assimp/port/PyAssimp/scripts/3d_viewer_py3.py

1317 lines
41 KiB
Python
Executable File

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
""" This program loads a model with PyASSIMP, and display it.
Based on:
- pygame code from http://3dengine.org/Spectator_%28PyOpenGL%29
- http://www.lighthouse3d.com/tutorials
- http://www.songho.ca/opengl/gl_transform.html
- http://code.activestate.com/recipes/325391/
- ASSIMP's C++ SimpleOpenGL viewer
Authors: Séverin Lemaignan, 2012-2016
"""
import sys
import logging
from functools import reduce
logger = logging.getLogger("pyassimp")
gllogger = logging.getLogger("OpenGL")
gllogger.setLevel(logging.WARNING)
logging.basicConfig(level=logging.INFO)
import OpenGL
OpenGL.ERROR_CHECKING = False
OpenGL.ERROR_LOGGING = False
# OpenGL.ERROR_ON_COPY = True
# OpenGL.FULL_LOGGING = True
from OpenGL.GL import *
from OpenGL.arrays import vbo
from OpenGL.GL import shaders
import pygame
import pygame.font
import pygame.image
import math, random
from numpy import linalg
import pyassimp
from pyassimp.postprocess import *
from pyassimp.helper import *
import transformations
ROTATION_180_X = numpy.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]], dtype=numpy.float32)
# rendering mode
BASE = "BASE"
COLORS = "COLORS"
SILHOUETTE = "SILHOUETTE"
HELPERS = "HELPERS"
# Entities type
ENTITY = "entity"
CAMERA = "camera"
MESH = "mesh"
FLAT_VERTEX_SHADER_120 = """
#version 120
uniform mat4 u_viewProjectionMatrix;
uniform mat4 u_modelMatrix;
uniform vec4 u_materialDiffuse;
attribute vec3 a_vertex;
varying vec4 v_color;
void main(void)
{
v_color = u_materialDiffuse;
gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
}
"""
FLAT_VERTEX_SHADER_130 = """
#version 130
uniform mat4 u_viewProjectionMatrix;
uniform mat4 u_modelMatrix;
uniform vec4 u_materialDiffuse;
in vec3 a_vertex;
out vec4 v_color;
void main(void)
{
v_color = u_materialDiffuse;
gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
}
"""
BASIC_VERTEX_SHADER_120 = """
#version 120
uniform mat4 u_viewProjectionMatrix;
uniform mat4 u_modelMatrix;
uniform mat3 u_normalMatrix;
uniform vec3 u_lightPos;
uniform vec4 u_materialDiffuse;
attribute vec3 a_vertex;
attribute vec3 a_normal;
varying vec4 v_color;
void main(void)
{
// Now the normal is in world space, as we pass the light in world space.
vec3 normal = u_normalMatrix * a_normal;
float dist = distance(a_vertex, u_lightPos);
// go to https://www.desmos.com/calculator/nmnaud1hrw to play with the parameters
// att is not used for now
float att=1.0/(1.0+0.8*dist*dist);
vec3 surf2light = normalize(u_lightPos - a_vertex);
vec3 norm = normalize(normal);
float dcont=max(0.0,dot(norm,surf2light));
float ambient = 0.3;
float intensity = dcont + 0.3 + ambient;
v_color = u_materialDiffuse * intensity;
gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
}
"""
BASIC_VERTEX_SHADER_130 = """
#version 130
uniform mat4 u_viewProjectionMatrix;
uniform mat4 u_modelMatrix;
uniform mat3 u_normalMatrix;
uniform vec3 u_lightPos;
uniform vec4 u_materialDiffuse;
in vec3 a_vertex;
in vec3 a_normal;
out vec4 v_color;
void main(void)
{
// Now the normal is in world space, as we pass the light in world space.
vec3 normal = u_normalMatrix * a_normal;
float dist = distance(a_vertex, u_lightPos);
// go to https://www.desmos.com/calculator/nmnaud1hrw to play with the parameters
// att is not used for now
float att=1.0/(1.0+0.8*dist*dist);
vec3 surf2light = normalize(u_lightPos - a_vertex);
vec3 norm = normalize(normal);
float dcont=max(0.0,dot(norm,surf2light));
float ambient = 0.3;
float intensity = dcont + 0.3 + ambient;
v_color = u_materialDiffuse * intensity;
gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
}
"""
BASIC_FRAGMENT_SHADER_120 = """
#version 120
varying vec4 v_color;
void main() {
gl_FragColor = v_color;
}
"""
BASIC_FRAGMENT_SHADER_130 = """
#version 130
in vec4 v_color;
void main() {
gl_FragColor = v_color;
}
"""
GOOCH_VERTEX_SHADER_120 = """
#version 120
// attributes
attribute vec3 a_vertex; // xyz - position
attribute vec3 a_normal; // xyz - normal
// uniforms
uniform mat4 u_modelMatrix;
uniform mat4 u_viewProjectionMatrix;
uniform mat3 u_normalMatrix;
uniform vec3 u_lightPos;
uniform vec3 u_camPos;
// output data from vertex to fragment shader
varying vec3 o_normal;
varying vec3 o_lightVector;
///////////////////////////////////////////////////////////////////
void main(void)
{
// transform position and normal to world space
vec4 positionWorld = u_modelMatrix * vec4(a_vertex, 1.0);
vec3 normalWorld = u_normalMatrix * a_normal;
// calculate and pass vectors required for lighting
o_lightVector = u_lightPos - positionWorld.xyz;
o_normal = normalWorld;
// project world space position to the screen and output it
gl_Position = u_viewProjectionMatrix * positionWorld;
}
"""
GOOCH_VERTEX_SHADER_130 = """
#version 130
// attributes
in vec3 a_vertex; // xyz - position
in vec3 a_normal; // xyz - normal
// uniforms
uniform mat4 u_modelMatrix;
uniform mat4 u_viewProjectionMatrix;
uniform mat3 u_normalMatrix;
uniform vec3 u_lightPos;
uniform vec3 u_camPos;
// output data from vertex to fragment shader
out vec3 o_normal;
out vec3 o_lightVector;
///////////////////////////////////////////////////////////////////
void main(void)
{
// transform position and normal to world space
vec4 positionWorld = u_modelMatrix * vec4(a_vertex, 1.0);
vec3 normalWorld = u_normalMatrix * a_normal;
// calculate and pass vectors required for lighting
o_lightVector = u_lightPos - positionWorld.xyz;
o_normal = normalWorld;
// project world space position to the screen and output it
gl_Position = u_viewProjectionMatrix * positionWorld;
}
"""
GOOCH_FRAGMENT_SHADER_120 = """
#version 120
// data from vertex shader
varying vec3 o_normal;
varying vec3 o_lightVector;
// diffuse color of the object
uniform vec4 u_materialDiffuse;
// cool color of gooch shading
uniform vec3 u_coolColor;
// warm color of gooch shading
uniform vec3 u_warmColor;
// how much to take from object color in final cool color
uniform float u_alpha;
// how much to take from object color in final warm color
uniform float u_beta;
///////////////////////////////////////////////////////////
void main(void)
{
// normlize vectors for lighting
vec3 normalVector = normalize(o_normal);
vec3 lightVector = normalize(o_lightVector);
// intensity of diffuse lighting [-1, 1]
float diffuseLighting = dot(lightVector, normalVector);
// map intensity of lighting from range [-1; 1] to [0, 1]
float interpolationValue = (1.0 + diffuseLighting)/2;
//////////////////////////////////////////////////////////////////
// cool color mixed with color of the object
vec3 coolColorMod = u_coolColor + vec3(u_materialDiffuse) * u_alpha;
// warm color mixed with color of the object
vec3 warmColorMod = u_warmColor + vec3(u_materialDiffuse) * u_beta;
// interpolation of cool and warm colors according
// to lighting intensity. The lower the light intensity,
// the larger part of the cool color is used
vec3 colorOut = mix(coolColorMod, warmColorMod, interpolationValue);
//////////////////////////////////////////////////////////////////
// save color
gl_FragColor.rgb = colorOut;
gl_FragColor.a = 1;
}
"""
GOOCH_FRAGMENT_SHADER_130 = """
#version 130
// data from vertex shader
in vec3 o_normal;
in vec3 o_lightVector;
// diffuse color of the object
uniform vec4 u_materialDiffuse;
// cool color of gooch shading
uniform vec3 u_coolColor;
// warm color of gooch shading
uniform vec3 u_warmColor;
// how much to take from object color in final cool color
uniform float u_alpha;
// how much to take from object color in final warm color
uniform float u_beta;
// output to framebuffer
out vec4 resultingColor;
///////////////////////////////////////////////////////////
void main(void)
{
// normlize vectors for lighting
vec3 normalVector = normalize(o_normal);
vec3 lightVector = normalize(o_lightVector);
// intensity of diffuse lighting [-1, 1]
float diffuseLighting = dot(lightVector, normalVector);
// map intensity of lighting from range [-1; 1] to [0, 1]
float interpolationValue = (1.0 + diffuseLighting)/2;
//////////////////////////////////////////////////////////////////
// cool color mixed with color of the object
vec3 coolColorMod = u_coolColor + vec3(u_materialDiffuse) * u_alpha;
// warm color mixed with color of the object
vec3 warmColorMod = u_warmColor + vec3(u_materialDiffuse) * u_beta;
// interpolation of cool and warm colors according
// to lighting intensity. The lower the light intensity,
// the larger part of the cool color is used
vec3 colorOut = mix(coolColorMod, warmColorMod, interpolationValue);
//////////////////////////////////////////////////////////////////
// save color
resultingColor.rgb = colorOut;
resultingColor.a = 1;
}
"""
SILHOUETTE_VERTEX_SHADER_120 = """
#version 120
attribute vec3 a_vertex; // xyz - position
attribute vec3 a_normal; // xyz - normal
uniform mat4 u_modelMatrix;
uniform mat4 u_viewProjectionMatrix;
uniform mat4 u_modelViewMatrix;
uniform vec4 u_materialDiffuse;
uniform float u_bordersize; // width of the border
varying vec4 v_color;
void main(void){
v_color = u_materialDiffuse;
float distToCamera = -(u_modelViewMatrix * vec4(a_vertex, 1.0)).z;
vec4 tPos = vec4(a_vertex + a_normal * u_bordersize * distToCamera, 1.0);
gl_Position = u_viewProjectionMatrix * u_modelMatrix * tPos;
}
"""
SILHOUETTE_VERTEX_SHADER_130 = """
#version 130
in vec3 a_vertex; // xyz - position
in vec3 a_normal; // xyz - normal
uniform mat4 u_modelMatrix;
uniform mat4 u_viewProjectionMatrix;
uniform mat4 u_modelViewMatrix;
uniform vec4 u_materialDiffuse;
uniform float u_bordersize; // width of the border
out vec4 v_color;
void main(void){
v_color = u_materialDiffuse;
float distToCamera = -(u_modelViewMatrix * vec4(a_vertex, 1.0)).z;
vec4 tPos = vec4(a_vertex + a_normal * u_bordersize * distToCamera, 1.0);
gl_Position = u_viewProjectionMatrix * u_modelMatrix * tPos;
}
"""
DEFAULT_CLIP_PLANE_NEAR = 0.001
DEFAULT_CLIP_PLANE_FAR = 1000.0
def get_world_transform(scene, node):
if node == scene.rootnode:
return numpy.identity(4, dtype=numpy.float32)
parents = reversed(_get_parent_chain(scene, node, []))
parent_transform = reduce(numpy.dot, [p.transformation for p in parents])
return numpy.dot(parent_transform, node.transformation)
def _get_parent_chain(scene, node, parents):
parent = node.parent
parents.append(parent)
if parent == scene.rootnode:
return parents
return _get_parent_chain(scene, parent, parents)
class DefaultCamera:
def __init__(self, w, h, fov):
self.name = "default camera"
self.type = CAMERA
self.clipplanenear = DEFAULT_CLIP_PLANE_NEAR
self.clipplanefar = DEFAULT_CLIP_PLANE_FAR
self.aspect = w / h
self.horizontalfov = fov * math.pi / 180
self.transformation = numpy.array([[0.68, -0.32, 0.65, 7.48],
[0.73, 0.31, -0.61, -6.51],
[-0.01, 0.89, 0.44, 5.34],
[0., 0., 0., 1.]], dtype=numpy.float32)
self.transformation = numpy.dot(self.transformation, ROTATION_180_X)
def __str__(self):
return self.name
class PyAssimp3DViewer:
base_name = "PyASSIMP 3D viewer"
def __init__(self, model, w=1024, h=768):
self.w = w
self.h = h
pygame.init()
pygame.display.set_caption(self.base_name)
pygame.display.set_mode((w, h), pygame.OPENGL | pygame.DOUBLEBUF)
glClearColor(0.18, 0.18, 0.18, 1.0)
shader_compilation_succeeded = False
try:
self.set_shaders_v130()
self.prepare_shaders()
except RuntimeError as message:
sys.stderr.write("%s\n" % message)
sys.stdout.write("Could not compile shaders in version 1.30, trying version 1.20\n")
if not shader_compilation_succeeded:
self.set_shaders_v120()
self.prepare_shaders()
self.scene = None
self.meshes = {} # stores the OpenGL vertex/faces/normals buffers pointers
self.node2colorid = {} # stores a color ID for each node. Useful for mouse picking and visibility checking
self.colorid2node = {} # reverse dict of node2colorid
self.currently_selected = None
self.moving = False
self.moving_situation = None
self.default_camera = DefaultCamera(self.w, self.h, fov=70)
self.cameras = [self.default_camera]
self.current_cam_index = 0
self.current_cam = self.default_camera
self.set_camera_projection()
self.load_model(model)
# user interactions
self.focal_point = [0, 0, 0]
self.is_rotating = False
self.is_panning = False
self.is_zooming = False
def set_shaders_v120(self):
self.BASIC_VERTEX_SHADER = BASIC_VERTEX_SHADER_120
self.FLAT_VERTEX_SHADER = FLAT_VERTEX_SHADER_120
self.SILHOUETTE_VERTEX_SHADER = SILHOUETTE_VERTEX_SHADER_120
self.GOOCH_VERTEX_SHADER = GOOCH_VERTEX_SHADER_120
self.BASIC_FRAGMENT_SHADER = BASIC_FRAGMENT_SHADER_120
self.GOOCH_FRAGMENT_SHADER = GOOCH_FRAGMENT_SHADER_120
def set_shaders_v130(self):
self.BASIC_VERTEX_SHADER = BASIC_VERTEX_SHADER_130
self.FLAT_VERTEX_SHADER = FLAT_VERTEX_SHADER_130
self.SILHOUETTE_VERTEX_SHADER = SILHOUETTE_VERTEX_SHADER_130
self.GOOCH_VERTEX_SHADER = GOOCH_VERTEX_SHADER_130
self.BASIC_FRAGMENT_SHADER = BASIC_FRAGMENT_SHADER_130
self.GOOCH_FRAGMENT_SHADER = GOOCH_FRAGMENT_SHADER_130
def prepare_shaders(self):
### Base shader
vertex = shaders.compileShader(self.BASIC_VERTEX_SHADER, GL_VERTEX_SHADER)
fragment = shaders.compileShader(self.BASIC_FRAGMENT_SHADER, GL_FRAGMENT_SHADER)
self.shader = shaders.compileProgram(vertex, fragment)
self.set_shader_accessors(('u_modelMatrix',
'u_viewProjectionMatrix',
'u_normalMatrix',
'u_lightPos',
'u_materialDiffuse'),
('a_vertex',
'a_normal'), self.shader)
### Flat shader
flatvertex = shaders.compileShader(self.FLAT_VERTEX_SHADER, GL_VERTEX_SHADER)
self.flatshader = shaders.compileProgram(flatvertex, fragment)
self.set_shader_accessors(('u_modelMatrix',
'u_viewProjectionMatrix',
'u_materialDiffuse',),
('a_vertex',), self.flatshader)
### Silhouette shader
silh_vertex = shaders.compileShader(self.SILHOUETTE_VERTEX_SHADER, GL_VERTEX_SHADER)
self.silhouette_shader = shaders.compileProgram(silh_vertex, fragment)
self.set_shader_accessors(('u_modelMatrix',
'u_viewProjectionMatrix',
'u_modelViewMatrix',
'u_materialDiffuse',
'u_bordersize' # width of the silhouette
),
('a_vertex',
'a_normal'), self.silhouette_shader)
### Gooch shader
gooch_vertex = shaders.compileShader(self.GOOCH_VERTEX_SHADER, GL_VERTEX_SHADER)
gooch_fragment = shaders.compileShader(self.GOOCH_FRAGMENT_SHADER, GL_FRAGMENT_SHADER)
self.gooch_shader = shaders.compileProgram(gooch_vertex, gooch_fragment)
self.set_shader_accessors(('u_modelMatrix',
'u_viewProjectionMatrix',
'u_normalMatrix',
'u_lightPos',
'u_materialDiffuse',
'u_coolColor',
'u_warmColor',
'u_alpha',
'u_beta'
),
('a_vertex',
'a_normal'), self.gooch_shader)
@staticmethod
def set_shader_accessors(uniforms, attributes, shader):
# add accessors to the shaders uniforms and attributes
for uniform in uniforms:
location = glGetUniformLocation(shader, uniform)
if location in (None, -1):
raise RuntimeError('No uniform: %s (maybe it is not used '
'anymore and has been optimized out by'
' the shader compiler)' % uniform)
setattr(shader, uniform, location)
for attribute in attributes:
location = glGetAttribLocation(shader, attribute)
if location in (None, -1):
raise RuntimeError('No attribute: %s' % attribute)
setattr(shader, attribute, location)
@staticmethod
def prepare_gl_buffers(mesh):
mesh.gl = {}
# Fill the buffer for vertex and normals positions
v = numpy.array(mesh.vertices, 'f')
n = numpy.array(mesh.normals, 'f')
mesh.gl["vbo"] = vbo.VBO(numpy.hstack((v, n)))
# Fill the buffer for vertex positions
mesh.gl["faces"] = glGenBuffers(1)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["faces"])
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
numpy.array(mesh.faces, dtype=numpy.int32),
GL_STATIC_DRAW)
mesh.gl["nbfaces"] = len(mesh.faces)
# Unbind buffers
glBindBuffer(GL_ARRAY_BUFFER, 0)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
@staticmethod
def get_rgb_from_colorid(colorid):
r = (colorid >> 0) & 0xff
g = (colorid >> 8) & 0xff
b = (colorid >> 16) & 0xff
return r, g, b
def get_color_id(self):
id = random.randint(0, 256 * 256 * 256)
if id not in self.colorid2node:
return id
else:
return self.get_color_id()
def glize(self, scene, node):
logger.info("Loading node <%s>" % node)
node.selected = True if self.currently_selected and self.currently_selected == node else False
node.transformation = node.transformation.astype(numpy.float32)
if node.meshes:
node.type = MESH
colorid = self.get_color_id()
self.colorid2node[colorid] = node
self.node2colorid[node.name] = colorid
elif node.name in [c.name for c in scene.cameras]:
# retrieve the ASSIMP camera object
[cam] = [c for c in scene.cameras if c.name == node.name]
node.type = CAMERA
logger.info("Added camera <%s>" % node.name)
logger.info("Camera position: %.3f, %.3f, %.3f" % tuple(node.transformation[:, 3][:3].tolist()))
self.cameras.append(node)
node.clipplanenear = cam.clipplanenear
node.clipplanefar = cam.clipplanefar
if numpy.allclose(cam.lookat, [0, 0, -1]) and numpy.allclose(cam.up, [0, 1, 0]): # Cameras in .blend files
# Rotate by 180deg around X to have Z pointing forward
node.transformation = numpy.dot(node.transformation, ROTATION_180_X)
else:
raise RuntimeError(
"I do not know how to normalize this camera orientation: lookat=%s, up=%s" % (cam.lookat, cam.up))
if cam.aspect == 0.0:
logger.warning("Camera aspect not set. Setting to default 4:3")
node.aspect = 1.333
else:
node.aspect = cam.aspect
node.horizontalfov = cam.horizontalfov
else:
node.type = ENTITY
for child in node.children:
self.glize(scene, child)
def load_model(self, path, postprocess=aiProcessPreset_TargetRealtime_MaxQuality):
logger.info("Loading model:" + path + "...")
if postprocess:
self.scene = pyassimp.load(path, processing=postprocess)
else:
self.scene = pyassimp.load(path)
logger.info("Done.")
scene = self.scene
# log some statistics
logger.info(" meshes: %d" % len(scene.meshes))
logger.info(" total faces: %d" % sum([len(mesh.faces) for mesh in scene.meshes]))
logger.info(" materials: %d" % len(scene.materials))
self.bb_min, self.bb_max = get_bounding_box(self.scene)
logger.info(" bounding box:" + str(self.bb_min) + " - " + str(self.bb_max))
self.scene_center = [(a + b) / 2. for a, b in zip(self.bb_min, self.bb_max)]
for index, mesh in enumerate(scene.meshes):
self.prepare_gl_buffers(mesh)
self.glize(scene, scene.rootnode)
# Finally release the model
pyassimp.release(scene)
logger.info("Ready for 3D rendering!")
def cycle_cameras(self):
self.current_cam_index = (self.current_cam_index + 1) % len(self.cameras)
self.current_cam = self.cameras[self.current_cam_index]
self.set_camera_projection(self.current_cam)
logger.info("Switched to camera <%s>" % self.current_cam)
def set_overlay_projection(self):
glViewport(0, 0, self.w, self.h)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
glOrtho(0.0, self.w - 1.0, 0.0, self.h - 1.0, -1.0, 1.0)
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
def set_camera_projection(self, camera=None):
if not camera:
camera = self.current_cam
znear = camera.clipplanenear or DEFAULT_CLIP_PLANE_NEAR
zfar = camera.clipplanefar or DEFAULT_CLIP_PLANE_FAR
aspect = camera.aspect
fov = camera.horizontalfov
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
# Compute gl frustrum
tangent = math.tan(fov / 2.)
h = znear * tangent
w = h * aspect
# params: left, right, bottom, top, near, far
glFrustum(-w, w, -h, h, znear, zfar)
# equivalent to:
# gluPerspective(fov * 180/math.pi, aspect, znear, zfar)
self.projection_matrix = glGetFloatv(GL_PROJECTION_MATRIX).transpose()
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
def render_colors(self):
glEnable(GL_DEPTH_TEST)
glDepthFunc(GL_LEQUAL)
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
glEnable(GL_CULL_FACE)
glUseProgram(self.flatshader)
glUniformMatrix4fv(self.flatshader.u_viewProjectionMatrix, 1, GL_TRUE,
numpy.dot(self.projection_matrix, self.view_matrix))
self.recursive_render(self.scene.rootnode, self.flatshader, mode=COLORS)
glUseProgram(0)
def get_hovered_node(self, mousex, mousey):
"""
Attention: The performances of this method relies heavily on the size of the display!
"""
# mouse out of the window?
if mousex < 0 or mousex >= self.w or mousey < 0 or mousey >= self.h:
return None
self.render_colors()
# Capture image from the OpenGL buffer
buf = (GLubyte * (3 * self.w * self.h))(0)
glReadPixels(0, 0, self.w, self.h, GL_RGB, GL_UNSIGNED_BYTE, buf)
# Reinterpret the RGB pixel buffer as a 1-D array of 24bits colors
a = numpy.ndarray(len(buf), numpy.dtype('>u1'), buf)
colors = numpy.zeros(len(buf) // 3, numpy.dtype('<u4'))
for i in range(3):
colors.view(dtype='>u1')[i::4] = a.view(dtype='>u1')[i::3]
colorid = colors[mousex + mousey * self.w]
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
if colorid in self.colorid2node:
return self.colorid2node[colorid]
def render(self, wireframe=False, twosided=False):
glEnable(GL_DEPTH_TEST)
glDepthFunc(GL_LEQUAL)
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE if wireframe else GL_FILL)
glDisable(GL_CULL_FACE) if twosided else glEnable(GL_CULL_FACE)
self.render_grid()
self.recursive_render(self.scene.rootnode, None, mode=HELPERS)
### First, the silhouette
if False:
shader = self.silhouette_shader
# glDepthMask(GL_FALSE)
glCullFace(GL_FRONT) # cull front faces
glUseProgram(shader)
glUniform1f(shader.u_bordersize, 0.01)
glUniformMatrix4fv(shader.u_viewProjectionMatrix, 1, GL_TRUE,
numpy.dot(self.projection_matrix, self.view_matrix))
self.recursive_render(self.scene.rootnode, shader, mode=SILHOUETTE)
glUseProgram(0)
### Then, inner shading
# glDepthMask(GL_TRUE)
glCullFace(GL_BACK)
use_gooch = False
if use_gooch:
shader = self.gooch_shader
glUseProgram(shader)
glUniform3f(shader.u_lightPos, -.5, -.5, .5)
##### GOOCH specific
glUniform3f(shader.u_coolColor, 159.0 / 255, 148.0 / 255, 255.0 / 255)
glUniform3f(shader.u_warmColor, 255.0 / 255, 75.0 / 255, 75.0 / 255)
glUniform1f(shader.u_alpha, .25)
glUniform1f(shader.u_beta, .25)
#########
else:
shader = self.shader
glUseProgram(shader)
glUniform3f(shader.u_lightPos, -.5, -.5, .5)
glUniformMatrix4fv(shader.u_viewProjectionMatrix, 1, GL_TRUE,
numpy.dot(self.projection_matrix, self.view_matrix))
self.recursive_render(self.scene.rootnode, shader)
glUseProgram(0)
def render_axis(self,
transformation=numpy.identity(4, dtype=numpy.float32),
label=None,
size=0.2,
selected=False):
m = transformation.transpose() # OpenGL row major
glPushMatrix()
glMultMatrixf(m)
glLineWidth(3 if selected else 1)
size = 2 * size if selected else size
glBegin(GL_LINES)
# draw line for x axis
glColor3f(1.0, 0.0, 0.0)
glVertex3f(0.0, 0.0, 0.0)
glVertex3f(size, 0.0, 0.0)
# draw line for y axis
glColor3f(0.0, 1.0, 0.0)
glVertex3f(0.0, 0.0, 0.0)
glVertex3f(0.0, size, 0.0)
# draw line for Z axis
glColor3f(0.0, 0.0, 1.0)
glVertex3f(0.0, 0.0, 0.0)
glVertex3f(0.0, 0.0, size)
glEnd()
if label:
self.showtext(label)
glPopMatrix()
@staticmethod
def render_camera(camera, transformation):
m = transformation.transpose() # OpenGL row major
aspect = camera.aspect
u = 0.1 # unit size (in m)
l = 3 * u # length of the camera cone
f = 3 * u # aperture of the camera cone
glPushMatrix()
glMultMatrixf(m)
glLineWidth(2)
glBegin(GL_LINE_STRIP)
glColor3f(.2, .2, .2)
glVertex3f(u, u, -u)
glVertex3f(u, -u, -u)
glVertex3f(-u, -u, -u)
glVertex3f(-u, u, -u)
glVertex3f(u, u, -u)
glVertex3f(u, u, 0.0)
glVertex3f(u, -u, 0.0)
glVertex3f(-u, -u, 0.0)
glVertex3f(-u, u, 0.0)
glVertex3f(u, u, 0.0)
glVertex3f(f * aspect, f, l)
glVertex3f(f * aspect, -f, l)
glVertex3f(-f * aspect, -f, l)
glVertex3f(-f * aspect, f, l)
glVertex3f(f * aspect, f, l)
glEnd()
glBegin(GL_LINE_STRIP)
glVertex3f(u, -u, -u)
glVertex3f(u, -u, 0.0)
glVertex3f(f * aspect, -f, l)
glEnd()
glBegin(GL_LINE_STRIP)
glVertex3f(-u, -u, -u)
glVertex3f(-u, -u, 0.0)
glVertex3f(-f * aspect, -f, l)
glEnd()
glBegin(GL_LINE_STRIP)
glVertex3f(-u, u, -u)
glVertex3f(-u, u, 0.0)
glVertex3f(-f * aspect, f, l)
glEnd()
glPopMatrix()
@staticmethod
def render_grid():
glLineWidth(1)
glColor3f(0.5, 0.5, 0.5)
glBegin(GL_LINES)
for i in range(-10, 11):
glVertex3f(i, -10.0, 0.0)
glVertex3f(i, 10.0, 0.0)
for i in range(-10, 11):
glVertex3f(-10.0, i, 0.0)
glVertex3f(10.0, i, 0.0)
glEnd()
def recursive_render(self, node, shader, mode=BASE, with_normals=True):
""" Main recursive rendering method.
"""
normals = with_normals
if mode == COLORS:
normals = False
if not hasattr(node, "selected"):
node.selected = False
m = get_world_transform(self.scene, node)
# HELPERS mode
###
if mode == HELPERS:
# if node.type == ENTITY:
self.render_axis(m,
label=node.name if node != self.scene.rootnode else None,
selected=node.selected if hasattr(node, "selected") else False)
if node.type == CAMERA:
self.render_camera(node, m)
for child in node.children:
self.recursive_render(child, shader, mode)
return
# Mesh rendering modes
###
if node.type == MESH:
for mesh in node.meshes:
stride = 24 # 6 * 4 bytes
if node.selected and mode == SILHOUETTE:
glUniform4f(shader.u_materialDiffuse, 1.0, 0.0, 0.0, 1.0)
glUniformMatrix4fv(shader.u_modelViewMatrix, 1, GL_TRUE,
numpy.dot(self.view_matrix, m))
else:
if mode == COLORS:
colorid = self.node2colorid[node.name]
r, g, b = self.get_rgb_from_colorid(colorid)
glUniform4f(shader.u_materialDiffuse, r / 255.0, g / 255.0, b / 255.0, 1.0)
elif mode == SILHOUETTE:
glUniform4f(shader.u_materialDiffuse, .0, .0, .0, 1.0)
else:
if node.selected:
diffuse = (1.0, 0.0, 0.0, 1.0) # selected nodes in red
else:
diffuse = mesh.material.properties["diffuse"]
if len(diffuse) == 3: # RGB instead of expected RGBA
diffuse.append(1.0)
glUniform4f(shader.u_materialDiffuse, *diffuse)
# if ambient:
# glUniform4f( shader.Material_ambient, *mat["ambient"] )
if mode == BASE: # not in COLORS or SILHOUETTE
normal_matrix = linalg.inv(numpy.dot(self.view_matrix, m)[0:3, 0:3]).transpose()
glUniformMatrix3fv(shader.u_normalMatrix, 1, GL_TRUE, normal_matrix)
glUniformMatrix4fv(shader.u_modelMatrix, 1, GL_TRUE, m)
vbo = mesh.gl["vbo"]
vbo.bind()
glEnableVertexAttribArray(shader.a_vertex)
if normals:
glEnableVertexAttribArray(shader.a_normal)
glVertexAttribPointer(
shader.a_vertex,
3, GL_FLOAT, False, stride, vbo
)
if normals:
glVertexAttribPointer(
shader.a_normal,
3, GL_FLOAT, False, stride, vbo + 12
)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["faces"])
glDrawElements(GL_TRIANGLES, mesh.gl["nbfaces"] * 3, GL_UNSIGNED_INT, None)
vbo.unbind()
glDisableVertexAttribArray(shader.a_vertex)
if normals:
glDisableVertexAttribArray(shader.a_normal)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
for child in node.children:
self.recursive_render(child, shader, mode)
def switch_to_overlay(self):
glPushMatrix()
self.set_overlay_projection()
def switch_from_overlay(self):
self.set_camera_projection()
glPopMatrix()
def select_node(self, node):
self.currently_selected = node
self.update_node_select(self.scene.rootnode)
def update_node_select(self, node):
if node is self.currently_selected:
node.selected = True
else:
node.selected = False
for child in node.children:
self.update_node_select(child)
def loop(self):
pygame.display.flip()
if not self.process_events():
return False # ESC has been pressed
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
return True
def process_events(self):
LEFT_BUTTON = 1
MIDDLE_BUTTON = 2
RIGHT_BUTTON = 3
WHEEL_UP = 4
WHEEL_DOWN = 5
dx, dy = pygame.mouse.get_rel()
mousex, mousey = pygame.mouse.get_pos()
zooming_one_shot = False
ok = True
for evt in pygame.event.get():
if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == LEFT_BUTTON:
hovered = self.get_hovered_node(mousex, self.h - mousey)
if hovered:
if self.currently_selected and self.currently_selected == hovered:
self.select_node(None)
else:
logger.info("Node %s selected" % hovered)
self.select_node(hovered)
else:
self.is_rotating = True
if evt.type == pygame.MOUSEBUTTONUP and evt.button == LEFT_BUTTON:
self.is_rotating = False
if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == MIDDLE_BUTTON:
self.is_panning = True
if evt.type == pygame.MOUSEBUTTONUP and evt.button == MIDDLE_BUTTON:
self.is_panning = False
if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == RIGHT_BUTTON:
self.is_zooming = True
if evt.type == pygame.MOUSEBUTTONUP and evt.button == RIGHT_BUTTON:
self.is_zooming = False
if evt.type == pygame.MOUSEBUTTONDOWN and evt.button in [WHEEL_UP, WHEEL_DOWN]:
zooming_one_shot = True
self.is_zooming = True
dy = -10 if evt.button == WHEEL_UP else 10
if evt.type == pygame.KEYDOWN:
ok = (ok and self.process_keystroke(evt.key, evt.mod))
self.controls_3d(dx, dy, zooming_one_shot)
return ok
def process_keystroke(self, key, mod):
# process arrow keys if an object is selected
if self.currently_selected:
up = 0
strafe = 0
if key == pygame.K_UP:
up = 1
if key == pygame.K_DOWN:
up = -1
if key == pygame.K_LEFT:
strafe = -1
if key == pygame.K_RIGHT:
strafe = 1
self.move_selected_node(up, strafe)
if key == pygame.K_f:
pygame.display.toggle_fullscreen()
if key == pygame.K_TAB:
self.cycle_cameras()
if key in [pygame.K_ESCAPE, pygame.K_q]:
return False
return True
def controls_3d(self, dx, dy, zooming_one_shot=False):
""" Orbiting the camera is implemented the following way:
- the rotation is split into a rotation around the *world* Z axis
(controlled by the horizontal mouse motion along X) and a
rotation around the *X* axis of the camera (pitch) *shifted to
the focal origin* (the world origin for now). This is controlled
by the vertical motion of the mouse (Y axis).
- as a result, the resulting transformation of the camera in the
world frame C' is:
C' = (T · Rx · T⁻¹ · (Rz · C)⁻¹)⁻¹
where:
- C is the original camera transformation in the world frame,
- Rz is the rotation along the Z axis (in the world frame)
- T is the translation camera -> world (ie, the inverse of the
translation part of C
- Rx is the rotation around X in the (translated) camera frame """
CAMERA_TRANSLATION_FACTOR = 0.01
CAMERA_ROTATION_FACTOR = 0.01
if not (self.is_rotating or self.is_panning or self.is_zooming):
return
current_pos = self.current_cam.transformation[:3, 3].copy()
distance = numpy.linalg.norm(self.focal_point - current_pos)
if self.is_rotating:
rotation_camera_x = dy * CAMERA_ROTATION_FACTOR
rotation_world_z = dx * CAMERA_ROTATION_FACTOR
world_z_rotation = transformations.euler_matrix(0, 0, rotation_world_z)
cam_x_rotation = transformations.euler_matrix(rotation_camera_x, 0, 0)
after_world_z_rotation = numpy.dot(world_z_rotation, self.current_cam.transformation)
inverse_transformation = transformations.inverse_matrix(after_world_z_rotation)
translation = transformations.translation_matrix(
transformations.decompose_matrix(inverse_transformation)[3])
inverse_translation = transformations.inverse_matrix(translation)
new_inverse = numpy.dot(inverse_translation, inverse_transformation)
new_inverse = numpy.dot(cam_x_rotation, new_inverse)
new_inverse = numpy.dot(translation, new_inverse)
self.current_cam.transformation = transformations.inverse_matrix(new_inverse).astype(numpy.float32)
if self.is_panning:
tx = -dx * CAMERA_TRANSLATION_FACTOR * distance
ty = dy * CAMERA_TRANSLATION_FACTOR * distance
cam_transform = transformations.translation_matrix((tx, ty, 0)).astype(numpy.float32)
self.current_cam.transformation = numpy.dot(self.current_cam.transformation, cam_transform)
if self.is_zooming:
tz = dy * CAMERA_TRANSLATION_FACTOR * distance
cam_transform = transformations.translation_matrix((0, 0, tz)).astype(numpy.float32)
self.current_cam.transformation = numpy.dot(self.current_cam.transformation, cam_transform)
if zooming_one_shot:
self.is_zooming = False
self.update_view_camera()
def update_view_camera(self):
self.view_matrix = linalg.inv(self.current_cam.transformation)
# Rotate by 180deg around X to have Z pointing backward (OpenGL convention)
self.view_matrix = numpy.dot(ROTATION_180_X, self.view_matrix)
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
glMultMatrixf(self.view_matrix.transpose())
def move_selected_node(self, up, strafe):
self.currently_selected.transformation[0][3] += strafe
self.currently_selected.transformation[2][3] += up
@staticmethod
def showtext(text, x=0, y=0, z=0, size=20):
# TODO: alpha blending does not work...
# glEnable(GL_BLEND)
# glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
font = pygame.font.Font(None, size)
text_surface = font.render(text, True, (10, 10, 10, 255),
(255 * 0.18, 255 * 0.18, 255 * 0.18, 0))
text_data = pygame.image.tostring(text_surface, "RGBA", True)
glRasterPos3d(x, y, z)
glDrawPixels(text_surface.get_width(),
text_surface.get_height(),
GL_RGBA, GL_UNSIGNED_BYTE,
text_data)
# glDisable(GL_BLEND)
def main(model, width, height):
app = PyAssimp3DViewer(model, w=width, h=height)
clock = pygame.time.Clock()
while app.loop():
app.update_view_camera()
## Main rendering
app.render()
## GUI text display
app.switch_to_overlay()
app.showtext("Active camera: %s" % str(app.current_cam), 10, app.h - 30)
if app.currently_selected:
app.showtext("Selected node: %s" % app.currently_selected, 10, app.h - 50)
pos = app.h - 70
app.showtext("(%sm, %sm, %sm)" % (app.currently_selected.transformation[0, 3],
app.currently_selected.transformation[1, 3],
app.currently_selected.transformation[2, 3]), 30, pos)
app.switch_from_overlay()
# Make sure we do not go over 30fps
clock.tick(30)
logger.info("Quitting! Bye bye!")
#########################################################################
#########################################################################
if __name__ == '__main__':
if not len(sys.argv) > 1:
print("Usage: " + __file__ + " <model>")
sys.exit(2)
main(model=sys.argv[1], width=1024, height=768)