959 lines
32 KiB
C++
959 lines
32 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (ASSIMP)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2008, ASSIMP Development Team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the ASSIMP team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the ASSIMP Development Team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file Implementation of the ASE importer class */
|
|
#include "ASELoader.h"
|
|
#include "3DSSpatialSort.h"
|
|
#include "MaterialSystem.h"
|
|
|
|
#include "../include/IOStream.h"
|
|
#include "../include/IOSystem.h"
|
|
#include "../include/aiMesh.h"
|
|
#include "../include/aiScene.h"
|
|
#include "../include/aiAssert.h"
|
|
#include "../include/DefaultLogger.h"
|
|
|
|
#include <boost/scoped_ptr.hpp>
|
|
|
|
using namespace Assimp;
|
|
using namespace Assimp::ASE;
|
|
|
|
#define LOGOUT_WARN(x) DefaultLogger::get()->warn(x);
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
ASEImporter::ASEImporter()
|
|
{
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
ASEImporter::~ASEImporter()
|
|
{
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the class can handle the format of the given file.
|
|
bool ASEImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const
|
|
{
|
|
// simple check of file extension is enough for the moment
|
|
std::string::size_type pos = pFile.find_last_of('.');
|
|
// no file extension - can't read
|
|
if( pos == std::string::npos)
|
|
return false;
|
|
std::string extension = pFile.substr( pos);
|
|
|
|
if (extension.length() < 4)return false;
|
|
if (extension[0] != '.')return false;
|
|
|
|
if (extension[1] != 'a' && extension[1] != 'A')return false;
|
|
if (extension[2] != 's' && extension[2] != 'S')return false;
|
|
|
|
// NOTE: Sometimes the extension .ASK is also used
|
|
// however, often it only contains static animation skeletons
|
|
// without the real animations.
|
|
if (extension[3] != 'e' && extension[3] != 'E' &&
|
|
extension[3] != 'k' && extension[3] != 'K')return false;
|
|
|
|
return true;
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Imports the given file into the given scene structure.
|
|
void ASEImporter::InternReadFile(
|
|
const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler)
|
|
{
|
|
boost::scoped_ptr<IOStream> file( pIOHandler->Open( pFile));
|
|
|
|
// Check whether we can read from the file
|
|
if( file.get() == NULL)
|
|
{
|
|
throw new ImportErrorException( "Failed to open ASE file " + pFile + ".");
|
|
}
|
|
|
|
size_t fileSize = file->FileSize();
|
|
|
|
std::string::size_type pos = pFile.find_last_of('.');
|
|
std::string extension = pFile.substr( pos);
|
|
if(extension[3] == 'k' || extension[3] == 'K')
|
|
{
|
|
this->mIsAsk = true;
|
|
}
|
|
else this->mIsAsk = false;
|
|
|
|
// allocate storage and copy the contents of the file to a memory buffer
|
|
// (terminate it with zero)
|
|
this->mBuffer = new unsigned char[fileSize+1];
|
|
file->Read( (void*)mBuffer, 1, fileSize);
|
|
this->mBuffer[fileSize] = '\0';
|
|
|
|
// construct an ASE parser and parse the file
|
|
this->mParser = new ASE::Parser((const char*)this->mBuffer);
|
|
this->mParser->Parse();
|
|
|
|
// process all meshes
|
|
for (std::vector<ASE::Mesh>::iterator
|
|
i = this->mParser->m_vMeshes.begin();
|
|
i != this->mParser->m_vMeshes.end();++i)
|
|
{
|
|
// transform all vertices into worldspace
|
|
// world2obj transform is specified in the
|
|
// transformation matrix of a scenegraph node
|
|
this->TransformVertices(*i);
|
|
|
|
// now we need to create proper meshes from the import
|
|
// we need to split them by materials, build valid vertex/face lists ...
|
|
this->BuildUniqueRepresentation(*i);
|
|
|
|
// need to generate proper vertex normals if necessary
|
|
this->GenerateNormals(*i);
|
|
|
|
// convert all meshes to aiMesh objects
|
|
this->ConvertMeshes(*i,pScene);
|
|
}
|
|
// buil final material indices (remove submaterials and make the final list)
|
|
this->BuildMaterialIndices(pScene);
|
|
|
|
// build the final node graph
|
|
this->BuildNodes(pScene);
|
|
|
|
// delete the ASE parser
|
|
delete this->mParser;
|
|
this->mParser = NULL;
|
|
return;
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ASEImporter::BuildNodes(aiScene* pcScene)
|
|
{
|
|
ai_assert(NULL != pcScene);
|
|
|
|
pcScene->mRootNode = new aiNode();
|
|
pcScene->mRootNode->mNumMeshes = 0;
|
|
pcScene->mRootNode->mMeshes = 0;
|
|
|
|
ai_assert(4 <= AI_MAX_NUMBER_OF_COLOR_SETS);
|
|
std::vector<std::pair<aiMatrix4x4,std::list<unsigned int> > > stack;
|
|
stack.reserve(pcScene->mNumMeshes);
|
|
for (unsigned int i = 0; i < pcScene->mNumMeshes;++i)
|
|
{
|
|
// get the transformation matrix of the node
|
|
aiMatrix4x4* pmTransform = (aiMatrix4x4*)pcScene->mMeshes[i]->mColors[2];
|
|
|
|
// search for an identical matrix in our list
|
|
for (std::vector<std::pair<aiMatrix4x4,std::list<unsigned int> > >::iterator
|
|
a = stack.begin();
|
|
a != stack.end();++a)
|
|
{
|
|
if ((*a).first == *pmTransform)
|
|
{
|
|
(*a).second.push_back(i);
|
|
pmTransform->a1 = std::numeric_limits<float>::quiet_NaN();
|
|
break;
|
|
}
|
|
}
|
|
if (is_not_qnan(pmTransform->a1))
|
|
{
|
|
// add a new entry ...
|
|
stack.push_back(std::pair<aiMatrix4x4,std::list<unsigned int> >(
|
|
*pmTransform,std::list<unsigned int>()));
|
|
stack.back().second.push_back(i);
|
|
}
|
|
// delete the matrix
|
|
delete pmTransform;
|
|
pcScene->mMeshes[i]->mColors[2] = NULL;
|
|
}
|
|
|
|
// allocate enough space for the child nodes
|
|
pcScene->mRootNode->mNumChildren = stack.size();
|
|
pcScene->mRootNode->mChildren = new aiNode*[stack.size()];
|
|
|
|
// now build all nodes
|
|
for (std::vector<std::pair<aiMatrix4x4,std::list<unsigned int> > >::iterator
|
|
a = stack.begin();
|
|
a != stack.end();++a)
|
|
{
|
|
aiNode* pcNode = new aiNode();
|
|
pcNode->mNumMeshes = (*a).second.size();
|
|
pcNode->mMeshes = new unsigned int[pcNode->mNumMeshes];
|
|
for (std::list<unsigned int>::const_iterator
|
|
i = (*a).second.begin();
|
|
i != (*a).second.end();++i)
|
|
{
|
|
*pcNode->mMeshes++ = *i;
|
|
}
|
|
pcNode->mMeshes -= pcNode->mNumMeshes;
|
|
pcNode->mTransformation = (*a).first;
|
|
*pcScene->mRootNode->mChildren++ = pcNode;
|
|
}
|
|
pcScene->mRootNode->mChildren -= stack.size();
|
|
return;
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ASEImporter::TransformVertices(ASE::Mesh& mesh)
|
|
{
|
|
// the matrix data is stored in column-major format,
|
|
// but we need row major
|
|
mesh.mTransform.Transpose();
|
|
|
|
aiMatrix4x4 m = mesh.mTransform;
|
|
m.Inverse();
|
|
|
|
for (std::vector<aiVector3D>::iterator
|
|
i = mesh.mPositions.begin();
|
|
i != mesh.mPositions.end();++i)
|
|
{
|
|
(*i) = m * (*i);
|
|
}
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ASEImporter::BuildUniqueRepresentation(ASE::Mesh& mesh)
|
|
{
|
|
// allocate output storage
|
|
std::vector<aiVector3D> mPositions;
|
|
std::vector<aiVector3D> amTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS];
|
|
std::vector<aiColor4D> mVertexColors;
|
|
std::vector<aiVector3D> mNormals;
|
|
std::vector<BoneVertex> mBoneVertices;
|
|
|
|
unsigned int iSize = mesh.mFaces.size() * 3;
|
|
mPositions.resize(iSize);
|
|
|
|
// optional texture coordinates
|
|
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS;++i)
|
|
{
|
|
if (!mesh.amTexCoords[i].empty())
|
|
{
|
|
amTexCoords[i].resize(iSize);
|
|
}
|
|
}
|
|
// optional vertex colors
|
|
if (!mesh.mVertexColors.empty())
|
|
{
|
|
mVertexColors.resize(iSize);
|
|
}
|
|
|
|
// optional vertex normals (vertex normals can simply be copied)
|
|
if (!mesh.mNormals.empty())
|
|
{
|
|
mNormals.resize(iSize);
|
|
}
|
|
// bone vertices. There is no need to change the bone list
|
|
if (!mesh.mBoneVertices.empty())
|
|
{
|
|
mBoneVertices.resize(iSize);
|
|
}
|
|
|
|
// iterate through all faces in the mesh
|
|
unsigned int iCurrent = 0;
|
|
for (std::vector<ASE::Face>::iterator
|
|
i = mesh.mFaces.begin();
|
|
i != mesh.mFaces.end();++i)
|
|
{
|
|
for (unsigned int n = 0; n < 3;++n,++iCurrent)
|
|
{
|
|
mPositions[iCurrent] = mesh.mPositions[(*i).a.mIndices[n]];
|
|
|
|
// add texture coordinates
|
|
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
|
|
{
|
|
if (!mesh.amTexCoords[c].empty())
|
|
{
|
|
amTexCoords[c][iCurrent] = mesh.amTexCoords[c][(*i).amUVIndices[c][n]];
|
|
}
|
|
}
|
|
// add vertex colors
|
|
if (!mesh.mVertexColors.empty())
|
|
{
|
|
mVertexColors[iCurrent] = mesh.mVertexColors[(*i).mColorIndices[n]];
|
|
}
|
|
// add normal vectors
|
|
if (!mesh.mNormals.empty())
|
|
{
|
|
mNormals[iCurrent] = mesh.mNormals[(*i).a.mIndices[n]];
|
|
}
|
|
|
|
// handle bone vertices
|
|
if ((*i).a.mIndices[n] < mesh.mBoneVertices.size())
|
|
{
|
|
// (sometimes this will cause bone verts to be duplicated
|
|
// however, I' quite sure Schrompf' JoinVerticesStep
|
|
// will fix that again ...)
|
|
mBoneVertices[iCurrent] = mesh.mBoneVertices[(*i).a.mIndices[n]];
|
|
}
|
|
|
|
// assign a new valid index to the face
|
|
(*i).a.mIndices[n] = iCurrent;
|
|
}
|
|
}
|
|
|
|
// replace the old arrays
|
|
mesh.mNormals = mNormals;
|
|
mesh.mPositions = mPositions;
|
|
mesh.mVertexColors = mVertexColors;
|
|
|
|
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
|
|
mesh.amTexCoords[c] = amTexCoords[c];
|
|
|
|
// now need to transform all vertices with the inverse of their
|
|
// transformation matrix ...
|
|
aiMatrix4x4 mInverse = mesh.mTransform;
|
|
mInverse.Inverse();
|
|
|
|
for (std::vector<aiVector3D>::iterator
|
|
i = mesh.mPositions.begin();
|
|
i != mesh.mPositions.end();++i)
|
|
{
|
|
(*i) = mInverse * (*i);
|
|
}
|
|
|
|
return;
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ASEImporter::ConvertMaterial(ASE::Material& mat)
|
|
{
|
|
// allocate the output material
|
|
mat.pcInstance = new MaterialHelper();
|
|
|
|
// At first add the base ambient color of the
|
|
// scene to the material
|
|
mat.mAmbient.r += this->mParser->m_clrAmbient.r;
|
|
mat.mAmbient.g += this->mParser->m_clrAmbient.g;
|
|
mat.mAmbient.b += this->mParser->m_clrAmbient.b;
|
|
|
|
aiString name;
|
|
name.Set( mat.mName);
|
|
mat.pcInstance->AddProperty( &name, AI_MATKEY_NAME);
|
|
|
|
// material colors
|
|
mat.pcInstance->AddProperty( &mat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT);
|
|
mat.pcInstance->AddProperty( &mat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
mat.pcInstance->AddProperty( &mat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
|
|
mat.pcInstance->AddProperty( &mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
|
|
|
|
// shininess
|
|
if (0.0f != mat.mSpecularExponent && 0.0f != mat.mShininessStrength)
|
|
{
|
|
mat.pcInstance->AddProperty( &mat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
|
|
mat.pcInstance->AddProperty( &mat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH);
|
|
}
|
|
// if there is no shininess, we can disable phong lighting
|
|
else if (Dot3DS::Dot3DSFile::Metal == mat.mShading ||
|
|
Dot3DS::Dot3DSFile::Phong == mat.mShading)
|
|
{
|
|
mat.mShading = Dot3DS::Dot3DSFile::Gouraud;
|
|
}
|
|
|
|
// opacity
|
|
mat.pcInstance->AddProperty<float>( &mat.mTransparency,1,AI_MATKEY_OPACITY);
|
|
|
|
|
|
// shading mode
|
|
aiShadingMode eShading = aiShadingMode_NoShading;
|
|
switch (mat.mShading)
|
|
{
|
|
case Dot3DS::Dot3DSFile::Flat:
|
|
eShading = aiShadingMode_Flat; break;
|
|
case Dot3DS::Dot3DSFile::Phong :
|
|
eShading = aiShadingMode_Phong; break;
|
|
|
|
// I don't know what "Wire" shading should be,
|
|
// assume it is simple lambertian diffuse (L dot N) shading
|
|
case Dot3DS::Dot3DSFile::Wire:
|
|
case Dot3DS::Dot3DSFile::Gouraud:
|
|
eShading = aiShadingMode_Gouraud; break;
|
|
case Dot3DS::Dot3DSFile::Metal :
|
|
eShading = aiShadingMode_CookTorrance; break;
|
|
}
|
|
mat.pcInstance->AddProperty<int>( (int*)&eShading,1,AI_MATKEY_SHADING_MODEL);
|
|
|
|
if (Dot3DS::Dot3DSFile::Wire == mat.mShading)
|
|
{
|
|
// set the wireframe flag
|
|
unsigned int iWire = 1;
|
|
mat.pcInstance->AddProperty<int>( (int*)&iWire,1,AI_MATKEY_ENABLE_WIREFRAME);
|
|
}
|
|
|
|
// texture, if there is one
|
|
if( mat.sTexDiffuse.mMapName.length() > 0)
|
|
{
|
|
aiString tex;
|
|
tex.Set( mat.sTexDiffuse.mMapName);
|
|
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0));
|
|
|
|
if (is_not_qnan(mat.sTexDiffuse.mTextureBlend))
|
|
mat.pcInstance->AddProperty<float>( &mat.sTexDiffuse.mTextureBlend, 1,
|
|
AI_MATKEY_TEXBLEND_DIFFUSE(0));
|
|
}
|
|
if( mat.sTexSpecular.mMapName.length() > 0)
|
|
{
|
|
aiString tex;
|
|
tex.Set( mat.sTexSpecular.mMapName);
|
|
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(0));
|
|
|
|
if (is_not_qnan(mat.sTexSpecular.mTextureBlend))
|
|
mat.pcInstance->AddProperty<float>( &mat.sTexSpecular.mTextureBlend, 1,
|
|
AI_MATKEY_TEXBLEND_SPECULAR(0));
|
|
}
|
|
if( mat.sTexOpacity.mMapName.length() > 0)
|
|
{
|
|
aiString tex;
|
|
tex.Set( mat.sTexOpacity.mMapName);
|
|
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_OPACITY(0));
|
|
|
|
if (is_not_qnan(mat.sTexOpacity.mTextureBlend))
|
|
mat.pcInstance->AddProperty<float>( &mat.sTexOpacity.mTextureBlend, 1,
|
|
AI_MATKEY_TEXBLEND_OPACITY(0));
|
|
}
|
|
if( mat.sTexEmissive.mMapName.length() > 0)
|
|
{
|
|
aiString tex;
|
|
tex.Set( mat.sTexEmissive.mMapName);
|
|
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(0));
|
|
|
|
if (is_not_qnan(mat.sTexEmissive.mTextureBlend))
|
|
mat.pcInstance->AddProperty<float>( &mat.sTexEmissive.mTextureBlend, 1,
|
|
AI_MATKEY_TEXBLEND_EMISSIVE(0));
|
|
}
|
|
if( mat.sTexAmbient.mMapName.length() > 0)
|
|
{
|
|
aiString tex;
|
|
tex.Set( mat.sTexAmbient.mMapName);
|
|
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_AMBIENT(0));
|
|
|
|
if (is_not_qnan(mat.sTexAmbient.mTextureBlend))
|
|
mat.pcInstance->AddProperty<float>( &mat.sTexAmbient.mTextureBlend, 1,
|
|
AI_MATKEY_TEXBLEND_AMBIENT(0));
|
|
}
|
|
if( mat.sTexBump.mMapName.length() > 0)
|
|
{
|
|
aiString tex;
|
|
tex.Set( mat.sTexBump.mMapName);
|
|
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(0));
|
|
|
|
if (is_not_qnan(mat.sTexBump.mTextureBlend))
|
|
mat.pcInstance->AddProperty<float>( &mat.sTexBump.mTextureBlend, 1,
|
|
AI_MATKEY_TEXBLEND_HEIGHT(0));
|
|
}
|
|
if( mat.sTexShininess.mMapName.length() > 0)
|
|
{
|
|
aiString tex;
|
|
tex.Set( mat.sTexShininess.mMapName);
|
|
mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SHININESS(0));
|
|
|
|
if (is_not_qnan(mat.sTexShininess.mTextureBlend))
|
|
mat.pcInstance->AddProperty<float>( &mat.sTexBump.mTextureBlend, 1,
|
|
AI_MATKEY_TEXBLEND_SHININESS(0));
|
|
}
|
|
|
|
// store the name of the material itself, too
|
|
if( mat.mName.length() > 0)
|
|
{
|
|
aiString tex;
|
|
tex.Set( mat.mName);
|
|
mat.pcInstance->AddProperty( &tex, AI_MATKEY_NAME);
|
|
}
|
|
return;
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, aiScene* pcScene)
|
|
{
|
|
ai_assert(NULL != pcScene);
|
|
|
|
// validate the material index of the mesh
|
|
if (mesh.iMaterialIndex >= this->mParser->m_vMaterials.size())
|
|
{
|
|
mesh.iMaterialIndex = this->mParser->m_vMaterials.size()-1;
|
|
LOGOUT_WARN("Material index is out of range");
|
|
}
|
|
|
|
// List of all output meshes
|
|
std::vector<aiMesh*> avOutMeshes;
|
|
|
|
// if the material the mesh is assigned to is consisting of submeshes
|
|
// we'll need to split it ... Quak.
|
|
if (!this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty())
|
|
{
|
|
std::vector<ASE::Material> vSubMaterials = this->mParser->
|
|
m_vMaterials[mesh.iMaterialIndex].avSubMaterials;
|
|
|
|
std::vector<unsigned int>* aiSplit = new std::vector<unsigned int>[
|
|
vSubMaterials.size()];
|
|
|
|
// build a list of all faces per submaterial
|
|
unsigned int iNum = 0;
|
|
for (unsigned int i = 0; i < mesh.mFaces.size();++i)
|
|
{
|
|
// check range
|
|
if (mesh.mFaces[i].iMaterial >= vSubMaterials.size())
|
|
{
|
|
LOGOUT_WARN("Submaterial index is out of range");
|
|
|
|
// use the last material instead
|
|
aiSplit[vSubMaterials.size()-1].push_back(i);
|
|
}
|
|
else aiSplit[mesh.mFaces[i].iMaterial].push_back(i);
|
|
}
|
|
|
|
// now generate submeshes
|
|
for (unsigned int p = 0; p < vSubMaterials.size();++p)
|
|
{
|
|
if (aiSplit[p].size() != 0)
|
|
{
|
|
aiMesh* p_pcOut = new aiMesh();
|
|
|
|
// let the sub material index
|
|
p_pcOut->mMaterialIndex = p;
|
|
|
|
// we will need this material
|
|
this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials[p].bNeed = true;
|
|
|
|
// store the real index here ... color channel 3
|
|
p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex;
|
|
// store the real transformation matrix in color channel 2
|
|
p_pcOut->mColors[2] = (aiColor4D*) new aiMatrix4x4(mesh.mTransform);
|
|
avOutMeshes.push_back(p_pcOut);
|
|
|
|
// convert vertices
|
|
p_pcOut->mNumVertices = aiSplit[p].size()*3;
|
|
p_pcOut->mNumFaces = aiSplit[p].size();
|
|
|
|
// receive output vertex weights
|
|
std::vector<std::pair<unsigned int, float>>* avOutputBones;
|
|
if (!mesh.mBones.empty())
|
|
{
|
|
avOutputBones = new std::vector<std::pair<unsigned int, float>>[mesh.mBones.size()];
|
|
}
|
|
|
|
// allocate enough storage for faces
|
|
p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
|
|
|
|
if (p_pcOut->mNumVertices != 0)
|
|
{
|
|
p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices];
|
|
p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices];
|
|
unsigned int iBase = 0;
|
|
|
|
for (unsigned int q = 0; q < aiSplit[p].size();++q)
|
|
{
|
|
unsigned int iIndex = aiSplit[p][q];
|
|
|
|
p_pcOut->mFaces[q].mIndices = new unsigned int[3];
|
|
p_pcOut->mFaces[q].mNumIndices = 3;
|
|
|
|
for (unsigned int t = 0; t < 3;++t)
|
|
{
|
|
const uint32_t iIndex2 = mesh.mFaces[iIndex].a.mIndices[t];
|
|
|
|
p_pcOut->mVertices[iBase] = mesh.mPositions[iIndex2];
|
|
p_pcOut->mNormals[iBase] = mesh.mNormals[iIndex2];
|
|
|
|
// convert bones, if existing
|
|
if (!mesh.mBones.empty())
|
|
{
|
|
// check whether there is a vertex weight that is using
|
|
// this vertex index ...
|
|
if (iIndex2 < mesh.mBoneVertices.size())
|
|
{
|
|
for (std::vector<std::pair<int,float>>::const_iterator
|
|
blubb = mesh.mBoneVertices[iIndex2].mBoneWeights.begin();
|
|
blubb != mesh.mBoneVertices[iIndex2].mBoneWeights.end();++blubb)
|
|
{
|
|
// NOTE: illegal cases have already been filtered out
|
|
avOutputBones[(*blubb).first].push_back(std::pair<unsigned int, float>(
|
|
iBase,(*blubb).second));
|
|
}
|
|
}
|
|
}
|
|
++iBase;
|
|
}
|
|
p_pcOut->mFaces[q].mIndices[0] = iBase-2;
|
|
p_pcOut->mFaces[q].mIndices[1] = iBase-1;
|
|
p_pcOut->mFaces[q].mIndices[2] = iBase;
|
|
}
|
|
}
|
|
// convert texture coordinates
|
|
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
|
|
{
|
|
if (!mesh.amTexCoords[c].empty())
|
|
{
|
|
p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices];
|
|
unsigned int iBase = 0;
|
|
for (unsigned int q = 0; q < aiSplit[p].size();++q)
|
|
{
|
|
unsigned int iIndex = aiSplit[p][q];
|
|
for (unsigned int t = 0; t < 3;++t)
|
|
{
|
|
p_pcOut->mTextureCoords[c][iBase++] = mesh.amTexCoords[c][mesh.mFaces[iIndex].a.mIndices[t]];
|
|
}
|
|
}
|
|
// setup the number of valid vertex components
|
|
p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
|
|
}
|
|
}
|
|
|
|
// convert vertex colors (only one set supported)
|
|
if (!mesh.mVertexColors.empty())
|
|
{
|
|
p_pcOut->mColors[0] = new aiColor4D[p_pcOut->mNumVertices];
|
|
unsigned int iBase = 0;
|
|
for (unsigned int q = 0; q < aiSplit[p].size();++q)
|
|
{
|
|
unsigned int iIndex = aiSplit[p][q];
|
|
for (unsigned int t = 0; t < 3;++t)
|
|
{
|
|
p_pcOut->mColors[0][iBase++] = mesh.mVertexColors[mesh.mFaces[iIndex].a.mIndices[t]];
|
|
}
|
|
}
|
|
}
|
|
if (!mesh.mBones.empty())
|
|
{
|
|
p_pcOut->mNumBones = 0;
|
|
for (unsigned int mrspock = 0; mrspock < mesh.mBones.size();++mrspock)
|
|
if (!avOutputBones[mrspock].empty())p_pcOut->mNumBones++;
|
|
|
|
p_pcOut->mBones = new aiBone* [ p_pcOut->mNumBones ];
|
|
aiBone** pcBone = &p_pcOut->mBones[0];
|
|
for (unsigned int mrspock = 0; mrspock < mesh.mBones.size();++mrspock)
|
|
{
|
|
if (!avOutputBones[mrspock].empty())
|
|
{
|
|
// we will need this bone. add it to the output mesh and
|
|
// add all per-vertex weights
|
|
*pcBone = new aiBone();
|
|
(**pcBone).mName.Set(mesh.mBones[mrspock].mName);
|
|
|
|
(**pcBone).mNumWeights = avOutputBones[mrspock].size();
|
|
(**pcBone).mWeights = new aiVertexWeight[(**pcBone).mNumWeights];
|
|
|
|
for (unsigned int captainkirk = 0; captainkirk < (**pcBone).mNumWeights;++captainkirk)
|
|
{
|
|
const std::pair<unsigned int,float>& ref = avOutputBones[mrspock][captainkirk];
|
|
(**pcBone).mWeights[captainkirk].mVertexId = ref.first;
|
|
(**pcBone).mWeights[captainkirk].mWeight = ref.second;
|
|
}
|
|
++pcBone;
|
|
}
|
|
}
|
|
// delete allocated storage
|
|
delete[] avOutputBones;
|
|
}
|
|
}
|
|
}
|
|
// delete storage
|
|
delete[] aiSplit;
|
|
}
|
|
else
|
|
{
|
|
// otherwise we can simply copy the data to one output mesh
|
|
aiMesh* p_pcOut = new aiMesh();
|
|
|
|
// set an empty sub material index
|
|
p_pcOut->mMaterialIndex = ASE::Face::DEFAULT_MATINDEX;
|
|
this->mParser->m_vMaterials[mesh.iMaterialIndex].bNeed = true;
|
|
|
|
// store the real index here ... in color channel 3
|
|
p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex;
|
|
// store the transformation matrix in color channel 2
|
|
p_pcOut->mColors[2] = (aiColor4D*) new aiMatrix4x4(mesh.mTransform);
|
|
avOutMeshes.push_back(p_pcOut);
|
|
|
|
// convert vertices
|
|
p_pcOut->mNumVertices = mesh.mPositions.size();
|
|
p_pcOut->mNumFaces = mesh.mFaces.size();
|
|
|
|
// allocate enough storage for faces
|
|
p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
|
|
|
|
// copy vertices
|
|
p_pcOut->mVertices = new aiVector3D[mesh.mPositions.size()];
|
|
memcpy(p_pcOut->mVertices,&mesh.mPositions[0],
|
|
mesh.mPositions.size() * sizeof(aiVector3D));
|
|
|
|
// copy normals
|
|
p_pcOut->mNormals = new aiVector3D[mesh.mNormals.size()];
|
|
memcpy(p_pcOut->mNormals,&mesh.mNormals[0],
|
|
mesh.mNormals.size() * sizeof(aiVector3D));
|
|
|
|
// copy texture coordinates
|
|
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c)
|
|
{
|
|
if (!mesh.amTexCoords[c].empty())
|
|
{
|
|
p_pcOut->mTextureCoords[c] = new aiVector3D[mesh.amTexCoords[c].size()];
|
|
memcpy(p_pcOut->mTextureCoords[c],&mesh.amTexCoords[c][0],
|
|
mesh.amTexCoords[c].size() * sizeof(aiVector3D));
|
|
|
|
// setup the number of valid vertex components
|
|
p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
|
|
}
|
|
}
|
|
|
|
// copy vertex colors
|
|
if (!mesh.mVertexColors.empty())
|
|
{
|
|
p_pcOut->mColors[0] = new aiColor4D[mesh.mVertexColors.size()];
|
|
memcpy(p_pcOut->mColors[0],&mesh.mVertexColors[0],
|
|
mesh.mVertexColors.size() * sizeof(aiColor4D));
|
|
}
|
|
|
|
// copy faces
|
|
for (unsigned int iFace = 0; iFace < p_pcOut->mNumFaces;++iFace)
|
|
{
|
|
p_pcOut->mFaces[iFace].mNumIndices = 3;
|
|
p_pcOut->mFaces[iFace].mIndices = new unsigned int[3];
|
|
|
|
// copy indices
|
|
p_pcOut->mFaces[iFace].mIndices[0] = mesh.mFaces[iFace].a.mIndices[0];
|
|
p_pcOut->mFaces[iFace].mIndices[1] = mesh.mFaces[iFace].a.mIndices[1];
|
|
p_pcOut->mFaces[iFace].mIndices[2] = mesh.mFaces[iFace].a.mIndices[2];
|
|
}
|
|
|
|
// copy vertex bones
|
|
if (!mesh.mBones.empty() && !mesh.mBoneVertices.empty())
|
|
{
|
|
std::vector<aiVertexWeight>* avBonesOut = new
|
|
std::vector<aiVertexWeight>[mesh.mBones.size()];
|
|
|
|
// find all vertex weights for this bone
|
|
unsigned int quak = 0;
|
|
for (std::vector<BoneVertex>::const_iterator
|
|
harrypotter = mesh.mBoneVertices.begin();
|
|
harrypotter != mesh.mBoneVertices.end();++harrypotter,++quak)
|
|
{
|
|
for (std::vector<std::pair<int,float>>::const_iterator
|
|
ronaldweasley = (*harrypotter).mBoneWeights.begin();
|
|
ronaldweasley != (*harrypotter).mBoneWeights.end();++ronaldweasley)
|
|
{
|
|
aiVertexWeight weight;
|
|
weight.mVertexId = quak;
|
|
weight.mWeight = (*ronaldweasley).second;
|
|
avBonesOut[(*ronaldweasley).first].push_back(weight);
|
|
}
|
|
}
|
|
|
|
// now build a final bone list
|
|
p_pcOut->mNumBones = 0;
|
|
for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size();++jfkennedy)
|
|
if (!avBonesOut[jfkennedy].empty())p_pcOut->mNumBones++;
|
|
|
|
p_pcOut->mBones = new aiBone*[p_pcOut->mNumBones];
|
|
aiBone** pcBone = &p_pcOut->mBones[0];
|
|
for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size();++jfkennedy)
|
|
{
|
|
if (!avBonesOut[jfkennedy].empty())
|
|
{
|
|
*pcBone = new aiBone();
|
|
(**pcBone).mName.Set(mesh.mBones[jfkennedy].mName);
|
|
(**pcBone).mNumWeights = avBonesOut[jfkennedy].size();
|
|
(**pcBone).mWeights = new aiVertexWeight[(**pcBone).mNumWeights];
|
|
memcpy((**pcBone).mWeights,&avBonesOut[jfkennedy][0],
|
|
sizeof(aiVertexWeight) * (**pcBone).mNumWeights);
|
|
++pcBone;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// now build the output mesh list
|
|
pcScene->mNumMeshes = avOutMeshes.size();
|
|
pcScene->mMeshes = new aiMesh*[pcScene->mNumMeshes];
|
|
for (unsigned int i = 0; i < pcScene->mNumMeshes;++i)
|
|
pcScene->mMeshes[i] = avOutMeshes[i];
|
|
|
|
return;
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ASEImporter::BuildMaterialIndices(aiScene* pcScene)
|
|
{
|
|
ai_assert(NULL != pcScene);
|
|
|
|
// iterate through all materials and check whether we need them
|
|
unsigned int iNum = 0;
|
|
for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat)
|
|
{
|
|
if (this->mParser->m_vMaterials[iMat].bNeed)
|
|
{
|
|
// convert it to the aiMaterial layout
|
|
this->ConvertMaterial(this->mParser->m_vMaterials[iMat]);
|
|
iNum++;
|
|
}
|
|
for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[
|
|
iMat].avSubMaterials.size();++iSubMat)
|
|
{
|
|
if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed)
|
|
{
|
|
// convert it to the aiMaterial layout
|
|
this->ConvertMaterial(this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat]);
|
|
iNum++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// allocate the output material array
|
|
pcScene->mNumMaterials = iNum;
|
|
pcScene->mMaterials = new aiMaterial*[pcScene->mNumMaterials];
|
|
|
|
iNum = 0;
|
|
for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat)
|
|
{
|
|
if (this->mParser->m_vMaterials[iMat].bNeed)
|
|
{
|
|
ai_assert(NULL != this->mParser->m_vMaterials[iMat].pcInstance);
|
|
pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat].pcInstance;
|
|
|
|
// iterate through all meshes and search for one which is using
|
|
// this top-level material index
|
|
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh)
|
|
{
|
|
if (ASE::Face::DEFAULT_MATINDEX == pcScene->mMeshes[iMesh]->mMaterialIndex &&
|
|
iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3])
|
|
{
|
|
pcScene->mMeshes[iMesh]->mMaterialIndex = iNum;
|
|
pcScene->mMeshes[iMesh]->mColors[3] = NULL;
|
|
}
|
|
}
|
|
iNum++;
|
|
}
|
|
for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[iMat].avSubMaterials.size();++iSubMat)
|
|
{
|
|
if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed)
|
|
{
|
|
ai_assert(NULL != this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].pcInstance);
|
|
pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat].
|
|
avSubMaterials[iSubMat].pcInstance;
|
|
|
|
// iterate through all meshes and search for one which is using
|
|
// this sub-level material index
|
|
for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh)
|
|
{
|
|
if (iSubMat == pcScene->mMeshes[iMesh]->mMaterialIndex &&
|
|
iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3])
|
|
{
|
|
pcScene->mMeshes[iMesh]->mMaterialIndex = iNum;
|
|
pcScene->mMeshes[iMesh]->mColors[3] = NULL;
|
|
}
|
|
}
|
|
iNum++;
|
|
}
|
|
}
|
|
}
|
|
// finished!
|
|
return;
|
|
}
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Generate normal vectors basing on smoothing groups
|
|
void ASEImporter::GenerateNormals(ASE::Mesh& mesh)
|
|
{
|
|
if (mesh.mNormals.empty())
|
|
{
|
|
// need to calculate normals ...
|
|
// TODO: Find a way to merge this with the code in 3DSGenNormals.cpp
|
|
mesh.mNormals.resize(mesh.mPositions.size(),aiVector3D());
|
|
for( unsigned int a = 0; a < mesh.mFaces.size(); a++)
|
|
{
|
|
const ASE::Face& face = mesh.mFaces[a];
|
|
|
|
// assume it is a triangle
|
|
aiVector3D* pV1 = &mesh.mPositions[face.a.b.i1];
|
|
aiVector3D* pV2 = &mesh.mPositions[face.a.b.i2];
|
|
aiVector3D* pV3 = &mesh.mPositions[face.a.b.i3];
|
|
|
|
aiVector3D pDelta1 = *pV2 - *pV1;
|
|
aiVector3D pDelta2 = *pV3 - *pV1;
|
|
aiVector3D vNor = pDelta1 ^ pDelta2;
|
|
|
|
mesh.mNormals[face.a.b.i1] = vNor;
|
|
mesh.mNormals[face.a.b.i2] = vNor;
|
|
mesh.mNormals[face.a.b.i3] = vNor;
|
|
}
|
|
|
|
// calculate the position bounds so we have a reliable epsilon to
|
|
// check position differences against
|
|
// @Schrompf: This is the 7th time this snippet is repeated!
|
|
aiVector3D minVec( 1e10f, 1e10f, 1e10f), maxVec( -1e10f, -1e10f, -1e10f);
|
|
for( unsigned int a = 0; a < mesh.mPositions.size(); a++)
|
|
{
|
|
minVec.x = std::min( minVec.x, mesh.mPositions[a].x);
|
|
minVec.y = std::min( minVec.y, mesh.mPositions[a].y);
|
|
minVec.z = std::min( minVec.z, mesh.mPositions[a].z);
|
|
maxVec.x = std::max( maxVec.x, mesh.mPositions[a].x);
|
|
maxVec.y = std::max( maxVec.y, mesh.mPositions[a].y);
|
|
maxVec.z = std::max( maxVec.z, mesh.mPositions[a].z);
|
|
}
|
|
const float posEpsilon = (maxVec - minVec).Length() * 1e-5f;
|
|
|
|
std::vector<aiVector3D> avNormals;
|
|
avNormals.resize(mesh.mNormals.size());
|
|
|
|
// now generate the spatial sort tree
|
|
D3DSSpatialSorter sSort;
|
|
for( std::vector<ASE::Face>::iterator
|
|
i = mesh.mFaces.begin();
|
|
i != mesh.mFaces.end();++i){sSort.AddFace(&(*i),mesh.mPositions);}
|
|
sSort.Prepare();
|
|
|
|
for( std::vector<ASE::Face>::iterator
|
|
i = mesh.mFaces.begin();
|
|
i != mesh.mFaces.end();++i)
|
|
{
|
|
std::vector<unsigned int> poResult;
|
|
for (unsigned int c = 0; c < 3;++c)
|
|
{
|
|
sSort.FindPositions(mesh.mPositions[(*i).a.mIndices[c]],(*i).iSmoothGroup,
|
|
posEpsilon,poResult);
|
|
|
|
aiVector3D vNormals;
|
|
float fDiv = 0.0f;
|
|
for (std::vector<unsigned int>::const_iterator
|
|
a = poResult.begin();
|
|
a != poResult.end();++a)
|
|
{
|
|
vNormals += mesh.mNormals[(*a)];
|
|
fDiv += 1.0f;
|
|
}
|
|
vNormals.x /= fDiv;vNormals.y /= fDiv;vNormals.z /= fDiv;
|
|
vNormals.Normalize();
|
|
avNormals[(*i).a.mIndices[c]] = vNormals;
|
|
poResult.clear();
|
|
}
|
|
}
|
|
mesh.mNormals = avNormals;
|
|
}
|
|
return;
|
|
}
|