1171 lines
48 KiB
C++
1171 lines
48 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (assimp)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2021, assimp team
|
|
|
|
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file Implementation of the STL importer class */
|
|
|
|
#ifndef ASSIMP_BUILD_NO_NFF_IMPORTER
|
|
|
|
// internal headers
|
|
#include "NFFLoader.h"
|
|
#include <assimp/ParsingUtils.h>
|
|
#include <assimp/RemoveComments.h>
|
|
#include <assimp/StandardShapes.h>
|
|
#include <assimp/fast_atof.h>
|
|
#include <assimp/importerdesc.h>
|
|
#include <assimp/qnan.h>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/DefaultLogger.hpp>
|
|
#include <assimp/IOSystem.hpp>
|
|
#include <memory>
|
|
|
|
using namespace Assimp;
|
|
|
|
static const aiImporterDesc desc = {
|
|
"Neutral File Format Importer",
|
|
"",
|
|
"",
|
|
"",
|
|
aiImporterFlags_SupportBinaryFlavour,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
"enff nff"
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
NFFImporter::NFFImporter() {}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
NFFImporter::~NFFImporter() {}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the class can handle the format of the given file.
|
|
bool NFFImporter::CanRead(const std::string & /*pFile*/, IOSystem * /*pIOHandler*/, bool /*checkSig*/) const {
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Get the list of all supported file extensions
|
|
const aiImporterDesc *NFFImporter::GetInfo() const {
|
|
return &desc;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
#define AI_NFF_PARSE_FLOAT(f) \
|
|
SkipSpaces(&sz); \
|
|
if (!::IsLineEnd(*sz)) sz = fast_atoreal_move<ai_real>(sz, (ai_real &)f);
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
#define AI_NFF_PARSE_TRIPLE(v) \
|
|
AI_NFF_PARSE_FLOAT(v[0]) \
|
|
AI_NFF_PARSE_FLOAT(v[1]) \
|
|
AI_NFF_PARSE_FLOAT(v[2])
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
#define AI_NFF_PARSE_SHAPE_INFORMATION() \
|
|
aiVector3D center, radius(1.0f, get_qnan(), get_qnan()); \
|
|
AI_NFF_PARSE_TRIPLE(center); \
|
|
AI_NFF_PARSE_TRIPLE(radius); \
|
|
if (is_qnan(radius.z)) radius.z = radius.x; \
|
|
if (is_qnan(radius.y)) radius.y = radius.x; \
|
|
curMesh.radius = radius; \
|
|
curMesh.center = center;
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
#define AI_NFF2_GET_NEXT_TOKEN() \
|
|
do { \
|
|
if (!GetNextLine(buffer, line)) { \
|
|
ASSIMP_LOG_WARN("NFF2: Unexpected EOF, can't read next token"); \
|
|
break; \
|
|
} \
|
|
SkipSpaces(line, &sz); \
|
|
} while (IsLineEnd(*sz))
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Loads the material table for the NFF2 file format from an external file
|
|
void NFFImporter::LoadNFF2MaterialTable(std::vector<ShadingInfo> &output,
|
|
const std::string &path, IOSystem *pIOHandler) {
|
|
std::unique_ptr<IOStream> file(pIOHandler->Open(path, "rb"));
|
|
|
|
// Check whether we can read from the file
|
|
if (!file.get()) {
|
|
ASSIMP_LOG_ERROR("NFF2: Unable to open material library " + path + ".");
|
|
return;
|
|
}
|
|
|
|
// get the size of the file
|
|
const unsigned int m = (unsigned int)file->FileSize();
|
|
|
|
// allocate storage and copy the contents of the file to a memory buffer
|
|
// (terminate it with zero)
|
|
std::vector<char> mBuffer2(m + 1);
|
|
TextFileToBuffer(file.get(), mBuffer2);
|
|
const char *buffer = &mBuffer2[0];
|
|
|
|
// First of all: remove all comments from the file
|
|
CommentRemover::RemoveLineComments("//", &mBuffer2[0]);
|
|
|
|
// The file should start with the magic sequence "mat"
|
|
if (!TokenMatch(buffer, "mat", 3)) {
|
|
ASSIMP_LOG_ERROR_F("NFF2: Not a valid material library ", path, ".");
|
|
return;
|
|
}
|
|
|
|
ShadingInfo *curShader = nullptr;
|
|
|
|
// No read the file line per line
|
|
char line[4096];
|
|
const char *sz;
|
|
while (GetNextLine(buffer, line)) {
|
|
SkipSpaces(line, &sz);
|
|
|
|
// 'version' defines the version of the file format
|
|
if (TokenMatch(sz, "version", 7)) {
|
|
ASSIMP_LOG_INFO_F("NFF (Sense8) material library file format: ", std::string(sz));
|
|
}
|
|
// 'matdef' starts a new material in the file
|
|
else if (TokenMatch(sz, "matdef", 6)) {
|
|
// add a new material to the list
|
|
output.push_back(ShadingInfo());
|
|
curShader = &output.back();
|
|
|
|
// parse the name of the material
|
|
} else if (!TokenMatch(sz, "valid", 5)) {
|
|
// check whether we have an active material at the moment
|
|
if (!IsLineEnd(*sz)) {
|
|
if (!curShader) {
|
|
ASSIMP_LOG_ERROR_F("NFF2 material library: Found element ", sz, "but there is no active material");
|
|
continue;
|
|
}
|
|
} else
|
|
continue;
|
|
|
|
// now read the material property and determine its type
|
|
aiColor3D c;
|
|
if (TokenMatch(sz, "ambient", 7)) {
|
|
AI_NFF_PARSE_TRIPLE(c);
|
|
curShader->ambient = c;
|
|
} else if (TokenMatch(sz, "diffuse", 7) || TokenMatch(sz, "ambientdiffuse", 14) /* correct? */) {
|
|
AI_NFF_PARSE_TRIPLE(c);
|
|
curShader->diffuse = curShader->ambient = c;
|
|
} else if (TokenMatch(sz, "specular", 8)) {
|
|
AI_NFF_PARSE_TRIPLE(c);
|
|
curShader->specular = c;
|
|
} else if (TokenMatch(sz, "emission", 8)) {
|
|
AI_NFF_PARSE_TRIPLE(c);
|
|
curShader->emissive = c;
|
|
} else if (TokenMatch(sz, "shininess", 9)) {
|
|
AI_NFF_PARSE_FLOAT(curShader->shininess);
|
|
} else if (TokenMatch(sz, "opacity", 7)) {
|
|
AI_NFF_PARSE_FLOAT(curShader->opacity);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Imports the given file into the given scene structure.
|
|
void NFFImporter::InternReadFile(const std::string &pFile,
|
|
aiScene *pScene, IOSystem *pIOHandler) {
|
|
std::unique_ptr<IOStream> file(pIOHandler->Open(pFile, "rb"));
|
|
|
|
// Check whether we can read from the file
|
|
if (!file.get())
|
|
throw DeadlyImportError("Failed to open NFF file ", pFile, ".");
|
|
|
|
// allocate storage and copy the contents of the file to a memory buffer
|
|
// (terminate it with zero)
|
|
std::vector<char> mBuffer2;
|
|
TextFileToBuffer(file.get(), mBuffer2);
|
|
const char *buffer = &mBuffer2[0];
|
|
|
|
// mesh arrays - separate here to make the handling of the pointers below easier.
|
|
std::vector<MeshInfo> meshes;
|
|
std::vector<MeshInfo> meshesWithNormals;
|
|
std::vector<MeshInfo> meshesWithUVCoords;
|
|
std::vector<MeshInfo> meshesLocked;
|
|
|
|
char line[4096];
|
|
const char *sz;
|
|
|
|
// camera parameters
|
|
aiVector3D camPos, camUp(0.f, 1.f, 0.f), camLookAt(0.f, 0.f, 1.f);
|
|
ai_real angle = 45.f;
|
|
aiVector2D resolution;
|
|
|
|
bool hasCam = false;
|
|
|
|
MeshInfo *currentMeshWithNormals = nullptr;
|
|
MeshInfo *currentMesh = nullptr;
|
|
MeshInfo *currentMeshWithUVCoords = nullptr;
|
|
|
|
ShadingInfo s; // current material info
|
|
|
|
// degree of tessellation
|
|
unsigned int iTesselation = 4;
|
|
|
|
// some temporary variables we need to parse the file
|
|
unsigned int sphere = 0,
|
|
cylinder = 0,
|
|
cone = 0,
|
|
numNamed = 0,
|
|
dodecahedron = 0,
|
|
octahedron = 0,
|
|
tetrahedron = 0,
|
|
hexahedron = 0;
|
|
|
|
// lights imported from the file
|
|
std::vector<Light> lights;
|
|
|
|
// check whether this is the NFF2 file format
|
|
if (TokenMatch(buffer, "nff", 3)) {
|
|
const ai_real qnan = get_qnan();
|
|
const aiColor4D cQNAN = aiColor4D(qnan, 0.f, 0.f, 1.f);
|
|
const aiVector3D vQNAN = aiVector3D(qnan, 0.f, 0.f);
|
|
|
|
// another NFF file format ... just a raw parser has been implemented
|
|
// no support for further details, I don't think it is worth the effort
|
|
// http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/nff/nff2.html
|
|
// http://www.netghost.narod.ru/gff/graphics/summary/sense8.htm
|
|
|
|
// First of all: remove all comments from the file
|
|
CommentRemover::RemoveLineComments("//", &mBuffer2[0]);
|
|
|
|
while (GetNextLine(buffer, line)) {
|
|
SkipSpaces(line, &sz);
|
|
if (TokenMatch(sz, "version", 7)) {
|
|
ASSIMP_LOG_INFO_F("NFF (Sense8) file format: ", sz);
|
|
} else if (TokenMatch(sz, "viewpos", 7)) {
|
|
AI_NFF_PARSE_TRIPLE(camPos);
|
|
hasCam = true;
|
|
} else if (TokenMatch(sz, "viewdir", 7)) {
|
|
AI_NFF_PARSE_TRIPLE(camLookAt);
|
|
hasCam = true;
|
|
}
|
|
// This starts a new object section
|
|
else if (!IsSpaceOrNewLine(*sz)) {
|
|
unsigned int subMeshIdx = 0;
|
|
|
|
// read the name of the object, skip all spaces
|
|
// at the end of it.
|
|
const char *sz3 = sz;
|
|
while (!IsSpaceOrNewLine(*sz))
|
|
++sz;
|
|
std::string objectName = std::string(sz3, (unsigned int)(sz - sz3));
|
|
|
|
const unsigned int objStart = (unsigned int)meshes.size();
|
|
|
|
// There could be a material table in a separate file
|
|
std::vector<ShadingInfo> materialTable;
|
|
while (true) {
|
|
AI_NFF2_GET_NEXT_TOKEN();
|
|
|
|
// material table - an external file
|
|
if (TokenMatch(sz, "mtable", 6)) {
|
|
SkipSpaces(&sz);
|
|
sz3 = sz;
|
|
while (!IsSpaceOrNewLine(*sz))
|
|
++sz;
|
|
const unsigned int diff = (unsigned int)(sz - sz3);
|
|
if (!diff)
|
|
ASSIMP_LOG_WARN("NFF2: Found empty mtable token");
|
|
else {
|
|
// The material table has the file extension .mat.
|
|
// If it is not there, we need to append it
|
|
std::string path = std::string(sz3, diff);
|
|
if (std::string::npos == path.find_last_of(".mat")) {
|
|
path.append(".mat");
|
|
}
|
|
|
|
// Now extract the working directory from the path to
|
|
// this file and append the material library filename
|
|
// to it.
|
|
std::string::size_type sepPos;
|
|
if ((std::string::npos == (sepPos = path.find_last_of('\\')) || !sepPos) &&
|
|
(std::string::npos == (sepPos = path.find_last_of('/')) || !sepPos)) {
|
|
sepPos = pFile.find_last_of('\\');
|
|
if (std::string::npos == sepPos) {
|
|
sepPos = pFile.find_last_of('/');
|
|
}
|
|
if (std::string::npos != sepPos) {
|
|
path = pFile.substr(0, sepPos + 1) + path;
|
|
}
|
|
}
|
|
LoadNFF2MaterialTable(materialTable, path, pIOHandler);
|
|
}
|
|
} else
|
|
break;
|
|
}
|
|
|
|
// read the numbr of vertices
|
|
unsigned int num = ::strtoul10(sz, &sz);
|
|
|
|
// temporary storage
|
|
std::vector<aiColor4D> tempColors;
|
|
std::vector<aiVector3D> tempPositions, tempTextureCoords, tempNormals;
|
|
|
|
bool hasNormals = false, hasUVs = false, hasColor = false;
|
|
|
|
tempPositions.reserve(num);
|
|
tempColors.reserve(num);
|
|
tempNormals.reserve(num);
|
|
tempTextureCoords.reserve(num);
|
|
for (unsigned int i = 0; i < num; ++i) {
|
|
AI_NFF2_GET_NEXT_TOKEN();
|
|
aiVector3D v;
|
|
AI_NFF_PARSE_TRIPLE(v);
|
|
tempPositions.push_back(v);
|
|
|
|
// parse all other attributes in the line
|
|
while (true) {
|
|
SkipSpaces(&sz);
|
|
if (IsLineEnd(*sz)) break;
|
|
|
|
// color definition
|
|
if (TokenMatch(sz, "0x", 2)) {
|
|
hasColor = true;
|
|
unsigned int numIdx = ::strtoul16(sz, &sz);
|
|
aiColor4D clr;
|
|
clr.a = 1.f;
|
|
|
|
// 0xRRGGBB
|
|
clr.r = ((numIdx >> 16u) & 0xff) / 255.f;
|
|
clr.g = ((numIdx >> 8u) & 0xff) / 255.f;
|
|
clr.b = ((numIdx)&0xff) / 255.f;
|
|
tempColors.push_back(clr);
|
|
}
|
|
// normal vector
|
|
else if (TokenMatch(sz, "norm", 4)) {
|
|
hasNormals = true;
|
|
AI_NFF_PARSE_TRIPLE(v);
|
|
tempNormals.push_back(v);
|
|
}
|
|
// UV coordinate
|
|
else if (TokenMatch(sz, "uv", 2)) {
|
|
hasUVs = true;
|
|
AI_NFF_PARSE_FLOAT(v.x);
|
|
AI_NFF_PARSE_FLOAT(v.y);
|
|
v.z = 0.f;
|
|
tempTextureCoords.push_back(v);
|
|
}
|
|
}
|
|
|
|
// fill in dummies for all attributes that have not been set
|
|
if (tempNormals.size() != tempPositions.size())
|
|
tempNormals.push_back(vQNAN);
|
|
|
|
if (tempTextureCoords.size() != tempPositions.size())
|
|
tempTextureCoords.push_back(vQNAN);
|
|
|
|
if (tempColors.size() != tempPositions.size())
|
|
tempColors.push_back(cQNAN);
|
|
}
|
|
|
|
AI_NFF2_GET_NEXT_TOKEN();
|
|
if (!num) throw DeadlyImportError("NFF2: There are zero vertices");
|
|
num = ::strtoul10(sz, &sz);
|
|
|
|
std::vector<unsigned int> tempIdx;
|
|
tempIdx.reserve(10);
|
|
for (unsigned int i = 0; i < num; ++i) {
|
|
AI_NFF2_GET_NEXT_TOKEN();
|
|
SkipSpaces(line, &sz);
|
|
unsigned int numIdx = ::strtoul10(sz, &sz);
|
|
|
|
// read all faces indices
|
|
if (numIdx) {
|
|
// mesh.faces.push_back(numIdx);
|
|
// tempIdx.erase(tempIdx.begin(),tempIdx.end());
|
|
tempIdx.resize(numIdx);
|
|
|
|
for (unsigned int a = 0; a < numIdx; ++a) {
|
|
SkipSpaces(sz, &sz);
|
|
unsigned int m = ::strtoul10(sz, &sz);
|
|
if (m >= (unsigned int)tempPositions.size()) {
|
|
ASSIMP_LOG_ERROR("NFF2: Vertex index overflow");
|
|
m = 0;
|
|
}
|
|
// mesh.vertices.push_back (tempPositions[idx]);
|
|
tempIdx[a] = m;
|
|
}
|
|
}
|
|
|
|
// build a temporary shader object for the face.
|
|
ShadingInfo shader;
|
|
unsigned int matIdx = 0;
|
|
|
|
// white material color - we have vertex colors
|
|
shader.color = aiColor3D(1.f, 1.f, 1.f);
|
|
aiColor4D c = aiColor4D(1.f, 1.f, 1.f, 1.f);
|
|
while (true) {
|
|
SkipSpaces(sz, &sz);
|
|
if (IsLineEnd(*sz)) break;
|
|
|
|
// per-polygon colors
|
|
if (TokenMatch(sz, "0x", 2)) {
|
|
hasColor = true;
|
|
const char *sz2 = sz;
|
|
numIdx = ::strtoul16(sz, &sz);
|
|
const unsigned int diff = (unsigned int)(sz - sz2);
|
|
|
|
// 0xRRGGBB
|
|
if (diff > 3) {
|
|
c.r = ((numIdx >> 16u) & 0xff) / 255.f;
|
|
c.g = ((numIdx >> 8u) & 0xff) / 255.f;
|
|
c.b = ((numIdx)&0xff) / 255.f;
|
|
}
|
|
// 0xRGB
|
|
else {
|
|
c.r = ((numIdx >> 8u) & 0xf) / 16.f;
|
|
c.g = ((numIdx >> 4u) & 0xf) / 16.f;
|
|
c.b = ((numIdx)&0xf) / 16.f;
|
|
}
|
|
}
|
|
// TODO - implement texture mapping here
|
|
#if 0
|
|
// mirror vertex texture coordinate?
|
|
else if (TokenMatch(sz,"mirror",6))
|
|
{
|
|
}
|
|
// texture coordinate scaling
|
|
else if (TokenMatch(sz,"scale",5))
|
|
{
|
|
}
|
|
// texture coordinate translation
|
|
else if (TokenMatch(sz,"trans",5))
|
|
{
|
|
}
|
|
// texture coordinate rotation angle
|
|
else if (TokenMatch(sz,"rot",3))
|
|
{
|
|
}
|
|
#endif
|
|
|
|
// texture file name for this polygon + mapping information
|
|
else if ('_' == sz[0]) {
|
|
// get mapping information
|
|
switch (sz[1]) {
|
|
case 'v':
|
|
case 'V':
|
|
|
|
shader.shaded = false;
|
|
break;
|
|
|
|
case 't':
|
|
case 'T':
|
|
case 'u':
|
|
case 'U':
|
|
|
|
ASSIMP_LOG_WARN("Unsupported NFF2 texture attribute: trans");
|
|
};
|
|
if (!sz[1] || '_' != sz[2]) {
|
|
ASSIMP_LOG_WARN("NFF2: Expected underscore after texture attributes");
|
|
continue;
|
|
}
|
|
const char *sz2 = sz + 3;
|
|
while (!IsSpaceOrNewLine(*sz))
|
|
++sz;
|
|
const unsigned int diff = (unsigned int)(sz - sz2);
|
|
if (diff) shader.texFile = std::string(sz2, diff);
|
|
}
|
|
|
|
// Two-sided material?
|
|
else if (TokenMatch(sz, "both", 4)) {
|
|
shader.twoSided = true;
|
|
}
|
|
|
|
// Material ID?
|
|
else if (!materialTable.empty() && TokenMatch(sz, "matid", 5)) {
|
|
SkipSpaces(&sz);
|
|
matIdx = ::strtoul10(sz, &sz);
|
|
if (matIdx >= materialTable.size()) {
|
|
ASSIMP_LOG_ERROR("NFF2: Material index overflow.");
|
|
matIdx = 0;
|
|
}
|
|
|
|
// now combine our current shader with the shader we
|
|
// read from the material table.
|
|
ShadingInfo &mat = materialTable[matIdx];
|
|
shader.ambient = mat.ambient;
|
|
shader.diffuse = mat.diffuse;
|
|
shader.emissive = mat.emissive;
|
|
shader.opacity = mat.opacity;
|
|
shader.specular = mat.specular;
|
|
shader.shininess = mat.shininess;
|
|
} else
|
|
SkipToken(sz);
|
|
}
|
|
|
|
// search the list of all shaders we have for this object whether
|
|
// there is an identical one. In this case, we append our mesh
|
|
// data to it.
|
|
MeshInfo *mesh = nullptr;
|
|
for (std::vector<MeshInfo>::iterator it = meshes.begin() + objStart, end = meshes.end();
|
|
it != end; ++it) {
|
|
if ((*it).shader == shader && (*it).matIndex == matIdx) {
|
|
// we have one, we can append our data to it
|
|
mesh = &(*it);
|
|
}
|
|
}
|
|
if (!mesh) {
|
|
meshes.push_back(MeshInfo(PatchType_Simple, false));
|
|
mesh = &meshes.back();
|
|
mesh->matIndex = matIdx;
|
|
|
|
// We need to add a new mesh to the list. We assign
|
|
// an unique name to it to make sure the scene will
|
|
// pass the validation step for the moment.
|
|
// TODO: fix naming of objects in the scenegraph later
|
|
if (objectName.length()) {
|
|
::strcpy(mesh->name, objectName.c_str());
|
|
ASSIMP_itoa10(&mesh->name[objectName.length()], 30, subMeshIdx++);
|
|
}
|
|
|
|
// copy the shader to the mesh.
|
|
mesh->shader = shader;
|
|
}
|
|
|
|
// fill the mesh with data
|
|
if (!tempIdx.empty()) {
|
|
mesh->faces.push_back((unsigned int)tempIdx.size());
|
|
for (std::vector<unsigned int>::const_iterator it = tempIdx.begin(), end = tempIdx.end();
|
|
it != end; ++it) {
|
|
unsigned int m = *it;
|
|
|
|
// copy colors -vertex color specifications override polygon color specifications
|
|
if (hasColor) {
|
|
const aiColor4D &clr = tempColors[m];
|
|
mesh->colors.push_back((is_qnan(clr.r) ? c : clr));
|
|
}
|
|
|
|
// positions should always be there
|
|
mesh->vertices.push_back(tempPositions[m]);
|
|
|
|
// copy normal vectors
|
|
if (hasNormals)
|
|
mesh->normals.push_back(tempNormals[m]);
|
|
|
|
// copy texture coordinates
|
|
if (hasUVs)
|
|
mesh->uvs.push_back(tempTextureCoords[m]);
|
|
}
|
|
}
|
|
}
|
|
if (!num) throw DeadlyImportError("NFF2: There are zero faces");
|
|
}
|
|
}
|
|
camLookAt = camLookAt + camPos;
|
|
} else // "Normal" Neutral file format that is quite more common
|
|
{
|
|
while (GetNextLine(buffer, line)) {
|
|
sz = line;
|
|
if ('p' == line[0] || TokenMatch(sz, "tpp", 3)) {
|
|
MeshInfo *out = nullptr;
|
|
|
|
// 'tpp' - texture polygon patch primitive
|
|
if ('t' == line[0]) {
|
|
currentMeshWithUVCoords = nullptr;
|
|
for (auto &mesh : meshesWithUVCoords) {
|
|
if (mesh.shader == s) {
|
|
currentMeshWithUVCoords = &mesh;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!currentMeshWithUVCoords) {
|
|
meshesWithUVCoords.push_back(MeshInfo(PatchType_UVAndNormals));
|
|
currentMeshWithUVCoords = &meshesWithUVCoords.back();
|
|
currentMeshWithUVCoords->shader = s;
|
|
}
|
|
out = currentMeshWithUVCoords;
|
|
}
|
|
// 'pp' - polygon patch primitive
|
|
else if ('p' == line[1]) {
|
|
currentMeshWithNormals = nullptr;
|
|
for (auto &mesh : meshesWithNormals) {
|
|
if (mesh.shader == s) {
|
|
currentMeshWithNormals = &mesh;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!currentMeshWithNormals) {
|
|
meshesWithNormals.push_back(MeshInfo(PatchType_Normals));
|
|
currentMeshWithNormals = &meshesWithNormals.back();
|
|
currentMeshWithNormals->shader = s;
|
|
}
|
|
sz = &line[2];
|
|
out = currentMeshWithNormals;
|
|
}
|
|
// 'p' - polygon primitive
|
|
else {
|
|
currentMesh = nullptr;
|
|
for (auto &mesh : meshes) {
|
|
if (mesh.shader == s) {
|
|
currentMesh = &mesh;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!currentMesh) {
|
|
meshes.push_back(MeshInfo(PatchType_Simple));
|
|
currentMesh = &meshes.back();
|
|
currentMesh->shader = s;
|
|
}
|
|
sz = &line[1];
|
|
out = currentMesh;
|
|
}
|
|
SkipSpaces(sz, &sz);
|
|
unsigned int m = strtoul10(sz);
|
|
|
|
// ---- flip the face order
|
|
out->vertices.resize(out->vertices.size() + m);
|
|
if (out != currentMesh) {
|
|
out->normals.resize(out->vertices.size());
|
|
}
|
|
if (out == currentMeshWithUVCoords) {
|
|
out->uvs.resize(out->vertices.size());
|
|
}
|
|
for (unsigned int n = 0; n < m; ++n) {
|
|
if (!GetNextLine(buffer, line)) {
|
|
ASSIMP_LOG_ERROR("NFF: Unexpected EOF was encountered. Patch definition incomplete");
|
|
continue;
|
|
}
|
|
|
|
aiVector3D v;
|
|
sz = &line[0];
|
|
AI_NFF_PARSE_TRIPLE(v);
|
|
out->vertices[out->vertices.size() - n - 1] = v;
|
|
|
|
if (out != currentMesh) {
|
|
AI_NFF_PARSE_TRIPLE(v);
|
|
out->normals[out->vertices.size() - n - 1] = v;
|
|
}
|
|
if (out == currentMeshWithUVCoords) {
|
|
// FIX: in one test file this wraps over multiple lines
|
|
SkipSpaces(&sz);
|
|
if (IsLineEnd(*sz)) {
|
|
GetNextLine(buffer, line);
|
|
sz = line;
|
|
}
|
|
AI_NFF_PARSE_FLOAT(v.x);
|
|
SkipSpaces(&sz);
|
|
if (IsLineEnd(*sz)) {
|
|
GetNextLine(buffer, line);
|
|
sz = line;
|
|
}
|
|
AI_NFF_PARSE_FLOAT(v.y);
|
|
v.y = 1.f - v.y;
|
|
out->uvs[out->vertices.size() - n - 1] = v;
|
|
}
|
|
}
|
|
out->faces.push_back(m);
|
|
}
|
|
// 'f' - shading information block
|
|
else if (TokenMatch(sz, "f", 1)) {
|
|
ai_real d;
|
|
|
|
// read the RGB colors
|
|
AI_NFF_PARSE_TRIPLE(s.color);
|
|
|
|
// read the other properties
|
|
AI_NFF_PARSE_FLOAT(s.diffuse.r);
|
|
AI_NFF_PARSE_FLOAT(s.specular.r);
|
|
AI_NFF_PARSE_FLOAT(d); // skip shininess and transmittance
|
|
AI_NFF_PARSE_FLOAT(d);
|
|
AI_NFF_PARSE_FLOAT(s.refracti);
|
|
|
|
// NFF2 uses full colors here so we need to use them too
|
|
// although NFF uses simple scaling factors
|
|
s.diffuse.g = s.diffuse.b = s.diffuse.r;
|
|
s.specular.g = s.specular.b = s.specular.r;
|
|
|
|
// if the next one is NOT a number we assume it is a texture file name
|
|
// this feature is used by some NFF files on the internet and it has
|
|
// been implemented as it can be really useful
|
|
SkipSpaces(&sz);
|
|
if (!IsNumeric(*sz)) {
|
|
// TODO: Support full file names with spaces and quotation marks ...
|
|
const char *p = sz;
|
|
while (!IsSpaceOrNewLine(*sz))
|
|
++sz;
|
|
|
|
unsigned int diff = (unsigned int)(sz - p);
|
|
if (diff) {
|
|
s.texFile = std::string(p, diff);
|
|
}
|
|
} else {
|
|
AI_NFF_PARSE_FLOAT(s.ambient); // optional
|
|
}
|
|
}
|
|
// 'shader' - other way to specify a texture
|
|
else if (TokenMatch(sz, "shader", 6)) {
|
|
SkipSpaces(&sz);
|
|
const char *old = sz;
|
|
while (!IsSpaceOrNewLine(*sz))
|
|
++sz;
|
|
s.texFile = std::string(old, (uintptr_t)sz - (uintptr_t)old);
|
|
}
|
|
// 'l' - light source
|
|
else if (TokenMatch(sz, "l", 1)) {
|
|
lights.push_back(Light());
|
|
Light &light = lights.back();
|
|
|
|
AI_NFF_PARSE_TRIPLE(light.position);
|
|
AI_NFF_PARSE_FLOAT(light.intensity);
|
|
AI_NFF_PARSE_TRIPLE(light.color);
|
|
}
|
|
// 's' - sphere
|
|
else if (TokenMatch(sz, "s", 1)) {
|
|
meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
|
|
MeshInfo &curMesh = meshesLocked.back();
|
|
curMesh.shader = s;
|
|
curMesh.shader.mapping = aiTextureMapping_SPHERE;
|
|
|
|
AI_NFF_PARSE_SHAPE_INFORMATION();
|
|
|
|
// we don't need scaling or translation here - we do it in the node's transform
|
|
StandardShapes::MakeSphere(iTesselation, curMesh.vertices);
|
|
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
|
|
|
|
// generate a name for the mesh
|
|
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "sphere_%i", sphere++);
|
|
}
|
|
// 'dod' - dodecahedron
|
|
else if (TokenMatch(sz, "dod", 3)) {
|
|
meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
|
|
MeshInfo &curMesh = meshesLocked.back();
|
|
curMesh.shader = s;
|
|
curMesh.shader.mapping = aiTextureMapping_SPHERE;
|
|
|
|
AI_NFF_PARSE_SHAPE_INFORMATION();
|
|
|
|
// we don't need scaling or translation here - we do it in the node's transform
|
|
StandardShapes::MakeDodecahedron(curMesh.vertices);
|
|
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
|
|
|
|
// generate a name for the mesh
|
|
::ai_snprintf(curMesh.name, 128, "dodecahedron_%i", dodecahedron++);
|
|
}
|
|
|
|
// 'oct' - octahedron
|
|
else if (TokenMatch(sz, "oct", 3)) {
|
|
meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
|
|
MeshInfo &curMesh = meshesLocked.back();
|
|
curMesh.shader = s;
|
|
curMesh.shader.mapping = aiTextureMapping_SPHERE;
|
|
|
|
AI_NFF_PARSE_SHAPE_INFORMATION();
|
|
|
|
// we don't need scaling or translation here - we do it in the node's transform
|
|
StandardShapes::MakeOctahedron(curMesh.vertices);
|
|
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
|
|
|
|
// generate a name for the mesh
|
|
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "octahedron_%i", octahedron++);
|
|
}
|
|
|
|
// 'tet' - tetrahedron
|
|
else if (TokenMatch(sz, "tet", 3)) {
|
|
meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
|
|
MeshInfo &curMesh = meshesLocked.back();
|
|
curMesh.shader = s;
|
|
curMesh.shader.mapping = aiTextureMapping_SPHERE;
|
|
|
|
AI_NFF_PARSE_SHAPE_INFORMATION();
|
|
|
|
// we don't need scaling or translation here - we do it in the node's transform
|
|
StandardShapes::MakeTetrahedron(curMesh.vertices);
|
|
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
|
|
|
|
// generate a name for the mesh
|
|
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "tetrahedron_%i", tetrahedron++);
|
|
}
|
|
|
|
// 'hex' - hexahedron
|
|
else if (TokenMatch(sz, "hex", 3)) {
|
|
meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
|
|
MeshInfo &curMesh = meshesLocked.back();
|
|
curMesh.shader = s;
|
|
curMesh.shader.mapping = aiTextureMapping_BOX;
|
|
|
|
AI_NFF_PARSE_SHAPE_INFORMATION();
|
|
|
|
// we don't need scaling or translation here - we do it in the node's transform
|
|
StandardShapes::MakeHexahedron(curMesh.vertices);
|
|
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
|
|
|
|
// generate a name for the mesh
|
|
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "hexahedron_%i", hexahedron++);
|
|
}
|
|
// 'c' - cone
|
|
else if (TokenMatch(sz, "c", 1)) {
|
|
meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
|
|
MeshInfo &curMesh = meshesLocked.back();
|
|
curMesh.shader = s;
|
|
curMesh.shader.mapping = aiTextureMapping_CYLINDER;
|
|
|
|
if (!GetNextLine(buffer, line)) {
|
|
ASSIMP_LOG_ERROR("NFF: Unexpected end of file (cone definition not complete)");
|
|
break;
|
|
}
|
|
sz = line;
|
|
|
|
// read the two center points and the respective radii
|
|
aiVector3D center1, center2;
|
|
ai_real radius1 = 0.f, radius2 = 0.f;
|
|
AI_NFF_PARSE_TRIPLE(center1);
|
|
AI_NFF_PARSE_FLOAT(radius1);
|
|
|
|
if (!GetNextLine(buffer, line)) {
|
|
ASSIMP_LOG_ERROR("NFF: Unexpected end of file (cone definition not complete)");
|
|
break;
|
|
}
|
|
sz = line;
|
|
|
|
AI_NFF_PARSE_TRIPLE(center2);
|
|
AI_NFF_PARSE_FLOAT(radius2);
|
|
|
|
// compute the center point of the cone/cylinder -
|
|
// it is its local transformation origin
|
|
curMesh.dir = center2 - center1;
|
|
curMesh.center = center1 + curMesh.dir / (ai_real)2.0;
|
|
|
|
ai_real f;
|
|
if ((f = curMesh.dir.Length()) < 10e-3f) {
|
|
ASSIMP_LOG_ERROR("NFF: Cone height is close to zero");
|
|
continue;
|
|
}
|
|
curMesh.dir /= f; // normalize
|
|
|
|
// generate the cone - it consists of simple triangles
|
|
StandardShapes::MakeCone(f, radius1, radius2,
|
|
integer_pow(4, iTesselation), curMesh.vertices);
|
|
|
|
// MakeCone() returns tris
|
|
curMesh.faces.resize(curMesh.vertices.size() / 3, 3);
|
|
|
|
// generate a name for the mesh. 'cone' if it a cone,
|
|
// 'cylinder' if it is a cylinder. Funny, isn't it?
|
|
if (radius1 != radius2) {
|
|
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "cone_%i", cone++);
|
|
} else {
|
|
::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "cylinder_%i", cylinder++);
|
|
}
|
|
}
|
|
// 'tess' - tessellation
|
|
else if (TokenMatch(sz, "tess", 4)) {
|
|
SkipSpaces(&sz);
|
|
iTesselation = strtoul10(sz);
|
|
}
|
|
// 'from' - camera position
|
|
else if (TokenMatch(sz, "from", 4)) {
|
|
AI_NFF_PARSE_TRIPLE(camPos);
|
|
hasCam = true;
|
|
}
|
|
// 'at' - camera look-at vector
|
|
else if (TokenMatch(sz, "at", 2)) {
|
|
AI_NFF_PARSE_TRIPLE(camLookAt);
|
|
hasCam = true;
|
|
}
|
|
// 'up' - camera up vector
|
|
else if (TokenMatch(sz, "up", 2)) {
|
|
AI_NFF_PARSE_TRIPLE(camUp);
|
|
hasCam = true;
|
|
}
|
|
// 'angle' - (half?) camera field of view
|
|
else if (TokenMatch(sz, "angle", 5)) {
|
|
AI_NFF_PARSE_FLOAT(angle);
|
|
hasCam = true;
|
|
}
|
|
// 'resolution' - used to compute the screen aspect
|
|
else if (TokenMatch(sz, "resolution", 10)) {
|
|
AI_NFF_PARSE_FLOAT(resolution.x);
|
|
AI_NFF_PARSE_FLOAT(resolution.y);
|
|
hasCam = true;
|
|
}
|
|
// 'pb' - bezier patch. Not supported yet
|
|
else if (TokenMatch(sz, "pb", 2)) {
|
|
ASSIMP_LOG_ERROR("NFF: Encountered unsupported ID: bezier patch");
|
|
}
|
|
// 'pn' - NURBS. Not supported yet
|
|
else if (TokenMatch(sz, "pn", 2) || TokenMatch(sz, "pnn", 3)) {
|
|
ASSIMP_LOG_ERROR("NFF: Encountered unsupported ID: NURBS");
|
|
}
|
|
// '' - comment
|
|
else if ('#' == line[0]) {
|
|
const char *space;
|
|
SkipSpaces(&line[1], &space);
|
|
if (!IsLineEnd(*space)) {
|
|
ASSIMP_LOG_INFO(space);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy all arrays into one large
|
|
meshes.reserve(meshes.size() + meshesLocked.size() + meshesWithNormals.size() + meshesWithUVCoords.size());
|
|
meshes.insert(meshes.end(), meshesLocked.begin(), meshesLocked.end());
|
|
meshes.insert(meshes.end(), meshesWithNormals.begin(), meshesWithNormals.end());
|
|
meshes.insert(meshes.end(), meshesWithUVCoords.begin(), meshesWithUVCoords.end());
|
|
|
|
// now generate output meshes. first find out how many meshes we'll need
|
|
std::vector<MeshInfo>::const_iterator it = meshes.begin(), end = meshes.end();
|
|
for (; it != end; ++it) {
|
|
if (!(*it).faces.empty()) {
|
|
++pScene->mNumMeshes;
|
|
if ((*it).name[0]) ++numNamed;
|
|
}
|
|
}
|
|
|
|
// generate a dummy root node - assign all unnamed elements such
|
|
// as polygons and polygon patches to the root node and generate
|
|
// sub nodes for named objects such as spheres and cones.
|
|
aiNode *const root = new aiNode();
|
|
root->mName.Set("<NFF_Root>");
|
|
root->mNumChildren = numNamed + (hasCam ? 1 : 0) + (unsigned int)lights.size();
|
|
root->mNumMeshes = pScene->mNumMeshes - numNamed;
|
|
|
|
aiNode **ppcChildren = nullptr;
|
|
unsigned int *pMeshes = nullptr;
|
|
if (root->mNumMeshes)
|
|
pMeshes = root->mMeshes = new unsigned int[root->mNumMeshes];
|
|
if (root->mNumChildren)
|
|
ppcChildren = root->mChildren = new aiNode *[root->mNumChildren];
|
|
|
|
// generate the camera
|
|
if (hasCam) {
|
|
ai_assert(ppcChildren);
|
|
aiNode *nd = new aiNode();
|
|
*ppcChildren = nd;
|
|
nd->mName.Set("<NFF_Camera>");
|
|
nd->mParent = root;
|
|
|
|
// allocate the camera in the scene
|
|
pScene->mNumCameras = 1;
|
|
pScene->mCameras = new aiCamera *[1];
|
|
aiCamera *c = pScene->mCameras[0] = new aiCamera;
|
|
|
|
c->mName = nd->mName; // make sure the names are identical
|
|
c->mHorizontalFOV = AI_DEG_TO_RAD(angle);
|
|
c->mLookAt = camLookAt - camPos;
|
|
c->mPosition = camPos;
|
|
c->mUp = camUp;
|
|
|
|
// If the resolution is not specified in the file, we
|
|
// need to set 1.0 as aspect.
|
|
c->mAspect = (!resolution.y ? 0.f : resolution.x / resolution.y);
|
|
++ppcChildren;
|
|
}
|
|
|
|
// generate light sources
|
|
if (!lights.empty()) {
|
|
ai_assert(ppcChildren);
|
|
pScene->mNumLights = (unsigned int)lights.size();
|
|
pScene->mLights = new aiLight *[pScene->mNumLights];
|
|
for (unsigned int i = 0; i < pScene->mNumLights; ++i, ++ppcChildren) {
|
|
const Light &l = lights[i];
|
|
|
|
aiNode *nd = new aiNode();
|
|
*ppcChildren = nd;
|
|
nd->mParent = root;
|
|
|
|
nd->mName.length = ::ai_snprintf(nd->mName.data, 1024, "<NFF_Light%u>", i);
|
|
|
|
// allocate the light in the scene data structure
|
|
aiLight *out = pScene->mLights[i] = new aiLight();
|
|
out->mName = nd->mName; // make sure the names are identical
|
|
out->mType = aiLightSource_POINT;
|
|
out->mColorDiffuse = out->mColorSpecular = l.color * l.intensity;
|
|
out->mPosition = l.position;
|
|
}
|
|
}
|
|
|
|
if (!pScene->mNumMeshes) throw DeadlyImportError("NFF: No meshes loaded");
|
|
pScene->mMeshes = new aiMesh *[pScene->mNumMeshes];
|
|
pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials = pScene->mNumMeshes];
|
|
unsigned int m = 0;
|
|
for (it = meshes.begin(); it != end; ++it) {
|
|
if ((*it).faces.empty()) continue;
|
|
|
|
const MeshInfo &src = *it;
|
|
aiMesh *const mesh = pScene->mMeshes[m] = new aiMesh();
|
|
mesh->mNumVertices = (unsigned int)src.vertices.size();
|
|
mesh->mNumFaces = (unsigned int)src.faces.size();
|
|
|
|
// Generate sub nodes for named meshes
|
|
if (src.name[0] && nullptr != ppcChildren) {
|
|
aiNode *const node = *ppcChildren = new aiNode();
|
|
node->mParent = root;
|
|
node->mNumMeshes = 1;
|
|
node->mMeshes = new unsigned int[1];
|
|
node->mMeshes[0] = m;
|
|
node->mName.Set(src.name);
|
|
|
|
// setup the transformation matrix of the node
|
|
aiMatrix4x4::FromToMatrix(aiVector3D(0.f, 1.f, 0.f),
|
|
src.dir, node->mTransformation);
|
|
|
|
aiMatrix4x4 &mat = node->mTransformation;
|
|
mat.a1 *= src.radius.x;
|
|
mat.b1 *= src.radius.x;
|
|
mat.c1 *= src.radius.x;
|
|
mat.a2 *= src.radius.y;
|
|
mat.b2 *= src.radius.y;
|
|
mat.c2 *= src.radius.y;
|
|
mat.a3 *= src.radius.z;
|
|
mat.b3 *= src.radius.z;
|
|
mat.c3 *= src.radius.z;
|
|
mat.a4 = src.center.x;
|
|
mat.b4 = src.center.y;
|
|
mat.c4 = src.center.z;
|
|
|
|
++ppcChildren;
|
|
} else {
|
|
*pMeshes++ = m;
|
|
}
|
|
|
|
// copy vertex positions
|
|
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
|
|
::memcpy(mesh->mVertices, &src.vertices[0],
|
|
sizeof(aiVector3D) * mesh->mNumVertices);
|
|
|
|
// NFF2: there could be vertex colors
|
|
if (!src.colors.empty()) {
|
|
ai_assert(src.colors.size() == src.vertices.size());
|
|
|
|
// copy vertex colors
|
|
mesh->mColors[0] = new aiColor4D[mesh->mNumVertices];
|
|
::memcpy(mesh->mColors[0], &src.colors[0],
|
|
sizeof(aiColor4D) * mesh->mNumVertices);
|
|
}
|
|
|
|
if (!src.normals.empty()) {
|
|
ai_assert(src.normals.size() == src.vertices.size());
|
|
|
|
// copy normal vectors
|
|
mesh->mNormals = new aiVector3D[mesh->mNumVertices];
|
|
::memcpy(mesh->mNormals, &src.normals[0],
|
|
sizeof(aiVector3D) * mesh->mNumVertices);
|
|
}
|
|
|
|
if (!src.uvs.empty()) {
|
|
ai_assert(src.uvs.size() == src.vertices.size());
|
|
|
|
// copy texture coordinates
|
|
mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices];
|
|
::memcpy(mesh->mTextureCoords[0], &src.uvs[0],
|
|
sizeof(aiVector3D) * mesh->mNumVertices);
|
|
}
|
|
|
|
// generate faces
|
|
unsigned int p = 0;
|
|
aiFace *pFace = mesh->mFaces = new aiFace[mesh->mNumFaces];
|
|
for (std::vector<unsigned int>::const_iterator it2 = src.faces.begin(),
|
|
end2 = src.faces.end();
|
|
it2 != end2; ++it2, ++pFace) {
|
|
pFace->mIndices = new unsigned int[pFace->mNumIndices = *it2];
|
|
for (unsigned int o = 0; o < pFace->mNumIndices; ++o)
|
|
pFace->mIndices[o] = p++;
|
|
}
|
|
|
|
// generate a material for the mesh
|
|
aiMaterial *pcMat = (aiMaterial *)(pScene->mMaterials[m] = new aiMaterial());
|
|
|
|
mesh->mMaterialIndex = m++;
|
|
|
|
aiString matName;
|
|
matName.Set(AI_DEFAULT_MATERIAL_NAME);
|
|
pcMat->AddProperty(&matName, AI_MATKEY_NAME);
|
|
|
|
// FIX: Ignore diffuse == 0
|
|
aiColor3D c = src.shader.color * (src.shader.diffuse.r ? src.shader.diffuse : aiColor3D(1.f, 1.f, 1.f));
|
|
pcMat->AddProperty(&c, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
c = src.shader.color * src.shader.specular;
|
|
pcMat->AddProperty(&c, 1, AI_MATKEY_COLOR_SPECULAR);
|
|
|
|
// NFF2 - default values for NFF
|
|
pcMat->AddProperty(&src.shader.ambient, 1, AI_MATKEY_COLOR_AMBIENT);
|
|
pcMat->AddProperty(&src.shader.emissive, 1, AI_MATKEY_COLOR_EMISSIVE);
|
|
pcMat->AddProperty(&src.shader.opacity, 1, AI_MATKEY_OPACITY);
|
|
|
|
// setup the first texture layer, if existing
|
|
if (src.shader.texFile.length()) {
|
|
matName.Set(src.shader.texFile);
|
|
pcMat->AddProperty(&matName, AI_MATKEY_TEXTURE_DIFFUSE(0));
|
|
|
|
if (aiTextureMapping_UV != src.shader.mapping) {
|
|
|
|
aiVector3D v(0.f, -1.f, 0.f);
|
|
pcMat->AddProperty(&v, 1, AI_MATKEY_TEXMAP_AXIS_DIFFUSE(0));
|
|
pcMat->AddProperty((int *)&src.shader.mapping, 1, AI_MATKEY_MAPPING_DIFFUSE(0));
|
|
}
|
|
}
|
|
|
|
// setup the name of the material
|
|
if (src.shader.name.length()) {
|
|
matName.Set(src.shader.texFile);
|
|
pcMat->AddProperty(&matName, AI_MATKEY_NAME);
|
|
}
|
|
|
|
// setup some more material properties that are specific to NFF2
|
|
int i;
|
|
if (src.shader.twoSided) {
|
|
i = 1;
|
|
pcMat->AddProperty(&i, 1, AI_MATKEY_TWOSIDED);
|
|
}
|
|
i = (src.shader.shaded ? aiShadingMode_Gouraud : aiShadingMode_NoShading);
|
|
if (src.shader.shininess) {
|
|
i = aiShadingMode_Phong;
|
|
pcMat->AddProperty(&src.shader.shininess, 1, AI_MATKEY_SHININESS);
|
|
}
|
|
pcMat->AddProperty(&i, 1, AI_MATKEY_SHADING_MODEL);
|
|
}
|
|
pScene->mRootNode = root;
|
|
}
|
|
|
|
#endif // !! ASSIMP_BUILD_NO_NFF_IMPORTER
|