239 lines
9.1 KiB
C++
239 lines
9.1 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (assimp)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2018, assimp team
|
|
|
|
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file Implementation of the post processing step to generate face
|
|
* normals for all imported faces.
|
|
*/
|
|
|
|
|
|
|
|
// internal headers
|
|
#include "GenVertexNormalsProcess.h"
|
|
#include "ProcessHelper.h"
|
|
#include <assimp/Exceptional.h>
|
|
#include <assimp/qnan.h>
|
|
|
|
using namespace Assimp;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
GenVertexNormalsProcess::GenVertexNormalsProcess()
|
|
: configMaxAngle( AI_DEG_TO_RAD( 175.f ) ) {
|
|
// empty
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
GenVertexNormalsProcess::~GenVertexNormalsProcess() {
|
|
// nothing to do here
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the processing step is present in the given flag field.
|
|
bool GenVertexNormalsProcess::IsActive( unsigned int pFlags) const
|
|
{
|
|
return (pFlags & aiProcess_GenSmoothNormals) != 0;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Executes the post processing step on the given imported data.
|
|
void GenVertexNormalsProcess::SetupProperties(const Importer* pImp)
|
|
{
|
|
// Get the current value of the AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE property
|
|
configMaxAngle = pImp->GetPropertyFloat(AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE,(ai_real)175.0);
|
|
configMaxAngle = AI_DEG_TO_RAD(std::max(std::min(configMaxAngle,(ai_real)175.0),(ai_real)0.0));
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Executes the post processing step on the given imported data.
|
|
void GenVertexNormalsProcess::Execute( aiScene* pScene)
|
|
{
|
|
ASSIMP_LOG_DEBUG("GenVertexNormalsProcess begin");
|
|
|
|
if (pScene->mFlags & AI_SCENE_FLAGS_NON_VERBOSE_FORMAT) {
|
|
throw DeadlyImportError("Post-processing order mismatch: expecting pseudo-indexed (\"verbose\") vertices here");
|
|
}
|
|
|
|
bool bHas = false;
|
|
for( unsigned int a = 0; a < pScene->mNumMeshes; ++a) {
|
|
if(GenMeshVertexNormals( pScene->mMeshes[a],a))
|
|
bHas = true;
|
|
}
|
|
|
|
if (bHas) {
|
|
ASSIMP_LOG_INFO("GenVertexNormalsProcess finished. "
|
|
"Vertex normals have been calculated");
|
|
} else {
|
|
ASSIMP_LOG_DEBUG("GenVertexNormalsProcess finished. "
|
|
"Normals are already there");
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Executes the post processing step on the given imported data.
|
|
bool GenVertexNormalsProcess::GenMeshVertexNormals (aiMesh* pMesh, unsigned int meshIndex)
|
|
{
|
|
if (NULL != pMesh->mNormals)
|
|
return false;
|
|
|
|
// If the mesh consists of lines and/or points but not of
|
|
// triangles or higher-order polygons the normal vectors
|
|
// are undefined.
|
|
if (!(pMesh->mPrimitiveTypes & (aiPrimitiveType_TRIANGLE | aiPrimitiveType_POLYGON)))
|
|
{
|
|
ASSIMP_LOG_INFO("Normal vectors are undefined for line and point meshes");
|
|
return false;
|
|
}
|
|
|
|
// Allocate the array to hold the output normals
|
|
const float qnan = std::numeric_limits<ai_real>::quiet_NaN();
|
|
pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
// Compute per-face normals but store them per-vertex
|
|
for( unsigned int a = 0; a < pMesh->mNumFaces; a++)
|
|
{
|
|
const aiFace& face = pMesh->mFaces[a];
|
|
if (face.mNumIndices < 3)
|
|
{
|
|
// either a point or a line -> no normal vector
|
|
for (unsigned int i = 0;i < face.mNumIndices;++i) {
|
|
pMesh->mNormals[face.mIndices[i]] = aiVector3D(qnan);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
const aiVector3D* pV1 = &pMesh->mVertices[face.mIndices[0]];
|
|
const aiVector3D* pV2 = &pMesh->mVertices[face.mIndices[1]];
|
|
const aiVector3D* pV3 = &pMesh->mVertices[face.mIndices[face.mNumIndices-1]];
|
|
const aiVector3D vNor = ((*pV2 - *pV1) ^ (*pV3 - *pV1));
|
|
|
|
for (unsigned int i = 0;i < face.mNumIndices;++i) {
|
|
pMesh->mNormals[face.mIndices[i]] = vNor;
|
|
}
|
|
}
|
|
|
|
// Set up a SpatialSort to quickly find all vertices close to a given position
|
|
// check whether we can reuse the SpatialSort of a previous step.
|
|
SpatialSort* vertexFinder = NULL;
|
|
SpatialSort _vertexFinder;
|
|
ai_real posEpsilon = ai_real( 1e-5 );
|
|
if (shared) {
|
|
std::vector<std::pair<SpatialSort,ai_real> >* avf;
|
|
shared->GetProperty(AI_SPP_SPATIAL_SORT,avf);
|
|
if (avf)
|
|
{
|
|
std::pair<SpatialSort,ai_real>& blubb = avf->operator [] (meshIndex);
|
|
vertexFinder = &blubb.first;
|
|
posEpsilon = blubb.second;
|
|
}
|
|
}
|
|
if (!vertexFinder) {
|
|
_vertexFinder.Fill(pMesh->mVertices, pMesh->mNumVertices, sizeof( aiVector3D));
|
|
vertexFinder = &_vertexFinder;
|
|
posEpsilon = ComputePositionEpsilon(pMesh);
|
|
}
|
|
std::vector<unsigned int> verticesFound;
|
|
aiVector3D* pcNew = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
if (configMaxAngle >= AI_DEG_TO_RAD( 175.f )) {
|
|
// There is no angle limit. Thus all vertices with positions close
|
|
// to each other will receive the same vertex normal. This allows us
|
|
// to optimize the whole algorithm a little bit ...
|
|
std::vector<bool> abHad(pMesh->mNumVertices,false);
|
|
for (unsigned int i = 0; i < pMesh->mNumVertices;++i) {
|
|
if (abHad[i]) {
|
|
continue;
|
|
}
|
|
|
|
// Get all vertices that share this one ...
|
|
vertexFinder->FindPositions( pMesh->mVertices[i], posEpsilon, verticesFound);
|
|
|
|
aiVector3D pcNor;
|
|
for (unsigned int a = 0; a < verticesFound.size(); ++a) {
|
|
const aiVector3D& v = pMesh->mNormals[verticesFound[a]];
|
|
if (is_not_qnan(v.x))pcNor += v;
|
|
}
|
|
pcNor.NormalizeSafe();
|
|
|
|
// Write the smoothed normal back to all affected normals
|
|
for (unsigned int a = 0; a < verticesFound.size(); ++a)
|
|
{
|
|
unsigned int vidx = verticesFound[a];
|
|
pcNew[vidx] = pcNor;
|
|
abHad[vidx] = true;
|
|
}
|
|
}
|
|
}
|
|
// Slower code path if a smooth angle is set. There are many ways to achieve
|
|
// the effect, this one is the most straightforward one.
|
|
else {
|
|
const ai_real fLimit = std::cos(configMaxAngle);
|
|
for (unsigned int i = 0; i < pMesh->mNumVertices;++i) {
|
|
// Get all vertices that share this one ...
|
|
vertexFinder->FindPositions( pMesh->mVertices[i] , posEpsilon, verticesFound);
|
|
|
|
aiVector3D vr = pMesh->mNormals[i];
|
|
ai_real vrlen = vr.Length();
|
|
|
|
aiVector3D pcNor;
|
|
for (unsigned int a = 0; a < verticesFound.size(); ++a) {
|
|
aiVector3D v = pMesh->mNormals[verticesFound[a]];
|
|
|
|
// check whether the angle between the two normals is not too large
|
|
// HACK: if v.x is qnan the dot product will become qnan, too
|
|
// therefore the comparison against fLimit should be false
|
|
// in every case.
|
|
if (v * vr >= fLimit * vrlen * v.Length())
|
|
pcNor += v;
|
|
}
|
|
pcNew[i] = pcNor.NormalizeSafe();
|
|
}
|
|
}
|
|
|
|
delete[] pMesh->mNormals;
|
|
pMesh->mNormals = pcNew;
|
|
|
|
return true;
|
|
}
|