIC(data, 'B','O','N','E')) {
M3D_LOG("Skeleton");
if(model->bone) { M3D_LOG("More bone chunks, should be unique"); model->errcode = M3D_ERR_BONE; continue; }
if(!model->bi_s) { M3D_LOG("Bone chunk, shouldn't be any"); model->errcode=M3D_ERR_BONE; continue; }
if(!model->vertex) { M3D_LOG("No vertex chunk before bones"); model->errcode = M3D_ERR_VRTS; break; }
data += sizeof(m3dchunk_t);
model->numbone = 0;
data = _m3d_getidx(data, model->bi_s, &model->numbone);
if(model->numbone) {
model->bone = (m3db_t*)M3D_MALLOC(model->numbone * sizeof(m3db_t));
if(!model->bone) goto memerr;
}
model->numskin = 0;
data = _m3d_getidx(data, model->sk_s, &model->numskin);
/* read bone hierarchy */
for(i = 0; i < model->numbone; i++) {
data = _m3d_getidx(data, model->bi_s, &model->bone[i].parent);
M3D_GETSTR(model->bone[i].name);
data = _m3d_getidx(data, model->vi_s, &model->bone[i].pos);
data = _m3d_getidx(data, model->vi_s, &model->bone[i].ori);
model->bone[i].numweight = 0;
model->bone[i].weight = NULL;
}
/* read skin definitions */
if(model->numskin) {
model->skin = (m3ds_t*)M3D_MALLOC(model->numskin * sizeof(m3ds_t));
if(!model->skin) goto memerr;
for(i = 0; data < chunk && i < model->numskin; i++) {
for(j = 0; j < M3D_NUMBONE; j++) {
model->skin[i].boneid[j] = M3D_UNDEF;
model->skin[i].weight[j] = (M3D_FLOAT)0.0;
}
memset(&weights, 0, sizeof(weights));
if(model->nb_s == 1) weights[0] = 255;
else {
memcpy(&weights, data, model->nb_s);
data += model->nb_s;
}
for(j = 0, w = (M3D_FLOAT)0.0; j < (unsigned int)model->nb_s; j++) {
if(weights[j]) {
if(j >= M3D_NUMBONE)
data += model->bi_s;
else {
model->skin[i].weight[j] = (M3D_FLOAT)(weights[j]) / (M3D_FLOAT)255.0;
w += model->skin[i].weight[j];
data = _m3d_getidx(data, model->bi_s, &model->skin[i].boneid[j]);
}
}
}
/* this can occur if model has more bones than what the importer is configured to handle */
if(w != (M3D_FLOAT)1.0 && w != (M3D_FLOAT)0.0) {
for(j = 0; j < M3D_NUMBONE; j++)
model->skin[i].weight[j] /= w;
}
}
}
} else
/* material */
if(M3D_CHUNKMAGIC(data, 'M','T','R','L')) {
data += sizeof(m3dchunk_t);
M3D_GETSTR(name);
M3D_LOG("Material");
M3D_LOG(name);
if(model->ci_s < 4 && !model->numcmap) model->errcode = M3D_ERR_CMAP;
for(i = 0; i < model->nummaterial; i++)
if(!strcmp(name, model->material[i].name)) {
model->errcode = M3D_ERR_MTRL;
M3D_LOG("Multiple definitions for material");
M3D_LOG(name);
name = NULL;
break;
}
if(name) {
i = model->nummaterial++;
if(model->flags & M3D_FLG_MTLLIB) {
m = model->material;
model->material = (m3dm_t*)M3D_MALLOC(model->nummaterial * sizeof(m3dm_t));
if(!model->material) goto memerr;
memcpy(model->material, m, (model->nummaterial - 1) * sizeof(m3dm_t));
if(model->texture) {
tx = model->texture;
model->texture = (m3dtx_t*)M3D_MALLOC(model->numtexture * sizeof(m3dtx_t));
if(!model->texture) goto memerr;
memcpy(model->texture, tx, model->numtexture * sizeof(m3dm_t));
}
model->flags &= ~M3D_FLG_MTLLIB;
} else {
model->material = (m3dm_t*)M3D_REALLOC(model->material, model->nummaterial * sizeof(m3dm_t));
if(!model->material) goto memerr;
}
m = &model->material[i];
m->numprop = 0;
m->name = name;
m->prop = (m3dp_t*)M3D_MALLOC((len / 2) * sizeof(m3dp_t));
if(!m->prop) goto memerr;
while(data < chunk) {
i = m->numprop++;
m->prop[i].type = *data++;
m->prop[i].value.num = 0;
if(m->prop[i].type >= 128)
k = m3dpf_map;
else {
for(k = 256, j = 0; j < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); j++)
if(m->prop[i].type == m3d_propertytypes[j].id) { k = m3d_propertytypes[j].format; break; }
}
switch(k) {
case m3dpf_color:
switch(model->ci_s) {
case 1: m->prop[i].value.color = model->cmap ? model->cmap[data[0]] : 0; data++; break;
case 2: m->prop[i].value.color = model->cmap ? model->cmap[*((uint16_t*)data)] : 0; data += 2; break;
case 4: m->prop[i].value.color = *((uint32_t*)data); data += 4; break;
}
break;
case m3dpf_uint8: m->prop[i].value.num = *data++; break;
case m3dpf_uint16:m->prop[i].value.num = *((uint16_t*)data); data += 2; break;
case m3dpf_uint32:m->prop[i].value.num = *((uint32_t*)data); data += 4; break;
case m3dpf_float: m->prop[i].value.fnum = *((float*)data); data += 4; break;
case m3dpf_map:
M3D_GETSTR(name);
m->prop[i].value.textureid = _m3d_gettx(model, readfilecb, freecb, name);
if(model->errcode == M3D_ERR_ALLOC) goto memerr;
/* this error code only returned if readfilecb was specified */
if(m->prop[i].value.textureid == M3D_UNDEF) {
M3D_LOG("Texture not found");
M3D_LOG(m->name);
m->numprop--;
}
break;
default:
M3D_LOG("Unknown material property in");
M3D_LOG(m->name);
model->errcode = M3D_ERR_UNKPROP;
data = chunk;
break;
}
}
m->prop = (m3dp_t*)M3D_REALLOC(m->prop, m->numprop * sizeof(m3dp_t));
if(!m->prop) goto memerr;
}
} else
/* face */
if(M3D_CHUNKMAGIC(data, 'P','R','O','C')) {
/* procedural surface */
M3D_GETSTR(name);
M3D_LOG("Procedural surface");
M3D_LOG(name);
_m3d_getpr(model, readfilecb, freecb, name);
} else
if(M3D_CHUNKMAGIC(data, 'M','E','S','H')) {
M3D_LOG("Mesh data");
/* mesh */
data += sizeof(m3dchunk_t);
mi = M3D_UNDEF;
am = model->numface;
while(data < chunk) {
k = *data++;
n = k >> 4;
k &= 15;
if(!n) {
/* use material */
mi = M3D_UNDEF;
M3D_GETSTR(name);
if(name) {
for(j = 0; j < model->nummaterial; j++)
if(!strcmp(name, model->material[j].name)) {
mi = (M3D_INDEX)j;
break;
}
if(mi == M3D_UNDEF) model->errcode = M3D_ERR_MTRL;
}
continue;
}
if(n != 3) { M3D_LOG("Only triangle mesh supported for now"); model->errcode = M3D_ERR_UNKMESH; return model; }
i = model->numface++;
if(model->numface > am) {
am = model->numface + 4095;
model->face = (m3df_t*)M3D_REALLOC(model->face, am * sizeof(m3df_t));
if(!model->face) goto memerr;
}
memset(&model->face[i], 255, sizeof(m3df_t)); /* set all index to -1 by default */
model->face[i].materialid = mi;
for(j = 0; j < n; j++) {
/* vertex */
data = _m3d_getidx(data, model->vi_s, &model->face[i].vertex[j]);
/* texcoord */
if(k & 1)
data = _m3d_getidx(data, model->ti_s, &model->face[i].texcoord[j]);
/* normal */
if(k & 2)
data = _m3d_getidx(data, model->vi_s, &model->face[i].normal[j]);
#ifndef M3D_NONORMALS
if(model->face[i].normal[j] == M3D_UNDEF) neednorm = 1;
#endif
}
}
model->face = (m3df_t*)M3D_REALLOC(model->face, model->numface * sizeof(m3df_t));
} else
if(M3D_CHUNKMAGIC(data, 'S','H','P','E')) {
/* mathematical shape */
data += sizeof(m3dchunk_t);
M3D_GETSTR(name);
M3D_LOG("Mathematical Shape");
M3D_LOG(name);
i = model->numshape++;
model->shape = (m3dh_t*)M3D_REALLOC(model->shape, model->numshape * sizeof(m3dh_t));
if(!model->shape) goto memerr;
h = &model->shape[i];
h->numcmd = 0;
h->cmd = NULL;
h->name = name;
h->group = M3D_UNDEF;
data = _m3d_getidx(data, model->bi_s, &h->group);
if(h->group != M3D_UNDEF && h->group >= model->numbone) {
M3D_LOG("Unknown bone id as shape group in shape");
M3D_LOG(name);
h->group = M3D_UNDEF;
model->errcode = M3D_ERR_SHPE;
}
while(data < chunk) {
i = h->numcmd++;
h->cmd = (m3dc_t*)M3D_REALLOC(h->cmd, h->numcmd * sizeof(m3dc_t));
if(!h->cmd) goto memerr;
h->cmd[i].type = *data++;
if(h->cmd[i].type & 0x80) {
h->cmd[i].type &= 0x7F;
h->cmd[i].type |= (*data++ << 7);
}
if(h->cmd[i].type >= (unsigned int)(sizeof(m3d_commandtypes)/sizeof(m3d_commandtypes[0]))) {
M3D_LOG("Unknown shape command in");
M3D_LOG(h->name);
model->errcode = M3D_ERR_UNKCMD;
break;
}
cd = &m3d_commandtypes[h->cmd[i].type];
h->cmd[i].arg = (uint32_t*)M3D_MALLOC(cd->p * sizeof(uint32_t));
if(!h->cmd[i].arg) goto memerr;
memset(h->cmd[i].arg, 0, cd->p * sizeof(uint32_t));
for(k = n = 0, l = cd->p; k < l; k++)
switch(cd->a[((k - n) % (cd->p - n)) + n]) {
case m3dcp_mi_t:
h->cmd[i].arg[k] = M3D_NOTDEFINED;
M3D_GETSTR(name);
if(name) {
for(n = 0; n < model->nummaterial; n++)
if(!strcmp(name, model->material[n].name)) {
h->cmd[i].arg[k] = n;
break;
}
if(h->cmd[i].arg[k] == M3D_NOTDEFINED) model->errcode = M3D_ERR_MTRL;
}
break;
case m3dcp_vc_t:
f = 0.0f;
switch(model->vc_s) {
case 1: f = (float)((int8_t)data[0]) / 127; break;
case 2: f = (float)(*((int16_t*)(data+0))) / 32767; break;
case 4: f = (float)(*((float*)(data+0))); break;
case 8: f = (float)(*((double*)(data+0))); break;
}
h->cmd[i].arg[k] = *((uint32_t*)&f);
data += model->vc_s;
break;
case m3dcp_hi_t: data = _m3d_getidx(data, model->hi_s, &h->cmd[i].arg[k]); break;
case m3dcp_fi_t: data = _m3d_getidx(data, model->fi_s, &h->cmd[i].arg[k]); break;
case m3dcp_ti_t: data = _m3d_getidx(data, model->ti_s, &h->cmd[i].arg[k]); break;
case m3dcp_qi_t:
case m3dcp_vi_t: data = _m3d_getidx(data, model->vi_s, &h->cmd[i].arg[k]); break;
case m3dcp_i1_t: data = _m3d_getidx(data, 1, &h->cmd[i].arg[k]); break;
case m3dcp_i2_t: data = _m3d_getidx(data, 2, &h->cmd[i].arg[k]); break;
case m3dcp_i4_t: data = _m3d_getidx(data, 4, &h->cmd[i].arg[k]); break;
case m3dcp_va_t: data = _m3d_getidx(data, 4, &h->cmd[i].arg[k]);
n = k + 1; l += (h->cmd[i].arg[k] - 1) * (cd->p - k - 1);
h->cmd[i].arg = (uint32_t*)M3D_REALLOC(h->cmd[i].arg, l * sizeof(uint32_t));
if(!h->cmd[i].arg) goto memerr;
memset(&h->cmd[i].arg[k + 1], 0, (l - k - 1) * sizeof(uint32_t));
break;
}
}
} else
/* annotation label list */
if(M3D_CHUNKMAGIC(data, 'L','B','L','S')) {
data += sizeof(m3dchunk_t);
M3D_GETSTR(name);
M3D_GETSTR(lang);
M3D_LOG("Label list");
if(name) { M3D_LOG(name); }
if(lang) { M3D_LOG(lang); }
if(model->ci_s && model->ci_s < 4 && !model->cmap) model->errcode = M3D_ERR_CMAP;
k = 0;
switch(model->ci_s) {
case 1: k = model->cmap ? model->cmap[data[0]] : 0; data++; break;
case 2: k = model->cmap ? model->cmap[*((uint16_t*)data)] : 0; data += 2; break;
case 4: k = *((uint32_t*)data); data += 4; break;
/* case 8: break; */
}
reclen = model->vi_s + model->si_s;
i = model->numlabel; model->numlabel += len / reclen;
model->label = (m3dl_t*)M3D_REALLOC(model->label, model->numlabel * sizeof(m3dl_t));
if(!model->label) goto memerr;
memset(&model->label[i], 0, (model->numlabel - i) * sizeof(m3dl_t));
for(; data < chunk && i < model->numlabel; i++) {
model->label[i].name = name;
model->label[i].lang = lang;
model->label[i].color = k;
data = _m3d_getidx(data, model->vi_s, &model->label[i].vertexid);
M3D_GETSTR(model->label[i].text);
}
} else
/* action */
if(M3D_CHUNKMAGIC(data, 'A','C','T','N')) {
M3D_LOG("Action");
i = model->numaction++;
model->action = (m3da_t*)M3D_REALLOC(model->action, model->numaction * sizeof(m3da_t));
if(!model->action) goto memerr;
a = &model->action[i];
data += sizeof(m3dchunk_t);
M3D_GETSTR(a->name);
M3D_LOG(a->name);
a->numframe = *((uint16_t*)data); data += 2;
if(a->numframe < 1) {
model->numaction--;
} else {
a->durationmsec = *((uint32_t*)data); data += 4;
a->frame = (m3dfr_t*)M3D_MALLOC(a->numframe * sizeof(m3dfr_t));
if(!a->frame) goto memerr;
for(i = 0; data < chunk && i < a->numframe; i++) {
a->frame[i].msec = *((uint32_t*)data); data += 4;
a->frame[i].numtransform = 0; a->frame[i].transform = NULL;
data = _m3d_getidx(data, model->fc_s, &a->frame[i].numtransform);
if(a->frame[i].numtransform > 0) {
a->frame[i].transform = (m3dtr_t*)M3D_MALLOC(a->frame[i].numtransform * sizeof(m3dtr_t));
for(j = 0; j < a->frame[i].numtransform; j++) {
data = _m3d_getidx(data, model->bi_s, &a->frame[i].transform[j].boneid);
data = _m3d_getidx(data, model->vi_s, &a->frame[i].transform[j].pos);
data = _m3d_getidx(data, model->vi_s, &a->frame[i].transform[j].ori);
}
}
}
}
} else {
i = model->numextra++;
model->extra = (m3dchunk_t**)M3D_REALLOC(model->extra, model->numextra * sizeof(m3dchunk_t*));
if(!model->extra) goto memerr;
model->extra[i] = (m3dchunk_t*)data;
}
}
/* calculate normals, normalize skin weights, create bone/vertex cross-references and calculate transform matrices */
#ifdef M3D_ASCII
postprocess:
#endif
if(model) {
M3D_LOG("Post-process");
#ifdef M3D_PROFILING
gettimeofday(&tv1, NULL);
tvd.tv_sec = tv1.tv_sec - tv0.tv_sec;
tvd.tv_usec = tv1.tv_usec - tv0.tv_usec;
if(tvd.tv_usec < 0) { tvd.tv_sec--; tvd.tv_usec += 1000000L; }
printf(" Parsing chunks %ld.%06ld sec\n", tvd.tv_sec, tvd.tv_usec);
#endif
#ifndef M3D_NONORMALS
if(model->numface && model->face && neednorm) {
/* if they are missing, calculate triangle normals into a temporary buffer */
norm = (m3dv_t*)M3D_MALLOC(model->numface * sizeof(m3dv_t));
if(!norm) goto memerr;
for(i = 0, n = model->numvertex; i < model->numface; i++)
if(model->face[i].normal[0] == M3D_UNDEF) {
v0 = &model->vertex[model->face[i].vertex[0]];
v1 = &model->vertex[model->face[i].vertex[1]];
v2 = &model->vertex[model->face[i].vertex[2]];
va.x = v1->x - v0->x; va.y = v1->y - v0->y; va.z = v1->z - v0->z;
vb.x = v2->x - v0->x; vb.y = v2->y - v0->y; vb.z = v2->z - v0->z;
v0 = &norm[i];
v0->x = (va.y * vb.z) - (va.z * vb.y);
v0->y = (va.z * vb.x) - (va.x * vb.z);
v0->z = (va.x * vb.y) - (va.y * vb.x);
w = _m3d_rsq((v0->x * v0->x) + (v0->y * v0->y) + (v0->z * v0->z));
v0->x *= w; v0->y *= w; v0->z *= w;
model->face[i].normal[0] = model->face[i].vertex[0] + n;
model->face[i].normal[1] = model->face[i].vertex[1] + n;
model->face[i].normal[2] = model->face[i].vertex[2] + n;
}
/* this is the fast way, we don't care if a normal is repeated in model->vertex */
M3D_LOG("Generating normals");
model->flags |= M3D_FLG_GENNORM;
model->numvertex <<= 1;
model->vertex = (m3dv_t*)M3D_REALLOC(model->vertex, model->numvertex * sizeof(m3dv_t));
if(!model->vertex) goto memerr;
memset(&model->vertex[n], 0, n * sizeof(m3dv_t));
for(i = 0; i < model->numface; i++)
for(j = 0; j < 3; j++) {
v0 = &model->vertex[model->face[i].vertex[j] + n];
v0->x += norm[i].x;
v0->y += norm[i].y;
v0->z += norm[i].z;
}
/* for each vertex, take the average of the temporary normals and use that */
for(i = 0, v0 = &model->vertex[n]; i < n; i++, v0++) {
w = _m3d_rsq((v0->x * v0->x) + (v0->y * v0->y) + (v0->z * v0->z));
v0->x *= w; v0->y *= w; v0->z *= w;
v0->skinid = M3D_UNDEF;
}
M3D_FREE(norm);
}
#endif
if(model->numbone && model->bone && model->numskin && model->skin && model->numvertex && model->vertex) {
#ifndef M3D_NOWEIGHTS
M3D_LOG("Generating weight cross-reference");
for(i = 0; i < model->numvertex; i++) {
if(model->vertex[i].skinid < model->numskin) {
sk = &model->skin[model->vertex[i].skinid];
w = (M3D_FLOAT)0.0;
for(j = 0; j < M3D_NUMBONE && sk->boneid[j] != M3D_UNDEF && sk->weight[j] > (M3D_FLOAT)0.0; j++)
w += sk->weight[j];
for(j = 0; j < M3D_NUMBONE && sk->boneid[j] != M3D_UNDEF && sk->weight[j] > (M3D_FLOAT)0.0; j++) {
sk->weight[j] /= w;
b = &model->bone[sk->boneid[j]];
k = b->numweight++;
b->weight = (m3dw_t*)M3D_REALLOC(b->weight, b->numweight * sizeof(m3da_t));
if(!b->weight) goto memerr;
b->weight[k].vertexid = i;
b->weight[k].weight = sk->weight[j];
}
}
}
#endif
#ifndef M3D_NOANIMATION
M3D_LOG("Calculating bone transformation matrices");
for(i = 0; i < model->numbone; i++) {
b = &model->bone[i];
if(model->bone[i].parent == M3D_UNDEF) {
_m3d_mat((M3D_FLOAT*)&b->mat4, &model->vertex[b->pos], &model->vertex[b->ori]);
} else {
_m3d_mat((M3D_FLOAT*)&r, &model->vertex[b->pos], &model->vertex[b->ori]);
_m3d_mul((M3D_FLOAT*)&b->mat4, (M3D_FLOAT*)&model->bone[b->parent].mat4, (M3D_FLOAT*)&r);
}
}
for(i = 0; i < model->numbone; i++)
_m3d_inv((M3D_FLOAT*)&model->bone[i].mat4);
#endif
}
#ifdef M3D_PROFILING
gettimeofday(&tv0, NULL);
tvd.tv_sec = tv0.tv_sec - tv1.tv_sec;
tvd.tv_usec = tv0.tv_usec - tv1.tv_usec;
if(tvd.tv_usec < 0) { tvd.tv_sec--; tvd.tv_usec += 1000000L; }
printf(" Post-process %ld.%06ld sec\n", tvd.tv_sec, tvd.tv_usec);
#endif
}
return model;
}
/**
* Calculates skeletons for animation frames, returns a working copy (should be freed after use)
*/
m3dtr_t *m3d_frame(m3d_t *model, M3D_INDEX actionid, M3D_INDEX frameid, m3dtr_t *skeleton)
{
unsigned int i;
M3D_INDEX s = frameid;
m3dfr_t *fr;
if(!model || !model->numbone || !model->bone || (actionid != M3D_UNDEF && (!model->action ||
actionid >= model->numaction || frameid >= model->action[actionid].numframe))) {
model->errcode = M3D_ERR_UNKFRAME;
return skeleton;
}
model->errcode = M3D_SUCCESS;
if(!skeleton) {
skeleton = (m3dtr_t*)M3D_MALLOC(model->numbone * sizeof(m3dtr_t));
if(!skeleton) {
model->errcode = M3D_ERR_ALLOC;
return NULL;
}
goto gen;
}
if(actionid == M3D_UNDEF || !frameid) {
gen: s = 0;
for(i = 0; i < model->numbone; i++) {
skeleton[i].boneid = i;
skeleton[i].pos = model->bone[i].pos;
skeleton[i].ori = model->bone[i].ori;
}
}
if(actionid < model->numaction && (frameid || !model->action[actionid].frame[0].msec)) {
for(; s <= frameid; s++) {
fr = &model->action[actionid].frame[s];
for(i = 0; i < fr->numtransform; i++) {
skeleton[fr->transform[i].boneid].pos = fr->transform[i].pos;
skeleton[fr->transform[i].boneid].ori = fr->transform[i].ori;
}
}
}
return skeleton;
}
#ifndef M3D_NOANIMATION
/**
* Returns interpolated animation-pose, a working copy (should be freed after use)
*/
m3db_t *m3d_pose(m3d_t *model, M3D_INDEX actionid, uint32_t msec)
{
unsigned int i, j, l;
M3D_FLOAT r[16], t, c, d, s;
m3db_t *ret;
m3dv_t *v, *p, *f;
m3dtr_t *tmp;
m3dfr_t *fr;
if(!model || !model->numbone || !model->bone) {
model->errcode = M3D_ERR_UNKFRAME;
return NULL;
}
ret = (m3db_t*)M3D_MALLOC(model->numbone * sizeof(m3db_t));
if(!ret) {
model->errcode = M3D_ERR_ALLOC;
return NULL;
}
memcpy(ret, model->bone, model->numbone * sizeof(m3db_t));
for(i = 0; i < model->numbone; i++)
_m3d_inv((M3D_FLOAT*)&ret[i].mat4);
if(!model->action || actionid >= model->numaction) {
model->errcode = M3D_ERR_UNKFRAME;
return ret;
}
msec %= model->action[actionid].durationmsec;
model->errcode = M3D_SUCCESS;
fr = &model->action[actionid].frame[0];
for(j = l = 0; j < model->action[actionid].numframe && model->action[actionid].frame[j].msec <= msec; j++) {
fr = &model->action[actionid].frame[j];
l = fr->msec;
for(i = 0; i < fr->numtransform; i++) {
ret[fr->transform[i].boneid].pos = fr->transform[i].pos;
ret[fr->transform[i].boneid].ori = fr->transform[i].ori;
}
}
if(l != msec) {
model->vertex = (m3dv_t*)M3D_REALLOC(model->vertex, (model->numvertex + 2 * model->numbone) * sizeof(m3dv_t));
if(!model->vertex) {
free(ret);
model->errcode = M3D_ERR_ALLOC;
return NULL;
}
tmp = (m3dtr_t*)M3D_MALLOC(model->numbone * sizeof(m3dtr_t));
if(tmp) {
for(i = 0; i < model->numbone; i++) {
tmp[i].pos = ret[i].pos;
tmp[i].ori = ret[i].ori;
}
fr = &model->action[actionid].frame[j % model->action[actionid].numframe];
t = l >= fr->msec ? (M3D_FLOAT)1.0 : (M3D_FLOAT)(msec - l) / (M3D_FLOAT)(fr->msec - l);
for(i = 0; i < fr->numtransform; i++) {
tmp[fr->transform[i].boneid].pos = fr->transform[i].pos;
tmp[fr->transform[i].boneid].ori = fr->transform[i].ori;
}
for(i = 0, j = model->numvertex; i < model->numbone; i++) {
/* interpolation of position */
if(ret[i].pos != tmp[i].pos) {
p = &model->vertex[ret[i].pos];
f = &model->vertex[tmp[i].pos];
v = &model->vertex[j];
v->x = p->x + t * (f->x - p->x);
v->y = p->y + t * (f->y - p->y);
v->z = p->z + t * (f->z - p->z);
ret[i].pos = j++;
}
/* interpolation of orientation */
if(ret[i].ori != tmp[i].ori) {
p = &model->vertex[ret[i].ori];
f = &model->vertex[tmp[i].ori];
v = &model->vertex[j];
d = p->w * f->w + p->x * f->x + p->y * f->y + p->z * f->z;
if(d < 0) { d = -d; s = (M3D_FLOAT)-1.0; } else s = (M3D_FLOAT)1.0;
#if 0
/* don't use SLERP, requires two more variables, libm linkage and it is slow (but nice) */
a = (M3D_FLOAT)1.0 - t; b = t;
if(d < (M3D_FLOAT)0.999999) { c = acosf(d); b = 1 / sinf(c); a = sinf(a * c) * b; b *= sinf(t * c) * s; }
v->x = p->x * a + f->x * b;
v->y = p->y * a + f->y * b;
v->z = p->z * a + f->z * b;
v->w = p->w * a + f->w * b;
#else
/* approximated NLERP, original approximation by Arseny Kapoulkine, heavily optimized by me */
c = t - (M3D_FLOAT)0.5; t += t * c * (t - (M3D_FLOAT)1.0) * (((M3D_FLOAT)1.0904 + d * ((M3D_FLOAT)-3.2452 +
d * ((M3D_FLOAT)3.55645 - d * (M3D_FLOAT)1.43519))) * c * c + ((M3D_FLOAT)0.848013 + d *
((M3D_FLOAT)-1.06021 + d * (M3D_FLOAT)0.215638)));
v->x = p->x + t * (s * f->x - p->x);
v->y = p->y + t * (s * f->y - p->y);
v->z = p->z + t * (s * f->z - p->z);
v->w = p->w + t * (s * f->w - p->w);
d = _m3d_rsq(v->w * v->w + v->x * v->x + v->y * v->y + v->z * v->z);
v->x *= d; v->y *= d; v->z *= d; v->w *= d;
#endif
ret[i].ori = j++;
}
}
M3D_FREE(tmp);
}
}
for(i = 0; i < model->numbone; i++) {
if(ret[i].parent == M3D_UNDEF) {
_m3d_mat((M3D_FLOAT*)&ret[i].mat4, &model->vertex[ret[i].pos], &model->vertex[ret[i].ori]);
} else {
_m3d_mat((M3D_FLOAT*)&r, &model->vertex[ret[i].pos], &model->vertex[ret[i].ori]);
_m3d_mul((M3D_FLOAT*)&ret[i].mat4, (M3D_FLOAT*)&ret[ret[i].parent].mat4, (M3D_FLOAT*)&r);
}
}
return ret;
}
#endif /* M3D_NOANIMATION */
#endif /* M3D_IMPLEMENTATION */
#if !defined(M3D_NODUP) && (!defined(M3D_NOIMPORTER) || defined(M3D_EXPORTER))
/**
* Free the in-memory model
*/
void m3d_free(m3d_t *model)
{
unsigned int i, j;
if(!model) return;
#ifdef M3D_ASCII
/* if model imported from ASCII, we have to free all strings as well */
if(model->flags & M3D_FLG_FREESTR) {
if(model->name) M3D_FREE(model->name);
if(model->license) M3D_FREE(model->license);
if(model->author) M3D_FREE(model->author);
if(model->desc) M3D_FREE(model->desc);
if(model->bone)
for(i = 0; i < model->numbone; i++)
if(model->bone[i].name)
M3D_FREE(model->bone[i].name);
if(model->shape)
for(i = 0; i < model->numshape; i++)
if(model->shape[i].name)
M3D_FREE(model->shape[i].name);
if(model->material)
for(i = 0; i < model->nummaterial; i++)
if(model->material[i].name)
M3D_FREE(model->material[i].name);
if(model->action)
for(i = 0; i < model->numaction; i++)
if(model->action[i].name)
M3D_FREE(model->action[i].name);
if(model->texture)
for(i = 0; i < model->numtexture; i++)
if(model->texture[i].name)
M3D_FREE(model->texture[i].name);
if(model->inlined)
for(i = 0; i < model->numinlined; i++) {
if(model->inlined[i].name)
M3D_FREE(model->inlined[i].name);
if(model->inlined[i].data)
M3D_FREE(model->inlined[i].data);
}
if(model->extra)
for(i = 0; i < model->numextra; i++)
if(model->extra[i])
M3D_FREE(model->extra[i]);
if(model->label)
for(i = 0; i < model->numlabel; i++) {
if(model->label[i].name) {
for(j = i + 1; j < model->numlabel; j++)
if(model->label[j].name == model->label[i].name)
model->label[j].name = NULL;
M3D_FREE(model->label[i].name);
}
if(model->label[i].lang) {
for(j = i + 1; j < model->numlabel; j++)
if(model->label[j].lang == model->label[i].lang)
model->label[j].lang = NULL;
M3D_FREE(model->label[i].lang);
}
if(model->label[i].text)
M3D_FREE(model->label[i].text);
}
if(model->preview.data)
M3D_FREE(model->preview.data);
}
#endif
if(model->flags & M3D_FLG_FREERAW) M3D_FREE(model->raw);
if(model->tmap) M3D_FREE(model->tmap);
if(model->bone) {
for(i = 0; i < model->numbone; i++)
if(model->bone[i].weight)
M3D_FREE(model->bone[i].weight);
M3D_FREE(model->bone);
}
if(model->skin) M3D_FREE(model->skin);
if(model->vertex) M3D_FREE(model->vertex);
if(model->face) M3D_FREE(model->face);
if(model->shape) {
for(i = 0; i < model->numshape; i++) {
if(model->shape[i].cmd) {
for(j = 0; j < model->shape[i].numcmd; j++)
if(model->shape[i].cmd[j].arg) M3D_FREE(model->shape[i].cmd[j].arg);
M3D_FREE(model->shape[i].cmd);
}
}
M3D_FREE(model->shape);
}
if(model->material && !(model->flags & M3D_FLG_MTLLIB)) {
for(i = 0; i < model->nummaterial; i++)
if(model->material[i].prop) M3D_FREE(model->material[i].prop);
M3D_FREE(model->material);
}
if(model->texture) {
for(i = 0; i < model->numtexture; i++)
if(model->texture[i].d) M3D_FREE(model->texture[i].d);
M3D_FREE(model->texture);
}
if(model->action) {
for(i = 0; i < model->numaction; i++) {
if(model->action[i].frame) {
for(j = 0; j < model->action[i].numframe; j++)
if(model->action[i].frame[j].transform) M3D_FREE(model->action[i].frame[j].transform);
M3D_FREE(model->action[i].frame);
}
}
M3D_FREE(model->action);
}
if(model->label) M3D_FREE(model->label);
if(model->inlined) M3D_FREE(model->inlined);
if(model->extra) M3D_FREE(model->extra);
free(model);
}
#endif
#ifdef M3D_EXPORTER
typedef struct {
char *str;
uint32_t offs;
} m3dstr_t;
typedef struct {
m3dti_t data;
M3D_INDEX oldidx;
M3D_INDEX newidx;
} m3dtisave_t;
typedef struct {
m3dv_t data;
M3D_INDEX oldidx;
M3D_INDEX newidx;
unsigned char norm;
} m3dvsave_t;
typedef struct {
m3ds_t data;
M3D_INDEX oldidx;
M3D_INDEX newidx;
} m3dssave_t;
typedef struct {
m3df_t data;
int group;
uint8_t opacity;
} m3dfsave_t;
/* create unique list of strings */
static m3dstr_t *_m3d_addstr(m3dstr_t *str, uint32_t *numstr, char *s)
{
uint32_t i;
if(!s || !*s) return str;
if(str) {
for(i = 0; i < *numstr; i++)
if(str[i].str == s || !strcmp(str[i].str, s)) return str;
}
str = (m3dstr_t*)M3D_REALLOC(str, ((*numstr) + 1) * sizeof(m3dstr_t));
str[*numstr].str = s;
str[*numstr].offs = 0;
(*numstr)++;
return str;
}
/* add strings to header */
m3dhdr_t *_m3d_addhdr(m3dhdr_t *h, m3dstr_t *s)
{
int i;
char *safe = _m3d_safestr(s->str, 0);
i = (int)strlen(safe);
h = (m3dhdr_t*)M3D_REALLOC(h, h->length + i+1);
if(!h) { M3D_FREE(safe); return NULL; }
memcpy((uint8_t*)h + h->length, safe, i+1);
s->offs = h->length - 16;
h->length += i+1;
M3D_FREE(safe);
return h;
}
/* return offset of string */
static uint32_t _m3d_stridx(m3dstr_t *str, uint32_t numstr, char *s)
{
uint32_t i;
char *safe;
if(!s || !*s) return 0;
if(str) {
safe = _m3d_safestr(s, 0);
if(!safe) return 0;
if(!*safe) {
free(safe);
return 0;
}
for(i = 0; i < numstr; i++)
if(!strcmp(str[i].str, s)) {
free(safe);
return str[i].offs;
}
free(safe);
}
return 0;
}
/* compare to faces by their material */
static int _m3d_facecmp(const void *a, const void *b) {
const m3dfsave_t *A = (const m3dfsave_t*)a, *B = (const m3dfsave_t*)b;
return A->group != B->group ? A->group - B->group : (A->opacity != B->opacity ? (int)B->opacity - (int)A->opacity :
(int)A->data.materialid - (int)B->data.materialid);
}
/* compare face groups */
static int _m3d_grpcmp(const void *a, const void *b) { return *((uint32_t*)a) - *((uint32_t*)b); }
/* compare UVs */
static int _m3d_ticmp(const void *a, const void *b) { return memcmp(a, b, sizeof(m3dti_t)); }
/* compare skin groups */
static int _m3d_skincmp(const void *a, const void *b) { return memcmp(a, b, sizeof(m3ds_t)); }
/* compare vertices */
static int _m3d_vrtxcmp(const void *a, const void *b) {
int c = memcmp(a, b, 3 * sizeof(M3D_FLOAT));
if(c) return c;
c = ((m3dvsave_t*)a)->norm - ((m3dvsave_t*)b)->norm;
if(c) return c;
return memcmp(a, b, sizeof(m3dv_t));
}
/* compare labels */
static _inline int _m3d_strcmp(char *a, char *b)
{
if(a == NULL && b != NULL) return -1;
if(a != NULL && b == NULL) return 1;
if(a == NULL && b == NULL) return 0;
return strcmp(a, b);
}
static int _m3d_lblcmp(const void *a, const void *b) {
const m3dl_t *A = (const m3dl_t*)a, *B = (const m3dl_t*)b;
int c = _m3d_strcmp(A->lang, B->lang);
if(!c) c = _m3d_strcmp(A->name, B->name);
if(!c) c = _m3d_strcmp(A->text, B->text);
return c;
}
/* compare two colors by HSV value */
_inline static int _m3d_cmapcmp(const void *a, const void *b)
{
uint8_t *A = (uint8_t*)a, *B = (uint8_t*)b;
_register int m, vA, vB;
/* get HSV value for A */
m = A[2] < A[1]? A[2] : A[1]; if(A[0] < m) m = A[0];
vA = A[2] > A[1]? A[2] : A[1]; if(A[0] > vA) vA = A[0];
/* get HSV value for B */
m = B[2] < B[1]? B[2] : B[1]; if(B[0] < m) m = B[0];
vB = B[2] > B[1]? B[2] : B[1]; if(B[0] > vB) vB = B[0];
return vA - vB;
}
/* create sorted list of colors */
static uint32_t *_m3d_addcmap(uint32_t *cmap, uint32_t *numcmap, uint32_t color)
{
uint32_t i;
if(cmap) {
for(i = 0; i < *numcmap; i++)
if(cmap[i] == color) return cmap;
}
cmap = (uint32_t*)M3D_REALLOC(cmap, ((*numcmap) + 1) * sizeof(uint32_t));
for(i = 0; i < *numcmap && _m3d_cmapcmp(&color, &cmap[i]) > 0; i++);
if(i < *numcmap) memmove(&cmap[i+1], &cmap[i], ((*numcmap) - i)*sizeof(uint32_t));
cmap[i] = color;
(*numcmap)++;
return cmap;
}
/* look up a color and return its index */
static uint32_t _m3d_cmapidx(uint32_t *cmap, uint32_t numcmap, uint32_t color)
{
uint32_t i;
if(numcmap >= 65536)
return color;
for(i = 0; i < numcmap; i++)
if(cmap[i] == color) return i;
return 0;
}
/* add index to output */
static unsigned char *_m3d_addidx(unsigned char *out, char type, uint32_t idx) {
switch(type) {
case 1: *out++ = (uint8_t)(idx); break;
case 2: *((uint16_t*)out) = (uint16_t)(idx); out += 2; break;
case 4: *((uint32_t*)out) = (uint32_t)(idx); out += 4; break;
/* case 0: case 8: break; */
}
return out;
}
/* round a vertex position */
static void _m3d_round(int quality, m3dv_t *src, m3dv_t *dst)
{
_register int t;
/* copy additional attributes */
if(src != dst) memcpy(dst, src, sizeof(m3dv_t));
/* round according to quality */
switch(quality) {
case M3D_EXP_INT8:
t = (int)(src->x * 127 + (src->x >= 0 ? (M3D_FLOAT)0.5 : (M3D_FLOAT)-0.5)); dst->x = (M3D_FLOAT)t / (M3D_FLOAT)127.0;
t = (int)(src->y * 127 + (src->y >= 0 ? (M3D_FLOAT)0.5 : (M3D_FLOAT)-0.5)); dst->y = (M3D_FLOAT)t / (M3D_FLOAT)127.0;
t = (int)(src->z * 127 + (src->z >= 0 ? (M3D_FLOAT)0.5 : (M3D_FLOAT)-0.5)); dst->z = (M3D_FLOAT)t / (M3D_FLOAT)127.0;
t = (int)(src->w * 127 + (src->w >= 0 ? (M3D_FLOAT)0.5 : (M3D_FLOAT)-0.5)); dst->w = (M3D_FLOAT)t / (M3D_FLOAT)127.0;
break;
case M3D_EXP_INT16:
t = (int)(src->x * 32767 + (src->x >= 0 ? (M3D_FLOAT)0.5 : (M3D_FLOAT)-0.5)); dst->x = (M3D_FLOAT)t / (M3D_FLOAT)32767.0;
t = (int)(src->y * 32767 + (src->y >= 0 ? (M3D_FLOAT)0.5 : (M3D_FLOAT)-0.5)); dst->y = (M3D_FLOAT)t / (M3D_FLOAT)32767.0;
t = (int)(src->z * 32767 + (src->z >= 0 ? (M3D_FLOAT)0.5 : (M3D_FLOAT)-0.5)); dst->z = (M3D_FLOAT)t / (M3D_FLOAT)32767.0;
t = (int)(src->w * 32767 + (src->w >= 0 ? (M3D_FLOAT)0.5 : (M3D_FLOAT)-0.5)); dst->w = (M3D_FLOAT)t / (M3D_FLOAT)32767.0;
break;
}
if(dst->x == (M3D_FLOAT)-0.0) dst->x = (M3D_FLOAT)0.0;
if(dst->y == (M3D_FLOAT)-0.0) dst->y = (M3D_FLOAT)0.0;
if(dst->z == (M3D_FLOAT)-0.0) dst->z = (M3D_FLOAT)0.0;
if(dst->w == (M3D_FLOAT)-0.0) dst->w = (M3D_FLOAT)0.0;
}
#ifdef M3D_ASCII
/* add a bone to ascii output */
static char *_m3d_prtbone(char *ptr, m3db_t *bone, M3D_INDEX numbone, M3D_INDEX parent, uint32_t level, M3D_INDEX *vrtxidx)
{
uint32_t i, j;
char *sn;
if(level > M3D_BONEMAXLEVEL || !bone) return ptr;
for(i = 0; i < numbone; i++) {
if(bone[i].parent == parent) {
for(j = 0; j < level; j++) *ptr++ = '/';
sn = _m3d_safestr(bone[i].name, 0);
ptr += sprintf(ptr, "%d %d %s\r\n", vrtxidx[bone[i].pos], vrtxidx[bone[i].ori], sn);
M3D_FREE(sn);
ptr = _m3d_prtbone(ptr, bone, numbone, i, level + 1, vrtxidx);
}
}
return ptr;
}
#endif
/**
* Function to encode an in-memory model into on storage Model 3D format
*/
unsigned char *m3d_save(m3d_t *model, int quality, int flags, unsigned int *size)
{
#ifdef M3D_ASCII
const char *ol;
char *ptr;
#endif
char vc_s, vi_s, si_s, ci_s, ti_s, bi_s, nb_s, sk_s, fc_s, hi_s, fi_s;
char *sn = NULL, *sl = NULL, *sa = NULL, *sd = NULL;
unsigned char *out = NULL, *z = NULL, weights[M3D_NUMBONE], *norm = NULL;
unsigned int i, j, k, l, n, len, chunklen, *length;
M3D_FLOAT scale = (M3D_FLOAT)0.0, min_x, max_x, min_y, max_y, min_z, max_z;
M3D_INDEX last, *vrtxidx = NULL, *mtrlidx = NULL, *tmapidx = NULL, *skinidx = NULL;
uint32_t idx, numcmap = 0, *cmap = NULL, numvrtx = 0, maxvrtx = 0, numtmap = 0, maxtmap = 0, numproc = 0;
uint32_t numskin = 0, maxskin = 0, numstr = 0, maxt = 0, maxbone = 0, numgrp = 0, maxgrp = 0, *grpidx = NULL;
uint8_t *opa;
m3dcd_t *cd;
m3dc_t *cmd;
m3dstr_t *str = NULL;
m3dvsave_t *vrtx = NULL, vertex;
m3dtisave_t *tmap = NULL, tcoord;
m3dssave_t *skin = NULL, sk;
m3dfsave_t *face = NULL;
m3dhdr_t *h = NULL;
m3dm_t *m;
m3da_t *a;
if(!model) {
if(size) *size = 0;
return NULL;
}
model->errcode = M3D_SUCCESS;
#ifdef M3D_ASCII
if(flags & M3D_EXP_ASCII) quality = M3D_EXP_DOUBLE;
#endif
vrtxidx = (M3D_INDEX*)M3D_MALLOC(model->numvertex * sizeof(M3D_INDEX));
if(!vrtxidx) goto memerr;
memset(vrtxidx, 255, model->numvertex * sizeof(M3D_INDEX));
if(model->numvertex && !(flags & M3D_EXP_NONORMAL)){
norm = (unsigned char*)M3D_MALLOC(model->numvertex * sizeof(unsigned char));
if(!norm) goto memerr;
memset(norm, 0, model->numvertex * sizeof(unsigned char));
}
if(model->nummaterial && !(flags & M3D_EXP_NOMATERIAL)) {
mtrlidx = (M3D_INDEX*)M3D_MALLOC(model->nummaterial * sizeof(M3D_INDEX));
if(!mtrlidx) goto memerr;
memset(mtrlidx, 255, model->nummaterial * sizeof(M3D_INDEX));
opa = (uint8_t*)M3D_MALLOC(model->nummaterial * 2 * sizeof(M3D_INDEX));
if(!opa) goto memerr;
memset(opa, 255, model->nummaterial * 2 * sizeof(M3D_INDEX));
}
if(model->numtmap && !(flags & M3D_EXP_NOTXTCRD)) {
tmapidx = (M3D_INDEX*)M3D_MALLOC(model->numtmap * sizeof(M3D_INDEX));
if(!tmapidx) goto memerr;
memset(tmapidx, 255, model->numtmap * sizeof(M3D_INDEX));
}
/** collect array elements that are actually referenced **/
if(!(flags & M3D_EXP_NOFACE)) {
/* face */
if(model->numface && model->face) {
M3D_LOG("Processing mesh face");
face = (m3dfsave_t*)M3D_MALLOC(model->numface * sizeof(m3dfsave_t));
if(!face) goto memerr;
for(i = 0; i < model->numface; i++) {
memcpy(&face[i].data, &model->face[i], sizeof(m3df_t));
face[i].group = 0;
face[i].opacity = 255;
if(!(flags & M3D_EXP_NOMATERIAL) && model->face[i].materialid < model->nummaterial) {
if(model->material[model->face[i].materialid].numprop) {
mtrlidx[model->face[i].materialid] = 0;
if(opa[model->face[i].materialid * 2]) {
m = &model->material[model->face[i].materialid];
for(j = 0; j < m->numprop; j++)
if(m->prop[j].type == m3dp_Kd) {
opa[model->face[i].materialid * 2 + 1] = ((uint8_t*)&m->prop[j].value.color)[3];
break;
}
for(j = 0; j < m->numprop; j++)
if(m->prop[j].type == m3dp_d) {
opa[model->face[i].materialid * 2 + 1] = (uint8_t)(m->prop[j].value.fnum * 255);
break;
}
opa[model->face[i].materialid * 2] = 0;
}
face[i].opacity = opa[model->face[i].materialid * 2 + 1];
} else
face[i].data.materialid = M3D_UNDEF;
}
for(j = 0; j < 3; j++) {
k = model->face[i].vertex[j];
if(k < model->numvertex)
vrtxidx[k] = 0;
if(!(flags & M3D_EXP_NOCMAP)) {
cmap = _m3d_addcmap(cmap, &numcmap, model->vertex[k].color);
if(!cmap) goto memerr;
}
k = model->face[i].normal[j];
if(k < model->numvertex && !(flags & M3D_EXP_NONORMAL)) {
vrtxidx[k] = 0;
norm[k] = 1;
}
k = model->face[i].texcoord[j];
if(k < model->numtmap && !(flags & M3D_EXP_NOTXTCRD))
tmapidx[k] = 0;
}
/* convert from CW to CCW */
if(flags & M3D_EXP_IDOSUCK) {
j = face[i].data.vertex[1];
face[i].data.vertex[1] = face[i].data.vertex[2];
face[i].data.vertex[2] = face[i].data.vertex[1];
j = face[i].data.normal[1];
face[i].data.normal[1] = face[i].data.normal[2];
face[i].data.normal[2] = face[i].data.normal[1];
j = face[i].data.texcoord[1];
face[i].data.texcoord[1] = face[i].data.texcoord[2];
face[i].data.texcoord[2] = face[i].data.texcoord[1];
}
}
}
if(model->numshape && model->shape) {
M3D_LOG("Processing shape face");
for(i = 0; i < model->numshape; i++) {
if(!model->shape[i].numcmd) continue;
str = _m3d_addstr(str, &numstr, model->shape[i].name);
if(!str) goto memerr;
for(j = 0; j < model->shape[i].numcmd; j++) {
cmd = &model->shape[i].cmd[j];
if(cmd->type >= (unsigned int)(sizeof(m3d_commandtypes)/sizeof(m3d_commandtypes[0])) || !cmd->arg)
continue;
if(cmd->type == m3dc_mesh) {
if(numgrp + 2 < maxgrp) {
maxgrp += 1024;
grpidx = (uint32_t*)realloc(grpidx, maxgrp * sizeof(uint32_t));
if(!grpidx) goto memerr;
if(!numgrp) {
grpidx[0] = 0;
grpidx[1] = model->numface;
numgrp += 2;
}
}
grpidx[numgrp + 0] = cmd->arg[0];
grpidx[numgrp + 1] = cmd->arg[0] + cmd->arg[1];
numgrp += 2;
}
cd = &m3d_commandtypes[cmd->type];
for(k = n = 0, l = cd->p; k < l; k++)
switch(cd->a[((k - n) % (cd->p - n)) + n]) {
case m3dcp_mi_t:
if(!(flags & M3D_EXP_NOMATERIAL) && cmd->arg[k] < model->nummaterial)
mtrlidx[cmd->arg[k]] = 0;
break;
case m3dcp_ti_t:
if(!(flags & M3D_EXP_NOTXTCRD) && cmd->arg[k] < model->numtmap)
tmapidx[cmd->arg[k]] = 0;
break;
case m3dcp_qi_t:
case m3dcp_vi_t:
if(cmd->arg[k] < model->numvertex)
vrtxidx[cmd->arg[k]] = 0;
break;
case m3dcp_va_t:
n = k + 1; l += (cmd->arg[k] - 1) * (cd->p - k - 1);
break;
}
}
}
}
if(model->numface && face) {
if(numgrp && grpidx) {
qsort(grpidx, numgrp, sizeof(uint32_t), _m3d_grpcmp);
for(i = j = 0; i < model->numface && j < numgrp; i++) {
while(j < numgrp && grpidx[j] < i) j++;
face[i].group = j;
}
}
qsort(face, model->numface, sizeof(m3dfsave_t), _m3d_facecmp);
}
if(grpidx) { M3D_FREE(grpidx); grpidx = NULL; }
if(model->numlabel && model->label) {
M3D_LOG("Processing annotation labels");
for(i = 0; i < model->numlabel; i++) {
str = _m3d_addstr(str, &numstr, model->label[i].name);
str = _m3d_addstr(str, &numstr, model->label[i].lang);
str = _m3d_addstr(str, &numstr, model->label[i].text);
if(!(flags & M3D_EXP_NOCMAP)) {
cmap = _m3d_addcmap(cmap, &numcmap, model->label[i].color);
if(!cmap) goto memerr;
}
if(model->label[i].vertexid < model->numvertex)
vrtxidx[model->label[i].vertexid] = 0;
}
qsort(model->label, model->numlabel, sizeof(m3dl_t), _m3d_lblcmp);
}
} else if(!(flags & M3D_EXP_NOMATERIAL)) {
/* without a face, simply add all materials, because it can be an mtllib */
for(i = 0; i < model->nummaterial; i++)
mtrlidx[i] = i;
}
/* bind-pose skeleton */
if(model->numbone && model->bone && !(flags & M3D_EXP_NOBONE)) {
M3D_LOG("Processing bones");
for(i = 0; i < model->numbone; i++) {
str = _m3d_addstr(str, &numstr, model->bone[i].name);
if(!str) goto memerr;
k = model->bone[i].pos;
if(k < model->numvertex)
vrtxidx[k] = 0;
k = model->bone[i].ori;
if(k < model->numvertex)
vrtxidx[k] = 0;
}
}
/* actions, animated skeleton poses */
if(model->numaction && model->action && !(flags & M3D_EXP_NOACTION)) {
M3D_LOG("Processing action list");
for(j = 0; j < model->numaction; j++) {
a = &model->action[j];
str = _m3d_addstr(str, &numstr, a->name);
if(!str) goto memerr;
if(a->numframe > 65535) a->numframe = 65535;
for(i = 0; i < a->numframe; i++) {
for(l = 0; l < a->frame[i].numtransform; l++) {
k = a->frame[i].transform[l].pos;
if(k < model->numvertex)
vrtxidx[k] = 0;
k = a->frame[i].transform[l].ori;
if(k < model->numvertex)
vrtxidx[k] = 0;
}
if(l > maxt) maxt = l;
}
}
}
/* add colors to color map and texture names to string table */
if(!(flags & M3D_EXP_NOMATERIAL)) {
M3D_LOG("Processing materials");
for(i = k = 0; i < model->nummaterial; i++) {
if(mtrlidx[i] == M3D_UNDEF || !model->material[i].numprop) continue;
mtrlidx[i] = k++;
m = &model->material[i];
str = _m3d_addstr(str, &numstr, m->name);
if(!str) goto memerr;
if(m->prop)
for(j = 0; j < m->numprop; j++) {
if(!(flags & M3D_EXP_NOCMAP) && m->prop[j].type < 128) {
for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++) {
if(m->prop[j].type == m3d_propertytypes[l].id && m3d_propertytypes[l].format == m3dpf_color) {
((uint8_t*)&m->prop[j].value.color)[3] = opa[i * 2 + 1];
cmap = _m3d_addcmap(cmap, &numcmap, m->prop[j].value.color);
if(!cmap) goto memerr;
break;
}
}
}
if(m->prop[j].type >= 128 && m->prop[j].value.textureid < model->numtexture &&
model->texture[m->prop[j].value.textureid].name) {
str = _m3d_addstr(str, &numstr, model->texture[m->prop[j].value.textureid].name);
if(!str) goto memerr;
}
}
}
}
/* if there's only one black color, don't store it */
if(numcmap == 1 && cmap && !cmap[0]) numcmap = 0;
/** compress lists **/
if(model->numtmap && !(flags & M3D_EXP_NOTXTCRD)) {
M3D_LOG("Compressing tmap");
tmap = (m3dtisave_t*)M3D_MALLOC(model->numtmap * sizeof(m3dtisave_t));
if(!tmap) goto memerr;
for(i = 0; i < model->numtmap; i++) {
if(tmapidx[i] == M3D_UNDEF) continue;
switch(quality) {
case M3D_EXP_INT8:
l = (unsigned int)(model->tmap[i].u * 255); tcoord.data.u = (M3D_FLOAT)l / (M3D_FLOAT)255.0;
l = (unsigned int)(model->tmap[i].v * 255); tcoord.data.v = (M3D_FLOAT)l / (M3D_FLOAT)255.0;
break;
case M3D_EXP_INT16:
l = (unsigned int)(model->tmap[i].u * 65535); tcoord.data.u = (M3D_FLOAT)l / (M3D_FLOAT)65535.0;
l = (unsigned int)(model->tmap[i].v * 65535); tcoord.data.v = (M3D_FLOAT)l / (M3D_FLOAT)65535.0;
break;
default:
tcoord.data.u = model->tmap[i].u;
tcoord.data.v = model->tmap[i].v;
break;
}
if(flags & M3D_EXP_FLIPTXTCRD)
tcoord.data.v = (M3D_FLOAT)1.0 - tcoord.data.v;
tcoord.oldidx = i;
memcpy(&tmap[numtmap++], &tcoord, sizeof(m3dtisave_t));
}
if(numtmap) {
qsort(tmap, numtmap, sizeof(m3dtisave_t), _m3d_ticmp);
memcpy(&tcoord.data, &tmap[0], sizeof(m3dti_t));
for(i = 0; i < numtmap; i++) {
if(memcmp(&tcoord.data, &tmap[i].data, sizeof(m3dti_t))) {
memcpy(&tcoord.data, &tmap[i].data, sizeof(m3dti_t));
maxtmap++;
}
tmap[i].newidx = maxtmap;
tmapidx[tmap[i].oldidx] = maxtmap;
}
maxtmap++;
}
}
if(model->numskin && model->skin && !(flags & M3D_EXP_NOBONE)) {
M3D_LOG("Compressing skin");
skinidx = (M3D_INDEX*)M3D_MALLOC(model->numskin * sizeof(M3D_INDEX));
if(!skinidx) goto memerr;
skin = (m3dssave_t*)M3D_MALLOC(model->numskin * sizeof(m3dssave_t));
if(!skin) goto memerr;
memset(skinidx, 255, model->numskin * sizeof(M3D_INDEX));
for(i = 0; i < model->numvertex; i++) {
if(vrtxidx[i] != M3D_UNDEF && model->vertex[i].skinid < model->numskin)
skinidx[model->vertex[i].skinid] = 0;
}
for(i = 0; i < model->numskin; i++) {
if(skinidx[i] == M3D_UNDEF) continue;
memset(&sk, 0, sizeof(m3dssave_t));
for(j = 0, min_x = (M3D_FLOAT)0.0; j < M3D_NUMBONE && model->skin[i].boneid[j] != M3D_UNDEF &&
model->skin[i].weight[j] > (M3D_FLOAT)0.0; j++) {
sk.data.boneid[j] = model->skin[i].boneid[j];
sk.data.weight[j] = model->skin[i].weight[j];
min_x += sk.data.weight[j];
}
if(j > maxbone) maxbone = j;
if(min_x != (M3D_FLOAT)1.0 && min_x != (M3D_FLOAT)0.0)
for(j = 0; j < M3D_NUMBONE && sk.data.weight[j] > (M3D_FLOAT)0.0; j++)
sk.data.weight[j] /= min_x;
sk.oldidx = i;
memcpy(&skin[numskin++], &sk, sizeof(m3dssave_t));
}
if(numskin) {
qsort(skin, numskin, sizeof(m3dssave_t), _m3d_skincmp);
memcpy(&sk.data, &skin[0].data, sizeof(m3ds_t));
for(i = 0; i < numskin; i++) {
if(memcmp(&sk.data, &skin[i].data, sizeof(m3ds_t))) {
memcpy(&sk.data, &skin[i].data, sizeof(m3ds_t));
maxskin++;
}
skin[i].newidx = maxskin;
skinidx[skin[i].oldidx] = maxskin;
}
maxskin++;
}
}
M3D_LOG("Compressing vertex list");
min_x = min_y = min_z = (M3D_FLOAT)1e10;
max_x = max_y = max_z = (M3D_FLOAT)-1e10;
if(vrtxidx) {
vrtx = (m3dvsave_t*)M3D_MALLOC(model->numvertex * sizeof(m3dvsave_t));
if(!vrtx) goto memerr;
for(i = numvrtx = 0; i < model->numvertex; i++) {
if(vrtxidx[i] == M3D_UNDEF) continue;
_m3d_round(quality, &model->vertex[i], &vertex.data);
vertex.norm = norm ? norm[i] : 0;
if(vertex.data.skinid != M3D_INDEXMAX && !vertex.norm) {
vertex.data.skinid = vertex.data.skinid != M3D_UNDEF && skinidx ? skinidx[vertex.data.skinid] : M3D_UNDEF;
if(vertex.data.x > max_x) max_x = vertex.data.x;
if(vertex.data.x < min_x) min_x = vertex.data.x;
if(vertex.data.y > max_y) max_y = vertex.data.y;
if(vertex.data.y < min_y) min_y = vertex.data.y;
if(vertex.data.z > max_z) max_z = vertex.data.z;
if(vertex.data.z < min_z) min_z = vertex.data.z;
}
#ifdef M3D_VERTEXTYPE
vertex.data.type = 0;
#endif
vertex.oldidx = i;
memcpy(&vrtx[numvrtx++], &vertex, sizeof(m3dvsave_t));
}
if(numvrtx) {
qsort(vrtx, numvrtx, sizeof(m3dvsave_t), _m3d_vrtxcmp);
memcpy(&vertex.data, &vrtx[0].data, sizeof(m3dv_t));
for(i = 0; i < numvrtx; i++) {
if(memcmp(&vertex.data, &vrtx[i].data, vrtx[i].norm ? 3 * sizeof(M3D_FLOAT) : sizeof(m3dv_t))) {
memcpy(&vertex.data, &vrtx[i].data, sizeof(m3dv_t));
maxvrtx++;
}
vrtx[i].newidx = maxvrtx;
vrtxidx[vrtx[i].oldidx] = maxvrtx;
}
maxvrtx++;
}
}
if(skinidx) { M3D_FREE(skinidx); skinidx = NULL; }
if(norm) { M3D_FREE(norm); norm = NULL; }
/* normalize to bounding cube */
if(numvrtx && !(flags & M3D_EXP_NORECALC)) {
M3D_LOG("Normalizing coordinates");
if(min_x < (M3D_FLOAT)0.0) min_x = -min_x;
if(max_x < (M3D_FLOAT)0.0) max_x = -max_x;
if(min_y < (M3D_FLOAT)0.0) min_y = -min_y;
if(max_y < (M3D_FLOAT)0.0) max_y = -max_y;
if(min_z < (M3D_FLOAT)0.0) min_z = -min_z;
if(max_z < (M3D_FLOAT)0.0) max_z = -max_z;
scale = min_x;
if(max_x > scale) scale = max_x;
if(min_y > scale) scale = min_y;
if(max_y > scale) scale = max_y;
if(min_z > scale) scale = min_z;
if(max_z > scale) scale = max_z;
if(scale == (M3D_FLOAT)0.0) scale = (M3D_FLOAT)1.0;
if(scale != (M3D_FLOAT)1.0) {
for(i = 0; i < numvrtx; i++) {
if(vrtx[i].data.skinid == M3D_INDEXMAX) continue;
vrtx[i].data.x /= scale;
vrtx[i].data.y /= scale;
vrtx[i].data.z /= scale;
}
}
}
if(model->scale > (M3D_FLOAT)0.0) scale = model->scale;
if(scale <= (M3D_FLOAT)0.0) scale = (M3D_FLOAT)1.0;
/* meta info */
sn = _m3d_safestr(model->name && *model->name ? model->name : (char*)"(noname)", 2);
sl = _m3d_safestr(model->license ? model->license : (char*)"MIT", 2);
sa = _m3d_safestr(model->author ? model->author : getenv("LOGNAME"), 2);
if(!sn || !sl || !sa) {
memerr: if(vrtxidx) M3D_FREE(vrtxidx);
if(mtrlidx) M3D_FREE(mtrlidx);
if(tmapidx) M3D_FREE(tmapidx);
if(skinidx) M3D_FREE(skinidx);
if(grpidx) M3D_FREE(grpidx);
if(norm) M3D_FREE(norm);
if(face) M3D_FREE(face);
if(cmap) M3D_FREE(cmap);
if(tmap) M3D_FREE(tmap);
if(skin) M3D_FREE(skin);
if(str) M3D_FREE(str);
if(vrtx) M3D_FREE(vrtx);
if(sn) M3D_FREE(sn);
if(sl) M3D_FREE(sl);
if(sa) M3D_FREE(sa);
if(sd) M3D_FREE(sd);
if(out) M3D_FREE(out);
if(h) M3D_FREE(h);
M3D_LOG("Out of memory");
model->errcode = M3D_ERR_ALLOC;
return NULL;
}
M3D_LOG("Serializing model");
#ifdef M3D_ASCII
if(flags & M3D_EXP_ASCII) {
/* use CRLF to make model creators on Win happy... */
sd = _m3d_safestr(model->desc, 1);
if(!sd) goto memerr;
ol = setlocale(LC_NUMERIC, NULL);
setlocale(LC_NUMERIC, "C");
/* header */
len = 64 + (unsigned int)(strlen(sn) + strlen(sl) + strlen(sa) + strlen(sd));
out = (unsigned char*)M3D_MALLOC(len);
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr = (char*)out;
ptr += sprintf(ptr, "3dmodel %g\r\n%s\r\n%s\r\n%s\r\n%s\r\n\r\n", scale,
sn, sl, sa, sd);
M3D_FREE(sl); M3D_FREE(sa); M3D_FREE(sd);
sl = sa = sd = NULL;
/* preview chunk */
if(model->preview.data && model->preview.length) {
sl = _m3d_safestr(sn, 0);
if(sl) {
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)20);
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Preview\r\n%s.png\r\n\r\n", sl);
M3D_FREE(sl); sl = NULL;
}
}
M3D_FREE(sn); sn = NULL;
/* texture map */
if(numtmap && tmap && !(flags & M3D_EXP_NOTXTCRD) && !(flags & M3D_EXP_NOFACE)) {
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)(maxtmap * 32) + (uintptr_t)12);
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Textmap\r\n");
last = M3D_UNDEF;
for(i = 0; i < numtmap; i++) {
if(tmap[i].newidx == last) continue;
last = tmap[i].newidx;
ptr += sprintf(ptr, "%g %g\r\n", tmap[i].data.u, tmap[i].data.v);
}
ptr += sprintf(ptr, "\r\n");
}
/* vertex chunk */
if(numvrtx && vrtx && !(flags & M3D_EXP_NOFACE)) {
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)(maxvrtx * 128) + (uintptr_t)10);
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Vertex\r\n");
last = M3D_UNDEF;
for(i = 0; i < numvrtx; i++) {
if(vrtx[i].newidx == last) continue;
last = vrtx[i].newidx;
ptr += sprintf(ptr, "%g %g %g %g", vrtx[i].data.x, vrtx[i].data.y, vrtx[i].data.z, vrtx[i].data.w);
if(!(flags & M3D_EXP_NOCMAP) && vrtx[i].data.color)
ptr += sprintf(ptr, " #%08x", vrtx[i].data.color);
if(!(flags & M3D_EXP_NOBONE) && model->numbone && maxskin && vrtx[i].data.skinid < M3D_INDEXMAX) {
if(skin[vrtx[i].data.skinid].data.weight[0] == (M3D_FLOAT)1.0)
ptr += sprintf(ptr, " %d", skin[vrtx[i].data.skinid].data.boneid[0]);
else
for(j = 0; j < M3D_NUMBONE && skin[vrtx[i].data.skinid].data.boneid[j] != M3D_UNDEF &&
skin[vrtx[i].data.skinid].data.weight[j] > (M3D_FLOAT)0.0; j++)
ptr += sprintf(ptr, " %d:%g", skin[vrtx[i].data.skinid].data.boneid[j],
skin[vrtx[i].data.skinid].data.weight[j]);
}
ptr += sprintf(ptr, "\r\n");
}
ptr += sprintf(ptr, "\r\n");
}
/* bones chunk */
if(model->numbone && model->bone && !(flags & M3D_EXP_NOBONE)) {
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)9);
for(i = 0; i < model->numbone; i++) {
len += (unsigned int)strlen(model->bone[i].name) + 128;
}
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Bones\r\n");
ptr = _m3d_prtbone(ptr, model->bone, model->numbone, M3D_UNDEF, 0, vrtxidx);
ptr += sprintf(ptr, "\r\n");
}
/* materials */
if(model->nummaterial && !(flags & M3D_EXP_NOMATERIAL)) {
for(j = 0; j < model->nummaterial; j++) {
if(mtrlidx[j] == M3D_UNDEF || !model->material[j].numprop || !model->material[j].prop) continue;
m = &model->material[j];
sn = _m3d_safestr(m->name, 0);
if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)strlen(sn) + (uintptr_t)12);
for(i = 0; i < m->numprop; i++) {
if(m->prop[i].type < 128)
len += 32;
else if(m->prop[i].value.textureid < model->numtexture && model->texture[m->prop[i].value.textureid].name)
len += (unsigned int)strlen(model->texture[m->prop[i].value.textureid].name) + 16;
}
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Material %s\r\n", sn);
M3D_FREE(sn); sn = NULL;
for(i = 0; i < m->numprop; i++) {
k = 256;
if(m->prop[i].type >= 128) {
for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++)
if(m->prop[i].type == m3d_propertytypes[l].id) {
sn = m3d_propertytypes[l].key;
break;
}
if(!sn)
for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++)
if(m->prop[i].type - 128 == m3d_propertytypes[l].id) {
sn = m3d_propertytypes[l].key;
break;
}
k = sn ? m3dpf_map : 256;
} else {
for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++)
if(m->prop[i].type == m3d_propertytypes[l].id) {
sn = m3d_propertytypes[l].key;
k = m3d_propertytypes[l].format;
break;
}
}
switch(k) {
case m3dpf_color: ptr += sprintf(ptr, "%s #%08x\r\n", sn, m->prop[i].value.color); break;
case m3dpf_uint8:
case m3dpf_uint16:
case m3dpf_uint32: ptr += sprintf(ptr, "%s %d\r\n", sn, m->prop[i].value.num); break;
case m3dpf_float: ptr += sprintf(ptr, "%s %g\r\n", sn, m->prop[i].value.fnum); break;
case m3dpf_map:
if(m->prop[i].value.textureid < model->numtexture &&
model->texture[m->prop[i].value.textureid].name) {
sl = _m3d_safestr(model->texture[m->prop[i].value.textureid].name, 0);
if(!sl) { setlocale(LC_NUMERIC, ol); goto memerr; }
if(*sl)
ptr += sprintf(ptr, "map_%s %s\r\n", sn, sl);
M3D_FREE(sn); M3D_FREE(sl); sl = NULL;
}
break;
}
sn = NULL;
}
ptr += sprintf(ptr, "\r\n");
}
}
/* procedural face */
if(model->numinlined && model->inlined && !(flags & M3D_EXP_NOFACE)) {
/* all inlined assets which are not textures should be procedural surfaces */
for(j = 0; j < model->numinlined; j++) {
if(!model->inlined[j].name || !*model->inlined[j].name || !model->inlined[j].length || !model->inlined[j].data ||
(model->inlined[j].data[1] == 'P' && model->inlined[j].data[2] == 'N' && model->inlined[j].data[3] == 'G'))
continue;
for(i = k = 0; i < model->numtexture; i++) {
if(!strcmp(model->inlined[j].name, model->texture[i].name)) { k = 1; break; }
}
if(k) continue;
sn = _m3d_safestr(model->inlined[j].name, 0);
if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)strlen(sn) + (uintptr_t)18);
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Procedural\r\n%s\r\n\r\n", sn);
M3D_FREE(sn); sn = NULL;
}
}
/* mesh face */
if(model->numface && face && !(flags & M3D_EXP_NOFACE)) {
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)(model->numface * 128) + (uintptr_t)6);
last = M3D_UNDEF;
if(!(flags & M3D_EXP_NOMATERIAL))
for(i = 0; i < model->numface; i++) {
j = face[i].data.materialid < model->nummaterial ? face[i].data.materialid : M3D_UNDEF;
if(j != last) {
last = j;
if(last < model->nummaterial)
len += (unsigned int)strlen(model->material[last].name);
len += 6;
}
}
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Mesh\r\n");
last = M3D_UNDEF;
for(i = 0; i < model->numface; i++) {
j = face[i].data.materialid < model->nummaterial ? face[i].data.materialid : M3D_UNDEF;
if(!(flags & M3D_EXP_NOMATERIAL) && j != last) {
last = j;
if(last < model->nummaterial) {
sn = _m3d_safestr(model->material[last].name, 0);
if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "use %s\r\n", sn);
M3D_FREE(sn); sn = NULL;
} else
ptr += sprintf(ptr, "use\r\n");
}
/* hardcoded triangles. Should be repeated as many times as the number of edges in polygon */
for(j = 0; j < 3; j++) {
ptr += sprintf(ptr, "%s%d", j?" ":"", vrtxidx[face[i].data.vertex[j]]);
k = M3D_NOTDEFINED;
if(!(flags & M3D_EXP_NOTXTCRD) && (face[i].data.texcoord[j] != M3D_UNDEF) &&
(tmapidx[face[i].data.texcoord[j]] != M3D_UNDEF)) {
k = tmapidx[face[i].data.texcoord[j]];
ptr += sprintf(ptr, "/%d", k);
}
if(!(flags & M3D_EXP_NONORMAL) && (face[i].data.normal[j] != M3D_UNDEF))
ptr += sprintf(ptr, "%s/%d", k == M3D_NOTDEFINED? "/" : "", vrtxidx[face[i].data.normal[j]]);
}
ptr += sprintf(ptr, "\r\n");
}
ptr += sprintf(ptr, "\r\n");
}
/* mathematical shapes face */
if(model->numshape && model->numshape && !(flags & M3D_EXP_NOFACE)) {
for(j = 0; j < model->numshape; j++) {
sn = _m3d_safestr(model->shape[j].name, 0);
if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)strlen(sn) + (uintptr_t)33);
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Shape %s\r\n", sn);
M3D_FREE(sn); sn = NULL;
if(model->shape[j].group != M3D_UNDEF && !(flags & M3D_EXP_NOBONE))
ptr += sprintf(ptr, "group %d\r\n", model->shape[j].group);
for(i = 0; i < model->shape[j].numcmd; i++) {
cmd = &model->shape[j].cmd[i];
if(cmd->type >= (unsigned int)(sizeof(m3d_commandtypes)/sizeof(m3d_commandtypes[0])) || !cmd->arg)
continue;
cd = &m3d_commandtypes[cmd->type];
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)strlen(cd->key) + (uintptr_t)3);
for(k = 0; k < cd->p; k++)
switch(cd->a[k]) {
case m3dcp_mi_t: if(cmd->arg[k] != M3D_NOTDEFINED) { len += (unsigned int)strlen(model->material[cmd->arg[k]].name) + 1; } break;
case m3dcp_va_t: len += cmd->arg[k] * (cd->p - k - 1) * 16; k = cd->p; break;
default: len += 16; break;
}
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "%s", cd->key);
for(k = n = 0, l = cd->p; k < l; k++) {
switch(cd->a[((k - n) % (cd->p - n)) + n]) {
case m3dcp_mi_t:
if(cmd->arg[k] != M3D_NOTDEFINED) {
sn = _m3d_safestr(model->material[cmd->arg[k]].name, 0);
if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, " %s", sn);
M3D_FREE(sn); sn = NULL;
}
break;
case m3dcp_vc_t: ptr += sprintf(ptr, " %g", *((float*)&cmd->arg[k])); break;
case m3dcp_va_t: ptr += sprintf(ptr, " %d[", cmd->arg[k]);
n = k + 1; l += (cmd->arg[k] - 1) * (cd->p - k - 1);
break;
default: ptr += sprintf(ptr, " %d", cmd->arg[k]); break;
}
}
ptr += sprintf(ptr, "%s\r\n", l > cd->p ? " ]" : "");
}
ptr += sprintf(ptr, "\r\n");
}
}
/* annotation labels */
if(model->numlabel && model->label && !(flags & M3D_EXP_NOFACE)) {
for(i = 0, j = 3, length = NULL; i < model->numlabel; i++) {
if(model->label[i].name) j += (unsigned int)strlen(model->label[i].name);
if(model->label[i].lang) j += (unsigned int)strlen(model->label[i].lang);
if(model->label[i].text) j += (unsigned int)strlen(model->label[i].text);
j += 40;
}
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)j);
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
for(i = 0; i < model->numlabel; i++) {
if(!i || _m3d_strcmp(sl, model->label[i].lang) || _m3d_strcmp(sn, model->label[i].name)) {
sl = model->label[i].lang;
sn = model->label[i].name;
sd = _m3d_safestr(sn, 0);
if(!sd) { setlocale(LC_NUMERIC, ol); sn = sl = NULL; goto memerr; }
if(i) ptr += sprintf(ptr, "\r\n");
ptr += sprintf(ptr, "Labels %s\r\n", sd);
M3D_FREE(sd); sd = NULL;
if(model->label[i].color)
ptr += sprintf(ptr, "color #0x%08x\r\n", model->label[i].color);
if(sl && *sl) {
sd = _m3d_safestr(sl, 0);
if(!sd) { setlocale(LC_NUMERIC, ol); sn = sl = NULL; goto memerr; }
ptr += sprintf(ptr, "lang %s\r\n", sd);
M3D_FREE(sd); sd = NULL;
}
}
sd = _m3d_safestr(model->label[i].text, 2);
if(!sd) { setlocale(LC_NUMERIC, ol); sn = sl = NULL; goto memerr; }
ptr += sprintf(ptr, "%d %s\r\n", model->label[i].vertexid, sd);
M3D_FREE(sd); sd = NULL;
}
ptr += sprintf(ptr, "\r\n");
sn = sl = NULL;
}
/* actions */
if(model->numaction && model->action && !(flags & M3D_EXP_NOACTION)) {
for(j = 0; j < model->numaction; j++) {
a = &model->action[j];
sn = _m3d_safestr(a->name, 0);
if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)strlen(sn) + (uintptr_t)48);
for(i = 0; i < a->numframe; i++)
len += a->frame[i].numtransform * 128 + 8;
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Action %d %s\r\n", a->durationmsec, sn);
M3D_FREE(sn); sn = NULL;
for(i = 0; i < a->numframe; i++) {
ptr += sprintf(ptr, "frame %d\r\n", a->frame[i].msec);
for(k = 0; k < a->frame[i].numtransform; k++) {
ptr += sprintf(ptr, "%d %d %d\r\n", a->frame[i].transform[k].boneid,
vrtxidx[a->frame[i].transform[k].pos], vrtxidx[a->frame[i].transform[k].ori]);
}
}
ptr += sprintf(ptr, "\r\n");
}
}
/* inlined assets */
if(model->numinlined && model->inlined) {
for(i = j = 0; i < model->numinlined; i++)
if(model->inlined[i].name)
j += (unsigned int)strlen(model->inlined[i].name) + 6;
if(j > 0) {
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)j + (uintptr_t)16);
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Assets\r\n");
for(i = 0; i < model->numinlined; i++)
if(model->inlined[i].name)
ptr += sprintf(ptr, "%s%s\r\n", model->inlined[i].name, strrchr(model->inlined[i].name, '.') ? "" : ".png");
ptr += sprintf(ptr, "\r\n");
}
}
/* extra info */
if(model->numextra && (flags & M3D_EXP_EXTRA)) {
for(i = 0; i < model->numextra; i++) {
if(model->extra[i]->length < 9) continue;
ptr -= (uintptr_t)out; len = (unsigned int)((uintptr_t)ptr + (uintptr_t)17 + (uintptr_t)(model->extra[i]->length * 3));
out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uintptr_t)out;
if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; }
ptr += sprintf(ptr, "Extra %c%c%c%c\r\n",
model->extra[i]->magic[0] > ' ' ? model->extra[i]->magic[0] : '_',
model->extra[i]->magic[1] > ' ' ? model->extra[i]->magic[1] : '_',
model->extra[i]->magic[2] > ' ' ? model->extra[i]->magic[2] : '_',
model->extra[i]->magic[3] > ' ' ? model->extra[i]->magic[3] : '_');
for(j = 0; j < model->extra[i]->length; j++)
ptr += sprintf(ptr, "%02x ", *((unsigned char *)model->extra + sizeof(m3dchunk_t) + j));
ptr--;
ptr += sprintf(ptr, "\r\n\r\n");
}
}
setlocale(LC_NUMERIC, ol);
len = (unsigned int)((uintptr_t)ptr - (uintptr_t)out);
out = (unsigned char*)M3D_REALLOC(out, len + 1);
if(!out) goto memerr;
out[len] = 0;
} else
#endif
{
/* stricly only use LF (newline) in binary */
sd = _m3d_safestr(model->desc, 3);
if(!sd) goto memerr;
/* header */
h = (m3dhdr_t*)M3D_MALLOC(sizeof(m3dhdr_t) + strlen(sn) + strlen(sl) + strlen(sa) + strlen(sd) + 4);
if(!h) goto memerr;
memcpy((uint8_t*)h, "HEAD", 4);
h->length = sizeof(m3dhdr_t);
h->scale = scale;
i = (unsigned int)strlen(sn); memcpy((uint8_t*)h + h->length, sn, i+1); h->length += i+1; M3D_FREE(sn);
i = (unsigned int)strlen(sl); memcpy((uint8_t*)h + h->length, sl, i+1); h->length += i+1; M3D_FREE(sl);
i = (unsigned int)strlen(sa); memcpy((uint8_t*)h + h->length, sa, i+1); h->length += i+1; M3D_FREE(sa);
i = (unsigned int)strlen(sd); memcpy((uint8_t*)h + h->length, sd, i+1); h->length += i+1; M3D_FREE(sd);
sn = sl = sa = sd = NULL;
if(model->inlined)
for(i = 0; i < model->numinlined; i++) {
if(model->inlined[i].name && *model->inlined[i].name && model->inlined[i].length > 0) {
str = _m3d_addstr(str, &numstr, model->inlined[i].name);
if(!str) goto memerr;
}
}
if(str)
for(i = 0; i < numstr; i++) {
h = _m3d_addhdr(h, &str[i]);
if(!h) goto memerr;
}
vc_s = quality == M3D_EXP_INT8? 1 : (quality == M3D_EXP_INT16? 2 : (quality == M3D_EXP_DOUBLE? 8 : 4));
vi_s = maxvrtx < 254 ? 1 : (maxvrtx < 65534 ? 2 : 4);
si_s = h->length - 16 < 254 ? 1 : (h->length - 16 < 65534 ? 2 : 4);
ci_s = !numcmap || !cmap ? 0 : (numcmap < 254 ? 1 : (numcmap < 65534 ? 2 : 4));
ti_s = !maxtmap || !tmap ? 0 : (maxtmap < 254 ? 1 : (maxtmap < 65534 ? 2 : 4));
bi_s = !model->numbone || !model->bone || (flags & M3D_EXP_NOBONE)? 0 : (model->numbone < 254 ? 1 :
(model->numbone < 65534 ? 2 : 4));
nb_s = maxbone < 2 ? 1 : (maxbone == 2 ? 2 : (maxbone <= 4 ? 4 : 8));
sk_s = !bi_s || !maxskin || !skin ? 0 : (maxskin < 254 ? 1 : (maxskin < 65534 ? 2 : 4));
fc_s = maxt < 254 ? 1 : (maxt < 65534 ? 2 : 4);
hi_s = !model->numshape || !model->shape || (flags & M3D_EXP_NOFACE)? 0 : (model->numshape < 254 ? 1 :
(model->numshape < 65534 ? 2 : 4));
fi_s = !model->numface || !model->face || (flags & M3D_EXP_NOFACE)? 0 : (model->numface < 254 ? 1 :
(model->numface < 65534 ? 2 : 4));
h->types = (vc_s == 8 ? (3<<0) : (vc_s == 2 ? (1<<0) : (vc_s == 1 ? (0<<0) : (2<<0)))) |
(vi_s == 2 ? (1<<2) : (vi_s == 1 ? (0<<2) : (2<<2))) |
(si_s == 2 ? (1<<4) : (si_s == 1 ? (0<<4) : (2<<4))) |
(ci_s == 2 ? (1<<6) : (ci_s == 1 ? (0<<6) : (ci_s == 4 ? (2<<6) : (3<<6)))) |
(ti_s == 2 ? (1<<8) : (ti_s == 1 ? (0<<8) : (ti_s == 4 ? (2<<8) : (3<<8)))) |
(bi_s == 2 ? (1<<10): (bi_s == 1 ? (0<<10): (bi_s == 4 ? (2<<10) : (3<<10)))) |
(nb_s == 2 ? (1<<12): (nb_s == 1 ? (0<<12): (2<<12))) |
(sk_s == 2 ? (1<<14): (sk_s == 1 ? (0<<14): (sk_s == 4 ? (2<<14) : (3<<14)))) |
(fc_s == 2 ? (1<<16): (fc_s == 1 ? (0<<16): (2<<16))) |
(hi_s == 2 ? (1<<18): (hi_s == 1 ? (0<<18): (hi_s == 4 ? (2<<18) : (3<<18)))) |
(fi_s == 2 ? (1<<20): (fi_s == 1 ? (0<<20): (fi_s == 4 ? (2<<20) : (3<<20))));
len = h->length;
/* preview image chunk, must be the first if exists */
if(model->preview.data && model->preview.length) {
chunklen = 8 + model->preview.length;
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "PRVW", 4);
*((uint32_t*)((uint8_t*)h + len + 4)) = chunklen;
memcpy((uint8_t*)h + len + 8, model->preview.data, model->preview.length);
len += chunklen;
}
/* color map */
if(numcmap && cmap && ci_s < 4 && !(flags & M3D_EXP_NOCMAP)) {
chunklen = 8 + numcmap * sizeof(uint32_t);
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "CMAP", 4);
*((uint32_t*)((uint8_t*)h + len + 4)) = chunklen;
memcpy((uint8_t*)h + len + 8, cmap, chunklen - 8);
len += chunklen;
} else numcmap = 0;
/* texture map */
if(numtmap && tmap && !(flags & M3D_EXP_NOTXTCRD) && !(flags & M3D_EXP_NOFACE)) {
chunklen = 8 + maxtmap * vc_s * 2;
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "TMAP", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
last = M3D_UNDEF;
for(i = 0; i < numtmap; i++) {
if(tmap[i].newidx == last) continue;
last = tmap[i].newidx;
switch(vc_s) {
case 1: *out++ = (uint8_t)(tmap[i].data.u * 255); *out++ = (uint8_t)(tmap[i].data.v * 255); break;
case 2:
*((uint16_t*)out) = (uint16_t)(tmap[i].data.u * 65535); out += 2;
*((uint16_t*)out) = (uint16_t)(tmap[i].data.v * 65535); out += 2;
break;
case 4: *((float*)out) = tmap[i].data.u; out += 4; *((float*)out) = tmap[i].data.v; out += 4; break;
case 8: *((double*)out) = tmap[i].data.u; out += 8; *((double*)out) = tmap[i].data.v; out += 8; break;
}
}
*length = (uint32_t)((uintptr_t)out - (uintptr_t)((uint8_t*)h + len));
out = NULL;
len += *length;
}
/* vertex */
if(numvrtx && vrtx) {
chunklen = 8 + maxvrtx * (ci_s + sk_s + 4 * vc_s);
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "VRTS", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
last = M3D_UNDEF;
for(i = 0; i < numvrtx; i++) {
if(vrtx[i].newidx == last) continue;
last = vrtx[i].newidx;
switch(vc_s) {
case 1:
*out++ = (int8_t)(vrtx[i].data.x * 127);
*out++ = (int8_t)(vrtx[i].data.y * 127);
*out++ = (int8_t)(vrtx[i].data.z * 127);
*out++ = (int8_t)(vrtx[i].data.w * 127);
break;
case 2:
*((int16_t*)out) = (int16_t)(vrtx[i].data.x * 32767); out += 2;
*((int16_t*)out) = (int16_t)(vrtx[i].data.y * 32767); out += 2;
*((int16_t*)out) = (int16_t)(vrtx[i].data.z * 32767); out += 2;
*((int16_t*)out) = (int16_t)(vrtx[i].data.w * 32767); out += 2;
break;
case 4:
*((float*)out) = vrtx[i].data.x; out += 4;
*((float*)out) = vrtx[i].data.y; out += 4;
*((float*)out) = vrtx[i].data.z; out += 4;
*((float*)out) = vrtx[i].data.w; out += 4;
break;
case 8:
*((double*)out) = vrtx[i].data.x; out += 8;
*((double*)out) = vrtx[i].data.y; out += 8;
*((double*)out) = vrtx[i].data.z; out += 8;
*((double*)out) = vrtx[i].data.w; out += 8;
break;
}
idx = _m3d_cmapidx(cmap, numcmap, vrtx[i].data.color);
switch(ci_s) {
case 1: *out++ = (uint8_t)(idx); break;
case 2: *((uint16_t*)out) = (uint16_t)(idx); out += 2; break;
case 4: *((uint32_t*)out) = vrtx[i].data.color; out += 4; break;
}
out = _m3d_addidx(out, sk_s, vrtx[i].data.skinid);
}
*length = (uint32_t)((uintptr_t)out - (uintptr_t)((uint8_t*)h + len));
out = NULL;
len += *length;
}
/* bones chunk */
if(model->numbone && model->bone && !(flags & M3D_EXP_NOBONE)) {
i = 8 + bi_s + sk_s + model->numbone * (bi_s + si_s + 2*vi_s);
chunklen = i + numskin * nb_s * (bi_s + 1);
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "BONE", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
out = _m3d_addidx(out, bi_s, model->numbone);
out = _m3d_addidx(out, sk_s, maxskin);
for(i = 0; i < model->numbone; i++) {
out = _m3d_addidx(out, bi_s, model->bone[i].parent);
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, model->bone[i].name));
out = _m3d_addidx(out, vi_s, vrtxidx[model->bone[i].pos]);
out = _m3d_addidx(out, vi_s, vrtxidx[model->bone[i].ori]);
}
if(numskin && skin && sk_s) {
last = M3D_UNDEF;
for(i = 0; i < numskin; i++) {
if(skin[i].newidx == last) continue;
last = skin[i].newidx;
memset(&weights, 0, nb_s);
for(j = 0; j < (uint32_t)nb_s && skin[i].data.boneid[j] != M3D_UNDEF &&
skin[i].data.weight[j] > (M3D_FLOAT)0.0; j++)
weights[j] = (uint8_t)(skin[i].data.weight[j] * 255);
switch(nb_s) {
case 1: weights[0] = 255; break;
case 2: *((uint16_t*)out) = *((uint16_t*)&weights[0]); out += 2; break;
case 4: *((uint32_t*)out) = *((uint32_t*)&weights[0]); out += 4; break;
case 8: *((uint64_t*)out) = *((uint64_t*)&weights[0]); out += 8; break;
}
for(j = 0; j < (uint32_t)nb_s && skin[i].data.boneid[j] != M3D_UNDEF && weights[j]; j++) {
out = _m3d_addidx(out, bi_s, skin[i].data.boneid[j]);
*length += bi_s;
}
}
}
*length = (uint32_t)((uintptr_t)out - (uintptr_t)((uint8_t*)h + len));
out = NULL;
len += *length;
}
/* materials */
if(model->nummaterial && !(flags & M3D_EXP_NOMATERIAL)) {
for(j = 0; j < model->nummaterial; j++) {
if(mtrlidx[j] == M3D_UNDEF || !model->material[j].numprop || !model->material[j].prop) continue;
m = &model->material[j];
chunklen = 12 + si_s + m->numprop * 5;
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "MTRL", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, m->name));
for(i = 0; i < m->numprop; i++) {
if(m->prop[i].type >= 128) {
if(m->prop[i].value.textureid >= model->numtexture ||
!model->texture[m->prop[i].value.textureid].name) continue;
k = m3dpf_map;
} else {
for(k = 256, l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++)
if(m->prop[i].type == m3d_propertytypes[l].id) { k = m3d_propertytypes[l].format; break; }
}
if(k == 256) continue;
*out++ = m->prop[i].type;
switch(k) {
case m3dpf_color:
if(!(flags & M3D_EXP_NOCMAP)) {
idx = _m3d_cmapidx(cmap, numcmap, m->prop[i].value.color);
switch(ci_s) {
case 1: *out++ = (uint8_t)(idx); break;
case 2: *((uint16_t*)out) = (uint16_t)(idx); out += 2; break;
case 4: *((uint32_t*)out) = (uint32_t)(m->prop[i].value.color); out += 4; break;
}
} else out--;
break;
case m3dpf_uint8: *out++ = m->prop[i].value.num; break;
case m3dpf_uint16: *((uint16_t*)out) = m->prop[i].value.num; out += 2; break;
case m3dpf_uint32: *((uint32_t*)out) = m->prop[i].value.num; out += 4; break;
case m3dpf_float: *((float*)out) = m->prop[i].value.fnum; out += 4; break;
case m3dpf_map:
idx = _m3d_stridx(str, numstr, model->texture[m->prop[i].value.textureid].name);
out = _m3d_addidx(out, si_s, idx);
break;
}
}
*length = (uint32_t)((uintptr_t)out - (uintptr_t)((uint8_t*)h + len));
len += *length;
out = NULL;
}
}
/* procedural face */
if(model->numinlined && model->inlined && !(flags & M3D_EXP_NOFACE)) {
/* all inlined assets which are not textures should be procedural surfaces */
for(j = 0; j < model->numinlined; j++) {
if(!model->inlined[j].name || !model->inlined[j].name[0] || model->inlined[j].length < 4 ||
!model->inlined[j].data || (model->inlined[j].data[1] == 'P' && model->inlined[j].data[2] == 'N' &&
model->inlined[j].data[3] == 'G'))
continue;
for(i = k = 0; i < model->numtexture; i++) {
if(!strcmp(model->inlined[j].name, model->texture[i].name)) { k = 1; break; }
}
if(k) continue;
numproc++;
chunklen = 8 + si_s;
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "PROC", 4);
*((uint32_t*)((uint8_t*)h + len + 4)) = chunklen;
out = (uint8_t*)h + len + 8;
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, model->inlined[j].name));
out = NULL;
len += chunklen;
}
}
/* mesh face */
if(model->numface && face && !(flags & M3D_EXP_NOFACE)) {
chunklen = 8 + si_s + model->numface * (6 * vi_s + 3 * ti_s + si_s + 1);
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "MESH", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
last = M3D_UNDEF;
for(i = 0; i < model->numface; i++) {
if(!(flags & M3D_EXP_NOMATERIAL) && face[i].data.materialid != last) {
last = face[i].data.materialid;
idx = last < model->nummaterial ? _m3d_stridx(str, numstr, model->material[last].name) : 0;
*out++ = 0;
out = _m3d_addidx(out, si_s, idx);
}
/* hardcoded triangles. */
k = (3 << 4) |
(((flags & M3D_EXP_NOTXTCRD) || !ti_s || face[i].data.texcoord[0] == M3D_UNDEF ||
face[i].data.texcoord[1] == M3D_UNDEF || face[i].data.texcoord[2] == M3D_UNDEF) ? 0 : 1) |
(((flags & M3D_EXP_NONORMAL) || face[i].data.normal[0] == M3D_UNDEF ||
face[i].data.normal[1] == M3D_UNDEF || face[i].data.normal[2] == M3D_UNDEF) ? 0 : 2);
*out++ = k;
for(j = 0; j < 3; j++) {
out = _m3d_addidx(out, vi_s, vrtxidx[face[i].data.vertex[j]]);
if(k & 1)
out = _m3d_addidx(out, ti_s, tmapidx[face[i].data.texcoord[j]]);
if(k & 2)
out = _m3d_addidx(out, vi_s, vrtxidx[face[i].data.normal[j]]);
}
}
*length = (uint32_t)((uintptr_t)out - (uintptr_t)((uint8_t*)h + len));
len += *length;
out = NULL;
}
/* mathematical shapes face */
if(model->numshape && model->shape && !(flags & M3D_EXP_NOFACE)) {
for(j = 0; j < model->numshape; j++) {
chunklen = 12 + si_s + model->shape[j].numcmd * (M3D_CMDMAXARG + 1) * 4;
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "SHPE", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, model->shape[j].name));
out = _m3d_addidx(out, bi_s, model->shape[j].group);
for(i = 0; i < model->shape[j].numcmd; i++) {
cmd = &model->shape[j].cmd[i];
if(cmd->type >= (unsigned int)(sizeof(m3d_commandtypes)/sizeof(m3d_commandtypes[0])) || !cmd->arg)
continue;
cd = &m3d_commandtypes[cmd->type];
*out++ = (cmd->type & 0x7F) | (cmd->type > 127 ? 0x80 : 0);
if(cmd->type > 127) *out++ = (cmd->type >> 7) & 0xff;
for(k = n = 0, l = cd->p; k < l; k++) {
switch(cd->a[((k - n) % (cd->p - n)) + n]) {
case m3dcp_mi_t:
out = _m3d_addidx(out, si_s, cmd->arg[k] < model->nummaterial ?
_m3d_stridx(str, numstr, model->material[cmd->arg[k]].name) : 0);
break;
case m3dcp_vc_t:
min_x = *((float*)&cmd->arg[k]);
switch(vc_s) {
case 1: *out++ = (int8_t)(min_x * 127); break;
case 2: *((int16_t*)out) = (int16_t)(min_x * 32767); out += 2; break;
case 4: *((float*)out) = min_x; out += 4; break;
case 8: *((double*)out) = min_x; out += 8; break;
}
break;
case m3dcp_hi_t: out = _m3d_addidx(out, hi_s, cmd->arg[k]); break;
case m3dcp_fi_t: out = _m3d_addidx(out, fi_s, cmd->arg[k]); break;
case m3dcp_ti_t: out = _m3d_addidx(out, ti_s, cmd->arg[k]); break;
case m3dcp_qi_t:
case m3dcp_vi_t: out = _m3d_addidx(out, vi_s, cmd->arg[k]); break;
case m3dcp_i1_t: out = _m3d_addidx(out, 1, cmd->arg[k]); break;
case m3dcp_i2_t: out = _m3d_addidx(out, 2, cmd->arg[k]); break;
case m3dcp_i4_t: out = _m3d_addidx(out, 4, cmd->arg[k]); break;
case m3dcp_va_t: out = _m3d_addidx(out, 4, cmd->arg[k]);
n = k + 1; l += (cmd->arg[k] - 1) * (cd->p - k - 1);
break;
}
}
}
*length = (uint32_t)((uintptr_t)out - (uintptr_t)((uint8_t*)h + len));
len += *length;
out = NULL;
}
}
/* annotation labels */
if(model->numlabel && model->label) {
for(i = 0, length = NULL; i < model->numlabel; i++) {
if(!i || _m3d_strcmp(sl, model->label[i].lang) || _m3d_strcmp(sn, model->label[i].name)) {
sl = model->label[i].lang;
sn = model->label[i].name;
if(length) {
*length = (uint32_t)((uintptr_t)out - (uintptr_t)((uint8_t*)h + len));
len += *length;
}
chunklen = 8 + 2 * si_s + ci_s + model->numlabel * (vi_s + si_s);
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) { sn = NULL; sl = NULL; goto memerr; }
memcpy((uint8_t*)h + len, "LBLS", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, model->label[l].name));
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, model->label[l].lang));
idx = _m3d_cmapidx(cmap, numcmap, model->label[i].color);
switch(ci_s) {
case 1: *out++ = (uint8_t)(idx); break;
case 2: *((uint16_t*)out) = (uint16_t)(idx); out += 2; break;
case 4: *((uint32_t*)out) = model->label[i].color; out += 4; break;
}
}
out = _m3d_addidx(out, vi_s, vrtxidx[model->label[i].vertexid]);
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, model->label[l].text));
}
if(length) {
*length = (uint32_t)((uintptr_t)out - (uintptr_t)((uint8_t*)h + len));
len += *length;
}
out = NULL;
sn = sl = NULL;
}
/* actions */
if(model->numaction && model->action && model->numbone && model->bone && !(flags & M3D_EXP_NOACTION)) {
for(j = 0; j < model->numaction; j++) {
a = &model->action[j];
chunklen = 14 + si_s + a->numframe * (4 + fc_s + maxt * (bi_s + 2 * vi_s));
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "ACTN", 4);
length = (uint32_t*)((uint8_t*)h + len + 4);
out = (uint8_t*)h + len + 8;
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, a->name));
*((uint16_t*)out) = (uint16_t)(a->numframe); out += 2;
*((uint32_t*)out) = (uint32_t)(a->durationmsec); out += 4;
for(i = 0; i < a->numframe; i++) {
*((uint32_t*)out) = (uint32_t)(a->frame[i].msec); out += 4;
out = _m3d_addidx(out, fc_s, a->frame[i].numtransform);
for(k = 0; k < a->frame[i].numtransform; k++) {
out = _m3d_addidx(out, bi_s, a->frame[i].transform[k].boneid);
out = _m3d_addidx(out, vi_s, vrtxidx[a->frame[i].transform[k].pos]);
out = _m3d_addidx(out, vi_s, vrtxidx[a->frame[i].transform[k].ori]);
}
}
*length = (uint32_t)((uintptr_t)out - (uintptr_t)((uint8_t*)h + len));
len += *length;
out = NULL;
}
}
/* inlined assets */
if(model->numinlined && model->inlined && (numproc || (flags & M3D_EXP_INLINE))) {
for(j = 0; j < model->numinlined; j++) {
if(!model->inlined[j].name || !model->inlined[j].name[0] || model->inlined[j].length<4 || !model->inlined[j].data)
continue;
if(!(flags & M3D_EXP_INLINE)) {
if(model->inlined[j].data[1] == 'P' && model->inlined[j].data[2] == 'N' && model->inlined[j].data[3] == 'G')
continue;
for(i = k = 0; i < model->numtexture; i++) {
if(!strcmp(model->inlined[j].name, model->texture[i].name)) { k = 1; break; }
}
if(k) continue;
}
chunklen = 8 + si_s + model->inlined[j].length;
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "ASET", 4);
*((uint32_t*)((uint8_t*)h + len + 4)) = chunklen;
out = (uint8_t*)h + len + 8;
out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, model->inlined[j].name));
memcpy(out, model->inlined[j].data, model->inlined[j].length);
out = NULL;
len += chunklen;
}
}
/* extra chunks */
if(model->numextra && model->extra && (flags & M3D_EXP_EXTRA)) {
for(j = 0; j < model->numextra; j++) {
if(!model->extra[j] || model->extra[j]->length < 8)
continue;
chunklen = model->extra[j]->length;
h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, model->extra[j], chunklen);
len += chunklen;
}
}
/* add end chunk */
h = (m3dhdr_t*)M3D_REALLOC(h, len + 4);
if(!h) goto memerr;
memcpy((uint8_t*)h + len, "OMD3", 4);
len += 4;
/* zlib compress */
if(!(flags & M3D_EXP_NOZLIB)) {
M3D_LOG("Deflating chunks");
z = stbi_zlib_compress((unsigned char *)h, len, (int*)&l, 9);
if(z && l > 0 && l < len) { len = l; M3D_FREE(h); h = (m3dhdr_t*)z; }
}
/* add file header at the begining */
len += 8;
out = (unsigned char*)M3D_MALLOC(len);
if(!out) goto memerr;
memcpy(out, "3DMO", 4);
*((uint32_t*)(out + 4)) = len;
memcpy(out + 8, h, len - 8);
}
if(size) *size = out ? len : 0;
if(vrtxidx) M3D_FREE(vrtxidx);
if(mtrlidx) M3D_FREE(mtrlidx);
if(tmapidx) M3D_FREE(tmapidx);
if(skinidx) M3D_FREE(skinidx);
if(norm) M3D_FREE(norm);
if(face) M3D_FREE(face);
if(cmap) M3D_FREE(cmap);
if(tmap) M3D_FREE(tmap);
if(skin) M3D_FREE(skin);
if(str) M3D_FREE(str);
if(vrtx) M3D_FREE(vrtx);
if(h) M3D_FREE(h);
return out;
}
#endif
#endif
#ifdef __cplusplus
}
#ifdef M3D_CPPWRAPPER
#include <vector>
#include <string>
#include <memory>
/*** C++ wrapper class ***/
namespace M3D {
#ifdef M3D_IMPLEMENTATION
class Model {
public:
m3d_t *model;
public:
Model() {
this->model = (m3d_t*)malloc(sizeof(m3d_t)); memset(this->model, 0, sizeof(m3d_t));
}
Model(_unused const std::string &data, _unused m3dread_t ReadFileCB,
_unused m3dfree_t FreeCB, _unused M3D::Model mtllib) {
#ifndef M3D_NOIMPORTER
this->model = m3d_load((unsigned char *)data.data(), ReadFileCB, FreeCB, mtllib.model);
#else
Model();
#endif
}
Model(_unused const std::vector<unsigned char> data, _unused m3dread_t ReadFileCB,
_unused m3dfree_t FreeCB, _unused M3D::Model mtllib) {
#ifndef M3D_NOIMPORTER
this->model = m3d_load((unsigned char *)&data[0], ReadFileCB, FreeCB, mtllib.model);
#else
Model();
#endif
}
Model(_unused const unsigned char *data, _unused m3dread_t ReadFileCB,
_unused m3dfree_t FreeCB, _unused M3D::Model mtllib) {
#ifndef M3D_NOIMPORTER
this->model = m3d_load((unsigned char*)data, ReadFileCB, FreeCB, mtllib.model);
#else
Model();
#endif
}
~Model() { m3d_free(this->model); }
public:
m3d_t *getCStruct() { return this->model; }
std::string getName() { return std::string(this->model->name); }
void setName(std::string name) { this->model->name = (char*)name.c_str(); }
std::string getLicense() { return std::string(this->model->license); }
void setLicense(std::string license) { this->model->license = (char*)license.c_str(); }
std::string getAuthor() { return std::string(this->model->author); }
void setAuthor(std::string author) { this->model->author = (char*)author.c_str(); }
std::string getDescription() { return std::string(this->model->desc); }
void setDescription(std::string desc) { this->model->desc = (char*)desc.c_str(); }
float getScale() { return this->model->scale; }
void setScale(float scale) { this->model->scale = scale; }
std::vector<unsigned char> getPreview() { return this->model->preview.data ?
std::vector<unsigned char>(this->model->preview.data, this->model->preview.data + this->model->preview.length) :
std::vector<unsigned char>(); }
std::vector<uint32_t> getColorMap() { return this->model->cmap ? std::vector<uint32_t>(this->model->cmap,
this->model->cmap + this->model->numcmap) : std::vector<uint32_t>(); }
std::vector<m3dti_t> getTextureMap() { return this->model->tmap ? std::vector<m3dti_t>(this->model->tmap,
this->model->tmap + this->model->numtmap) : std::vector<m3dti_t>(); }
std::vector<m3dtx_t> getTextures() { return this->model->texture ? std::vector<m3dtx_t>(this->model->texture,
this->model->texture + this->model->numtexture) : std::vector<m3dtx_t>(); }
std::string getTextureName(int idx) { return idx >= 0 && (unsigned int)idx < this->model->numtexture ?
std::string(this->model->texture[idx].name) : nullptr; }
std::vector<m3db_t> getBones() { return this->model->bone ? std::vector<m3db_t>(this->model->bone, this->model->bone +
this->model->numbone) : std::vector<m3db_t>(); }
std::string getBoneName(int idx) { return idx >= 0 && (unsigned int)idx < this->model->numbone ?
std::string(this->model->bone[idx].name) : nullptr; }
std::vector<m3dm_t> getMaterials() { return this->model->material ? std::vector<m3dm_t>(this->model->material,
this->model->material + this->model->nummaterial) : std::vector<m3dm_t>(); }
std::string getMaterialName(int idx) { return idx >= 0 && (unsigned int)idx < this->model->nummaterial ?
std::string(this->model->material[idx].name) : nullptr; }
int getMaterialPropertyInt(int idx, int type) {
if (idx < 0 || (unsigned int)idx >= this->model->nummaterial || type < 0 || type >= 127 ||
!this->model->material[idx].prop) return -1;
for (int i = 0; i < this->model->material[idx].numprop; i++) {
if (this->model->material[idx].prop[i].type == type)
return this->model->material[idx].prop[i].value.num;
}
return -1;
}
uint32_t getMaterialPropertyColor(int idx, int type) { return this->getMaterialPropertyInt(idx, type); }
float getMaterialPropertyFloat(int idx, int type) {
if (idx < 0 || (unsigned int)idx >= this->model->nummaterial || type < 0 || type >= 127 ||
!this->model->material[idx].prop) return -1.0f;
for (int i = 0; i < this->model->material[idx].numprop; i++) {
if (this->model->material[idx].prop[i].type == type)
return this->model->material[idx].prop[i].value.fnum;
}
return -1.0f;
}
m3dtx_t* getMaterialPropertyMap(int idx, int type) {
if (idx < 0 || (unsigned int)idx >= this->model->nummaterial || type < 128 || type > 255 ||
!this->model->material[idx].prop) return nullptr;
for (int i = 0; i < this->model->material[idx].numprop; i++) {
if (this->model->material[idx].prop[i].type == type)
return this->model->material[idx].prop[i].value.textureid < this->model->numtexture ?
&this->model->texture[this->model->material[idx].prop[i].value.textureid] : nullptr;
}
return nullptr;
}
std::vector<m3dv_t> getVertices() { return this->model->vertex ? std::vector<m3dv_t>(this->model->vertex,
this->model->vertex + this->model->numvertex) : std::vector<m3dv_t>(); }
std::vector<m3df_t> getFace() { return this->model->face ? std::vector<m3df_t>(this->model->face, this->model->face +
this->model->numface) : std::vector<m3df_t>(); }
std::vector<m3dh_t> getShape() { return this->model->shape ? std::vector<m3dh_t>(this->model->shape,
this->model->shape + this->model->numshape) : std::vector<m3dh_t>(); }
std::string getShapeName(int idx) { return idx >= 0 && (unsigned int)idx < this->model->numshape &&
this->model->shape[idx].name && this->model->shape[idx].name[0] ?
std::string(this->model->shape[idx].name) : nullptr; }
unsigned int getShapeGroup(int idx) { return idx >= 0 && (unsigned int)idx < this->model->numshape ?
this->model->shape[idx].group : 0xFFFFFFFF; }
std::vector<m3dc_t> getShapeCommands(int idx) { return idx >= 0 && (unsigned int)idx < this->model->numshape &&
this->model->shape[idx].cmd ? std::vector<m3dc_t>(this->model->shape[idx].cmd, this->model->shape[idx].cmd +
this->model->shape[idx].numcmd) : std::vector<m3dc_t>(); }
std::vector<m3dl_t> getAnnotationLabels() { return this->model->label ? std::vector<m3dl_t>(this->model->label,
this->model->label + this->model->numlabel) : std::vector<m3dl_t>(); }
std::vector<m3ds_t> getSkin() { return this->model->skin ? std::vector<m3ds_t>(this->model->skin, this->model->skin +
this->model->numskin) : std::vector<m3ds_t>(); }
std::vector<m3da_t> getActions() { return this->model->action ? std::vector<m3da_t>(this->model->action,
this->model->action + this->model->numaction) : std::vector<m3da_t>(); }
std::string getActionName(int aidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction ?
std::string(this->model->action[aidx].name) : nullptr; }
unsigned int getActionDuration(int aidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction ?
this->model->action[aidx].durationmsec : 0; }
std::vector<m3dfr_t> getActionFrames(int aidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction ?
std::vector<m3dfr_t>(this->model->action[aidx].frame, this->model->action[aidx].frame +
this->model->action[aidx].numframe) : std::vector<m3dfr_t>(); }
unsigned int getActionFrameTimestamp(int aidx, int fidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction?
(fidx >= 0 && (unsigned int)fidx < this->model->action[aidx].numframe ?
this->model->action[aidx].frame[fidx].msec : 0) : 0; }
std::vector<m3dtr_t> getActionFrameTransforms(int aidx, int fidx) {
return aidx >= 0 && (unsigned int)aidx < this->model->numaction ? (
fidx >= 0 && (unsigned int)fidx < this->model->action[aidx].numframe ?
std::vector<m3dtr_t>(this->model->action[aidx].frame[fidx].transform,
this->model->action[aidx].frame[fidx].transform + this->model->action[aidx].frame[fidx].numtransform) :
std::vector<m3dtr_t>()) : std::vector<m3dtr_t>(); }
std::vector<m3dtr_t> getActionFrame(int aidx, int fidx, std::vector<m3dtr_t> skeleton) {
m3dtr_t *pose = m3d_frame(this->model, (unsigned int)aidx, (unsigned int)fidx,
skeleton.size() ? &skeleton[0] : nullptr);
return std::vector<m3dtr_t>(pose, pose + this->model->numbone); }
std::vector<m3db_t> getActionPose(int aidx, unsigned int msec) {
m3db_t *pose = m3d_pose(this->model, (unsigned int)aidx, (unsigned int)msec);
return std::vector<m3db_t>(pose, pose + this->model->numbone); }
std::vector<m3di_t> getInlinedAssets() { return this->model->inlined ? std::vector<m3di_t>(this->model->inlined,
this->model->inlined + this->model->numinlined) : std::vector<m3di_t>(); }
std::vector<std::unique_ptr<m3dchunk_t>> getExtras() { return this->model->extra ?
std::vector<std::unique_ptr<m3dchunk_t>>(this->model->extra,
this->model->extra + this->model->numextra) : std::vector<std::unique_ptr<m3dchunk_t>>(); }
std::vector<unsigned char> Save(_unused int quality, _unused int flags) {
#ifdef M3D_EXPORTER
unsigned int size;
unsigned char *ptr = m3d_save(this->model, quality, flags, &size);
return ptr && size ? std::vector<unsigned char>(ptr, ptr + size) : std::vector<unsigned char>();
#else
return std::vector<unsigned char>();
#endif
}
};
#else
class Model {
public:
m3d_t *model;
public:
Model(const std::string &data, m3dread_t ReadFileCB, m3dfree_t FreeCB);
Model(const std::vector<unsigned char> data, m3dread_t ReadFileCB, m3dfree_t FreeCB);
Model(const unsigned char *data, m3dread_t ReadFileCB, m3dfree_t FreeCB);
Model();
~Model();
public:
m3d_t *getCStruct();
std::string getName();
void setName(std::string name);
std::string getLicense();
void setLicense(std::string license);
std::string getAuthor();
void setAuthor(std::string author);
std::string getDescription();
void setDescription(std::string desc);
float getScale();
void setScale(float scale);
std::vector<unsigned char> getPreview();
std::vector<uint32_t> getColorMap();
std::vector<m3dti_t> getTextureMap();
std::vector<m3dtx_t> getTextures();
std::string getTextureName(int idx);
std::vector<m3db_t> getBones();
std::string getBoneName(int idx);
std::vector<m3dm_t> getMaterials();
std::string getMaterialName(int idx);
int getMaterialPropertyInt(int idx, int type);
uint32_t getMaterialPropertyColor(int idx, int type);
float getMaterialPropertyFloat(int idx, int type);
m3dtx_t* getMaterialPropertyMap(int idx, int type);
std::vector<m3dv_t> getVertices();
std::vector<m3df_t> getFace();
std::vector<m3dh_t> getShape();
std::string getShapeName(int idx);
unsigned int getShapeGroup(int idx);
std::vector<m3dc_t> getShapeCommands(int idx);
std::vector<m3dl_t> getAnnotationLabels();
std::vector<m3ds_t> getSkin();
std::vector<m3da_t> getActions();
std::string getActionName(int aidx);
unsigned int getActionDuration(int aidx);
std::vector<m3dfr_t> getActionFrames(int aidx);
unsigned int getActionFrameTimestamp(int aidx, int fidx);
std::vector<m3dtr_t> getActionFrameTransforms(int aidx, int fidx);
std::vector<m3dtr_t> getActionFrame(int aidx, int fidx, std::vector<m3dtr_t> skeleton);
std::vector<m3db_t> getActionPose(int aidx, unsigned int msec);
std::vector<m3di_t> getInlinedAssets();
std::vector<std::unique_ptr<m3dchunk_t>> getExtras();
std::vector<unsigned char> Save(int quality, int flags);
};
#endif /* impl */
}
#endif
#endif /* __cplusplus */
#endif