836 lines
28 KiB
C
836 lines
28 KiB
C
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (assimp)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2018, assimp team
|
|
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file mesh.h
|
|
* @brief Declares the data structures in which the imported geometry is
|
|
returned by ASSIMP: aiMesh, aiFace and aiBone data structures.
|
|
*/
|
|
#pragma once
|
|
#ifndef AI_MESH_H_INC
|
|
#define AI_MESH_H_INC
|
|
|
|
#include "types.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Limits. These values are required to match the settings Assimp was
|
|
// compiled against. Therefore, do not redefine them unless you build the
|
|
// library from source using the same definitions.
|
|
// ---------------------------------------------------------------------------
|
|
|
|
/** @def AI_MAX_FACE_INDICES
|
|
* Maximum number of indices per face (polygon). */
|
|
|
|
#ifndef AI_MAX_FACE_INDICES
|
|
# define AI_MAX_FACE_INDICES 0x7fff
|
|
#endif
|
|
|
|
/** @def AI_MAX_BONE_WEIGHTS
|
|
* Maximum number of indices per face (polygon). */
|
|
|
|
#ifndef AI_MAX_BONE_WEIGHTS
|
|
# define AI_MAX_BONE_WEIGHTS 0x7fffffff
|
|
#endif
|
|
|
|
/** @def AI_MAX_VERTICES
|
|
* Maximum number of vertices per mesh. */
|
|
|
|
#ifndef AI_MAX_VERTICES
|
|
# define AI_MAX_VERTICES 0x7fffffff
|
|
#endif
|
|
|
|
/** @def AI_MAX_FACES
|
|
* Maximum number of faces per mesh. */
|
|
|
|
#ifndef AI_MAX_FACES
|
|
# define AI_MAX_FACES 0x7fffffff
|
|
#endif
|
|
|
|
/** @def AI_MAX_NUMBER_OF_COLOR_SETS
|
|
* Supported number of vertex color sets per mesh. */
|
|
|
|
#ifndef AI_MAX_NUMBER_OF_COLOR_SETS
|
|
# define AI_MAX_NUMBER_OF_COLOR_SETS 0x8
|
|
#endif // !! AI_MAX_NUMBER_OF_COLOR_SETS
|
|
|
|
/** @def AI_MAX_NUMBER_OF_TEXTURECOORDS
|
|
* Supported number of texture coord sets (UV(W) channels) per mesh */
|
|
|
|
#ifndef AI_MAX_NUMBER_OF_TEXTURECOORDS
|
|
# define AI_MAX_NUMBER_OF_TEXTURECOORDS 0x8
|
|
#endif // !! AI_MAX_NUMBER_OF_TEXTURECOORDS
|
|
|
|
// ---------------------------------------------------------------------------
|
|
/** @brief A single face in a mesh, referring to multiple vertices.
|
|
*
|
|
* If mNumIndices is 3, we call the face 'triangle', for mNumIndices > 3
|
|
* it's called 'polygon' (hey, that's just a definition!).
|
|
* <br>
|
|
* aiMesh::mPrimitiveTypes can be queried to quickly examine which types of
|
|
* primitive are actually present in a mesh. The #aiProcess_SortByPType flag
|
|
* executes a special post-processing algorithm which splits meshes with
|
|
* *different* primitive types mixed up (e.g. lines and triangles) in several
|
|
* 'clean' submeshes. Furthermore there is a configuration option (
|
|
* #AI_CONFIG_PP_SBP_REMOVE) to force #aiProcess_SortByPType to remove
|
|
* specific kinds of primitives from the imported scene, completely and forever.
|
|
* In many cases you'll probably want to set this setting to
|
|
* @code
|
|
* aiPrimitiveType_LINE|aiPrimitiveType_POINT
|
|
* @endcode
|
|
* Together with the #aiProcess_Triangulate flag you can then be sure that
|
|
* #aiFace::mNumIndices is always 3.
|
|
* @note Take a look at the @link data Data Structures page @endlink for
|
|
* more information on the layout and winding order of a face.
|
|
*/
|
|
struct aiFace
|
|
{
|
|
//! Number of indices defining this face.
|
|
//! The maximum value for this member is #AI_MAX_FACE_INDICES.
|
|
unsigned int mNumIndices;
|
|
|
|
//! Pointer to the indices array. Size of the array is given in numIndices.
|
|
unsigned int* mIndices;
|
|
|
|
#ifdef __cplusplus
|
|
|
|
//! Default constructor
|
|
aiFace()
|
|
: mNumIndices( 0 )
|
|
, mIndices( NULL )
|
|
{
|
|
}
|
|
|
|
//! Default destructor. Delete the index array
|
|
~aiFace()
|
|
{
|
|
delete [] mIndices;
|
|
}
|
|
|
|
//! Copy constructor. Copy the index array
|
|
aiFace( const aiFace& o)
|
|
: mIndices( NULL )
|
|
{
|
|
*this = o;
|
|
}
|
|
|
|
//! Assignment operator. Copy the index array
|
|
aiFace& operator = ( const aiFace& o)
|
|
{
|
|
if (&o == this)
|
|
return *this;
|
|
|
|
delete[] mIndices;
|
|
mNumIndices = o.mNumIndices;
|
|
if (mNumIndices) {
|
|
mIndices = new unsigned int[mNumIndices];
|
|
::memcpy( mIndices, o.mIndices, mNumIndices * sizeof( unsigned int));
|
|
}
|
|
else {
|
|
mIndices = NULL;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//! Comparison operator. Checks whether the index array
|
|
//! of two faces is identical
|
|
bool operator== (const aiFace& o) const
|
|
{
|
|
if (mIndices == o.mIndices)return true;
|
|
else if (mIndices && mNumIndices == o.mNumIndices)
|
|
{
|
|
for (unsigned int i = 0;i < this->mNumIndices;++i)
|
|
if (mIndices[i] != o.mIndices[i])return false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//! Inverse comparison operator. Checks whether the index
|
|
//! array of two faces is NOT identical
|
|
bool operator != (const aiFace& o) const
|
|
{
|
|
return !(*this == o);
|
|
}
|
|
#endif // __cplusplus
|
|
}; // struct aiFace
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
/** @brief A single influence of a bone on a vertex.
|
|
*/
|
|
struct aiVertexWeight {
|
|
//! Index of the vertex which is influenced by the bone.
|
|
unsigned int mVertexId;
|
|
|
|
//! The strength of the influence in the range (0...1).
|
|
//! The influence from all bones at one vertex amounts to 1.
|
|
float mWeight;
|
|
|
|
#ifdef __cplusplus
|
|
|
|
//! Default constructor
|
|
aiVertexWeight()
|
|
: mVertexId(0)
|
|
, mWeight(0.0f) {
|
|
// empty
|
|
}
|
|
|
|
//! Initialisation from a given index and vertex weight factor
|
|
//! \param pID ID
|
|
//! \param pWeight Vertex weight factor
|
|
aiVertexWeight( unsigned int pID, float pWeight )
|
|
: mVertexId( pID )
|
|
, mWeight( pWeight ) {
|
|
// empty
|
|
}
|
|
|
|
bool operator == ( const aiVertexWeight &rhs ) const {
|
|
return ( mVertexId == rhs.mVertexId && mWeight == rhs.mWeight );
|
|
}
|
|
|
|
bool operator != ( const aiVertexWeight &rhs ) const {
|
|
return ( *this == rhs );
|
|
}
|
|
|
|
#endif // __cplusplus
|
|
};
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
/** @brief A single bone of a mesh.
|
|
*
|
|
* A bone has a name by which it can be found in the frame hierarchy and by
|
|
* which it can be addressed by animations. In addition it has a number of
|
|
* influences on vertices, and a matrix relating the mesh position to the
|
|
* position of the bone at the time of binding.
|
|
*/
|
|
struct aiBone {
|
|
//! The name of the bone.
|
|
C_STRUCT aiString mName;
|
|
|
|
//! The number of vertices affected by this bone.
|
|
//! The maximum value for this member is #AI_MAX_BONE_WEIGHTS.
|
|
unsigned int mNumWeights;
|
|
|
|
//! The influence weights of this bone, by vertex index.
|
|
C_STRUCT aiVertexWeight* mWeights;
|
|
|
|
/** Matrix that transforms from bone space to mesh space in bind pose.
|
|
*
|
|
* This matrix describes the position of the mesh
|
|
* in the local space of this bone when the skeleton was bound.
|
|
* Thus it can be used directly to determine a desired vertex position,
|
|
* given the world-space transform of the bone when animated,
|
|
* and the position of the vertex in mesh space.
|
|
*
|
|
* It is sometimes called an inverse-bind matrix,
|
|
* or inverse bind pose matrix.
|
|
*/
|
|
C_STRUCT aiMatrix4x4 mOffsetMatrix;
|
|
|
|
#ifdef __cplusplus
|
|
|
|
//! Default constructor
|
|
aiBone()
|
|
: mName()
|
|
, mNumWeights( 0 )
|
|
, mWeights( nullptr ) {
|
|
// empty
|
|
}
|
|
|
|
//! Copy constructor
|
|
aiBone(const aiBone& other)
|
|
: mName( other.mName )
|
|
, mNumWeights( other.mNumWeights )
|
|
, mOffsetMatrix( other.mOffsetMatrix )
|
|
{
|
|
if (other.mWeights && other.mNumWeights)
|
|
{
|
|
mWeights = new aiVertexWeight[mNumWeights];
|
|
::memcpy(mWeights,other.mWeights,mNumWeights * sizeof(aiVertexWeight));
|
|
}
|
|
}
|
|
|
|
|
|
//! Assignment operator
|
|
aiBone &operator=(const aiBone& other)
|
|
{
|
|
if (this == &other) {
|
|
return *this;
|
|
}
|
|
|
|
mName = other.mName;
|
|
mNumWeights = other.mNumWeights;
|
|
mOffsetMatrix = other.mOffsetMatrix;
|
|
|
|
if (other.mWeights && other.mNumWeights)
|
|
{
|
|
if (mWeights) {
|
|
delete[] mWeights;
|
|
}
|
|
|
|
mWeights = new aiVertexWeight[mNumWeights];
|
|
::memcpy(mWeights,other.mWeights,mNumWeights * sizeof(aiVertexWeight));
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool operator == ( const aiBone &rhs ) const {
|
|
if ( mName != rhs.mName || mNumWeights != rhs.mNumWeights ) {
|
|
return false;
|
|
}
|
|
|
|
for ( size_t i = 0; i < mNumWeights; ++i ) {
|
|
if ( mWeights[ i ] != rhs.mWeights[ i ] ) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
//! Destructor - deletes the array of vertex weights
|
|
~aiBone()
|
|
{
|
|
delete [] mWeights;
|
|
}
|
|
#endif // __cplusplus
|
|
};
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
/** @brief Enumerates the types of geometric primitives supported by Assimp.
|
|
*
|
|
* @see aiFace Face data structure
|
|
* @see aiProcess_SortByPType Per-primitive sorting of meshes
|
|
* @see aiProcess_Triangulate Automatic triangulation
|
|
* @see AI_CONFIG_PP_SBP_REMOVE Removal of specific primitive types.
|
|
*/
|
|
enum aiPrimitiveType
|
|
{
|
|
/** A point primitive.
|
|
*
|
|
* This is just a single vertex in the virtual world,
|
|
* #aiFace contains just one index for such a primitive.
|
|
*/
|
|
aiPrimitiveType_POINT = 0x1,
|
|
|
|
/** A line primitive.
|
|
*
|
|
* This is a line defined through a start and an end position.
|
|
* #aiFace contains exactly two indices for such a primitive.
|
|
*/
|
|
aiPrimitiveType_LINE = 0x2,
|
|
|
|
/** A triangular primitive.
|
|
*
|
|
* A triangle consists of three indices.
|
|
*/
|
|
aiPrimitiveType_TRIANGLE = 0x4,
|
|
|
|
/** A higher-level polygon with more than 3 edges.
|
|
*
|
|
* A triangle is a polygon, but polygon in this context means
|
|
* "all polygons that are not triangles". The "Triangulate"-Step
|
|
* is provided for your convenience, it splits all polygons in
|
|
* triangles (which are much easier to handle).
|
|
*/
|
|
aiPrimitiveType_POLYGON = 0x8,
|
|
|
|
|
|
/** This value is not used. It is just here to force the
|
|
* compiler to map this enum to a 32 Bit integer.
|
|
*/
|
|
#ifndef SWIG
|
|
_aiPrimitiveType_Force32Bit = INT_MAX
|
|
#endif
|
|
}; //! enum aiPrimitiveType
|
|
|
|
// Get the #aiPrimitiveType flag for a specific number of face indices
|
|
#define AI_PRIMITIVE_TYPE_FOR_N_INDICES(n) \
|
|
((n) > 3 ? aiPrimitiveType_POLYGON : (aiPrimitiveType)(1u << ((n)-1)))
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
/** @brief NOT CURRENTLY IN USE. An AnimMesh is an attachment to an #aiMesh stores per-vertex
|
|
* animations for a particular frame.
|
|
*
|
|
* You may think of an #aiAnimMesh as a `patch` for the host mesh, which
|
|
* replaces only certain vertex data streams at a particular time.
|
|
* Each mesh stores n attached attached meshes (#aiMesh::mAnimMeshes).
|
|
* The actual relationship between the time line and anim meshes is
|
|
* established by #aiMeshAnim, which references singular mesh attachments
|
|
* by their ID and binds them to a time offset.
|
|
*/
|
|
struct aiAnimMesh
|
|
{
|
|
/** Replacement for aiMesh::mVertices. If this array is non-NULL,
|
|
* it *must* contain mNumVertices entries. The corresponding
|
|
* array in the host mesh must be non-NULL as well - animation
|
|
* meshes may neither add or nor remove vertex components (if
|
|
* a replacement array is NULL and the corresponding source
|
|
* array is not, the source data is taken instead)*/
|
|
C_STRUCT aiVector3D* mVertices;
|
|
|
|
/** Replacement for aiMesh::mNormals. */
|
|
C_STRUCT aiVector3D* mNormals;
|
|
|
|
/** Replacement for aiMesh::mTangents. */
|
|
C_STRUCT aiVector3D* mTangents;
|
|
|
|
/** Replacement for aiMesh::mBitangents. */
|
|
C_STRUCT aiVector3D* mBitangents;
|
|
|
|
/** Replacement for aiMesh::mColors */
|
|
C_STRUCT aiColor4D* mColors[AI_MAX_NUMBER_OF_COLOR_SETS];
|
|
|
|
/** Replacement for aiMesh::mTextureCoords */
|
|
C_STRUCT aiVector3D* mTextureCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS];
|
|
|
|
/** The number of vertices in the aiAnimMesh, and thus the length of all
|
|
* the member arrays.
|
|
*
|
|
* This has always the same value as the mNumVertices property in the
|
|
* corresponding aiMesh. It is duplicated here merely to make the length
|
|
* of the member arrays accessible even if the aiMesh is not known, e.g.
|
|
* from language bindings.
|
|
*/
|
|
unsigned int mNumVertices;
|
|
|
|
/**
|
|
* Weight of the AnimMesh.
|
|
*/
|
|
float mWeight;
|
|
|
|
#ifdef __cplusplus
|
|
|
|
aiAnimMesh()
|
|
: mVertices( NULL )
|
|
, mNormals( NULL )
|
|
, mTangents( NULL )
|
|
, mBitangents( NULL )
|
|
, mNumVertices( 0 )
|
|
, mWeight( 0.0f )
|
|
{
|
|
// fixme consider moving this to the ctor initializer list as well
|
|
for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; a++){
|
|
mTextureCoords[a] = NULL;
|
|
}
|
|
for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; a++) {
|
|
mColors[a] = NULL;
|
|
}
|
|
}
|
|
|
|
~aiAnimMesh()
|
|
{
|
|
delete [] mVertices;
|
|
delete [] mNormals;
|
|
delete [] mTangents;
|
|
delete [] mBitangents;
|
|
for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; a++) {
|
|
delete [] mTextureCoords[a];
|
|
}
|
|
for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; a++) {
|
|
delete [] mColors[a];
|
|
}
|
|
}
|
|
|
|
/** Check whether the anim mesh overrides the vertex positions
|
|
* of its host mesh*/
|
|
bool HasPositions() const {
|
|
return mVertices != NULL;
|
|
}
|
|
|
|
/** Check whether the anim mesh overrides the vertex normals
|
|
* of its host mesh*/
|
|
bool HasNormals() const {
|
|
return mNormals != NULL;
|
|
}
|
|
|
|
/** Check whether the anim mesh overrides the vertex tangents
|
|
* and bitangents of its host mesh. As for aiMesh,
|
|
* tangents and bitangents always go together. */
|
|
bool HasTangentsAndBitangents() const {
|
|
return mTangents != NULL;
|
|
}
|
|
|
|
/** Check whether the anim mesh overrides a particular
|
|
* set of vertex colors on his host mesh.
|
|
* @param pIndex 0<index<AI_MAX_NUMBER_OF_COLOR_SETS */
|
|
bool HasVertexColors( unsigned int pIndex) const {
|
|
return pIndex >= AI_MAX_NUMBER_OF_COLOR_SETS ? false : mColors[pIndex] != NULL;
|
|
}
|
|
|
|
/** Check whether the anim mesh overrides a particular
|
|
* set of texture coordinates on his host mesh.
|
|
* @param pIndex 0<index<AI_MAX_NUMBER_OF_TEXTURECOORDS */
|
|
bool HasTextureCoords( unsigned int pIndex) const {
|
|
return pIndex >= AI_MAX_NUMBER_OF_TEXTURECOORDS ? false : mTextureCoords[pIndex] != NULL;
|
|
}
|
|
|
|
#endif
|
|
};
|
|
|
|
// ---------------------------------------------------------------------------
|
|
/** @brief Enumerates the methods of mesh morphing supported by Assimp.
|
|
*/
|
|
enum aiMorphingMethod
|
|
{
|
|
/** Interpolation between morph targets */
|
|
aiMorphingMethod_VERTEX_BLEND = 0x1,
|
|
|
|
/** Normalized morphing between morph targets */
|
|
aiMorphingMethod_MORPH_NORMALIZED = 0x2,
|
|
|
|
/** Relative morphing between morph targets */
|
|
aiMorphingMethod_MORPH_RELATIVE = 0x3,
|
|
|
|
/** This value is not used. It is just here to force the
|
|
* compiler to map this enum to a 32 Bit integer.
|
|
*/
|
|
#ifndef SWIG
|
|
_aiMorphingMethod_Force32Bit = INT_MAX
|
|
#endif
|
|
}; //! enum aiMorphingMethod
|
|
|
|
// ---------------------------------------------------------------------------
|
|
/** @brief A mesh represents a geometry or model with a single material.
|
|
*
|
|
* It usually consists of a number of vertices and a series of primitives/faces
|
|
* referencing the vertices. In addition there might be a series of bones, each
|
|
* of them addressing a number of vertices with a certain weight. Vertex data
|
|
* is presented in channels with each channel containing a single per-vertex
|
|
* information such as a set of texture coords or a normal vector.
|
|
* If a data pointer is non-null, the corresponding data stream is present.
|
|
* From C++-programs you can also use the comfort functions Has*() to
|
|
* test for the presence of various data streams.
|
|
*
|
|
* A Mesh uses only a single material which is referenced by a material ID.
|
|
* @note The mPositions member is usually not optional. However, vertex positions
|
|
* *could* be missing if the #AI_SCENE_FLAGS_INCOMPLETE flag is set in
|
|
* @code
|
|
* aiScene::mFlags
|
|
* @endcode
|
|
*/
|
|
struct aiMesh
|
|
{
|
|
/** Bitwise combination of the members of the #aiPrimitiveType enum.
|
|
* This specifies which types of primitives are present in the mesh.
|
|
* The "SortByPrimitiveType"-Step can be used to make sure the
|
|
* output meshes consist of one primitive type each.
|
|
*/
|
|
unsigned int mPrimitiveTypes;
|
|
|
|
/** The number of vertices in this mesh.
|
|
* This is also the size of all of the per-vertex data arrays.
|
|
* The maximum value for this member is #AI_MAX_VERTICES.
|
|
*/
|
|
unsigned int mNumVertices;
|
|
|
|
/** The number of primitives (triangles, polygons, lines) in this mesh.
|
|
* This is also the size of the mFaces array.
|
|
* The maximum value for this member is #AI_MAX_FACES.
|
|
*/
|
|
unsigned int mNumFaces;
|
|
|
|
/** Vertex positions.
|
|
* This array is always present in a mesh. The array is
|
|
* mNumVertices in size.
|
|
*/
|
|
C_STRUCT aiVector3D* mVertices;
|
|
|
|
/** Vertex normals.
|
|
* The array contains normalized vectors, NULL if not present.
|
|
* The array is mNumVertices in size. Normals are undefined for
|
|
* point and line primitives. A mesh consisting of points and
|
|
* lines only may not have normal vectors. Meshes with mixed
|
|
* primitive types (i.e. lines and triangles) may have normals,
|
|
* but the normals for vertices that are only referenced by
|
|
* point or line primitives are undefined and set to QNaN (WARN:
|
|
* qNaN compares to inequal to *everything*, even to qNaN itself.
|
|
* Using code like this to check whether a field is qnan is:
|
|
* @code
|
|
* #define IS_QNAN(f) (f != f)
|
|
* @endcode
|
|
* still dangerous because even 1.f == 1.f could evaluate to false! (
|
|
* remember the subtleties of IEEE754 artithmetics). Use stuff like
|
|
* @c fpclassify instead.
|
|
* @note Normal vectors computed by Assimp are always unit-length.
|
|
* However, this needn't apply for normals that have been taken
|
|
* directly from the model file.
|
|
*/
|
|
C_STRUCT aiVector3D* mNormals;
|
|
|
|
/** Vertex tangents.
|
|
* The tangent of a vertex points in the direction of the positive
|
|
* X texture axis. The array contains normalized vectors, NULL if
|
|
* not present. The array is mNumVertices in size. A mesh consisting
|
|
* of points and lines only may not have normal vectors. Meshes with
|
|
* mixed primitive types (i.e. lines and triangles) may have
|
|
* normals, but the normals for vertices that are only referenced by
|
|
* point or line primitives are undefined and set to qNaN. See
|
|
* the #mNormals member for a detailed discussion of qNaNs.
|
|
* @note If the mesh contains tangents, it automatically also
|
|
* contains bitangents.
|
|
*/
|
|
C_STRUCT aiVector3D* mTangents;
|
|
|
|
/** Vertex bitangents.
|
|
* The bitangent of a vertex points in the direction of the positive
|
|
* Y texture axis. The array contains normalized vectors, NULL if not
|
|
* present. The array is mNumVertices in size.
|
|
* @note If the mesh contains tangents, it automatically also contains
|
|
* bitangents.
|
|
*/
|
|
C_STRUCT aiVector3D* mBitangents;
|
|
|
|
/** Vertex color sets.
|
|
* A mesh may contain 0 to #AI_MAX_NUMBER_OF_COLOR_SETS vertex
|
|
* colors per vertex. NULL if not present. Each array is
|
|
* mNumVertices in size if present.
|
|
*/
|
|
C_STRUCT aiColor4D* mColors[AI_MAX_NUMBER_OF_COLOR_SETS];
|
|
|
|
/** Vertex texture coords, also known as UV channels.
|
|
* A mesh may contain 0 to AI_MAX_NUMBER_OF_TEXTURECOORDS per
|
|
* vertex. NULL if not present. The array is mNumVertices in size.
|
|
*/
|
|
C_STRUCT aiVector3D* mTextureCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS];
|
|
|
|
/** Specifies the number of components for a given UV channel.
|
|
* Up to three channels are supported (UVW, for accessing volume
|
|
* or cube maps). If the value is 2 for a given channel n, the
|
|
* component p.z of mTextureCoords[n][p] is set to 0.0f.
|
|
* If the value is 1 for a given channel, p.y is set to 0.0f, too.
|
|
* @note 4D coords are not supported
|
|
*/
|
|
unsigned int mNumUVComponents[AI_MAX_NUMBER_OF_TEXTURECOORDS];
|
|
|
|
/** The faces the mesh is constructed from.
|
|
* Each face refers to a number of vertices by their indices.
|
|
* This array is always present in a mesh, its size is given
|
|
* in mNumFaces. If the #AI_SCENE_FLAGS_NON_VERBOSE_FORMAT
|
|
* is NOT set each face references an unique set of vertices.
|
|
*/
|
|
C_STRUCT aiFace* mFaces;
|
|
|
|
/** The number of bones this mesh contains.
|
|
* Can be 0, in which case the mBones array is NULL.
|
|
*/
|
|
unsigned int mNumBones;
|
|
|
|
/** The bones of this mesh.
|
|
* A bone consists of a name by which it can be found in the
|
|
* frame hierarchy and a set of vertex weights.
|
|
*/
|
|
C_STRUCT aiBone** mBones;
|
|
|
|
/** The material used by this mesh.
|
|
* A mesh uses only a single material. If an imported model uses
|
|
* multiple materials, the import splits up the mesh. Use this value
|
|
* as index into the scene's material list.
|
|
*/
|
|
unsigned int mMaterialIndex;
|
|
|
|
/** Name of the mesh. Meshes can be named, but this is not a
|
|
* requirement and leaving this field empty is totally fine.
|
|
* There are mainly three uses for mesh names:
|
|
* - some formats name nodes and meshes independently.
|
|
* - importers tend to split meshes up to meet the
|
|
* one-material-per-mesh requirement. Assigning
|
|
* the same (dummy) name to each of the result meshes
|
|
* aids the caller at recovering the original mesh
|
|
* partitioning.
|
|
* - Vertex animations refer to meshes by their names.
|
|
**/
|
|
C_STRUCT aiString mName;
|
|
|
|
|
|
/** The number of attachment meshes. Note! Currently only works with Collada loader. */
|
|
unsigned int mNumAnimMeshes;
|
|
|
|
/** Attachment meshes for this mesh, for vertex-based animation.
|
|
* Attachment meshes carry replacement data for some of the
|
|
* mesh'es vertex components (usually positions, normals).
|
|
* Note! Currently only works with Collada loader.*/
|
|
C_STRUCT aiAnimMesh** mAnimMeshes;
|
|
|
|
/**
|
|
* Method of morphing when animeshes are specified.
|
|
*/
|
|
unsigned int mMethod;
|
|
|
|
#ifdef __cplusplus
|
|
|
|
//! Default constructor. Initializes all members to 0
|
|
aiMesh()
|
|
: mPrimitiveTypes( 0 )
|
|
, mNumVertices( 0 )
|
|
, mNumFaces( 0 )
|
|
, mVertices( NULL )
|
|
, mNormals( NULL )
|
|
, mTangents( NULL )
|
|
, mBitangents( NULL )
|
|
, mFaces( NULL )
|
|
, mNumBones( 0 )
|
|
, mBones( NULL )
|
|
, mMaterialIndex( 0 )
|
|
, mNumAnimMeshes( 0 )
|
|
, mAnimMeshes( NULL )
|
|
, mMethod( 0 )
|
|
{
|
|
for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; a++)
|
|
{
|
|
mNumUVComponents[a] = 0;
|
|
mTextureCoords[a] = NULL;
|
|
}
|
|
|
|
for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; a++)
|
|
mColors[a] = NULL;
|
|
}
|
|
|
|
//! Deletes all storage allocated for the mesh
|
|
~aiMesh()
|
|
{
|
|
delete [] mVertices;
|
|
delete [] mNormals;
|
|
delete [] mTangents;
|
|
delete [] mBitangents;
|
|
for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; a++) {
|
|
delete [] mTextureCoords[a];
|
|
}
|
|
for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; a++) {
|
|
delete [] mColors[a];
|
|
}
|
|
|
|
// DO NOT REMOVE THIS ADDITIONAL CHECK
|
|
if (mNumBones && mBones) {
|
|
for( unsigned int a = 0; a < mNumBones; a++) {
|
|
delete mBones[a];
|
|
}
|
|
delete [] mBones;
|
|
}
|
|
|
|
if (mNumAnimMeshes && mAnimMeshes) {
|
|
for( unsigned int a = 0; a < mNumAnimMeshes; a++) {
|
|
delete mAnimMeshes[a];
|
|
}
|
|
delete [] mAnimMeshes;
|
|
}
|
|
|
|
delete [] mFaces;
|
|
}
|
|
|
|
//! Check whether the mesh contains positions. Provided no special
|
|
//! scene flags are set, this will always be true
|
|
bool HasPositions() const
|
|
{ return mVertices != NULL && mNumVertices > 0; }
|
|
|
|
//! Check whether the mesh contains faces. If no special scene flags
|
|
//! are set this should always return true
|
|
bool HasFaces() const
|
|
{ return mFaces != NULL && mNumFaces > 0; }
|
|
|
|
//! Check whether the mesh contains normal vectors
|
|
bool HasNormals() const
|
|
{ return mNormals != NULL && mNumVertices > 0; }
|
|
|
|
//! Check whether the mesh contains tangent and bitangent vectors
|
|
//! It is not possible that it contains tangents and no bitangents
|
|
//! (or the other way round). The existence of one of them
|
|
//! implies that the second is there, too.
|
|
bool HasTangentsAndBitangents() const
|
|
{ return mTangents != NULL && mBitangents != NULL && mNumVertices > 0; }
|
|
|
|
//! Check whether the mesh contains a vertex color set
|
|
//! \param pIndex Index of the vertex color set
|
|
bool HasVertexColors( unsigned int pIndex) const
|
|
{
|
|
if( pIndex >= AI_MAX_NUMBER_OF_COLOR_SETS)
|
|
return false;
|
|
else
|
|
return mColors[pIndex] != NULL && mNumVertices > 0;
|
|
}
|
|
|
|
//! Check whether the mesh contains a texture coordinate set
|
|
//! \param pIndex Index of the texture coordinates set
|
|
bool HasTextureCoords( unsigned int pIndex) const
|
|
{
|
|
if( pIndex >= AI_MAX_NUMBER_OF_TEXTURECOORDS)
|
|
return false;
|
|
else
|
|
return mTextureCoords[pIndex] != NULL && mNumVertices > 0;
|
|
}
|
|
|
|
//! Get the number of UV channels the mesh contains
|
|
unsigned int GetNumUVChannels() const
|
|
{
|
|
unsigned int n = 0;
|
|
while (n < AI_MAX_NUMBER_OF_TEXTURECOORDS && mTextureCoords[n])++n;
|
|
return n;
|
|
}
|
|
|
|
//! Get the number of vertex color channels the mesh contains
|
|
unsigned int GetNumColorChannels() const
|
|
{
|
|
unsigned int n = 0;
|
|
while (n < AI_MAX_NUMBER_OF_COLOR_SETS && mColors[n])++n;
|
|
return n;
|
|
}
|
|
|
|
//! Check whether the mesh contains bones
|
|
inline bool HasBones() const
|
|
{ return mBones != NULL && mNumBones > 0; }
|
|
|
|
#endif // __cplusplus
|
|
};
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif //! extern "C"
|
|
#endif // AI_MESH_H_INC
|
|
|