730 lines
23 KiB
C++
730 lines
23 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2010, assimp team
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file IFCBoolean.cpp
|
|
* @brief Implements a subset of Ifc boolean operations
|
|
*/
|
|
|
|
#include "AssimpPCH.h"
|
|
|
|
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
|
#include "IFCUtil.h"
|
|
#include "PolyTools.h"
|
|
#include "ProcessHelper.h"
|
|
|
|
#include <iterator>
|
|
|
|
namespace Assimp {
|
|
namespace IFC {
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
enum Intersect {
|
|
Intersect_No,
|
|
Intersect_LiesOnPlane,
|
|
Intersect_Yes
|
|
};
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
Intersect IntersectSegmentPlane(const IfcVector3& p,const IfcVector3& n, const IfcVector3& e0,
|
|
const IfcVector3& e1,
|
|
IfcVector3& out)
|
|
{
|
|
const IfcVector3 pdelta = e0 - p, seg = e1-e0;
|
|
const IfcFloat dotOne = n*seg, dotTwo = -(n*pdelta);
|
|
|
|
if (fabs(dotOne) < 1e-6) {
|
|
return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No;
|
|
}
|
|
|
|
const IfcFloat t = dotTwo/dotOne;
|
|
// t must be in [0..1] if the intersection point is within the given segment
|
|
if (t > 1.f || t < 0.f) {
|
|
return Intersect_No;
|
|
}
|
|
out = e0+t*seg;
|
|
return Intersect_Yes;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessBooleanHalfSpaceDifference(const IfcHalfSpaceSolid* hs, TempMesh& result,
|
|
const TempMesh& first_operand,
|
|
ConversionData& /*conv*/)
|
|
{
|
|
ai_assert(hs != NULL);
|
|
|
|
const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
|
|
if(!plane) {
|
|
IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
|
|
return;
|
|
}
|
|
|
|
// extract plane base position vector and normal vector
|
|
IfcVector3 p,n(0.f,0.f,1.f);
|
|
if (plane->Position->Axis) {
|
|
ConvertDirection(n,plane->Position->Axis.Get());
|
|
}
|
|
ConvertCartesianPoint(p,plane->Position->Location);
|
|
|
|
if(!IsTrue(hs->AgreementFlag)) {
|
|
n *= -1.f;
|
|
}
|
|
|
|
// clip the current contents of `meshout` against the plane we obtained from the second operand
|
|
const std::vector<IfcVector3>& in = first_operand.verts;
|
|
std::vector<IfcVector3>& outvert = result.verts;
|
|
|
|
std::vector<unsigned int>::const_iterator begin = first_operand.vertcnt.begin(),
|
|
end = first_operand.vertcnt.end(), iit;
|
|
|
|
outvert.reserve(in.size());
|
|
result.vertcnt.reserve(first_operand.vertcnt.size());
|
|
|
|
unsigned int vidx = 0;
|
|
for(iit = begin; iit != end; vidx += *iit++) {
|
|
|
|
unsigned int newcount = 0;
|
|
for(unsigned int i = 0; i < *iit; ++i) {
|
|
const IfcVector3& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit];
|
|
|
|
// does the next segment intersect the plane?
|
|
IfcVector3 isectpos;
|
|
const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos);
|
|
if (isect == Intersect_No || isect == Intersect_LiesOnPlane) {
|
|
if ( (e0-p).Normalize()*n > 0 ) {
|
|
outvert.push_back(e0);
|
|
++newcount;
|
|
}
|
|
}
|
|
else if (isect == Intersect_Yes) {
|
|
if ( (e0-p).Normalize()*n > 0 ) {
|
|
// e0 is on the right side, so keep it
|
|
outvert.push_back(e0);
|
|
outvert.push_back(isectpos);
|
|
newcount += 2;
|
|
}
|
|
else {
|
|
// e0 is on the wrong side, so drop it and keep e1 instead
|
|
outvert.push_back(isectpos);
|
|
++newcount;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!newcount) {
|
|
continue;
|
|
}
|
|
|
|
IfcVector3 vmin,vmax;
|
|
ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
|
|
|
|
// filter our IfcFloat points - those may happen if a point lies
|
|
// directly on the intersection line. However, due to IfcFloat
|
|
// precision a bitwise comparison is not feasible to detect
|
|
// this case.
|
|
const IfcFloat epsilon = (vmax-vmin).SquareLength() / 1e6f;
|
|
FuzzyVectorCompare fz(epsilon);
|
|
|
|
std::vector<IfcVector3>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
|
|
|
|
if (e != outvert.end()) {
|
|
newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
|
|
outvert.erase(e,outvert.end());
|
|
}
|
|
if (fz(*( outvert.end()-newcount),outvert.back())) {
|
|
outvert.pop_back();
|
|
--newcount;
|
|
}
|
|
if(newcount > 2) {
|
|
result.vertcnt.push_back(newcount);
|
|
}
|
|
else while(newcount-->0) {
|
|
result.verts.pop_back();
|
|
}
|
|
|
|
}
|
|
IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Check if e0-e1 intersects a sub-segment of the given boundary line.
|
|
// note: this functions works on 3D vectors, but performs its intersection checks solely in xy.
|
|
bool IntersectsBoundaryProfile( const IfcVector3& e0, const IfcVector3& e1, const std::vector<IfcVector3>& boundary,
|
|
std::vector<size_t>& intersected_boundary_segments,
|
|
std::vector<IfcVector3>& intersected_boundary_points,
|
|
bool half_open = false,
|
|
bool* e0_hits_border = NULL)
|
|
{
|
|
ai_assert(intersected_boundary_segments.empty());
|
|
ai_assert(intersected_boundary_points.empty());
|
|
|
|
if(e0_hits_border) {
|
|
*e0_hits_border = false;
|
|
}
|
|
|
|
const IfcVector3& e = e1 - e0;
|
|
|
|
for (size_t i = 0, bcount = boundary.size(); i < bcount; ++i) {
|
|
// boundary segment i: b0-b1
|
|
const IfcVector3& b0 = boundary[i];
|
|
const IfcVector3& b1 = boundary[(i+1) % bcount];
|
|
|
|
const IfcVector3& b = b1 - b0;
|
|
|
|
// segment-segment intersection
|
|
// solve b0 + b*s = e0 + e*t for (s,t)
|
|
const IfcFloat det = (-b.x * e.y + e.x * b.y);
|
|
if(fabs(det) < 1e-6) {
|
|
// no solutions (parallel lines)
|
|
continue;
|
|
}
|
|
|
|
const IfcFloat x = b0.x - e0.x;
|
|
const IfcFloat y = b0.y - e0.y;
|
|
|
|
const IfcFloat s = (x*e.y - e.x*y)/det;
|
|
const IfcFloat t = (x*b.y - b.x*y)/det;
|
|
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
const IfcVector3 check = b0 + b*s - (e0 + e*t);
|
|
ai_assert((IfcVector2(check.x,check.y)).SquareLength() < 1e-5);
|
|
#endif
|
|
|
|
// for a valid intersection, s-t should be in range [0,1].
|
|
// note that for t (i.e. the segment point) we only use a
|
|
// half-sided epsilon because the next segment should catch
|
|
// this case.
|
|
const IfcFloat epsilon = 1e-6;
|
|
if (t >= -epsilon && (t <= 1.0+epsilon || half_open) && s >= -epsilon && s <= 1.0) {
|
|
|
|
if (e0_hits_border && !*e0_hits_border) {
|
|
*e0_hits_border = fabs(t) < 1e-5f;
|
|
}
|
|
|
|
const IfcVector3& p = e0 + e*t;
|
|
|
|
// only insert the point into the list if it is sufficiently
|
|
// far away from the previous intersection point. This way,
|
|
// we avoid duplicate detection if the intersection is
|
|
// directly on the vertex between two segments.
|
|
if (!intersected_boundary_points.empty() && intersected_boundary_segments.back()==i-1 ) {
|
|
const IfcVector3 diff = intersected_boundary_points.back() - p;
|
|
if(IfcVector2(diff.x, diff.y).SquareLength() < 1e-7) {
|
|
continue;
|
|
}
|
|
}
|
|
intersected_boundary_segments.push_back(i);
|
|
intersected_boundary_points.push_back(p);
|
|
}
|
|
}
|
|
|
|
return !intersected_boundary_segments.empty();
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// note: this functions works on 3D vectors, but performs its intersection checks solely in xy.
|
|
bool PointInPoly(const IfcVector3& p, const std::vector<IfcVector3>& boundary)
|
|
{
|
|
// even-odd algorithm: take a random vector that extends from p to infinite
|
|
// and counts how many times it intersects edges of the boundary.
|
|
// because checking for segment intersections is prone to numeric inaccuracies
|
|
// or double detections (i.e. when hitting multiple adjacent segments at their
|
|
// shared vertices) we do it thrice with different rays and vote on it.
|
|
|
|
// the even-odd algorithm doesn't work for points which lie directly on
|
|
// the border of the polygon. If any of our attempts produces this result,
|
|
// we return false immediately.
|
|
|
|
std::vector<size_t> intersected_boundary_segments;
|
|
std::vector<IfcVector3> intersected_boundary_points;
|
|
size_t votes = 0;
|
|
|
|
bool is_border;
|
|
IntersectsBoundaryProfile(p, p + IfcVector3(1.0,0,0), boundary,
|
|
intersected_boundary_segments,
|
|
intersected_boundary_points, true, &is_border);
|
|
|
|
if(is_border) {
|
|
return false;
|
|
}
|
|
|
|
votes += intersected_boundary_segments.size() % 2;
|
|
|
|
intersected_boundary_segments.clear();
|
|
intersected_boundary_points.clear();
|
|
|
|
IntersectsBoundaryProfile(p, p + IfcVector3(0,1.0,0), boundary,
|
|
intersected_boundary_segments,
|
|
intersected_boundary_points, true, &is_border);
|
|
|
|
if(is_border) {
|
|
return false;
|
|
}
|
|
|
|
votes += intersected_boundary_segments.size() % 2;
|
|
|
|
intersected_boundary_segments.clear();
|
|
intersected_boundary_points.clear();
|
|
|
|
IntersectsBoundaryProfile(p, p + IfcVector3(0.6,-0.6,0.0), boundary,
|
|
intersected_boundary_segments,
|
|
intersected_boundary_points, true, &is_border);
|
|
|
|
if(is_border) {
|
|
return false;
|
|
}
|
|
|
|
votes += intersected_boundary_segments.size() % 2;
|
|
//ai_assert(votes == 3 || votes == 0);
|
|
return votes > 1;
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBoundedHalfSpace* hs, TempMesh& result,
|
|
const TempMesh& first_operand,
|
|
ConversionData& conv)
|
|
{
|
|
ai_assert(hs != NULL);
|
|
|
|
const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
|
|
if(!plane) {
|
|
IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
|
|
return;
|
|
}
|
|
|
|
// extract plane base position vector and normal vector
|
|
IfcVector3 p,n(0.f,0.f,1.f);
|
|
if (plane->Position->Axis) {
|
|
ConvertDirection(n,plane->Position->Axis.Get());
|
|
}
|
|
ConvertCartesianPoint(p,plane->Position->Location);
|
|
|
|
if(!IsTrue(hs->AgreementFlag)) {
|
|
n *= -1.f;
|
|
}
|
|
|
|
n.Normalize();
|
|
|
|
// obtain the polygonal bounding volume
|
|
boost::shared_ptr<TempMesh> profile = boost::shared_ptr<TempMesh>(new TempMesh());
|
|
if(!ProcessCurve(hs->PolygonalBoundary, *profile.get(), conv)) {
|
|
IFCImporter::LogError("expected valid polyline for boundary of boolean halfspace");
|
|
return;
|
|
}
|
|
|
|
IfcMatrix4 proj_inv;
|
|
ConvertAxisPlacement(proj_inv,hs->Position);
|
|
|
|
// and map everything into a plane coordinate space so all intersection
|
|
// tests can be done in 2D space.
|
|
IfcMatrix4 proj = proj_inv;
|
|
proj.Inverse();
|
|
|
|
// clip the current contents of `meshout` against the plane we obtained from the second operand
|
|
const std::vector<IfcVector3>& in = first_operand.verts;
|
|
std::vector<IfcVector3>& outvert = result.verts;
|
|
|
|
std::vector<unsigned int>::const_iterator begin = first_operand.vertcnt.begin(),
|
|
end = first_operand.vertcnt.end(), iit;
|
|
|
|
outvert.reserve(in.size());
|
|
result.vertcnt.reserve(first_operand.vertcnt.size());
|
|
|
|
std::vector<size_t> intersected_boundary_segments;
|
|
std::vector<IfcVector3> intersected_boundary_points;
|
|
|
|
// TODO: the following algorithm doesn't handle all cases.
|
|
unsigned int vidx = 0;
|
|
for(iit = begin; iit != end; vidx += *iit++) {
|
|
if (!*iit) {
|
|
continue;
|
|
}
|
|
|
|
unsigned int newcount = 0;
|
|
bool was_outside_boundary = !PointInPoly(proj * in[vidx], profile->verts);
|
|
|
|
// used any more?
|
|
//size_t last_intersected_boundary_segment;
|
|
IfcVector3 last_intersected_boundary_point;
|
|
|
|
bool extra_point_flag = false;
|
|
IfcVector3 extra_point;
|
|
|
|
IfcVector3 enter_volume;
|
|
bool entered_volume_flag = false;
|
|
|
|
for(unsigned int i = 0; i < *iit; ++i) {
|
|
// current segment: [i,i+1 mod size] or [*extra_point,i] if extra_point_flag is set
|
|
const IfcVector3& e0 = extra_point_flag ? extra_point : in[vidx+i];
|
|
const IfcVector3& e1 = extra_point_flag ? in[vidx+i] : in[vidx+(i+1)%*iit];
|
|
|
|
// does the current segment intersect the polygonal boundary?
|
|
const IfcVector3& e0_plane = proj * e0;
|
|
const IfcVector3& e1_plane = proj * e1;
|
|
|
|
intersected_boundary_segments.clear();
|
|
intersected_boundary_points.clear();
|
|
|
|
const bool is_outside_boundary = !PointInPoly(e1_plane, profile->verts);
|
|
const bool is_boundary_intersection = is_outside_boundary != was_outside_boundary;
|
|
|
|
IntersectsBoundaryProfile(e0_plane, e1_plane, profile->verts,
|
|
intersected_boundary_segments,
|
|
intersected_boundary_points);
|
|
|
|
ai_assert(!is_boundary_intersection || !intersected_boundary_segments.empty());
|
|
|
|
// does the current segment intersect the plane?
|
|
// (no extra check if this is an extra point)
|
|
IfcVector3 isectpos;
|
|
const Intersect isect = extra_point_flag ? Intersect_No : IntersectSegmentPlane(p,n,e0,e1,isectpos);
|
|
|
|
#ifdef ASSIMP_BUILD_DEBUG
|
|
if (isect == Intersect_Yes) {
|
|
const IfcFloat f = fabs((isectpos - p)*n);
|
|
ai_assert(f < 1e-5);
|
|
}
|
|
#endif
|
|
|
|
const bool is_white_side = (e0-p)*n >= -1e-6;
|
|
|
|
// e0 on good side of plane? (i.e. we should keep all geometry on this side)
|
|
if (is_white_side) {
|
|
// but is there an intersection in e0-e1 and is e1 in the clipping
|
|
// boundary? In this case, generate a line that only goes to the
|
|
// intersection point.
|
|
if (isect == Intersect_Yes && !is_outside_boundary) {
|
|
outvert.push_back(e0);
|
|
++newcount;
|
|
|
|
outvert.push_back(isectpos);
|
|
++newcount;
|
|
|
|
/*
|
|
// this is, however, only a line that goes to the plane, but not
|
|
// necessarily to the point where the bounding volume on the
|
|
// black side of the plane is hit. So basically, we need another
|
|
// check for [isectpos-e1], which should yield an intersection
|
|
// point.
|
|
extra_point_flag = true;
|
|
extra_point = isectpos;
|
|
|
|
was_outside_boundary = true;
|
|
continue; */
|
|
|
|
// [isectpos, enter_volume] potentially needs extra points.
|
|
// For this, we determine the intersection point with the
|
|
// bounding volume and project it onto the plane.
|
|
/*
|
|
const IfcVector3& enter_volume_proj = proj * enter_volume;
|
|
const IfcVector3& enter_isectpos = proj * isectpos;
|
|
|
|
intersected_boundary_segments.clear();
|
|
intersected_boundary_points.clear();
|
|
|
|
IntersectsBoundaryProfile(enter_volume_proj, enter_isectpos, profile->verts,
|
|
intersected_boundary_segments,
|
|
intersected_boundary_points);
|
|
|
|
if(!intersected_boundary_segments.empty()) {
|
|
|
|
vec = vec + ((p - vec) * n) * n;
|
|
}
|
|
*/
|
|
|
|
//entered_volume_flag = true;
|
|
}
|
|
else {
|
|
outvert.push_back(e0);
|
|
++newcount;
|
|
}
|
|
}
|
|
// e0 on bad side of plane, e1 on good (i.e. we should remove geometry on this side,
|
|
// but only if it is within the bounding volume).
|
|
else if (isect == Intersect_Yes) {
|
|
// is e0 within the clipping volume? Insert the intersection point
|
|
// of [e0,e1] and the plane instead of e0.
|
|
if(was_outside_boundary) {
|
|
outvert.push_back(e0);
|
|
}
|
|
else {
|
|
if(entered_volume_flag) {
|
|
const IfcVector3& fix_point = enter_volume + ((p - enter_volume) * n) * n;
|
|
outvert.push_back(fix_point);
|
|
++newcount;
|
|
}
|
|
|
|
outvert.push_back(isectpos);
|
|
}
|
|
entered_volume_flag = false;
|
|
++newcount;
|
|
}
|
|
else { // no intersection with plane or parallel; e0,e1 are on the bad side
|
|
|
|
// did we just pass the boundary line to the poly bounding?
|
|
if (is_boundary_intersection) {
|
|
|
|
// and are now outside the clipping boundary?
|
|
if (is_outside_boundary) {
|
|
// in this case, get the point where the clipping boundary
|
|
// was entered first. Then, get the point where the clipping
|
|
// boundary volume was left! These two points with the plane
|
|
// normal form another plane that intersects the clipping
|
|
// volume. There are two ways to get from the first to the
|
|
// second point along the intersection curve, try to pick the
|
|
// one that lies within the current polygon.
|
|
|
|
// TODO this approach doesn't handle all cases
|
|
|
|
// ...
|
|
|
|
IfcFloat d = 1e20;
|
|
IfcVector3 vclosest;
|
|
BOOST_FOREACH(const IfcVector3& v, intersected_boundary_points) {
|
|
const IfcFloat dn = (v-e1_plane).SquareLength();
|
|
if (dn < d) {
|
|
d = dn;
|
|
vclosest = v;
|
|
}
|
|
}
|
|
|
|
vclosest = proj_inv * vclosest;
|
|
if(entered_volume_flag) {
|
|
const IfcVector3& fix_point = vclosest + ((p - vclosest) * n) * n;
|
|
outvert.push_back(fix_point);
|
|
++newcount;
|
|
|
|
entered_volume_flag = false;
|
|
}
|
|
|
|
outvert.push_back(vclosest);
|
|
++newcount;
|
|
|
|
//outvert.push_back(e1);
|
|
//++newcount;
|
|
}
|
|
else {
|
|
entered_volume_flag = true;
|
|
|
|
// we just entered the clipping boundary. Record the point
|
|
// and the segment where we entered and also generate this point.
|
|
//last_intersected_boundary_segment = intersected_boundary_segments.front();
|
|
//last_intersected_boundary_point = intersected_boundary_points.front();
|
|
|
|
outvert.push_back(e0);
|
|
++newcount;
|
|
|
|
IfcFloat d = 1e20;
|
|
IfcVector3 vclosest;
|
|
BOOST_FOREACH(const IfcVector3& v, intersected_boundary_points) {
|
|
const IfcFloat dn = (v-e0_plane).SquareLength();
|
|
if (dn < d) {
|
|
d = dn;
|
|
vclosest = v;
|
|
}
|
|
}
|
|
|
|
enter_volume = proj_inv * vclosest;
|
|
outvert.push_back(enter_volume);
|
|
++newcount;
|
|
}
|
|
}
|
|
// if not, we just keep the vertex
|
|
else if (is_outside_boundary) {
|
|
outvert.push_back(e0);
|
|
++newcount;
|
|
|
|
entered_volume_flag = false;
|
|
}
|
|
}
|
|
|
|
was_outside_boundary = is_outside_boundary;
|
|
extra_point_flag = false;
|
|
}
|
|
|
|
if (!newcount) {
|
|
continue;
|
|
}
|
|
|
|
IfcVector3 vmin,vmax;
|
|
ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
|
|
|
|
// filter our IfcFloat points - those may happen if a point lies
|
|
// directly on the intersection line. However, due to IfcFloat
|
|
// precision a bitwise comparison is not feasible to detect
|
|
// this case.
|
|
const IfcFloat epsilon = (vmax-vmin).SquareLength() / 1e6f;
|
|
FuzzyVectorCompare fz(epsilon);
|
|
|
|
std::vector<IfcVector3>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
|
|
|
|
if (e != outvert.end()) {
|
|
newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
|
|
outvert.erase(e,outvert.end());
|
|
}
|
|
if (fz(*( outvert.end()-newcount),outvert.back())) {
|
|
outvert.pop_back();
|
|
--newcount;
|
|
}
|
|
if(newcount > 2) {
|
|
result.vertcnt.push_back(newcount);
|
|
}
|
|
else while(newcount-->0) {
|
|
result.verts.pop_back();
|
|
}
|
|
|
|
}
|
|
IFCImporter::LogDebug("generating CSG geometry by plane clipping with polygonal bounding (IfcBooleanClippingResult)");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessBooleanExtrudedAreaSolidDifference(const IfcExtrudedAreaSolid* as, TempMesh& result,
|
|
const TempMesh& first_operand,
|
|
ConversionData& conv)
|
|
{
|
|
ai_assert(as != NULL);
|
|
|
|
// This case is handled by reduction to an instance of the quadrify() algorithm.
|
|
// Obviously, this won't work for arbitrarily complex cases. In fact, the first
|
|
// operand should be near-planar. Luckily, this is usually the case in Ifc
|
|
// buildings.
|
|
|
|
boost::shared_ptr<TempMesh> meshtmp = boost::shared_ptr<TempMesh>(new TempMesh());
|
|
ProcessExtrudedAreaSolid(*as,*meshtmp,conv,false);
|
|
|
|
std::vector<TempOpening> openings(1, TempOpening(as,IfcVector3(0,0,0),meshtmp,boost::shared_ptr<TempMesh>()));
|
|
|
|
result = first_operand;
|
|
|
|
TempMesh temp;
|
|
|
|
std::vector<IfcVector3>::const_iterator vit = first_operand.verts.begin();
|
|
BOOST_FOREACH(unsigned int pcount, first_operand.vertcnt) {
|
|
temp.Clear();
|
|
|
|
temp.verts.insert(temp.verts.end(), vit, vit + pcount);
|
|
temp.vertcnt.push_back(pcount);
|
|
|
|
// The algorithms used to generate mesh geometry sometimes
|
|
// spit out lines or other degenerates which must be
|
|
// filtered to avoid running into assertions later on.
|
|
|
|
// ComputePolygonNormal returns the Newell normal, so the
|
|
// length of the normal is the area of the polygon.
|
|
const IfcVector3& normal = temp.ComputeLastPolygonNormal(false);
|
|
if (normal.SquareLength() < static_cast<IfcFloat>(1e-5)) {
|
|
IFCImporter::LogWarn("skipping degenerate polygon (ProcessBooleanExtrudedAreaSolidDifference)");
|
|
continue;
|
|
}
|
|
|
|
GenerateOpenings(openings, std::vector<IfcVector3>(1,IfcVector3(1,0,0)), temp, false, true);
|
|
result.Append(temp);
|
|
|
|
vit += pcount;
|
|
}
|
|
|
|
IFCImporter::LogDebug("generating CSG geometry by geometric difference to a solid (IfcExtrudedAreaSolid)");
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv)
|
|
{
|
|
// supported CSG operations:
|
|
// DIFFERENCE
|
|
if(const IfcBooleanResult* const clip = boolean.ToPtr<IfcBooleanResult>()) {
|
|
if(clip->Operator != "DIFFERENCE") {
|
|
IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
|
|
return;
|
|
}
|
|
|
|
// supported cases (1st operand):
|
|
// IfcBooleanResult -- call ProcessBoolean recursively
|
|
// IfcSweptAreaSolid -- obtain polygonal geometry first
|
|
|
|
// supported cases (2nd operand):
|
|
// IfcHalfSpaceSolid -- easy, clip against plane
|
|
// IfcExtrudedAreaSolid -- reduce to an instance of the quadrify() algorithm
|
|
|
|
|
|
const IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr<IfcHalfSpaceSolid>(conv.db);
|
|
const IfcExtrudedAreaSolid* const as = clip->SecondOperand->ResolveSelectPtr<IfcExtrudedAreaSolid>(conv.db);
|
|
if(!hs && !as) {
|
|
IFCImporter::LogError("expected IfcHalfSpaceSolid or IfcExtrudedAreaSolid as second clipping operand");
|
|
return;
|
|
}
|
|
|
|
TempMesh first_operand;
|
|
if(const IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IfcBooleanResult>(conv.db)) {
|
|
ProcessBoolean(*op0,first_operand,conv);
|
|
}
|
|
else if (const IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IfcSweptAreaSolid>(conv.db)) {
|
|
ProcessSweptAreaSolid(*swept,first_operand,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
|
|
return;
|
|
}
|
|
|
|
if(hs) {
|
|
|
|
const IfcPolygonalBoundedHalfSpace* const hs_bounded = clip->SecondOperand->ResolveSelectPtr<IfcPolygonalBoundedHalfSpace>(conv.db);
|
|
if (hs_bounded) {
|
|
ProcessPolygonalBoundedBooleanHalfSpaceDifference(hs_bounded, result, first_operand, conv);
|
|
}
|
|
else {
|
|
ProcessBooleanHalfSpaceDifference(hs, result, first_operand, conv);
|
|
}
|
|
}
|
|
else {
|
|
ProcessBooleanExtrudedAreaSolidDifference(as, result, first_operand, conv);
|
|
}
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
|
|
}
|
|
}
|
|
|
|
} // ! IFC
|
|
} // ! Assimp
|
|
|
|
#endif
|
|
|