assimp/code/IRRMeshLoader.cpp

943 lines
28 KiB
C++

/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file Implementation of the IrrMesh importer class */
#include "AssimpPCH.h"
#include "IRRMeshLoader.h"
#include "ParsingUtils.h"
#include "fast_atof.h"
using namespace Assimp;
/**** AT FIRST: IrrlightBase, base class for IrrMesh and Irr *******/
// ------------------------------------------------------------------------------------------------
// read a property in hexadecimal format (i.e. ffffffff)
void IrrlichtBase::ReadHexProperty (HexProperty& out)
{
for (int i = 0; i < reader->getAttributeCount();++i)
{
if (!ASSIMP_stricmp(reader->getAttributeName(i),"name"))
{
out.name = std::string( reader->getAttributeValue(i) );
}
else if (!ASSIMP_stricmp(reader->getAttributeName(i),"value"))
{
// parse the hexadecimal value
out.value = strtol16(reader->getAttributeValue(i));
}
}
}
// ------------------------------------------------------------------------------------------------
// read a decimal property
void IrrlichtBase::ReadIntProperty (IntProperty& out)
{
for (int i = 0; i < reader->getAttributeCount();++i)
{
if (!ASSIMP_stricmp(reader->getAttributeName(i),"name"))
{
out.name = std::string( reader->getAttributeValue(i) );
}
else if (!ASSIMP_stricmp(reader->getAttributeName(i),"value"))
{
// parse the ecimal value
out.value = strtol10s(reader->getAttributeValue(i));
}
}
}
// ------------------------------------------------------------------------------------------------
// read a string property
void IrrlichtBase::ReadStringProperty (StringProperty& out)
{
for (int i = 0; i < reader->getAttributeCount();++i)
{
if (!ASSIMP_stricmp(reader->getAttributeName(i),"name"))
{
out.name = std::string( reader->getAttributeValue(i) );
}
else if (!ASSIMP_stricmp(reader->getAttributeName(i),"value"))
{
// simple copy the string
out.value = std::string (reader->getAttributeValue(i));
}
}
}
// ------------------------------------------------------------------------------------------------
// read a boolean property
void IrrlichtBase::ReadBoolProperty (BoolProperty& out)
{
for (int i = 0; i < reader->getAttributeCount();++i)
{
if (!ASSIMP_stricmp(reader->getAttributeName(i),"name"))
{
out.name = std::string( reader->getAttributeValue(i) );
}
else if (!ASSIMP_stricmp(reader->getAttributeName(i),"value"))
{
// true or false, case insensitive
out.value = (ASSIMP_stricmp( reader->getAttributeValue(i),
"true") ? false : true);
}
}
}
// ------------------------------------------------------------------------------------------------
// read a float property
void IrrlichtBase::ReadFloatProperty (FloatProperty& out)
{
for (int i = 0; i < reader->getAttributeCount();++i)
{
if (!ASSIMP_stricmp(reader->getAttributeName(i),"name"))
{
out.name = std::string( reader->getAttributeValue(i) );
}
else if (!ASSIMP_stricmp(reader->getAttributeName(i),"value"))
{
// just parse the float
out.value = fast_atof( reader->getAttributeValue(i) );
}
}
}
// ------------------------------------------------------------------------------------------------
// read a vector property
void IrrlichtBase::ReadVectorProperty (VectorProperty& out)
{
for (int i = 0; i < reader->getAttributeCount();++i)
{
if (!ASSIMP_stricmp(reader->getAttributeName(i),"name"))
{
out.name = std::string( reader->getAttributeValue(i) );
}
else if (!ASSIMP_stricmp(reader->getAttributeName(i),"value"))
{
// three floats, separated with commas
const char* ptr = reader->getAttributeValue(i);
SkipSpaces(&ptr);
ptr = fast_atof_move( ptr,(float&)out.value.x );
SkipSpaces(&ptr);
if (',' != *ptr)
{
DefaultLogger::get()->error("IRR(MESH): Expected comma in vector definition");
}
else SkipSpaces(ptr+1,&ptr);
ptr = fast_atof_move( ptr,(float&)out.value.y );
SkipSpaces(&ptr);
if (',' != *ptr)
{
DefaultLogger::get()->error("IRR(MESH): Expected comma in vector definition");
}
else SkipSpaces(ptr+1,&ptr);
ptr = fast_atof_move( ptr,(float&)out.value.z );
}
}
}
// ------------------------------------------------------------------------------------------------
void ColorFromARGBPacked(uint32_t in, aiColor4D& clr)
{
clr.a = ((in >> 24) & 0xff) / 255.f;
clr.r = ((in >> 16) & 0xff) / 255.f;
clr.g = ((in >> 8) & 0xff) / 255.f;
clr.b = ((in ) & 0xff) / 255.f;
}
// ------------------------------------------------------------------------------------------------
int ConvertMappingMode(const std::string& mode)
{
if (mode == "texture_clamp_repeat")
{
return aiTextureMapMode_Wrap;
}
else if (mode == "texture_clamp_mirror")
return aiTextureMapMode_Mirror;
return aiTextureMapMode_Clamp;
}
// ------------------------------------------------------------------------------------------------
// Parse a material from the XML file
aiMaterial* IrrlichtBase::ParseMaterial(unsigned int& matFlags)
{
MaterialHelper* mat = new MaterialHelper();
aiColor4D clr;
aiString s;
matFlags = 0; // zero output flags
int cnt = 0; // number of used texture channels
// Continue reading from the file
while (reader->read())
{
switch (reader->getNodeType())
{
case EXN_ELEMENT:
// Hex properties
if (!ASSIMP_stricmp(reader->getNodeName(),"color"))
{
HexProperty prop;
ReadHexProperty(prop);
if (prop.name == "Diffuse")
{
ColorFromARGBPacked(prop.value,clr);
mat->AddProperty(&clr,1,AI_MATKEY_COLOR_DIFFUSE);
}
else if (prop.name == "Ambient")
{
ColorFromARGBPacked(prop.value,clr);
mat->AddProperty(&clr,1,AI_MATKEY_COLOR_AMBIENT);
}
else if (prop.name == "Specular")
{
ColorFromARGBPacked(prop.value,clr);
mat->AddProperty(&clr,1,AI_MATKEY_COLOR_SPECULAR);
}
else if (prop.name == "Emissive")
{
ColorFromARGBPacked(prop.value,clr);
mat->AddProperty(&clr,1,AI_MATKEY_COLOR_EMISSIVE);
}
}
// Float properties
else if (!ASSIMP_stricmp(reader->getNodeName(),"float"))
{
FloatProperty prop;
ReadFloatProperty(prop);
if (prop.name == "Shininess")
{
mat->AddProperty(&prop.value,1,AI_MATKEY_SHININESS);
}
}
// Bool properties
else if (!ASSIMP_stricmp(reader->getNodeName(),"bool"))
{
BoolProperty prop;
ReadBoolProperty(prop);
if (prop.name == "Wireframe")
{
int val = (prop.value ? true : false);
mat->AddProperty(&val,1,AI_MATKEY_ENABLE_WIREFRAME);
}
else if (prop.name == "GouraudShading")
{
int val = (prop.value ? aiShadingMode_Gouraud
: aiShadingMode_NoShading);
mat->AddProperty(&val,1,AI_MATKEY_SHADING_MODEL);
}
}
// String properties - textures and texture related properties
else if (!ASSIMP_stricmp(reader->getNodeName(),"texture") ||
!ASSIMP_stricmp(reader->getNodeName(),"enum"))
{
StringProperty prop;
ReadStringProperty(prop);
if (prop.value.length())
{
// material type (shader)
if (prop.name == "Type")
{
if (prop.value == "trans_vertex_alpha")
{
matFlags = AI_IRRMESH_MAT_trans_vertex_alpha;
}
else if (prop.value == "lightmap")
{
matFlags = AI_IRRMESH_MAT_lightmap;
}
else if (prop.value == "solid_2layer")
{
matFlags = AI_IRRMESH_MAT_solid_2layer;
}
else if (prop.value == "lightmap_m2")
{
matFlags = AI_IRRMESH_MAT_lightmap_m2;
}
else if (prop.value == "lightmap_m4")
{
matFlags = AI_IRRMESH_MAT_lightmap_m4;
}
else if (prop.value == "lightmap_light")
{
matFlags = AI_IRRMESH_MAT_lightmap_light;
}
else if (prop.value == "lightmap_light_m2")
{
matFlags = AI_IRRMESH_MAT_lightmap_light_m2;
}
else if (prop.value == "lightmap_light_m4")
{
matFlags = AI_IRRMESH_MAT_lightmap_light_m4;
}
else if (prop.value == "lightmap_add")
{
matFlags = AI_IRRMESH_MAT_lightmap_add;
}
// Normal and parallax maps are treated equally
else if (prop.value == "normalmap_solid" ||
prop.value == "parallaxmap_solid")
{
matFlags = AI_IRRMESH_MAT_normalmap_solid;
}
else if (prop.value == "normalmap_trans_vertex_alpha" ||
prop.value == "parallaxmap_trans_vertex_alpha")
{
matFlags = AI_IRRMESH_MAT_normalmap_tva;
}
else if (prop.value == "normalmap_trans_add" ||
prop.value == "parallaxmap_trans_add")
{
matFlags = AI_IRRMESH_MAT_normalmap_ta;
}
}
// Up to 4 texture channels are supported
else if (prop.name == "Texture1")
{
// Always accept the primary texture channel
++cnt;
s.Set(prop.value);
mat->AddProperty(&s,AI_MATKEY_TEXTURE_DIFFUSE(0));
}
else if (prop.name == "Texture2")
{
// 2-layer material lightmapped?
if (matFlags & (AI_IRRMESH_MAT_solid_2layer | AI_IRRMESH_MAT_lightmap))
{
++cnt;
s.Set(prop.value);
mat->AddProperty(&s,AI_MATKEY_TEXTURE_DIFFUSE(1));
// set the corresponding material flag
matFlags |= AI_IRRMESH_EXTRA_2ND_TEXTURE;
}
// alternatively: normal or parallax mapping
else if (matFlags & AI_IRRMESH_MAT_normalmap_solid)
{
++cnt;
s.Set(prop.value);
mat->AddProperty(&s,AI_MATKEY_TEXTURE_NORMALS(1));
// set the corresponding material flag
matFlags |= AI_IRRMESH_EXTRA_2ND_TEXTURE;
}
}
else if (prop.name == "Texture3")
{
// We don't process the third texture channel as Irrlicht
// does not seem to use it.
#if 0
++cnt;
s.Set(prop.value);
mat->AddProperty(&s,AI_MATKEY_TEXTURE_DIFFUSE(2));
#endif
}
else if (prop.name == "Texture4" )
{
// We don't process the fourth texture channel as Irrlicht
// does not seem to use it.
#if 0
++cnt;
s.Set(prop.value);
mat->AddProperty(&s,AI_MATKEY_TEXTURE_DIFFUSE(3));
#endif
}
// Texture mapping options
if (prop.name == "TextureWrap1" && cnt >= 1)
{
int map = ConvertMappingMode(prop.value);
mat->AddProperty(&map,1,AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0));
mat->AddProperty(&map,1,AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0));
}
else if (prop.name == "TextureWrap2" && cnt >= 2)
{
int map = ConvertMappingMode(prop.value);
mat->AddProperty(&map,1,AI_MATKEY_MAPPINGMODE_U_DIFFUSE(1));
mat->AddProperty(&map,1,AI_MATKEY_MAPPINGMODE_V_DIFFUSE(1));
}
else if (prop.name == "TextureWrap3" && cnt >= 3)
{
int map = ConvertMappingMode(prop.value);
mat->AddProperty(&map,1,AI_MATKEY_MAPPINGMODE_U_DIFFUSE(2));
mat->AddProperty(&map,1,AI_MATKEY_MAPPINGMODE_V_DIFFUSE(2));
}
else if (prop.name == "TextureWrap4" && cnt >= 4)
{
int map = ConvertMappingMode(prop.value);
mat->AddProperty(&map,1,AI_MATKEY_MAPPINGMODE_U_DIFFUSE(3));
mat->AddProperty(&map,1,AI_MATKEY_MAPPINGMODE_V_DIFFUSE(3));
}
}
}
break;
case EXN_ELEMENT_END:
/* Assume there are no further nested nodes in <material> elements
*/
if (/* IRRMESH */ !ASSIMP_stricmp(reader->getNodeName(),"material") ||
/* IRR */ !ASSIMP_stricmp(reader->getNodeName(),"attributes"))
{
// Now process lightmapping flags
// We should have at least one texture, however
// if there are multiple textures we assign the
// lightmap settings to the last texture.
if (cnt && matFlags & AI_IRRMESH_MAT_lightmap)
{
static const char* PropArray[4] =
{
AI_MATKEY_TEXBLEND_DIFFUSE(0),
AI_MATKEY_TEXBLEND_DIFFUSE(1),
AI_MATKEY_TEXBLEND_DIFFUSE(2),
AI_MATKEY_TEXBLEND_DIFFUSE(3)
};
static const char* PropArray2[4] =
{
AI_MATKEY_TEXOP_DIFFUSE(0),
AI_MATKEY_TEXOP_DIFFUSE(1),
AI_MATKEY_TEXOP_DIFFUSE(2),
AI_MATKEY_TEXOP_DIFFUSE(3)
};
float f = 1.f;
// Additive lightmap?
int op = (matFlags & AI_IRRMESH_MAT_lightmap_add
? aiTextureOp_Add : aiTextureOp_Multiply);
// Handle Irrlicht's lightmapping scaling factor
if (matFlags & AI_IRRMESH_MAT_lightmap_m2 ||
matFlags & AI_IRRMESH_MAT_lightmap_light_m2)
{
f = 2.f;
}
else if (matFlags & AI_IRRMESH_MAT_lightmap_m4 ||
matFlags & AI_IRRMESH_MAT_lightmap_light_m4)
{
f = 4.f;
}
mat->AddProperty( &f, 1, PropArray [cnt-1]);
mat->AddProperty( &op,1, PropArray2 [cnt-1]);
}
return mat;
}
default:
// GCC complains here ...
break;
}
}
DefaultLogger::get()->error("IRRMESH: Unexpected end of file. Material is not complete");
return mat;
}
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
IRRMeshImporter::IRRMeshImporter()
{
// nothing to do here
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
IRRMeshImporter::~IRRMeshImporter()
{
// nothing to do here
}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool IRRMeshImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
{
/* NOTE: A simple check for the file extension is not enough
* here. Irrmesh and irr are easy, but xml is too generic
* and could be collada, too. So we need to open the file and
* search for typical tokens.
*/
std::string::size_type pos = pFile.find_last_of('.');
// no file extension - can't read
if( pos == std::string::npos)
return false;
std::string extension = pFile.substr( pos);
for (std::string::iterator i = extension.begin(); i != extension.end();++i)
*i = ::tolower(*i);
if (extension == ".irrmesh")return true;
else if (extension == ".xml")
{
/* If CanRead() is called to check whether the loader
* supports a specific file extension in general we
* must return true here.
*/
if (!pIOHandler)return true;
const char* tokens[] = {"irrmesh"};
return SearchFileHeaderForToken(pIOHandler,pFile,tokens,1);
}
return false;
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void IRRMeshImporter::InternReadFile( const std::string& pFile,
aiScene* pScene, IOSystem* pIOHandler)
{
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile));
// Check whether we can read from the file
if( file.get() == NULL)
throw new ImportErrorException( "Failed to open IRRMESH file " + pFile + "");
// Construct the irrXML parser
CIrrXML_IOStreamReader st(file.get());
reader = createIrrXMLReader((IFileReadCallBack*) &st);
// final data
std::vector<aiMaterial*> materials;
std::vector<aiMesh*> meshes;
materials.reserve (5);
meshes.reserve (5);
// temporary data - current mesh buffer
aiMaterial* curMat = NULL;
aiMesh* curMesh = NULL;
unsigned int curMatFlags;
std::vector<aiVector3D> curVertices,curNormals,curTangents,curBitangents;
std::vector<aiColor4D> curColors;
std::vector<aiVector3D> curUVs,curUV2s;
// some temporary variables
int textMeaning = 0;
int vertexFormat = 0; // 0 = normal; 1 = 2 tcoords, 2 = tangents
bool useColors = false;
bool needLightMap = false;
// Parse the XML file
while (reader->read())
{
switch (reader->getNodeType())
{
case EXN_ELEMENT:
if (!ASSIMP_stricmp(reader->getNodeName(),"buffer") && (curMat || curMesh))
{
// end of previous buffer. A material and a mesh should be there
if ( !curMat || !curMesh)
{
DefaultLogger::get()->error("IRRMESH: A buffer must contain a mesh and a material");
delete curMat;
delete curMesh;
}
else
{
materials.push_back(curMat);
meshes.push_back(curMesh);
}
curMat = NULL;
curMesh = NULL;
curVertices.clear();
curColors.clear();
curNormals.clear();
curUV2s.clear();
curUVs.clear();
curTangents.clear();
curBitangents.clear();
}
if (!ASSIMP_stricmp(reader->getNodeName(),"material"))
{
if (curMat)
{
DefaultLogger::get()->warn("IRRMESH: Only one material description per buffer, please");
delete curMat;
}
curMat = ParseMaterial(curMatFlags);
}
/* no else here! */ if (!ASSIMP_stricmp(reader->getNodeName(),"vertices"))
{
int num = reader->getAttributeValueAsInt("vertexCount");
curVertices.reserve (num);
curNormals.reserve (num);
curColors.reserve (num);
curUVs.reserve (num);
// Determine the file format
const char* t = reader->getAttributeValueSafe("type");
if (!ASSIMP_stricmp("2tcoords", t))
{
curUV2s.reserve (num);
vertexFormat = 1;
if (curMatFlags & AI_IRRMESH_EXTRA_2ND_TEXTURE)
{
// *********************************************************
// We have a second texture! So use this UV channel
// for it. The 2nd texture can be either a normal
// texture (solid_2layer or lightmap_xxx) or a normal
// map (normal_..., parallax_...)
// *********************************************************
int idx = 1;
MaterialHelper* mat = ( MaterialHelper* ) curMat;
if (curMatFlags & (AI_IRRMESH_MAT_solid_2layer | AI_IRRMESH_MAT_lightmap))
{
mat->AddProperty(&idx,1,AI_MATKEY_UVWSRC_DIFFUSE(0));
}
else if (curMatFlags & AI_IRRMESH_MAT_normalmap_solid)
{
mat->AddProperty(&idx,1,AI_MATKEY_UVWSRC_NORMALS(0));
}
}
}
else if (!ASSIMP_stricmp("tangents", t))
{
curTangents.reserve (num);
curBitangents.reserve (num);
vertexFormat = 2;
}
else if (ASSIMP_stricmp("standard", t))
{
DefaultLogger::get()->warn("IRRMESH: Unknown vertex format");
}
else vertexFormat = 0;
textMeaning = 1;
}
else if (!ASSIMP_stricmp(reader->getNodeName(),"indices"))
{
if (curVertices.empty())
throw new ImportErrorException("IRRMESH: indices must come after vertices");
textMeaning = 2;
// start a new mesh
curMesh = new aiMesh();
// allocate storage for all faces
curMesh->mNumVertices = reader->getAttributeValueAsInt("indexCount");
if (curMesh->mNumVertices % 3)
{
DefaultLogger::get()->warn("IRRMESH: Number if indices isn't divisible by 3");
}
curMesh->mNumFaces = curMesh->mNumVertices / 3;
curMesh->mFaces = new aiFace[curMesh->mNumFaces];
// setup some members
curMesh->mMaterialIndex = (unsigned int)materials.size();
curMesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;
// allocate storage for all vertices
curMesh->mVertices = new aiVector3D[curMesh->mNumVertices];
if (curNormals.size() == curVertices.size())
{
curMesh->mNormals = new aiVector3D[curMesh->mNumVertices];
}
if (curTangents.size() == curVertices.size())
{
curMesh->mTangents = new aiVector3D[curMesh->mNumVertices];
}
if (curBitangents.size() == curVertices.size())
{
curMesh->mBitangents = new aiVector3D[curMesh->mNumVertices];
}
if (curColors.size() == curVertices.size() && useColors)
{
curMesh->mColors[0] = new aiColor4D[curMesh->mNumVertices];
}
if (curUVs.size() == curVertices.size())
{
curMesh->mTextureCoords[0] = new aiVector3D[curMesh->mNumVertices];
}
if (curUV2s.size() == curVertices.size())
{
curMesh->mTextureCoords[1] = new aiVector3D[curMesh->mNumVertices];
}
}
break;
case EXN_TEXT:
{
const char* sz = reader->getNodeData();
if (textMeaning == 1)
{
textMeaning = 0;
// read vertices
do
{
SkipSpacesAndLineEnd(&sz);
aiVector3D temp;aiColor4D c;
// Read the vertex position
sz = fast_atof_move(sz,(float&)temp.x);
SkipSpaces(&sz);
sz = fast_atof_move(sz,(float&)temp.z);
SkipSpaces(&sz);
sz = fast_atof_move(sz,(float&)temp.y);
SkipSpaces(&sz);
temp.y *= -1.0f;
curVertices.push_back(temp);
// Read the vertex normals
sz = fast_atof_move(sz,(float&)temp.x);
SkipSpaces(&sz);
sz = fast_atof_move(sz,(float&)temp.z);
SkipSpaces(&sz);
sz = fast_atof_move(sz,(float&)temp.y);
SkipSpaces(&sz);
temp.y *= -1.0f;
curNormals.push_back(temp);
// read the vertex colors
uint32_t clr = strtol16(sz,&sz);
ColorFromARGBPacked(clr,c);
if (!curColors.empty() && c != *(curColors.end()-1))
useColors = true;
curColors.push_back(c);
SkipSpaces(&sz);
// read the first UV coordinate set
sz = fast_atof_move(sz,(float&)temp.x);
SkipSpaces(&sz);
sz = fast_atof_move(sz,(float&)temp.y);
SkipSpaces(&sz);
temp.z = 0.f;
temp.y = 1.f - temp.y; // DX to OGL
curUVs.push_back(temp);
// read the (optional) second UV coordinate set
if (vertexFormat == 1)
{
sz = fast_atof_move(sz,(float&)temp.x);
SkipSpaces(&sz);
sz = fast_atof_move(sz,(float&)temp.y);
temp.y = 1.f - temp.y; // DX to OGL
curUV2s.push_back(temp);
}
// read optional tangent and bitangent vectors
else if (vertexFormat == 2)
{
// tangents
sz = fast_atof_move(sz,(float&)temp.x);
SkipSpaces(&sz);
sz = fast_atof_move(sz,(float&)temp.z);
SkipSpaces(&sz);
sz = fast_atof_move(sz,(float&)temp.y);
SkipSpaces(&sz);
temp.y *= -1.0f;
curTangents.push_back(temp);
// bitangents
sz = fast_atof_move(sz,(float&)temp.x);
SkipSpaces(&sz);
sz = fast_atof_move(sz,(float&)temp.z);
SkipSpaces(&sz);
sz = fast_atof_move(sz,(float&)temp.y);
SkipSpaces(&sz);
temp.y *= -1.0f;
curBitangents.push_back(temp);
}
}
/* IMPORTANT: We assume that each vertex is specified in one
line. So we can skip the rest of the line - unknown vertex
elements are ignored.
*/
while (SkipLine(&sz));
}
else if (textMeaning == 2)
{
textMeaning = 0;
// read indices
aiFace* curFace = curMesh->mFaces;
aiFace* const faceEnd = curMesh->mFaces + curMesh->mNumFaces;
aiVector3D* pcV = curMesh->mVertices;
aiVector3D* pcN = curMesh->mNormals;
aiVector3D* pcT = curMesh->mTangents;
aiVector3D* pcB = curMesh->mBitangents;
aiColor4D* pcC0 = curMesh->mColors[0];
aiVector3D* pcT0 = curMesh->mTextureCoords[0];
aiVector3D* pcT1 = curMesh->mTextureCoords[1];
unsigned int curIdx = 0;
unsigned int total = 0;
while(SkipSpacesAndLineEnd(&sz))
{
if (curFace >= faceEnd)
{
DefaultLogger::get()->error("IRRMESH: Too many indices");
break;
}
if (!curIdx)
{
curFace->mNumIndices = 3;
curFace->mIndices = new unsigned int[3];
}
unsigned int idx = strtol10(sz,&sz);
if (idx >= curVertices.size())
{
DefaultLogger::get()->error("IRRMESH: Index out of range");
idx = 0;
}
curFace->mIndices[curIdx] = total++;
*pcV++ = curVertices[idx];
if (pcN)*pcN++ = curNormals[idx];
if (pcT)*pcT++ = curTangents[idx];
if (pcB)*pcB++ = curBitangents[idx];
if (pcC0)*pcC0++ = curColors[idx];
if (pcT0)*pcT0++ = curUVs[idx];
if (pcT1)*pcT1++ = curUV2s[idx];
if (++curIdx == 3)
{
++curFace;
curIdx = 0;
}
}
if (curFace != faceEnd)
DefaultLogger::get()->error("IRRMESH: Not enough indices");
// Finish processing the mesh - do some small material workarounds
if (curMatFlags == AI_IRRMESH_MAT_trans_vertex_alpha && !useColors)
{
// Take the opacity value of the current material
// from the common vertex color alpha
MaterialHelper* mat = (MaterialHelper*)curMat;
mat->AddProperty(&curColors[0].a,1,AI_MATKEY_OPACITY);
}
// store the material flags for later use
curMesh->mNumUVComponents[3] = curMatFlags;
if ( curMatFlags & AI_IRRMESH_MAT_lightmap )
{
needLightMap = true;
}
}}
break;
default:
// GCC complains here ...
break;
};
}
// end of the last buffer. A material and a mesh should be there
if (curMat || curMesh)
{
if ( !curMat || !curMesh)
{
DefaultLogger::get()->error("IRRMESH: A buffer must contain a mesh and a material");
delete curMat;
delete curMesh;
}
else
{
materials.push_back(curMat);
meshes.push_back(curMesh);
}
}
if (materials.empty())
throw new ImportErrorException("IRRMESH: Unable to read a mesh from this file");
// now generate the output scene
pScene->mNumMeshes = (unsigned int)meshes.size();
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
for (unsigned int i = 0; i < pScene->mNumMeshes;++i)
{
pScene->mMeshes[i] = meshes[i];
// clean this value ...
pScene->mMeshes[i]->mNumUVComponents[3] = 0;
}
pScene->mNumMaterials = (unsigned int)materials.size();
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials];
::memcpy(pScene->mMaterials,&materials[0],sizeof(void*)*pScene->mNumMaterials);
pScene->mRootNode = new aiNode();
pScene->mRootNode->mName.Set("<IRRMesh>");
pScene->mRootNode->mNumMeshes = pScene->mNumMeshes;
pScene->mRootNode->mMeshes = new unsigned int[pScene->mNumMeshes];
for (unsigned int i = 0; i < pScene->mNumMeshes;++i)
pScene->mRootNode->mMeshes[i] = i;
delete reader;
AI_DEBUG_INVALIDATE_PTR(reader);
}